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Abstract

In the game of Graph Nimors, two players alternately perform graph
minor operations (deletion and contraction of edges) on a graph until no
edges remain, at which point the player who last moved wins. We present
theoretical and experimental results and conjectures regarding this game.

1 Introduction

Graph Nimors is a combinatorial game in which two players take alternating
turns performing graph minor operations on a graph until no edges remain,
at which point the player who last moved wins. Although the rules of Graph
Nimors are simple and seem obvious, it appears to be novel, and its analysis
appears to be difficult. A simple online version, coded by Martin Aumüller, is
online at http://itu.dk/people/mska/nimors/. How does one play this game
well?

All our graphs are simple (no multiple edges) and undirected. A graph minor
operation consists of deleting an edge or contracting an edge—that is, removing
two adjacent vertices u and v and inserting a new vertex w adjacent to the
union of the neighbourhoods of u and v in the original graph (excluding u and v
themselves). We will often make use of the blocks of a graph, which are maximal
biconnected subgraphs, allowing single edges as blocks, so that the edges of any
graph can be partitioned into a disjoint union of blocks.

Let Cn denote the cycle of n vertices and n edges; Kn denote the complete
graph on n vertices (which has n(n−1)/2 edges); andKp,q the complete bipartite
graph with parts of p and q vertices (which has p + q vertices and pq edges).
The girth of a graph is the number of vertices in its smallest cycle, or ∞ if the
graph is acyclic.

Let ⊕ be the Nim sum, a binary operator on nonnegative integers usually
described as “binary addition without carry”; it is also equivalent to bitwise
exclusive OR, as in the C language ^ operator. The ordinary sum is an upper
bound on the Nim sum. Given a set S, let mexS be the least nonnegative
integer that is not an element of S. Note mex∅ = 0 and mexS ≤ |S|. It is
not necessary for all elements of S to be integers. Other objects might occur
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when the theory is extended to broader classes of games; but the mex of a
set is by definition a nonnegative integer. Writing mex in Roman type is the
standard notation for this function, as used by other authors [1] and consistent
with analogous functions like max and min.

A combinatorial game consists of a set of positions with rules describing, for
any position p, sets of positions that are called options of p for the Left player
and for the Right player (thus, two directed graphs). If for all positions the Left
and Right options are the same, then the game is called impartial ; otherwise,
partisan. If for every position p, all directed walks starting from p are of finite
length, then the game is short. All games we consider are perfect-information
games, which means that each player knows the current position (instead of
only some function of it) when choosing which move to make, and none involve
random selections outside the players’ control.

If, from a position in a combinatorial game, the next player to move can
win in all cases of the opponent’s choices, then that is called an N -position
(mnemonic: Next player to win). If the other player can win in all cases of the
next player’s choices, then that is called a P-position (Previous player to win).
In short impartial games, every position is in one of these two classes; other
kinds of games admit other possibilities. The standard play convention is that
positions with no options, at which play necessarily terminates, are P-positions:
a player unable to move loses. The misère play convention is the opposite, with
positions that have no options defined to be N -positions and a player unable to
move declared the winner.

The literature on combinatorial games is massive, and we survey only a
few of the most relevant results here. The literature on graph minors is even
bigger; but as we use very little from that work here except for starting from
the idea of a “graph minor operation,” we will only refer readers to the survey
by Lovasz [13].

The general theory of Nim-like games owes much to the theoretical work
of Sprague [19] and Grundy [10] and the popular survey Winning Ways of
Berlekamp, Conway, and Guy [1]. Graph Nimors as such appears to be novel,
but many other Nim-like games involving graphs are known. Hackenbush, which
involves deleting subgraphs from a graph, is a constantly-used example and
reference point for putting values on other games in Winning Ways.

As Demaine [4] describes, it is typical for short two-player games to be
PSPACE-complete. Schaefer [18] shows PSPACE-completeness of several graph
games including Geography, in which players move a token from vertex to vertex
of a directed graph, never repeating an arc; and Node Kayles, where a move is to
claim a vertex not adjacent to any already-claimed vertex (thus building an inde-
pendent set). Fraenkel and Goldschmidt [7] show PSPACE-hardness for several
more classes of games involving moving tokens and marking vertices in graphs.
Bodlaender [2] describes a graph colouring game in which players take turns
colouring vertices without giving any two adjacent vertices the same colour; the
number of colours needed for the first player to force a complete colouring is a
natural graph invariant related to this game. Bodlaender shows that the variant
in which the order of colouring vertices is predetermined, is PSPACE-complete,

2



and gives partial results for variants without that restriction.
Fukuyama [9] describes Nim on graphs, where each edge of a graph contains

a Nim pile and players take turns moving a token from vertex to vertex, sub-
tracting from the pile on each edge traversed. If every pile is of size 1 and the
graph is made directed, this is the same as Geography. Calkin et al. [3] describe
Graph Nim, in which a move consists of choosing one vertex and removing any
nonempty subset of the edges incident to it; in the case of paths, this is eas-
ily seen to be equivalent to the take-and-break game Kayles [1, Chapter 4].
Fraenkel and Scheinerman [8] describe a deletion game on hypergraphs, with
moves consisting of removing vertices or hyperedges. Harding and Ottaway [11]
describe edge-deletion games with constraints on the parity of the degrees of the
endpoints of the edges that may be deleted. Henrich and Johnson [12] describe
a link smoothing game, in which players make “smoothing” moves on a planar
embedding that represents the shadow of a link diagram, attempting to either
disconnect the diagram or keep it connected. Their work is of interest in the
context of ours because the smoothing moves are sometimes equivalent to edge
contraction in a graph representing the game state. Few other games involving
edge contraction are known.

2 Basic theory of Graph Nimors

There is a general theory [19, 10, 1] for a class of games that includes Graph
Nimors, summarized by the following well-known result.

Theorem 1 (Sprague-Grundy Theorem). For any short impartial two-player
perfect-information combinatorial game with the standard play convention and
without randomness, there exists a unique function G from positions to non-
negative integers, called the Nim value or Sprague-Grundy number, with the
following properties where G is any position of the game:

• If the options from G are G1, G2, . . . , Gk, then G(G) = mex{G(G1),G(G2),
. . . ,G(Gk)}. This implies G(G) = 0 if there are no options from G, because
mex∅ = 0.

• G(G) = 0 if and only if G is a P-position.

• If G can be separated into a union of two positions G′ and G′′, such that
each player’s turn consists of moving in exactly one of the sub-positions
and where no sequence of moves in one will affect the moves available in
the other, then G(G) = G(G′)⊕ G(G′′).

• Optimal play is to move to any position of zero Nim value, which is possible
if and only if the current Nim value is nonzero. Then the opponent either
loses immediately or is forced to move to a position of nonzero Nim value,
at which point one can apply the strategy again.

The prototype game meeting these conditions is Nim: a position is some
number of piles of stones, with the legal move being to remove any nonempty
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subset of any one pile. In that game the Nim value of a single pile is simply the
number of stones in it. The Nim sum rule above is used to evaluate multi-pile
configurations, and that gives an easy winning strategy.

The game of Graph Nimors also meets the conditions. Blocks serve to parti-
tion the graph. No sequence of moves in one block can affect the moves available
in any other blocks. Therefore the Nim value of a graph is the Nim sum of the
Nim values of its blocks. Assuming we can easily find the Nim values of bicon-
nected graphs, we can compute them for any other graphs, and thereby play
optimally from any N -position.

However, the only obvious way to compute the Nim value of a general bi-
connected graph is to recursively examine all its minors, which is prohibitively
time-consuming in all but the smallest cases.

2.1 Easy cases

For very small graphs, the Nim value is easy to calculate by brute force. All
biconnected graphs of up to four vertices are shown in Figures 1, with arrows
among graphs to show the options from each position and a few extra graphs to
illustrate non-biconnected options for the four-vertex graphs. Note that break-
ing apart the blocks into separate components makes no difference to the Nim
value, and we do that in the figure to make the boundaries between blocks as
clear as possible. The Nim value of each biconnected graph is the mex of the
Nim values for its options. The biconnected graphs of five vertices and their
Nim values are shown in Figure 2, but even for graphs as small as these, there
are so many options that showing them all would make the diagram excessively
complicated.

On an acyclic graph, every move reduces the edge count by exactly one.
The game ends when the edges are exhausted, and the players’ choices to delete
or contract edges make no difference to the final result. The Nim value of an
acyclic graph is 0 if the number of edges is even, 1 if odd. A graph with no edges
has Nim value 0 (no moves possible); with one edge, Nim value 1 (mex{0} = 1),
and then for larger acyclic graphs, each of the edges is a block and we take the
Nim sum of an even or odd number of them.

The Nim value of C3 is 2, because its options are paths of one and two edges,
which have Nim values of 1 and 0, and mex{0, 1} = 2. The Nim value of C4 is
0 because its options are C3 and a three-edge path, and mex{1, 2} = 0. Larger
cycles Ck have Nim value 0 for even k, 1 for odd k, by an easy induction.

Not many other cases can really be called “easy.” Even such a simple thing
as two cycles sharing one edge (equivalent to a cycle with a chord across it)
requires more than trivial work to analyse.

Theorem 2. Let FCp,q (mnemonic: “fused cycle”) be the graph of p + q − 2
vertices and p+ q− 1 edges formed by identifying one edge of Cp with one edge
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Figure 1: The biconnected graphs of up to four vertices, and their Nim values.

1 4 2 0 3

2 2 4 2 1

Figure 2: The biconnected graphs of five vertices, and their Nim values.
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of Cq. Without loss of generality assume p ≤ q. Then

G(FC3,3) = 1

G(FC3,4) = 4

G(FC3,q) = 2 for odd q ≥ 5

G(FC3,q) = 3 for even q ≥ 6

G(FCp,q) = 0 for odd p+ q when p ≥ 4, q ≥ 4

G(FCp,q) = 1 for even p+ q when p ≥ 4, q ≥ 4.

(1)

Proof. For the case FC3,3: there are two kinds of edges, each of which may be
removed or contracted. Removing the centre edge leaves C4 with Nim value
0. Removing a side edge leaves C3 plus one edge, with Nim value 2 ⊕ 1 =
3. Contracting the centre edge leaves two edges, with Nim value 1 ⊕ 1 = 0.
Contracting a side edge leaves C3 with Nim value 2. Then mex{0, 2, 3} = 1.

For the case FC3,4: We can delete or contract one of the edges that came only
from C3, from C4, or the shared edge (six moves in all). Deleting an edge from
C3 leaves C4 and one edge as blocks, total Nim value 1. Deleting an edge from
C4 leaves C3 and two edges as blocks, total Nim value 2. Deleting the shared
edge leaves C6, Nim value 0. Contracting an edge from C3 leaves C4, Nim value
0. Contracting an edge from C4 leaves FC3,3, Nim value 1 (above). Contracting
the shared edge leaves C3 plus an edge, Nim value 3. Then mex{0, 1, 2, 3} = 4.

For the case FC3,q, q ≥ 5: Assume the theorem is true for smaller q. Deleting
an edge from C3 leaves Cq plus an edge, Nim value 0 or 1 with the opposite
parity from q. Contracting an edge from C3 leaves just Cq, Nim value 0 or 1
with the same parity as q. Thus, these two cases together cover the Nim values
0 and 1. Deleting or merging the shared edge leaves a cycle of length at least 4
and possibly an extra dangling edge; the Nim value of the result is 0 or 1, and
already covered. Deleting an edge from Cq leaves a triangle and q − 2 edges as
blocks, with Nim value 2 for even q and 3 for odd q. Merging an edge from Cq

leaves FC3,q−1, which by the inductive assumption has the same Nim value as
Cq plus an edge, namely 2 for even q (odd q − 1) and 3 for odd q (even q − 1),
unless it is FC3,4 with Nim value 4. Thus the values of the options are 0 and
1 unconditionally, exactly one of 2 or 3, and possibly also 4. The mex of these
values is 2 or 3, according to the parity of q: 2 for odd q and 3 for even q, and
the result holds.

For the case FCp,q with p ≥ 4 and q ≥ 4: Assume the theorem is true
for smaller p or q. Deleting an edge from Cp leaves as blocks Cq and p − 2
single edges; the Nim value of the result is 0 or 1 with the same parity as p+ q.
Symmetrically, we get the same Nim value by deleting an edge from Cq. Deleting
the shared edge leaves Cp+q−2, which also has the same Nim value. Contracting
an edge in Cp results in FCp−1,q, which by the inductive assumption has Nim
value 0 or 1 with the same parity as p+ q, or else greater than 1 (when p = 4);
and the same is true symmetrically of contracting an edge in Cq. That leaves
only contracting the shared edge, which results in Cp−1 and Cq−1 joined by a
shared vertex, the Nim value of which may be 0 or 1 with the same parity as
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p + q, or else (if exactly one of p and q was equal to 4) a value greater than 1.
Thus the values of the options are exactly one of the values {0, 1} depending on
the parity of p+ q, and possibly some value or values greater than 1. The mex
of this set is 0 or 1 with the opposite parity from p+q, and the result holds.

2.2 Property S

Girth seems relevant to the analysis of Graph Nimors, both because there are
some girth-related patterns visible in the computer results and because there are
simple statements we can make about the consequences of moves in the game as
they relate to girth. A deletion move never decreases the girth. A contraction
move never increases the girth, except in the special case where it contracts
an edge shared by all triangles in the graph, and if it decreases the girth, it
decreases the girth by exactly one. Any move on a graph of girth at least four
(a triangle-free graph) subtracts exactly one from the number of edges.

These facts suggest that if the starting girth is sufficiently large, one player
may be able to keep it large as part of a simple winning strategy. But actually
implementing such a strategy seems difficult. For instance, the Petersen graph
has girth 5 and Nim value 1. The first player, although able to win, cannot
prevent the second player from forming one or more triangles along the way.
The following property is similar to girth, but represents something one player
can preserve as part of a strategy.

Definition 1. A graph G has property S (mnemonic: its high-degree vertices
are Separated by Series vertices) if it contains no edge incident to two vertices
of degree greater than two, and no block of G is a triangle.

Note that property S implies G is triangle-free. The important consequence
of property S is that any move which reduces the girth can be undone on the
next move, allowing one player to force an outcome determined by the parity of
the number of edges.

Theorem 3. A graph with property S is an N -position if and only if it has an
even number of edges.

Proof. Suppose G has property S and an even number of edges. If the first
player deletes an edge, then the result will have property S and an odd number
of edges, at which point the second player can delete any edge, preserving the
property and making the number of edges even again. Similarly, if the first
player contracts an edge but leaves a graph that still has property S, then the
second player can delete any edge.

Suppose the first player contracts an edge in such a way that the resulting
graph does not have property S. Then the first player’s move must have consisted
of contracting an edge between a degree-two vertex and one of its neighbours
where both neighbours had degree greater than two, creating a new edge between
two vertices u and v of degree greater than two, as in Figure 3. The edge (u, v) is
the only one violating property S. Then the second player can delete that edge,
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u v

Figure 3: Contracting an edge to a degree-two vertex.

restoring the property and making the number of edges even. By induction, the
second player has a winning strategy on any graph with property S and an even
number of edges.

On a graph with property S and an odd number of edges, the first player
can win by deleting any edge and then following the second-player strategy.

Note that the winning strategies described in the proof only ever make use
of deletion moves, although the other player is free to contract edges.

2.3 Bounds on the Nim value

How large can the Nim value of a graph be? The number of edges in the graph
is an easy upper bound because the Nim value of a graph can be at most the
maximum Nim value of any option of that graph, plus one. Since every option
of a graph G has strictly fewer edges than G, we can gain no more than one unit
of Nim value for each edge we add. In fact, this bound is tight only for graphs
of zero or one edges; larger graphs always have Nim value strictly less than the
number of edges, because there is no two-edge graph of Nim value 2 and that
deficiency affects all larger graphs through the induction.

When a graph has some symmetry, there may be several edges which, if
deleted or contracted, give isomorphic results. The number of options distinct
up to graph isomorphism and any other operation that does not change the Nim
value is an upper bound on the Nim value of a position. As a result, edge-
transitive graphs have a maximum Nim value of 2: a player could delete any
edge (it does not matter which one), or contract any edge, and in the maximizing
case, one of those options gives Nim value 0, one gives Nim value 1, and the
edge-transitive starting graph can have Nim value 2. More generally, if there
are k orbits of edges under the automorphism group of G, then G(G) ≤ 2k.

But there can be other equivalent moves not captured by the graph auto-
morphism group. For instance, deleting any edge in a chain of degree-2 vertices
will yield equivalent but not necessarily isomorphic graphs regardless of which
edge is deleted, because the remaining edges in the chain all become single-edge
blocks, and then only the parity of how many of them there are is relevant to
the Nim value. Recognizing moves that are equivalent in this way can tighten
the bound a little.

On the other side, the computer results of the next section include bicon-
nected graphs with Nim values as large as 25. By the definition of Nim values,
existence of any value implies existence of all smaller values. Combining power-
of-two values from 1 to 16 with the Nim sum operation allows the construction
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of non-biconnected graphs with arbitrary Nim values from 0 to 31. It seems in-
tuitively reasonable that graphs ought to exist with arbitrarily large Nim values,
but no Nim value greater than 31 has actually been proven to occur.

3 Computer experiments

We implemented the obvious dynamic programming algorithm for computing
Nim values of graphs: namely recursively computing the Nim values of all op-
tions and taking the mex of them, while memoizing computed results in a hash
table indexed by a canonically-labelled representation of the graph. Our soft-
ware has a client-server architecture intended for use on a multicore machine.
Each client reads graphs from its input and computes their Nim values as fol-
lows:

• Detect a few small basis cases (such as graphs with at most three edges)
and return hardcoded answers for them.

• If the graph is not biconnected: split it into blocks, solve those separately,
and compute the Nim sum.

• When working on a biconnected graph, canonically label it.

• Check a local per-client cache (hash table of 225 entries, roughly 1G of
RAM).

• If the answer is not in the local hash table: query the database server.

• If not on the database server: recursively compute all the Nim values of
options, and take their mex.

• If we did a recursive examination of options: store the result on the
database server and in the local hash table, overwriting any colliding item
in the local hash slot.

We used the Tokyo Tyrant key-value store [6] as the central database server,
and wrote client programs in C with nauty [14] for canonical labelling. Although
the recursion rule is different, this general approach of memoized recursion over
smaller graphs is essentially the same as that used by our cycle-counting soft-
ware (“ECCHI,” the Enhanced Cycle Counter and Hamiltonian Integrator) in
a previous project [5], and we were able to re-use some of that code. We used
the graph utilities included with nauty to generate sets of graphs to feed into
the computation.

Bearing in mind the difficulty of verifying correctness of final answers for
larger graphs, we spent significant effort on testing the code. The final test
suite achieves 100% source line coverage of our client software (excluding third-
party material and assertion-failed branches) and covers a wide range of cases
reasonably expected to be relevant to correctness. For instance, one test com-
putes the Nim values of all 8-vertex biconnected graphs (without connecting to
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the database server), then does it again with the graphs in a pseudorandomly
permuted order, and checks that the results are the same for all of the graphs.
Since the computation for each graph depends on the intermediate values stored
in the local cache by previous computations, this test implies finding the answer
for each graph by two different computation trees. We also ran our tests inside
Valgrind [16] to guard against uninitialized values and other kinds of undefined
behaviour. The results from our software agree with all our hand calculations
(including on all graphs of up to five vertices) and theoretical results (including
some that were not known when the software was written).

We ran our experiments on one node of a Linux cluster at the IT University of
Copenhagen, with four real Intel CPU cores (eight virtual by “hyper-threading”)
running at 3.60GHz, and 32G of RAM. We started with the database on a 250G
solid-state drive, switching to a magnetic hard drive in the final stages when
space for the database (including temporary working space needed by Tokyo
Tyrant’s “optimization” process) ran out on the SSD.

We computed Nim values for the following graphs:

• Biconnected graphs with 3 to 11 vertices (910914360 graphs total).

• Planar biconnected graphs with 3 to 12 vertices (169178844 graphs total).

• Triangle-free biconnected graphs with 4 to 13 vertices (10757199 graphs
total).

• Graphs of girth at least five, and biconnected, with 5 to 15 vertices (342385
graphs).

• Cubic triangle-free biconnected graphs with up to 16 vertices (928 graphs).

• Complete bipartite graphs Kp,q with p and q at most 20 and at most 48
edges.

All but the largest vertex counts of these experiments ran within about four
days. There is no single precise number because we repeated the experiments
several times under varying conditions, both to confirm the results and to test
different software configurations. The largest sizes, which involved more graphs
and slower access to larger files, consumed more like two or three weeks of
computation.

Table 1 shows the maximum Nim value known for a biconnected graph, and
the Nim value of the complete graph, for each value of n, the number of vertices.
The case n = 4 is the only one for which a non-biconnected graph is known to
achieve a greater Nim value (3, for a triangle plus an edge) than any biconnected
graph. Complete graphs are interesting for their lack of pattern. We know the
values are necessarily in {0, 1, 2} because complete graphs are edge-transitive,
and G(Kn) 6= G(Kn−1) because the next smaller complete graph is always an
option; but there is no obvious way to calculate G(Kn) faster than recursing
over all smaller graphs.

Searches of the sequences from Table 1 and near variations in the On-Line
Encyclopedia of Integer Sequences [17] turn up very little. Some appealing hits
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n maxG(G)
1 0
2 1
3 2
4 1
5 4
6 6
7 8
8 13
9 18

10 22
11 25

n G(Kn)
1 0
2 1
3 2
4 0
5 1
6 2
7 0
8 2
9 0

10 1
11 2

Table 1: Maximum Nim values of biconnected graphs, and Nim values of com-
plete graphs, by number of vertices

are excluded by theoretical considerations; for instance, the fact that maxG(G)
for any number of vertices n cannot exceed

(
n
2

)
, the maximum number of edges.

The most exciting search result is that the indices of zeroes in G(Kn), namely
1, 4, 7, 9, . . ., agree with sequence A007066 for all known values. That sequence
is described as “a(n) = 1 + d(n − 1)φ2e, φ = (1 +

√
5)/2.” The next few

terms are 12, 15, 17, 20, 22, 25, . . . The citations for A007066 include Morrison’s
work [15] on Wythoff pairs, which come from the analysis of Wythoff’s well-
known game [20]. But exactly how the Golden Ratio and Wythoff’s game
would be linked to Graph Nimors is not clear, and there are so few terms of
the sequence known as to make any connection unreliable. It would be very
interesting, and may possibly be computationally feasible, to determine G(K12).
If the link to A007066 is genuine, that ought to be 0.

We collected the complete distribution of Nim values for each combination
of vertex count (n) and edge count (m); this data is presented in Appendix A.
In general, the pattern was that for any combination of n and m, there would
be just a few very common Nim values accounting for nearly all the bicon-
nected graphs with those parameters. The distribution for n = 10, m = 23
shown in Figure 4 is a typical example, with Nim values 1 and 5 accounting for
approximately 85% of the graphs.

Values common for a given m are usually very rare for the next larger m. All
deletion moves leave the graph with one less edge, and in a dense graph deletion
moves usually leave the graph biconnected and with the same number of (non-
isolated) vertices. Similarly, all contraction moves reduce the vertex count by
one and the edge count by at least one; in a sparse graph, a contraction move
will usually remove exactly one edge. Thus, if a given Nim value is common for
(vertex, edge) counts (n,m−1) or (n−1,m−1), and to a lesser extent, n−1 and
even smaller m, then we should expect that value to be uncommon for (n,m).
The options for a graph of a given size will usually include a representative
sample of the graphs one edge smaller. This interaction between parameter
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G # graphs

0 23059
1 724676
2 8889
3 418
4 7312
5 312881
6 8679
7 23683
8 30896
9 31990

10 21243
11 14501
12 9004
13 4810
14 2071
15 301
16 17
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Figure 4: Distribution of Nim values for the 1224430 biconnected graphs of 10
vertices and 23 edges.

q
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 18 19 20

p 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 1 0 1 0 1 0 1 0 1 0 1 0
4 2 0 2 0 2 0 2 0 2
5 0 0 0 0 0
6 1 0 1

Table 2: Nim values of complete bipartite graphs.

values may lead to some of the same kinds of periodic behaviour seen in simpler
take-and-break games on piles of stones [1, Chapter 4], even if only as a matter
of usual-case statistics not guaranteed for all graphs of a given n and m.

Table 2 shows all the experimentally-calculated values of G(Kp,q); that is,
Nim values of complete bipartite graphs. The evident patterns in the first two
rows are proven (K1,q because the graphs are acyclic, K2,q by Theorem 3), but
the others remain theoretically open. This is another class in which all the
graphs are edge-transitive, so the values are constrained to {0, 1, 2}.

4 The Parity Heuristic

A deletion move always subtracts one from the total number of edges in the
graph. In a sparse graph, a randomly chosen contraction move will probably
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be on an edge not in any triangle, so it will also subtract exactly one from the
total number of edges. In a dense graph, a contraction move may remove many
edges, but it still seems that a random contraction would as likely as not be on
an edge that is part of an even number of triangles, so that it will reduce the
edge count by an odd number. Thus, if we knew nothing about strategy, we
might expect that at least within some kind of approximation, players would
remove an odd number of edges on every move and we could evaluate whether
a position favours the next or previous player simply by looking at the parity
of the number of edges remaining. The following definition is a stronger form
of that intuitive expectation.

Definition 2. The Parity Heuristic (PH) is the proposition that for a graph G
with m edges, G(G) is 0 if m is even and 1 if m is odd.

Since graphs of Nim value other than 0 and 1 exist, PH fails as a com-
plete analysis of the game. However, the computer results, and experience with
human play, suggest that PH holds for very many graphs.

The Parity Heuristic is proven to hold in these cases:

• acyclic graphs (all moves leave the graph acyclic and with one less edge,
induction down to edgeless graphs);

• cycles except C3 (as described in Subsection 2.1);

• fused cycle pairs, if neither is a triangle (Theorem 2);

• K2,q for any q (these graphs have property S and even edge counts, see
Theorem 3); and

• graphs of more than one block, if it holds for each of the blocks (by the
Sprague-Grundy Theorem).

For graphs with property S, we have Theorem 3 that G(G) = 0 if and only
if m is even. That is equivalent to PH when the number of edges is even, but a
little weaker when it is odd.

We conjecture that PH holds for:

• graphs with property S and an odd number of edges (not all existing com-
puter results have been searched for this, but it is a reasonable extension
of the theoretical results);

• K3,q for any q (no counterexamples up to K3,16);

• graphs of girth at least 5 (no counterexamples up to n = 15); and

• cubic triangle-free graphs (no counterexamples up to n = 16).

It is known not to hold in general for:

• all graphs (smallest counterexample C3, Nim value 2);

13



• cubic graphs (smallest counterexample the triangular prism graph, with
n = 6, m = 9, Nim value 0);

• triangle-free graphs (smallest counterexample K4,4, Nim value 2); nor

• complete graphs (C3 is a counterexample, but there are several others
known also).

The Parity Heuristic is not proven to always fail for any interesting infinite
classes of graphs. However, for all known cases of Kp,q with p and q both at
least 4, the Nim value is nonzero if and only if p and q are both even, which
contradicts PH whenever p+ q is even.

5 Further thoughts

We have described the game of Graph Nimors and some theoretical and exper-
imental results on strategy for it. Many natural questions remain open.

All the conjectures regarding the Parity Heuristic in Section 4 seem good
targets for theoretical work. We are especially interested in the girth-5 case,
which seems like it should be easy to prove. Proving Nim values for well-
behaved infinite classes of graphs, such as Kp,q with fixed constant p such as
3 or 4, also seems like a bite-sized problem. Any result on G(Kn) (that is, the
Nim value of the arbitrary-sized complete graph) would be interesting, but may
be difficult; in particular, the coincidence with OEIS sequence A007066 [17],
which is related to the Golden Ratio and Wythoff’s Nim-like game, would be
interesting to confirm or disprove. Just computing G(K12), currently known to
be either 0 or 1, could either lend additional support to that connection (if the
answer is 0) or immediately disprove it (if the answer is 1); and that seems to
be a large computational task, but within the range of possibility, given some
improvements to software and hardware.

The experimental side of this work revealed some deficiencies in Tokyo
Tyrant’s ability to handle databases on magnetic disk as opposed to SSD, and
other high-performance key-value stores suitable for external-memory databases
are surprisingly few. Popular “noSQL databases” are frequently designed for
smaller numbers of larger records, or to operate only in main memory. Build-
ing a key-value store capable of handling a random access pattern on magnetic
disk with many billions of very small records (presumably, batching requests
from many parallel threads to make the best of each disk seek operation) is an
interesting software engineering problem.

It is reasonable to guess that calculating the Nim value of a graph with
respect to Graph Nimors should be PSPACE-complete, but that remains un-
proven. Constraining the moves, for instance by fixing a sequence of the edges
and requiring players to follow that sequence, might create a variant for which
hardness is easier to prove. Much of the theoretical difficulty comes from the
fact that there is currently no known way to split a graph into smaller parts
with predictable relations between the Nim values of the parts, except to split
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it into blocks, at which point the blocks’ values affect each other only through
the Nim sum operation. Having any other way to localize the effects of changes
in the graph would help support construction of gadgets for a hardness proof.
Constructions for arbitrarily large biconnected graphs with specified Nim val-
ues; arbitrarily large Nim values; or a proof that arbitrarily large Nim values
are not possible; might contribute usefully to the hardness question as well as
being interesting in themselves.

Many variations of Graph Nimors are possible. The misère variation is
obvious, and could be expected to yield as much complicated theory as any other
impartial misère game. One could make Graph Nimors partisan by requiring
one player to always delete and one to always contract. In a graph of large
girth with few cycles, the deleting player may be able to break all the cycles
before the contracting player can form any triangles, thus forcing the game to
be determined by parity of number of edges; but if that is not in the deleting
player’s interest, or if the girth is small or number of cycles large, the result is
not clear. When we first invented this game, we were concerned that it might
turn out to be too easy under the basic rules presented here, and considered
adding constraints like “no move is allowed that would leave the graph planar.”
Although apparently unnecessary to create a difficult game, such a constraint
might be interesting as a way to link nimors and minors.
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A Distributions of Nim values for biconnected
graphs

This appendix gives the counts of Nim values observed for all biconnected graphs
with between 3 and 11 vertices, sorted with the most common values at the top.

A.1 3 vertices

n = 3 m = 3
G count
2 1

A.2 4 vertices

n = 4 m = 4
G count
0 1

n = 4 m = 5
G count
1 1

n = 4 m = 6
G count
0 1

A.3 5 vertices

n = 5 m = 5
G count
1 1

n = 5 m = 6
G count
4 1
0 1

n = 5 m = 7
G count
2 3

n = 5 m = 8
G count
4 1
3 1

n = 5 m = 9
G count
2 1

n = 5 m = 10
G count
1 1

A.4 6 vertices

n = 6 m = 6
G count
0 1

n = 6 m = 7
G count
1 2
2 1

n = 6 m = 8
G count
3 4
0 4
1 1

n = 6 m = 9
G count
1 10
5 2
4 1
0 1

n = 6 m = 10
G count
0 6
3 2
6 1
5 1
4 1
1 1

n = 6 m = 11
G count
1 5
5 2
3 1

n = 6 m = 12
G count
0 4
2 1

n = 6 m = 13
G count
4 1
3 1

n = 6 m = 14
G count
0 1

n = 6 m = 15
G count
2 1

17



A.5 7 vertices

n = 7 m = 7
G count
1 1

n = 7 m = 8
G count
0 3
3 1

n = 7 m = 9
G count
1 10
2 7
5 2
4 1

n = 7 m = 10
G count
0 25
4 16
6 3
7 2
1 2
5 1
3 1

n = 7 m = 11
G count
2 66
1 6
8 3
5 3
7 2
3 2

n = 7 m = 12
G count
4 38
0 20
3 16
7 6
8 5
6 5
1 3
5 1

n = 7 m = 13
G count
2 57
1 6
7 5
5 5
9 4
8 2
6 1
4 1

n = 7 m = 14
G count
4 27
3 15
0 6
6 5
1 4
5 2

n = 7 m = 15
G count
2 18
1 8
6 3
0 3
7 2
5 2
4 1
3 1

n = 7 m = 16
G count
4 5
5 4
6 3
3 3
1 2
0 2
8 1

n = 7 m = 17
G count
1 5
2 4
0 1

n = 7 m = 18
G count
5 1
4 1
3 1
1 1
0 1

n = 7 m = 19
G count
6 1
1 1

n = 7 m = 20
G count
3 1

n = 7 m = 21
G count
0 1
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A.6 8 vertices

n = 8 m = 8
G count
0 1

n = 8 m = 9
G count
1 5
2 1

n = 8 m = 10
G count
0 25
3 9
4 6

n = 8 m = 11
G count
1 69
2 34
5 26
6 16
8 6
4 5
0 4
3 1

n = 8 m = 12
G count
3 301
0 75
4 15
6 12
7 6
5 6
1 6
9 3
8 3
2 2

n = 8 m = 13
G count
1 468
5 139
0 59
6 31
4 28
2 26
7 17
8 8

10 3
9 1

n = 8 m = 14
G count
3 576
0 209
6 105
8 43
7 40
4 29
9 23
5 23
2 9

10 9
1 9

11 1

n = 8 m = 15
G count
1 694
5 240
0 99
6 31
4 29
2 29
7 27
9 20
8 13

10 8
11 6
3 1

n = 8 m = 16
G count
3 383
0 270
6 174
8 88
7 69

10 28
2 27
5 25
9 23
4 16
1 6

11 4
12 1

n = 8 m = 17
G count
1 390
5 231
9 49
0 39
7 33
2 31
4 27
8 26
6 20

10 18
11 14
3 7

n = 8 m = 18
G count
0 211
3 165
8 60
6 57
7 45
2 27

10 21
4 11
9 9

11 6
5 5
1 3

12 2

n = 8 m = 19
G count
5 92
1 81
9 54
2 34
7 27
4 22
6 17
3 17

11 13
8 12

10 8
12 4
0 3

13 2

n = 8 m = 20
G count
0 103
3 44
7 19
8 13
6 13
2 10

10 4
4 3
1 3
9 1

12 1
11 1

n = 8 m = 21
G count
5 24
2 17
4 16
9 11
6 11
1 10
7 8
8 7
3 6
0 2

n = 8 m = 22
G count
0 25
3 12
2 6
8 3
7 2
6 2
1 2
5 1
4 1

10 1
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n = 8 m = 23
G count
2 8
4 6
5 4
7 3
1 2
8 1

n = 8 m = 24
G count
0 6
7 2
9 1
3 1
1 1

n = 8 m = 25
G count
2 4
1 1

n = 8 m = 26
G count
4 2

n = 8 m = 27
G count
1 1

n = 8 m = 28
G count
2 1

A.7 9 vertices

n = 9 m = 9
G count
1 1

n = 9 m = 10
G count
0 6
3 1

n = 9 m = 11
G count
1 44
2 20
5 6

n = 9 m = 12
G count
0 178
3 161
4 59
7 12
2 8
6 5
1 5
5 4
8 1

n = 9 m = 13
G count
2 859
1 482
5 162
6 68
4 44
8 41
7 28
0 21

10 11
9 10
3 3

n = 9 m = 14
G count
0 2318
4 1428
7 237
3 224
6 206
5 159
8 73
1 56
9 50
2 24

10 19
11 2

n = 9 m = 15
G count
2 7487
1 622
5 520
6 375
7 324
8 297
9 121
4 68
3 57

10 57
0 40

11 13

n = 9 m = 16
G count
4 7324
0 5733
3 733
7 607
6 561
5 426
8 398
9 270
1 258

10 136
11 71
2 17

12 8

n = 9 m = 17
G count
2 18029
7 853
6 833
5 804
1 773
8 572
9 362

10 212
3 158

11 92
0 71
4 59

12 24
13 2

n = 9 m = 18
G count
4 15188
0 6322
3 2038
7 564
6 522
8 510
5 462
1 428
9 425

10 313
11 145
12 63
2 25

13 10
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n = 9 m = 19
G count
2 20654
7 1324
6 1304
1 1167
5 790
9 719
8 647

10 429
11 228
0 193
3 186

12 120
4 50

13 25
14 1

n = 9 m = 20
G count
4 14787
0 3927
3 2628
1 556
5 547
8 507

10 484
7 467
6 446
9 412

11 332
12 178
13 58
2 14

14 7

n = 9 m = 21
G count
2 12952
6 1600
1 1482
7 943
8 621
9 609
5 590

10 518
11 428
12 321
0 202

13 140
3 95
4 35

14 34

n = 9 m = 22
G count
4 8507
3 1574
0 1297
5 541
1 528

10 410
8 408
7 328

11 320
6 306

12 256
9 253

13 141
14 71
2 17

15 14

n = 9 m = 23
G count
2 4802
1 1285
6 1068
7 498

10 372
8 341
5 301
9 286

11 261
12 216
0 136

13 132
3 61

14 56
15 17
4 6

16 4

n = 9 m = 24
G count
4 2600
3 698
0 363
5 324
1 277

11 257
10 253
8 242
9 183
7 173

12 168
13 127
14 92
6 84

15 33
2 9

16 2

n = 9 m = 25
G count
2 907
1 741
6 430

10 185
7 160

12 121
9 110

11 106
5 103
8 102

13 77
0 54

14 44
15 31
3 20

16 17
4 2

n = 9 m = 26
G count
4 481
3 242
0 145
5 136

11 99
10 83
9 81
8 78
1 68
7 59

13 31
12 29
14 28
6 22

15 15
16 12
2 9

17 3

n = 9 m = 27
G count
1 281
6 156
2 81

10 33
0 33

12 29
9 25
8 22
5 22
7 21

11 20
13 15
3 10

14 9
15 5
4 2

16 1

n = 9 m = 28
G count
3 90
4 81
5 44
0 41
8 19

11 14
7 10

10 9
1 9
9 7
2 4

14 4
12 4
15 2
13 2
6 1

16 1
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n = 9 m = 29
G count
1 62
6 50
5 9
2 7
0 5
4 4
3 3

10 3
9 1
8 1

13 1
11 1

n = 9 m = 30
G count
3 27
0 16
7 6
5 5
2 4
4 2
9 1
8 1

10 1

n = 9 m = 31
G count
6 10
1 8
5 3
0 3
4 1

n = 9 m = 32
G count
3 5
0 5
2 1

n = 9 m = 33
G count
5 4
0 1

n = 9 m = 34
G count
3 1
0 1

n = 9 m = 35
G count
4 1

n = 9 m = 36
G count
0 1

A.8 10 vertices

n = 10 m = 10
G count
0 1

n = 10 m = 11
G count
1 8
2 1

n = 10 m = 12
G count
0 84
3 31
4 6

n = 10 m = 13
G count
1 493
2 365
5 135
6 28
4 11
0 2

n = 10 m = 14
G count
0 2331
3 1902
4 957
7 273
6 132
5 122
1 87
8 52
9 25
2 13

10 4

n = 10 m = 15
G count
1 9615
5 4776
2 3222
6 2183
8 1311
7 754
4 531
9 351

10 264
0 171
3 112

11 70
12 10

n = 10 m = 16
G count
3 48854
0 8397
4 2818
7 2172
6 1784
9 1426
8 1261
1 648

10 632
5 527

11 325
2 229

12 93
13 3

n = 10 m = 17
G count
1 99738
5 29910
6 8095
2 4757
0 4263
7 4179
8 3755
4 3710
9 1719

10 1579
11 565
12 226
3 70

13 27
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n = 10 m = 18
G count
3 233123
0 29690
6 16830
7 11395
8 8070
9 5677
4 4450

10 2876
5 1846

11 1304
2 1030
1 490

12 476
13 105
14 2

n = 10 m = 19
G count
1 370853
5 87675
0 18038
6 12653
7 9044
4 8029
8 7747
2 5099
9 5028

10 3806
11 1515
12 607
13 103
3 101

14 10

n = 10 m = 20
G count
3 497386
6 89080
0 85335
7 35922
8 24484
9 13172
5 9740

10 7185
4 4834

11 3236
2 2620

12 1215
1 408

13 231
14 28

n = 10 m = 21
G count
1 681964
5 196118
0 30168
8 17220
7 15294
9 14919
6 11927

10 11288
4 8935

11 6667
2 5792

12 3046
13 827
3 182

14 165
15 5
16 2

n = 10 m = 22
G count
3 625428
0 186531
6 174645
7 60915
8 40747
9 22049
5 15571

10 14536
11 9439
12 5467
4 4511
2 4315

13 2138
14 520
1 246

15 58

n = 10 m = 23
G count
1 724676
5 312881
9 31990
8 30896
7 23683
0 23059

10 21243
11 14501
12 9004
2 8889
6 8679
4 7312

13 4810
14 2071
3 418

15 301
16 17

n = 10 m = 24
G count
3 505007
0 321373
6 134849
7 71869
8 40368
9 23980

10 17980
11 14795
12 9981
13 6396
2 5744
5 5686

14 3282
4 3186

15 1110
1 391

16 155
17 1

n = 10 m = 25
G count
1 439022
5 348904
9 44514
8 42521
7 27873

10 24627
11 18494
12 13398
2 12039

13 9345
6 9253
0 7577
4 5511

14 5280
15 2205
3 1020

16 563
17 41
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n = 10 m = 26
G count
0 362688
3 247515
6 52019
7 46894
8 21152
9 13210

10 12002
11 11465
12 9514
13 7473
2 6628

14 5344
15 2861
4 2046

16 1106
5 633
1 400

17 179
18 9

n = 10 m = 27
G count
5 236721
1 151352
8 38745
9 33986
7 26005
6 16832

10 15490
2 12935

11 12502
12 10734
13 8353
14 5932
4 5320

15 3660
3 2501

16 1568
0 850

17 435
18 36
19 1

n = 10 m = 28
G count
0 220461
3 86579
7 18998
6 13633

11 6181
8 6123

12 5886
10 5514
13 5178
9 4671

14 4618
2 3770

15 3422
16 1953
4 1395

17 791
1 382

18 143
5 79

19 2

n = 10 m = 29
G count
5 97097
1 30035
8 21255
7 16494
9 14181
2 12660
6 12413

10 5504
4 5496

12 4820
11 4637
13 3839
14 3169
3 2564

15 2545
16 1493
17 827
18 223
0 81

19 29

n = 10 m = 30
G count
0 72296
3 26122
7 6976
6 3494

12 3193
11 3079
13 3011
10 2927
14 2713
15 2253
9 1957
2 1864
8 1757

16 1420
17 941
4 792

18 368
1 273
5 66

19 63
20 6

n = 10 m = 31
G count
5 24342
2 9604
7 8050
8 6756
1 4277
9 3669
4 3272
6 2526

12 1262
10 1161
13 1159
11 1020
14 923
15 797
16 707
3 565

17 507
18 267
19 98
0 30

20 7

n = 10 m = 32
G count
0 16722
3 4879
7 2215

10 1458
11 1211
12 1143
9 1115

13 1065
14 828
6 698
8 629

15 623
2 499

16 413
4 348

17 301
1 154

18 120
5 62

19 50
20 13
21 2

n = 10 m = 33
G count
2 5453
5 3350
4 1388
7 1329
8 1226
1 977
9 482

12 200
6 187

13 184
14 169
11 168
15 164
16 119
10 118
17 88
3 61

18 42
19 10
0 10

20 3
21 1
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n = 10 m = 34
G count
0 2360
3 735
9 700
7 654

10 521
11 348
12 337
8 287

13 186
6 149
4 129

14 80
1 70

15 54
5 51

16 32
2 16

17 16
18 10
19 7
20 1

n = 10 m = 35
G count
2 1633
1 277
4 274
5 216
8 100
7 43

11 39
13 28
9 26

12 23
15 22
14 21
10 15
16 13
3 10
6 9
0 6

18 3
17 3
20 1
19 1

n = 10 m = 36
G count
0 231
7 210
9 151
3 130
8 111
4 96
5 43

10 38
1 24
6 23

11 22
12 15
2 2

14 2
16 1
13 1

n = 10 m = 37
G count
2 270
1 85
8 15
4 14

11 8
5 7

10 7
9 5

12 5
7 3

13 3
3 2
6 1

15 1
0 1

n = 10 m = 38
G count
4 73
7 35
3 20
0 19
6 5
5 5
8 4
1 3
9 1

n = 10 m = 39
G count
1 35
2 28
0 2
8 1

n = 10 m = 40
G count
4 10
7 7
3 3
6 2
2 2
0 2

n = 10 m = 41
G count
1 10
0 1

n = 10 m = 42
G count
2 5

n = 10 m = 43
G count
1 2

n = 10 m = 44
G count
2 1

n = 10 m = 45
G count
1 1

25



A.9 11 vertices

n = 11 m = 11
G count
1 1

n = 11 m = 12
G count
0 10
3 1

n = 11 m = 13
G count
1 136
2 47
5 6

n = 11 m = 14
G count
0 1187
3 759
4 260
7 30
5 4
1 2

n = 11 m = 15
G count
1 7135
2 5779
5 2729
6 1029
4 255
8 213
7 146
0 107
3 60
9 36

11 1
10 1

n = 11 m = 16
G count
0 31432
3 28437
4 14933
7 7564
6 2903
9 2849
8 2465
5 1432
2 898

10 825
1 501

11 213
12 31
13 1

n = 11 m = 17
G count
2 209340
1 71398
5 28544
6 19357
8 12371
4 8320
7 7869

10 7457
9 6178
0 4876

11 2952
12 1325
3 420

13 105
14 16

n = 11 m = 18
G count
0 594015
4 308192
3 69801
7 68460
6 48000
8 30106
5 27693
9 27612

10 14439
11 9199
1 6624

12 4581
2 1863

13 1285
14 131
15 1
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n = 11 m = 19
G count
2 2585833
1 141088
5 102880
6 90065
8 72066
7 58706
9 43958

10 35752
4 18204

11 17793
12 10061
0 9984
3 3465

13 3426
14 985
15 28

n = 11 m = 20
G count
0 3642348
4 2644991
6 181325
7 175769
3 121315
5 116215
8 108203
9 79719

10 50630
1 28513

11 27213
12 12898
13 4350
2 1718

14 1503
15 309
16 7

n = 11 m = 21
G count
2 12681816
6 301071
5 239894
7 237343
8 198815
1 189095
9 130455

10 87132
11 43171
4 26559

12 20014
3 12758
0 9964

13 5771
14 1579
15 401
16 63
17 2

n = 11 m = 22
G count
4 11811367
0 10772547
7 393406
3 392043
6 370575
8 323946
5 256131
9 218552

10 144096
11 70863
1 64577

12 33040
13 9711
14 2306
2 1803

15 456
16 69
17 1

n = 11 m = 23
G count
2 35974508
6 726600
7 629592
8 414230
5 408609
9 312808
1 281902

10 205227
11 110593
12 57136
4 30285
3 28160
0 20197

13 18073
14 4311
15 486
16 61
17 4

n = 11 m = 24
G count
4 33222437
0 18282530
3 1252117
7 662744
8 642944
6 570069
9 448136
5 325407

10 319532
11 174262
1 131292

12 90885
13 33273
14 10242
2 1471

15 1430
16 126
17 9

n = 11 m = 25
G count
2 67154824
6 1397128
7 1230010
8 819186
9 667468
1 557734
5 528852

10 469963
11 284714
12 169874
13 72442
0 56796
3 42687

14 26190
4 23717

15 4948
16 727
17 26

n = 11 m = 26
G count
4 63038406
0 17454171
3 2960262
8 880331
7 788452
6 710817
9 665758

10 534471
11 335510
5 304381
1 301481

12 207626
13 107256
14 46556
15 12934
16 2450
2 1138

17 141
18 2
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n = 11 m = 27
G count
2 86823105
6 2555602
7 1794764
8 1430024
1 1211677
9 1177935

10 909291
11 577782
5 522004

12 375352
13 195447
0 114544

14 96942
3 71123

15 31953
4 10959

16 8269
17 753
18 45

n = 11 m = 28
G count
4 79703160
0 9064209
3 5647841
8 889351
7 796384
9 756856
6 734744

10 683967
11 497995
1 496804

12 355499
5 253262

13 228394
14 130387
15 57487
16 19367
17 3160
2 894

18 311
19 3

n = 11 m = 29
G count
2 79352188
6 4110963
1 2404976
7 2035620
8 1905090
9 1530901

10 1281469
11 808695
12 534827
5 385921

13 325133
14 194062
0 140569
3 100554

15 92201
16 37692
17 8648
4 3197

18 1301
19 39

n = 11 m = 30
G count
4 67062913
3 7484052
0 2938840
1 775943

10 766077
7 745591
9 730037
8 726002
6 634320

11 624885
12 466357
13 340462
14 225212
5 211716

15 128753
16 61474
17 19223
18 3906
2 1966

19 297
20 2
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n = 11 m = 31
G count
2 50977458
6 4973298
1 3690412
7 1896931
8 1829597
9 1423453

10 1322544
11 818581
12 539041
13 367048
14 240021
5 239686

15 141958
0 101367
3 78278

16 74371
17 27668
18 7130
4 1132

19 886
20 34

n = 11 m = 32
G count
4 38501464
3 6381586
1 932652
0 870672

10 821872
11 729933
9 720810
7 611220
8 569964

12 544636
6 427047

13 417659
14 290765
15 185427
5 177357

16 110851
17 47791
18 16364
2 4657

19 2811
20 220
21 3

n = 11 m = 33
G count
2 20907514
6 4569451
1 3824767
7 1241034
8 1236178

10 1212368
9 1156068

11 812578
12 576716
13 443773
14 329142
15 229900
5 183368

16 156314
17 85549
0 64791

18 38121
3 35515

19 11044
20 1513
4 1098

21 63

n = 11 m = 34
G count
4 15485426
3 3880870
1 592751

10 535750
11 525832
9 451027

12 424563
13 367264
0 335609
8 324122

14 308077
7 293167

15 248663
16 196989
6 146357

17 134352
5 105608

18 83282
19 36744
20 9810
2 4831

21 1105
22 45
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n = 11 m = 35
G count
2 4479125
6 3240081
1 2715569

10 718191
9 675024
8 535344
7 480721

11 480365
12 350944
13 282359
14 240526
15 194792
16 158613
5 156270

17 119180
18 86051
19 51766
0 43594

20 22469
3 12692

21 5811
4 1309

22 661
23 12

n = 11 m = 36
G count
4 4226043
3 1962342

11 234021
10 218739
12 203854
13 195048
14 184044
9 177427

15 164044
0 152327

16 140338
8 139094
1 132405
7 116058

17 113257
18 87467
19 56874
5 46944

20 30377
6 16647

21 12094
2 5828

22 2857
23 267
24 5

n = 11 m = 37
G count
6 1566799
1 1423102
2 423002

10 161130
9 136951
8 113856
5 110205

11 99482
7 92784

12 78265
13 68886
14 64609
15 56699
16 49244
17 41837
18 34123
19 25563
0 24112

20 15521
21 7646
3 2724

22 2689
4 1374

23 571
24 54

n = 11 m = 38
G count
3 769324
4 755623

11 83640
10 78458
0 69077

12 67784
13 65266
8 61734

14 60896
9 60077
7 49766

15 47646
16 36261
17 25815
18 17572
5 15971

19 10609
20 5632
1 4328
2 2950

21 2531
6 972

22 888
23 231
24 40
25 2
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n = 11 m = 39
G count
1 475360
6 387682
5 56853
2 29527

10 11082
0 9891

14 9606
13 9421
8 9365

12 8972
15 8870
7 8495

11 8278
16 8102
9 7109

17 7065
18 5254
19 3584
20 1875
4 1122

21 795
3 318

22 246
23 38
24 8
25 2

n = 11 m = 40
G count
3 198391
4 82083
0 29314

10 25673
7 20388

11 20198
8 19461

12 15079
9 13486

13 13403
14 10070
15 5965
5 4494

16 3559
17 2141
18 1166
2 769

19 769
20 377
6 276

21 189
1 155

22 50
23 15
24 1

n = 11 m = 41
G count
6 74511
1 66047
5 30115
0 3027
2 2611

14 2100
13 1751
12 1723
15 1678
16 1411
11 1305
10 1090
17 1003
8 996
4 799
9 792
7 717

18 560
19 215
20 107
3 54

21 42
22 13
23 4

n = 11 m = 42
G count
3 34191
0 10896

10 6421
7 4752
4 3885
8 3450

11 3029
9 2326

12 1939
13 1703
14 853
5 502

15 439
16 237
2 230

17 189
18 97
6 85

19 61
1 51

20 23
21 12
22 1
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n = 11 m = 43
G count
5 11399
6 8345
1 4479
0 636
2 479

14 378
12 372
4 332

13 332
11 312
15 262
8 208
9 181

10 180
16 129
7 99

17 60
3 25

18 25
19 6
20 3
21 1

n = 11 m = 44
G count
3 4500
0 2952

10 606
8 547
9 473
7 444
4 241

11 146
12 55
2 53

13 51
6 44
5 32

14 27
1 22

16 17
15 14
17 12
18 5
19 2
20 1

n = 11 m = 45
G count
5 2444
6 462
1 175
4 129
2 128
0 104

11 48
8 32
9 30

12 26
10 22
7 18

13 17
3 15

14 11

n = 11 m = 46
G count
0 550
3 523
7 58
8 55
9 34
6 28
2 26

10 12
4 9
1 4

12 2
5 1

15 1
11 1

n = 11 m = 47
G count
5 341
4 64
2 23
0 18
6 10
1 7
3 3
7 1

n = 11 m = 48
G count
0 92
3 63
2 7
6 4
7 2
5 2
1 2

n = 11 m = 49
G count
5 30
4 27
3 4
0 4
7 1
1 1

n = 11 m = 50
G count
0 16
3 10

n = 11 m = 51
G count
4 8
3 2
2 1

n = 11 m = 52
G count
0 5

n = 11 m = 53
G count
3 2

n = 11 m = 54
G count
0 1

n = 11 m = 55
G count
2 1
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