Graph Nimors

Matthew Skala
mskala@ansuz.sooke.bc.ca

April 15, 2016

Abstract

In the game of Graph Nimors, two players alternately perform graph minor operations (deletion and contraction of edges) on a graph until no edges remain, at which point the player who last moved wins. We present theoretical and experimental results and conjectures regarding this game.

1 Introduction

Graph Nimors is a combinatorial game in which two players take alternating turns performing graph minor operations on a graph until no edges remain, at which point the player who last moved wins. Although the rules of Graph Nimors are simple and seem obvious, it appears to be novel, and its analysis appears to be difficult. A simple online version, coded by Martin Aumüller, is online at http://itu.dk/people/mska/nimors/. How does one play this game well?

All our graphs are simple (no multiple edges) and undirected. A graph minor operation consists of deleting an edge or contracting an edge - that is, removing two adjacent vertices u and v and inserting a new vertex w adjacent to the union of the neighbourhoods of u and v in the original graph (excluding u and v themselves). We will often make use of the blocks of a graph, which are maximal biconnected subgraphs, allowing single edges as blocks, so that the edges of any graph can be partitioned into a disjoint union of blocks.

Let C_{n} denote the cycle of n vertices and n edges; K_{n} denote the complete graph on n vertices (which has $n(n-1) / 2$ edges); and $K_{p, q}$ the complete bipartite graph with parts of p and q vertices (which has $p+q$ vertices and $p q$ edges). The girth of a graph is the number of vertices in its smallest cycle, or ∞ if the graph is acyclic.

Let \oplus be the Nim sum, a binary operator on nonnegative integers usually described as "binary addition without carry"; it is also equivalent to bitwise exclusive OR, as in the C language ^ operator. The ordinary sum is an upper bound on the Nim sum. Given a set S, let mex S be the least nonnegative integer that is not an element of S. Note mex $\varnothing=0$ and mex $S \leq|S|$. It is not necessary for all elements of S to be integers. Other objects might occur
when the theory is extended to broader classes of games; but the mex of a set is by definition a nonnegative integer. Writing mex in Roman type is the standard notation for this function, as used by other authors [1 and consistent with analogous functions like max and min.

A combinatorial game consists of a set of positions with rules describing, for any position p, sets of positions that are called options of p for the Left player and for the Right player (thus, two directed graphs). If for all positions the Left and Right options are the same, then the game is called impartial; otherwise, partisan. If for every position p, all directed walks starting from p are of finite length, then the game is short. All games we consider are perfect-information games, which means that each player knows the current position (instead of only some function of it) when choosing which move to make, and none involve random selections outside the players' control.

If, from a position in a combinatorial game, the next player to move can win in all cases of the opponent's choices, then that is called an \mathcal{N}-position (mnemonic: Next player to win). If the other player can win in all cases of the next player's choices, then that is called a \mathcal{P}-position (Previous player to win). In short impartial games, every position is in one of these two classes; other kinds of games admit other possibilities. The standard play convention is that positions with no options, at which play necessarily terminates, are \mathcal{P}-positions: a player unable to move loses. The misère play convention is the opposite, with positions that have no options defined to be \mathcal{N}-positions and a player unable to move declared the winner.

The literature on combinatorial games is massive, and we survey only a few of the most relevant results here. The literature on graph minors is even bigger; but as we use very little from that work here except for starting from the idea of a "graph minor operation," we will only refer readers to the survey by Lovasz [13].

The general theory of Nim-like games owes much to the theoretical work of Sprague [19] and Grundy [10] and the popular survey Winning Ways of Berlekamp, Conway, and Guy [1]. Graph Nimors as such appears to be novel, but many other Nim-like games involving graphs are known. Hackenbush, which involves deleting subgraphs from a graph, is a constantly-used example and reference point for putting values on other games in Winning Ways.

As Demaine [4] describes, it is typical for short two-player games to be PSPACE-complete. Schaefer [18] shows PSPACE-completeness of several graph games including Geography, in which players move a token from vertex to vertex of a directed graph, never repeating an arc; and Node Kayles, where a move is to claim a vertex not adjacent to any already-claimed vertex (thus building an independent set). Fraenkel and Goldschmidt [7] show PSPACE-hardness for several more classes of games involving moving tokens and marking vertices in graphs. Bodlaender [2] describes a graph colouring game in which players take turns colouring vertices without giving any two adjacent vertices the same colour; the number of colours needed for the first player to force a complete colouring is a natural graph invariant related to this game. Bodlaender shows that the variant in which the order of colouring vertices is predetermined, is PSPACE-complete,
and gives partial results for variants without that restriction.
Fukuyama [9] describes Nim on graphs, where each edge of a graph contains a Nim pile and players take turns moving a token from vertex to vertex, subtracting from the pile on each edge traversed. If every pile is of size 1 and the graph is made directed, this is the same as Geography. Calkin et al. 3] describe Graph Nim, in which a move consists of choosing one vertex and removing any nonempty subset of the edges incident to it; in the case of paths, this is easily seen to be equivalent to the take-and-break game Kayles [1, Chapter 4]. Fraenkel and Scheinerman [8] describe a deletion game on hypergraphs, with moves consisting of removing vertices or hyperedges. Harding and Ottaway [11] describe edge-deletion games with constraints on the parity of the degrees of the endpoints of the edges that may be deleted. Henrich and Johnson 12 describe a link smoothing game, in which players make "smoothing" moves on a planar embedding that represents the shadow of a link diagram, attempting to either disconnect the diagram or keep it connected. Their work is of interest in the context of ours because the smoothing moves are sometimes equivalent to edge contraction in a graph representing the game state. Few other games involving edge contraction are known.

2 Basic theory of Graph Nimors

There is a general theory [19, 10, 11 for a class of games that includes Graph Nimors, summarized by the following well-known result.

Theorem 1 (Sprague-Grundy Theorem). For any short impartial two-player perfect-information combinatorial game with the standard play convention and without randomness, there exists a unique function \mathcal{G} from positions to nonnegative integers, called the Nim value or Sprague-Grundy number, with the following properties where G is any position of the game:

- If the options from G are $G_{1}, G_{2}, \ldots, G_{k}$, then $\mathcal{G}(G)=\operatorname{mex}\left\{\mathcal{G}\left(G_{1}\right), \mathcal{G}\left(G_{2}\right)\right.$, $\left.\ldots, \mathcal{G}\left(G_{k}\right)\right\}$. This implies $\mathcal{G}(G)=0$ if there are no options from G, because $\operatorname{mex} \varnothing=0$.
- $\mathcal{G}(G)=0$ if and only if G is a \mathcal{P}-position.
- If G can be separated into a union of two positions G^{\prime} and $G^{\prime \prime}$, such that each player's turn consists of moving in exactly one of the sub-positions and where no sequence of moves in one will affect the moves available in the other, then $\mathcal{G}(G)=\mathcal{G}\left(G^{\prime}\right) \oplus \mathcal{G}\left(G^{\prime \prime}\right)$.
- Optimal play is to move to any position of zero Nim value, which is possible if and only if the current Nim value is nonzero. Then the opponent either loses immediately or is forced to move to a position of nonzero Nim value, at which point one can apply the strategy again.

The prototype game meeting these conditions is Nim: a position is some number of piles of stones, with the legal move being to remove any nonempty
subset of any one pile. In that game the Nim value of a single pile is simply the number of stones in it. The Nim sum rule above is used to evaluate multi-pile configurations, and that gives an easy winning strategy.

The game of Graph Nimors also meets the conditions. Blocks serve to partition the graph. No sequence of moves in one block can affect the moves available in any other blocks. Therefore the Nim value of a graph is the Nim sum of the Nim values of its blocks. Assuming we can easily find the Nim values of biconnected graphs, we can compute them for any other graphs, and thereby play optimally from any \mathcal{N}-position.

However, the only obvious way to compute the Nim value of a general biconnected graph is to recursively examine all its minors, which is prohibitively time-consuming in all but the smallest cases.

2.1 Easy cases

For very small graphs, the Nim value is easy to calculate by brute force. All biconnected graphs of up to four vertices are shown in Figures 1, with arrows among graphs to show the options from each position and a few extra graphs to illustrate non-biconnected options for the four-vertex graphs. Note that breaking apart the blocks into separate components makes no difference to the Nim value, and we do that in the figure to make the boundaries between blocks as clear as possible. The Nim value of each biconnected graph is the mex of the Nim values for its options. The biconnected graphs of five vertices and their Nim values are shown in Figure 2, but even for graphs as small as these, there are so many options that showing them all would make the diagram excessively complicated.

On an acyclic graph, every move reduces the edge count by exactly one. The game ends when the edges are exhausted, and the players' choices to delete or contract edges make no difference to the final result. The Nim value of an acyclic graph is 0 if the number of edges is even, 1 if odd. A graph with no edges has Nim value 0 (no moves possible); with one edge, Nim value $1(\operatorname{mex}\{0\}=1)$, and then for larger acyclic graphs, each of the edges is a block and we take the Nim sum of an even or odd number of them.

The Nim value of C_{3} is 2 , because its options are paths of one and two edges, which have Nim values of 1 and 0 , and $\operatorname{mex}\{0,1\}=2$. The Nim value of C_{4} is 0 because its options are C_{3} and a three-edge path, and $\operatorname{mex}\{1,2\}=0$. Larger cycles C_{k} have Nim value 0 for even $k, 1$ for odd k, by an easy induction.

Not many other cases can really be called "easy." Even such a simple thing as two cycles sharing one edge (equivalent to a cycle with a chord across it) requires more than trivial work to analyse.

Theorem 2. Let $F C_{p, q}$ (mnemonic: "fused cycle") be the graph of $p+q-2$ vertices and $p+q-1$ edges formed by identifying one edge of C_{p} with one edge

Figure 1: The biconnected graphs of up to four vertices, and their Nim values.

1

4

2

0

3

2

2

4

2

1

Figure 2: The biconnected graphs of five vertices, and their Nim values.
of C_{q}. Without loss of generality assume $p \leq q$. Then

$$
\begin{align*}
& \mathcal{G}\left(F C_{3,3}\right)=1 \\
& \mathcal{G}\left(F C_{3,4}\right)=4 \\
& \mathcal{G}\left(F C_{3, q}\right)=2 \text { for odd } q \geq 5 \\
& \mathcal{G}\left(F C_{3, q}\right)=3 \text { for even } q \geq 6 \tag{1}\\
& \mathcal{G}\left(F C_{p, q}\right)=0 \text { for odd } p+q \text { when } p \geq 4, q \geq 4 \\
& \mathcal{G}\left(F C_{p, q}\right)=1 \text { for even } p+q \text { when } p \geq 4, q \geq 4 .
\end{align*}
$$

Proof. For the case $F C_{3,3}$: there are two kinds of edges, each of which may be removed or contracted. Removing the centre edge leaves C_{4} with Nim value 0 . Removing a side edge leaves C_{3} plus one edge, with Nim value $2 \oplus 1=$ 3. Contracting the centre edge leaves two edges, with Nim value $1 \oplus 1=0$. Contracting a side edge leaves C_{3} with Nim value 2. Then mex $\{0,2,3\}=1$.

For the case $F C_{3,4}$: We can delete or contract one of the edges that came only from C_{3}, from C_{4}, or the shared edge (six moves in all). Deleting an edge from C_{3} leaves C_{4} and one edge as blocks, total Nim value 1. Deleting an edge from C_{4} leaves C_{3} and two edges as blocks, total Nim value 2. Deleting the shared edge leaves C_{6}, Nim value 0 . Contracting an edge from C_{3} leaves C_{4}, Nim value 0 . Contracting an edge from C_{4} leaves $F C_{3,3}$, Nim value 1 (above). Contracting the shared edge leaves C_{3} plus an edge, Nim value 3. Then $\operatorname{mex}\{0,1,2,3\}=4$.

For the case $F C_{3, q}, q \geq 5$: Assume the theorem is true for smaller q. Deleting an edge from C_{3} leaves C_{q} plus an edge, Nim value 0 or 1 with the opposite parity from q. Contracting an edge from C_{3} leaves just C_{q}, Nim value 0 or 1 with the same parity as q. Thus, these two cases together cover the Nim values 0 and 1. Deleting or merging the shared edge leaves a cycle of length at least 4 and possibly an extra dangling edge; the Nim value of the result is 0 or 1 , and already covered. Deleting an edge from C_{q} leaves a triangle and $q-2$ edges as blocks, with Nim value 2 for even q and 3 for odd q. Merging an edge from C_{q} leaves $F C_{3, q-1}$, which by the inductive assumption has the same Nim value as C_{q} plus an edge, namely 2 for even $q($ odd $q-1)$ and 3 for odd q (even $q-1$), unless it is $F C_{3,4}$ with Nim value 4. Thus the values of the options are 0 and 1 unconditionally, exactly one of 2 or 3 , and possibly also 4 . The mex of these values is 2 or 3 , according to the parity of $q: 2$ for odd q and 3 for even q, and the result holds.

For the case $F C_{p, q}$ with $p \geq 4$ and $q \geq 4$: Assume the theorem is true for smaller p or q. Deleting an edge from C_{p} leaves as blocks C_{q} and $p-2$ single edges; the Nim value of the result is 0 or 1 with the same parity as $p+q$. Symmetrically, we get the same Nim value by deleting an edge from C_{q}. Deleting the shared edge leaves C_{p+q-2}, which also has the same Nim value. Contracting an edge in C_{p} results in $F C_{p-1, q}$, which by the inductive assumption has Nim value 0 or 1 with the same parity as $p+q$, or else greater than 1 (when $p=4$); and the same is true symmetrically of contracting an edge in C_{q}. That leaves only contracting the shared edge, which results in C_{p-1} and C_{q-1} joined by a shared vertex, the Nim value of which may be 0 or 1 with the same parity as
$p+q$, or else (if exactly one of p and q was equal to 4) a value greater than 1 . Thus the values of the options are exactly one of the values $\{0,1\}$ depending on the parity of $p+q$, and possibly some value or values greater than 1 . The mex of this set is 0 or 1 with the opposite parity from $p+q$, and the result holds.

2.2 Property S

Girth seems relevant to the analysis of Graph Nimors, both because there are some girth-related patterns visible in the computer results and because there are simple statements we can make about the consequences of moves in the game as they relate to girth. A deletion move never decreases the girth. A contraction move never increases the girth, except in the special case where it contracts an edge shared by all triangles in the graph, and if it decreases the girth, it decreases the girth by exactly one. Any move on a graph of girth at least four (a triangle-free graph) subtracts exactly one from the number of edges.

These facts suggest that if the starting girth is sufficiently large, one player may be able to keep it large as part of a simple winning strategy. But actually implementing such a strategy seems difficult. For instance, the Petersen graph has girth 5 and Nim value 1. The first player, although able to win, cannot prevent the second player from forming one or more triangles along the way. The following property is similar to girth, but represents something one player can preserve as part of a strategy.

Definition 1. A graph G has property S (mnemonic: its high-degree vertices are Separated by Series vertices) if it contains no edge incident to two vertices of degree greater than two, and no block of G is a triangle.

Note that property S implies G is triangle-free. The important consequence of property S is that any move which reduces the girth can be undone on the next move, allowing one player to force an outcome determined by the parity of the number of edges.

Theorem 3. A graph with property S is an \mathcal{N}-position if and only if it has an even number of edges.

Proof. Suppose G has property S and an even number of edges. If the first player deletes an edge, then the result will have property S and an odd number of edges, at which point the second player can delete any edge, preserving the property and making the number of edges even again. Similarly, if the first player contracts an edge but leaves a graph that still has property S, then the second player can delete any edge.

Suppose the first player contracts an edge in such a way that the resulting graph does not have property S. Then the first player's move must have consisted of contracting an edge between a degree-two vertex and one of its neighbours where both neighbours had degree greater than two, creating a new edge between two vertices u and v of degree greater than two, as in Figure 3. The edge (u, v) is the only one violating property S . Then the second player can delete that edge,

Figure 3: Contracting an edge to a degree-two vertex.
restoring the property and making the number of edges even. By induction, the second player has a winning strategy on any graph with property S and an even number of edges.

On a graph with property S and an odd number of edges, the first player can win by deleting any edge and then following the second-player strategy.

Note that the winning strategies described in the proof only ever make use of deletion moves, although the other player is free to contract edges.

2.3 Bounds on the Nim value

How large can the Nim value of a graph be? The number of edges in the graph is an easy upper bound because the Nim value of a graph can be at most the maximum Nim value of any option of that graph, plus one. Since every option of a graph G has strictly fewer edges than G, we can gain no more than one unit of Nim value for each edge we add. In fact, this bound is tight only for graphs of zero or one edges; larger graphs always have Nim value strictly less than the number of edges, because there is no two-edge graph of Nim value 2 and that deficiency affects all larger graphs through the induction.

When a graph has some symmetry, there may be several edges which, if deleted or contracted, give isomorphic results. The number of options distinct up to graph isomorphism and any other operation that does not change the Nim value is an upper bound on the Nim value of a position. As a result, edgetransitive graphs have a maximum Nim value of 2 : a player could delete any edge (it does not matter which one), or contract any edge, and in the maximizing case, one of those options gives Nim value 0, one gives Nim value 1, and the edge-transitive starting graph can have Nim value 2. More generally, if there are k orbits of edges under the automorphism group of G, then $\mathcal{G}(G) \leq 2 k$.

But there can be other equivalent moves not captured by the graph automorphism group. For instance, deleting any edge in a chain of degree- 2 vertices will yield equivalent but not necessarily isomorphic graphs regardless of which edge is deleted, because the remaining edges in the chain all become single-edge blocks, and then only the parity of how many of them there are is relevant to the Nim value. Recognizing moves that are equivalent in this way can tighten the bound a little.

On the other side, the computer results of the next section include biconnected graphs with Nim values as large as 25 . By the definition of Nim values, existence of any value implies existence of all smaller values. Combining power-of-two values from 1 to 16 with the Nim sum operation allows the construction
of non-biconnected graphs with arbitrary Nim values from 0 to 31 . It seems intuitively reasonable that graphs ought to exist with arbitrarily large Nim values, but no Nim value greater than 31 has actually been proven to occur.

3 Computer experiments

We implemented the obvious dynamic programming algorithm for computing Nim values of graphs: namely recursively computing the Nim values of all options and taking the mex of them, while memoizing computed results in a hash table indexed by a canonically-labelled representation of the graph. Our software has a client-server architecture intended for use on a multicore machine. Each client reads graphs from its input and computes their Nim values as follows:

- Detect a few small basis cases (such as graphs with at most three edges) and return hardcoded answers for them.
- If the graph is not biconnected: split it into blocks, solve those separately, and compute the Nim sum.
- When working on a biconnected graph, canonically label it.
- Check a local per-client cache (hash table of 2^{25} entries, roughly 1G of RAM).
- If the answer is not in the local hash table: query the database server.
- If not on the database server: recursively compute all the Nim values of options, and take their mex.
- If we did a recursive examination of options: store the result on the database server and in the local hash table, overwriting any colliding item in the local hash slot.

We used the Tokyo Tyrant key-value store [6] as the central database server, and wrote client programs in C with nauty [14] for canonical labelling. Although the recursion rule is different, this general approach of memoized recursion over smaller graphs is essentially the same as that used by our cycle-counting software ("ECCHI," the Enhanced Cycle Counter and Hamiltonian Integrator) in a previous project [5], and we were able to re-use some of that code. We used the graph utilities included with nauty to generate sets of graphs to feed into the computation.

Bearing in mind the difficulty of verifying correctness of final answers for larger graphs, we spent significant effort on testing the code. The final test suite achieves 100% source line coverage of our client software (excluding thirdparty material and assertion-failed branches) and covers a wide range of cases reasonably expected to be relevant to correctness. For instance, one test computes the Nim values of all 8-vertex biconnected graphs (without connecting to
the database server), then does it again with the graphs in a pseudorandomly permuted order, and checks that the results are the same for all of the graphs. Since the computation for each graph depends on the intermediate values stored in the local cache by previous computations, this test implies finding the answer for each graph by two different computation trees. We also ran our tests inside Valgrind [16] to guard against uninitialized values and other kinds of undefined behaviour. The results from our software agree with all our hand calculations (including on all graphs of up to five vertices) and theoretical results (including some that were not known when the software was written).

We ran our experiments on one node of a Linux cluster at the IT University of Copenhagen, with four real Intel CPU cores (eight virtual by "hyper-threading") running at 3.60 GHz , and 32 G of RAM. We started with the database on a 250 G solid-state drive, switching to a magnetic hard drive in the final stages when space for the database (including temporary working space needed by Tokyo Tyrant's "optimization" process) ran out on the SSD.

We computed Nim values for the following graphs:

- Biconnected graphs with 3 to 11 vertices (910914360 graphs total).
- Planar biconnected graphs with 3 to 12 vertices (169178844 graphs total).
- Triangle-free biconnected graphs with 4 to 13 vertices (10757199 graphs total).
- Graphs of girth at least five, and biconnected, with 5 to 15 vertices (342385 graphs).
- Cubic triangle-free biconnected graphs with up to 16 vertices (928 graphs).
- Complete bipartite graphs $K_{p, q}$ with p and q at most 20 and at most 48 edges.

All but the largest vertex counts of these experiments ran within about four days. There is no single precise number because we repeated the experiments several times under varying conditions, both to confirm the results and to test different software configurations. The largest sizes, which involved more graphs and slower access to larger files, consumed more like two or three weeks of computation.

Table 1 shows the maximum Nim value known for a biconnected graph, and the Nim value of the complete graph, for each value of n, the number of vertices. The case $n=4$ is the only one for which a non-biconnected graph is known to achieve a greater Nim value (3, for a triangle plus an edge) than any biconnected graph. Complete graphs are interesting for their lack of pattern. We know the values are necessarily in $\{0,1,2\}$ because complete graphs are edge-transitive, and $\mathcal{G}\left(K_{n}\right) \neq \mathcal{G}\left(K_{n-1}\right)$ because the next smaller complete graph is always an option; but there is no obvious way to calculate $\mathcal{G}\left(K_{n}\right)$ faster than recursing over all smaller graphs.

Searches of the sequences from Table 1 and near variations in the On-Line Encyclopedia of Integer Sequences [17] turn up very little. Some appealing hits

n	$\max \mathcal{G}(G)$		$\left(K_{n}\right)$	
1	0		1	0
2	1		2	1
3	2		3	2
4	1		4	0
5	4		5	1
6	6		6	2
7	8	7	0	
8	13	8	2	
9	18	9	0	
10	22	10	1	
11	25	11	2	

Table 1: Maximum Nim values of biconnected graphs, and Nim values of complete graphs, by number of vertices
are excluded by theoretical considerations; for instance, the fact that max $\mathcal{G}(G)$ for any number of vertices n cannot exceed $\binom{n}{2}$, the maximum number of edges. The most exciting search result is that the indices of zeroes in $\mathcal{G}\left(K_{n}\right)$, namely $1,4,7,9, \ldots$, agree with sequence A007066 for all known values. That sequence is described as " $a(n)=1+\left\lceil(n-1) \phi^{2}\right\rceil, \phi=(1+\sqrt{5}) / 2$." The next few terms are $12,15,17,20,22,25, \ldots$ The citations for A007066 include Morrison's work [15] on Wythoff pairs, which come from the analysis of Wythoff's wellknown game [20. But exactly how the Golden Ratio and Wythoff's game would be linked to Graph Nimors is not clear, and there are so few terms of the sequence known as to make any connection unreliable. It would be very interesting, and may possibly be computationally feasible, to determine $\mathcal{G}\left(K_{12}\right)$. If the link to A007066 is genuine, that ought to be 0 .

We collected the complete distribution of Nim values for each combination of vertex count (n) and edge count (m); this data is presented in Appendix A In general, the pattern was that for any combination of n and m, there would be just a few very common Nim values accounting for nearly all the biconnected graphs with those parameters. The distribution for $n=10, m=23$ shown in Figure 4 is a typical example, with Nim values 1 and 5 accounting for approximately 85% of the graphs.

Values common for a given m are usually very rare for the next larger m. All deletion moves leave the graph with one less edge, and in a dense graph deletion moves usually leave the graph biconnected and with the same number of (nonisolated) vertices. Similarly, all contraction moves reduce the vertex count by one and the edge count by at least one; in a sparse graph, a contraction move will usually remove exactly one edge. Thus, if a given Nim value is common for (vertex, edge) counts $(n, m-1)$ or $(n-1, m-1)$, and to a lesser extent, $n-1$ and even smaller m, then we should expect that value to be uncommon for (n, m). The options for a graph of a given size will usually include a representative sample of the graphs one edge smaller. This interaction between parameter

\mathcal{G}	\# graphs
0	23059
1	724676
2	8889
3	418
4	7312
5	312881
6	8679
7	23683
8	30896
9	31990
10	21243
11	14501
12	9004
13	4810
14	2071
15	301
16	17

Figure 4: Distribution of Nim values for the 1224430 biconnected graphs of 10 vertices and 23 edges.

		q																			
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	16	18	19	20
p	1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
	2		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3			1	0	1	0	1	0	1	0	1	0	1	0	1	0				
	4				2	0	2	0	2	0	2	0	2								
	5					0	0	0	0	0											
	6					1	0	1													

Table 2: Nim values of complete bipartite graphs.
values may lead to some of the same kinds of periodic behaviour seen in simpler take-and-break games on piles of stones [1, Chapter 4], even if only as a matter of usual-case statistics not guaranteed for all graphs of a given n and m.

Table 2 shows all the experimentally-calculated values of $\mathcal{G}\left(K_{p, q}\right)$; that is, Nim values of complete bipartite graphs. The evident patterns in the first two rows are proven ($K_{1, q}$ because the graphs are acyclic, $K_{2, q}$ by Theorem 3), but the others remain theoretically open. This is another class in which all the graphs are edge-transitive, so the values are constrained to $\{0,1,2\}$.

4 The Parity Heuristic

A deletion move always subtracts one from the total number of edges in the graph. In a sparse graph, a randomly chosen contraction move will probably
be on an edge not in any triangle, so it will also subtract exactly one from the total number of edges. In a dense graph, a contraction move may remove many edges, but it still seems that a random contraction would as likely as not be on an edge that is part of an even number of triangles, so that it will reduce the edge count by an odd number. Thus, if we knew nothing about strategy, we might expect that at least within some kind of approximation, players would remove an odd number of edges on every move and we could evaluate whether a position favours the next or previous player simply by looking at the parity of the number of edges remaining. The following definition is a stronger form of that intuitive expectation.

Definition 2. The Parity Heuristic (PH) is the proposition that for a graph G with m edges, $\mathcal{G}(G)$ is 0 if m is even and 1 if m is odd.

Since graphs of Nim value other than 0 and 1 exist, PH fails as a complete analysis of the game. However, the computer results, and experience with human play, suggest that PH holds for very many graphs.

The Parity Heuristic is proven to hold in these cases:

- acyclic graphs (all moves leave the graph acyclic and with one less edge, induction down to edgeless graphs);
- cycles except C_{3} (as described in Subsection 2.1);
- fused cycle pairs, if neither is a triangle (Theorem 22;
- $K_{2, q}$ for any q (these graphs have property S and even edge counts, see Theorem 3); and
- graphs of more than one block, if it holds for each of the blocks (by the Sprague-Grundy Theorem).

For graphs with property S , we have Theorem 3 that $\mathcal{G}(G)=0$ if and only if m is even. That is equivalent to PH when the number of edges is even, but a little weaker when it is odd.

We conjecture that PH holds for:

- graphs with property S and an odd number of edges (not all existing computer results have been searched for this, but it is a reasonable extension of the theoretical results);
- $K_{3, q}$ for any q (no counterexamples up to $K_{3,16}$);
- graphs of girth at least 5 (no counterexamples up to $n=15$); and
- cubic triangle-free graphs (no counterexamples up to $n=16$).

It is known not to hold in general for:

- all graphs (smallest counterexample C_{3}, Nim value 2);
- cubic graphs (smallest counterexample the triangular prism graph, with $n=6, m=9$, Nim value 0);
- triangle-free graphs (smallest counterexample $K_{4,4}$, Nim value 2); nor
- complete graphs (C_{3} is a counterexample, but there are several others known also).

The Parity Heuristic is not proven to always fail for any interesting infinite classes of graphs. However, for all known cases of $K_{p, q}$ with p and q both at least 4, the Nim value is nonzero if and only if p and q are both even, which contradicts PH whenever $p+q$ is even.

5 Further thoughts

We have described the game of Graph Nimors and some theoretical and experimental results on strategy for it. Many natural questions remain open.

All the conjectures regarding the Parity Heuristic in Section 4 seem good targets for theoretical work. We are especially interested in the girth-5 case, which seems like it should be easy to prove. Proving Nim values for wellbehaved infinite classes of graphs, such as $K_{p, q}$ with fixed constant p such as 3 or 4 , also seems like a bite-sized problem. Any result on $\mathcal{G}\left(K_{n}\right)$ (that is, the Nim value of the arbitrary-sized complete graph) would be interesting, but may be difficult; in particular, the coincidence with OEIS sequence A007066 [17], which is related to the Golden Ratio and Wythoff's Nim-like game, would be interesting to confirm or disprove. Just computing $\mathcal{G}\left(K_{12}\right)$, currently known to be either 0 or 1 , could either lend additional support to that connection (if the answer is 0) or immediately disprove it (if the answer is 1); and that seems to be a large computational task, but within the range of possibility, given some improvements to software and hardware.

The experimental side of this work revealed some deficiencies in Tokyo Tyrant's ability to handle databases on magnetic disk as opposed to SSD, and other high-performance key-value stores suitable for external-memory databases are surprisingly few. Popular "noSQL databases" are frequently designed for smaller numbers of larger records, or to operate only in main memory. Building a key-value store capable of handling a random access pattern on magnetic disk with many billions of very small records (presumably, batching requests from many parallel threads to make the best of each disk seek operation) is an interesting software engineering problem.

It is reasonable to guess that calculating the Nim value of a graph with respect to Graph Nimors should be PSPACE-complete, but that remains unproven. Constraining the moves, for instance by fixing a sequence of the edges and requiring players to follow that sequence, might create a variant for which hardness is easier to prove. Much of the theoretical difficulty comes from the fact that there is currently no known way to split a graph into smaller parts with predictable relations between the Nim values of the parts, except to split
it into blocks, at which point the blocks' values affect each other only through the Nim sum operation. Having any other way to localize the effects of changes in the graph would help support construction of gadgets for a hardness proof. Constructions for arbitrarily large biconnected graphs with specified Nim values; arbitrarily large Nim values; or a proof that arbitrarily large Nim values are not possible; might contribute usefully to the hardness question as well as being interesting in themselves.

Many variations of Graph Nimors are possible. The misère variation is obvious, and could be expected to yield as much complicated theory as any other impartial misère game. One could make Graph Nimors partisan by requiring one player to always delete and one to always contract. In a graph of large girth with few cycles, the deleting player may be able to break all the cycles before the contracting player can form any triangles, thus forcing the game to be determined by parity of number of edges; but if that is not in the deleting player's interest, or if the girth is small or number of cycles large, the result is not clear. When we first invented this game, we were concerned that it might turn out to be too easy under the basic rules presented here, and considered adding constraints like "no move is allowed that would leave the graph planar." Although apparently unnecessary to create a difficult game, such a constraint might be interesting as a way to link nimors and minors.

References

[1] Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy. Winning ways for your mathematical plays. AK Peters, 2nd edition, 2004.
[2] Hans L. Bodlaender. On the complexity of some coloring games. International Journal of Foundations of Computer Science, 02(02):133-147, 1991.
[3] Neil J. Calkin, Kevin James, Janine E. Janoski, Sarah Leggett, Bryce Richards, Nathan Sitaraman, and Stephanie Thomas. Computing strategies for graphical Nim. In Proceedings of the Forty-First Southeastern International Conference on Combinatorics, Graph Theory and Computing, volume 202, pages 171-185, 2010.
[4] Erik D. Demaine. Mathematical Foundations of Computer Science 2001: 26th International Symposium, MFCS 2001 Mariánské Lázne, Czech Republic, August 27-31, 2001 Proceedings, volume 2136 of Lecture Notes in Computer Science, chapter Playing Games with Algorithms: Algorithmic Combinatorial Game Theory, pages 18-33. Springer, 2001.
[5] Stephane Durocher, David S. Gunderson, Pak Ching Li, and Matthew Skala. Cycle-maximal triangle-free graphs. Discrete Mathematics, 338(2):274-290, 2015.
[6] FAL Labs. Tokyo Tyrant: network interface of Tokyo Cabinet. Online http://fallabs.com/tokyotyrant/.
[7] Aviezri S. Fraenkel and Elisheva Goldschmidt. PSPACE-hardness of some combinatorial games. Journal of Combinatorial Theory, Series A, 46(1):2138, 1987.
[8] Aviezri S. Fraenkel and Edward R. Scheinerman. A deletion game on hypergraphs. Discrete Applied Mathematics, 30(23):155-162, 1991.
[9] Masahiko Fukuyama. A Nim game played on graphs. Theoretical Computer Science, 304(1):387-399, 2003.
[10] P. M. Grundy. Mathematics and games. Eureka, 2:6-8, 1939.
[11] Peter Harding and Paul Ottaway. Edge deletion games with parity rules. Integers, 14:G1, 2014.
[12] Allison Henrich and Inga Johnson. The link smoothing game. AKCE International Journal of Graphs and Combinatorics, 9(2):145-159, December 2012.
[13] László Lovász. Graph minor theory. Bulletin of the American Mathematical Society, 43(1):75-86, 2006.
[14] Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. Journal of Symbolic Computation, 60:94-112, 2014.
[15] David R Morrison. A Stolarsky array of Wythoff pairs. In A collection of manuscripts related to the Fibonacci sequence, pages 134-136. Fibonacci Association Santa Clara, 1980.
[16] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight dynamic binary instrumentation. In Proceedings of the ACM SIGPLAN 2007 Conference on Programming Language Design and Implementation, San Diego, California, USA, June 10-13, 2007, pages 89-100. ACM, 2007.
[17] OEIS Foundation Inc. The on-line encyclopedia of integer sequences. 2016. Online http://oeis.org/.
[18] Thomas J. Schaefer. On the complexity of some two-person perfectinformation games. Journal of Computer and System Sciences, 16(2):185225, 1978.
[19] Richard Sprague. Über mathematische Kampfspiele. Tôhoku Mathematical Journal, 41:438-444, 1935/36.
[20] Willem A. Wythoff. A modification of the game of Nim. Nieuw Archief voor Wiskunde, 7:199-202, 1907.

A Distributions of Nim values for biconnected graphs

This appendix gives the counts of Nim values observed for all biconnected graphs with between 3 and 11 vertices, sorted with the most common values at the top.

A. 13 vertices

$$
n=3 \quad m=3
$$

\mathcal{G}	count
2	1

A. 24 vertices

	4 m	$n=4 \quad m=5$		$n=4 \quad m=6$	
\mathcal{G}	count	\mathcal{G}	count	\mathcal{G}	count
0	1	1	1	0	1

A. 35 vertices

A. 46 vertices

A. $5 \quad 7$ vertices

	7 m	$n=7 \quad m=13$				$n=7 \quad m=15$ \mathcal{G} count		$n=7 \quad m=16$	
\mathcal{G}	count	\mathcal{G}	count	$n=7 \quad m=14$					
4	38	2	57	\mathcal{G}	count	2	18		
0	20	1	6	4	27	1	8	4	5
3	16	7	5	3	15	6	3	5	4
7	6	5	5	0	6	0	3		3
8	5	9	4	6	5	7	2		3
6	5	8	2	1	4	5	2	0	2
1	3	6	1	5	2	4	1	8	1
5	1	4	1			3	1	8	1

$n=7 \quad m=18$

$n=7 \quad m=17$	
\mathcal{G}	count
1	5
2	4
0	1

\mathcal{G}	count
5	1
4	1
3	1
1	1
0	1

A. 68 vertices

$n=8 \quad m=13$		$n=8 \quad m=14$		$n=8 \quad m=15$		$n=8 \quad m=16$		$n=8 \quad m=17$	
		\mathcal{G}	count			G	coun		
\mathcal{G}	count	3	576	1	694	3	383	1	390
1	468	0	209	5	240	0	270	5	231
5	139	6	105	0	99	6	174	9	49
0	59	8	43	6	31	8	88	0	39
6	31	7	40	4	29	10	69	7	33
4	28	4	29	2	29	10	28	2	31
2	26	9	23	7	27	2	27	4	27
7	17	5	23	9	20	5	25	8	26
8	8	2	9	8	13	9	23	6	20
10	3	10	9	10	8	4	16	10	18
9	1	1	9	11	6	11	6	11	14
		11	1	3	1	$\begin{aligned} & 11 \\ & 10 \end{aligned}$	$\begin{aligned} & 4 \\ & 1 \end{aligned}$	3	7

$n=8 \quad m=18$		$n=8 \quad m=19$							
$n=$		\mathcal{G}	count	$n=8 \quad m=20$					
	211	5	92	\mathcal{G}	count	$n=8 \quad m=21$		$n=8 \quad m=22$	
0	211	1	81	0	103	\mathcal{G}	count	\mathcal{G}	count
3	165	9	54	3	44	5	24	0	25
8	60	2	34	7	19	2	17	3	12
6	57	7	27	8	13	4	16	2	6
7	45	4	22	6	13	9	11	8	3
2	27	6	17	2	10	6	11	7	2
10	21	3	17	10	4	1	10	6	2
4	11 9	11	13	4	3	7	8	1	2
9	9	8	12	1	3	8	7	5	1
11	6	10	8	9	1	3	6	4	1
1	5 3	12	4	12	1	0	2	10	1
12	2	0	3	11	1				
12	2	13	2						

A. 79 vertices

								$n=$	$9 \quad m=13$
						$n=$	9 $9 \mathrm{~m}=12$	\mathcal{G}	count
						\mathcal{G}	count	2	859
						0	178	1	482
			$m=10$	$n=$	$=9 \quad m=11$	3	161	5	162
	$9 \quad m=9$	\mathcal{G}		\mathcal{G}	count	4	59	6	68
	count	G	ount		44	7	12	4	44
1	1				20	2	8	8	41
				5	6	6	5	7	28
						1	5	0	21
						5	4	10	11
						8	1	9	10
								3	3
						n	$=9 \quad m=17$	n	$9 \mathrm{~m}=18$
	$9 \quad m=14$	$n=$	$9 \quad m=15$			\mathcal{G}	count	\mathcal{G}	count
\mathcal{G}	count	\mathcal{G}	count			2	18029	4	15188
0	2318	2	7487		7324	7	853	0	6322
4	1428	1	622		5733	6	833	3	2038
7	237	5	520		733	5	804	7	564
3	224	6	375		607	1	773	6	522
6	206	7	324		561	8	572	8	510
5	159	8	297		426	9	362	5	462
8	73	9	121		398	10	212	1	428
1	56	4	68		270	3	158	9	425
9	50	3	57		258	11	92	10	313
2	24	10	57		136	0	71	11	145
10	19	0	40		71	4	59	12	63
11	2	11	13	12	17	12	24	2	25
				12	8	13	2	13	10

$n=9 \quad m$		$n=9 \quad m=20$		$n=9 \quad m=21$		$n=9 \quad m=22$		$n=9 \quad m=23$ \mathcal{G} count	
\mathcal{G}	count	\mathcal{G}	count	\mathcal{G}	count		coun	2	4802
2	20654	4	14787	2	12952		8507	1	1285
7	1324	0	3927	6	1600	3	1574	6	1068
6	1304	3	2628	1	1482		1297	7	498
1	1167	1	556	7	943		541	10	372
5	790	5	547	8	621		528	8	341
9	719	8	507	9	609	10	410	5	301
8	647	10	484	5	590	8	408	9	286
10	429	7	467	10	518	7	328	11	261
11	228	6	446	11	428	1	320	12	216
0	193	9	412	12	321	6	306	0	136
3	186	11	332	0	202	2	256	13	132
12	120	12	178	13	140	9	253	3	61
4	50	13	58	3	95	3	141	14	56
13	25	2	14	4	35	14	71	15	17
14	1	14	7	14	34	15	17	4	6
						15	14	16	4
$n=9 \quad m=24 \quad n=9 \quad m=25$				$n=9 \quad m=26$		$n=9 \quad m=27$		$n=9 \quad m=28$	
\mathcal{G}	count	\mathcal{G}	count			\mathcal{G}	count	\mathcal{G}	count
4	2600	2	907	4	481	1	281	3	90
3	698	1	741	3	242	6	156	4	81
0	363	6	430	0	145	2	81	5	44
5	324	10	185	5	136	10	33	0	41
1	277	7	160	1	99	0	33	8	19
11	257	12	121	10	83	12	29	11	14
10	253	9	110	9	81	9	25	7	10
8	242	11	106	8	78	8	22	10	9
9	183	5	103	1	68	5	22	1	9
7	173	8	102	7	59	7	21	9	7
12	168	13	77	13	31	11	20	2	4
13	127	0	54	12	29	13	15	14	4
14	92	14	44	14		3	10	12	4
6	84	15	31	6	22	14	9	15	2
15	33	3	20	16	15	15	5	13	2
2	9	16	17	16	12	4	2	6	1
16	2	4	2	17	9	16	1	16	1

A. $8 \quad 10$ vertices

						$n=10 \quad m=21$	
$n=10 \quad m=18$		$n=10 \quad m=19$		$n=10 \quad m=20$		\mathcal{G}	count
\mathcal{G}	count	\mathcal{G}	count	\mathcal{G}	count	1	681964
3	233123	1	370853	3	497386	5	196118
0	29690	5	87675	6	89080	0	30168
6	16830	0	18038	0	85335	8	17220
7	11395	6	12653	7	35922	7	15294
8	8070	7	9044	8	24484	9	14919
9	5677	4	8029	9	13172	6	11927
4	4450	8	7747	5	9740	10	11288
10	2876	2	5099	10	7185	4	8935
5	1846	9	5028	4	4834	11	6667
11	1304	10	3806	11	3236	2	5792
2	1030	11	1515	2	2620	12	3046
1	490	12	607	12	1215	13	827
12	476	13	103	1	408	3	182
13	105	3	101	13	231	14	165
14	2	14	10	14	28	15	5
						16	2
		$n=10 \quad m=23$		$n=10 \quad m=24$		$n=10 \quad m=25$	
$n=10 \quad m=22$				\mathcal{G}	count	\mathcal{G}	count
\mathcal{G}	count	G	count	3	505007	1	439022
3	625428	1	312881	0	321373	5	348904
0	186531	9	312881	6	134849	9	44514
6	174645	9	31990	7	71869	8	42521
7	60915	8	30896	8	40368	7	27873
8	40747	7	23683	9	23980	10	24627
9	22049	0	23059	10	17980	11	18494
5	15571	10	21243	11	14795	12	13398
10	14536	11	14501	12	9981	2	12039
11	9439	12	9004	13	6396	13	9345
12	5467	6	8889	2	5744	6	9253
4	4511	6		5	5686	0	7577
2	4315	4	7312	14	3282	4	5511
13	2138	13	4810	4	3186	14	5280
14	520	14	2071	15	1110	15	2205
1	246	3	418	1	391	3	1020
15	58	15	301	16	155	16	563
		16	17	17	1	17	41

$n=10 \quad m=26$		$n=10 \quad m=27$		$n=10 \quad m=28$		$n=10 \quad m=29$	
	count	\mathcal{G}	count	\mathcal{G}	count	\mathcal{G}	count
0	362688	5	236721	0	220461	5	97097
3	247515	1	151352	3	86579	1	30035
6	247515	8	38745	7	18998	8	21255
7	46894	9	33986	6	13633	7	16494
8	21152	7	26005	11	6181	9	14181
9	13210	6	16832	8	6123	2	12660
10	12002	10	15490	12	5886	6	12413
11	11465	2	12935	10	5514	10	5504
12	9514	11	12502	13	5178	4	5496
13	7473	12	10734	9	4671	12	4820
2	6628	13	8353	14	4618	11	4637
14	5344	14	5932	2	3770	13	3839
15	2861	4	5320	15	3422	14	3169
4	2046	15	3660	16	1953	3	2564
16	1106	3	2501	4	1395	15	2545
5	633	16	1568	17	791	16	1493
1	400	0	850	1	382	17	827
17	179	17	435	18	143	18	223
18	9	18	36	5	79	0	81
		19	1	19	2	19	29
$n=$	$10 \quad m=30$	$n=$	$10 \quad m=31$		$10 \quad m=32$		$10 \quad m=33$
\mathcal{G}	count	\mathcal{G}	count	G	count	\mathcal{G}	count
0	72296	5	24342	0	16722	2	5453
3	26122	2	9604	3	4879	5	3350
7	6976	7	8050	7	2215	4	1388
6	3494	8	6756	10	1458	7	1329
12	3193	1	4277	11	1211	8	1226
11	3079	9	3669	12	1143	1	977
13	3011	4	3272	9	1115	9	482
10	2927	6	2526	13	1065	12	200
14	2713	12	1262	14	828	6	187
15	2253	10	1161	6	698	13	184
9	1957	13	1159	8	629	14	169
2	1864	11	1020	15	623	11	168
8	1757	14	923	2	499	15	164
16	1420	15	797	16	413	16	119
17	941	16	707	4	348	10	118
4	792	3	565	17	301	17	88
18	368	17	507	1	154	3	61
1	273	18	267	18	120	18	42
5	66	19	98	5	62	19	10
19	63	0	30	19	50	0	10
20	6	0	7	20	13	20	3
20	6	20	7	21	2	21	1

$n=10 \quad m=34 \quad n=10 \quad m=35$				$n=10 \quad m=36$		$n=10 \quad m=37$	
\mathcal{G}	count	\mathcal{G}	count				
0	2360	2	1633				
3	735	1	277				
9	700	4	274	G	count	\mathcal{G}	count
7	654	5	216	0	231	2	270
10	521	8	100	9	210	1	85
11	348	7	43	9	151	8	15
12	337	11	39	3	130	4	14
8	287	13	28	8	111	11	8
13	186	9	26	4	96	5	7
6	149	12	23	${ }^{5}$	43	10	7
4	129	15	22	10	38	9	5
14	80	14	21	1	24	12	5
1	70	10	15	6	23	7	3
15	54	16	13	11	15	13	3
5	51	3	10	12	15	3	2
16	32	6	9	2	2	6	1
2	16	0	6	14	1	15	1
17	16	18	3	16	1	0	1
18	10	17	3	13			
19	7	20	1				
20	1	19	1				
$n=10 \quad m=38$							
	count			$n=10 \quad m=40$			
4	73						
7	35			\mathcal{G} count			
3	20		35	7	7	\mathcal{G}	count
0	19				7		
6	5	2	28	3	3	1	10
5	5	0	2	6	2	0	1
8	4	8	1	2	2		
1	3			0	2		
9	1						
	10 m		$10 \mathrm{~m}=43$		$10 \quad m=44$	$n=$	$10 \quad m=45$
\mathcal{G}	count	\mathcal{G}	count	\mathcal{G}	count	\mathcal{G}	count
2	5	1	2	2	1	1	1

A. $9 \quad 11$ vertices

							$11 m=14$ count
			$11 m=12$		$11 m=13$	0	1187
	$11 m=11$		count			3	759
	1	3	1	2 5	47	7	30
						5	4
						1	2
							$11 m=18$
			$11 m=16$		$11 \quad m=17$	\mathcal{G}	count
	$11 m=15$	\mathcal{G}	count	G	count	0	594015
\mathcal{G}	count	0	31432		20934	4	308192
1	7135	3	28437	1	71398	3	69801
2	5779	4	14933	5	28544	7	68460
5	2729	7	7564	6	19357	6	48000
6	1029	6	2903	8	12371	8	30106
4	255	9	2849	4	8320	5	27693
8	213	8	2465	7	7869	9	27612
7	146	5	1432	10	6178	10	14439
0	107	2	898	9	6178	11	9199
3	60	10	825	11	4876	1	6624
9	36	1	501	12	2952	12	4581
11	1	11	213	12	1325	2	1863
10	1	12	31	3	420	13	1285
		13	1	13	105	14	131
				14	16	15	1

$n=11 \quad m=19$		$n=11 \quad m=20$		$n=11 \quad m=21$		$n=11 \quad m=22$			
		\mathcal{G}	count	\mathcal{G}	count				
\mathcal{G}	count			G		2	12681816	4	11811367
2	2585833	0	3642348	6	301071	0	10772547		
1	141088	4	2644991	5	239894	7	393406		
5	102880	6	181325	7	237343	3	392043		
6	90065	7	175769	8	198815	6	370575		
8	72066	3	121315	1	189095	8	323946		
7	58706	5	116215	9	130455	5	256131		
9	43958	8	108203	10	87132	9	218552		
10	35752	9	79719	11	43171	10	144096		
4	18204	10	50630	4	26559	11	70863		
11	17793	1	28513	12	20014	1	64577		
12	10061	11	27213	3	12758	12	33040		
0	9984	12	12898	0	9964	13	9711		
3	3465	13	4350	13	5771	14	2306		
13	3426	2	1718	14	1579	2	1803		
14	985	14	1503	15	401	15	456		
15	28		309	16	63	16	69		
		16		17	2	17	1		
	$11 m=23$		$11 m=24$		$11 m=25$		$11 m=26$		
\mathcal{G}	count	\mathcal{G}	count	\mathcal{G}	count	\mathcal{G}	count		
2	35974508	4	33222437	2	67154824	4	63038406		
6	726600	0	18282530	6	1397128	0	17454171		
7	629592	3	1252117	7	1230010	3	2960262		
8	414230	7	662744	8	819186	8	880331		
5	408609	8	642944	9	667468	7	788452		
9	312808	6	570069	1	557734	6	710817		
1	281902	9	448136	5	528852	9	665758		
10	205227	5	325407	10	469963	10	534471		
11	110593	10	319532	11	284714	11	335510		
12	57136	11	174262	12	169874	5	304381		
4	30285	1	131292	13	72442	1	301481		
3	28160	12	90885	0	56796	12	207626		
0	20197	13	33273	3	42687	13	107256		
13	18073	14	10242	14	26190	14	46556		
14	4311	2	1471	4	23717	15	12934		
15	486	15	1430	15	4948	16	2450		
16	61	16	126	16	727	2	1138		
17	4	17	9	17	26	17	141		
					26	18	2		

$n=11 \quad m=27$		$n=11 \quad m=28$		$n=11 \quad m=29$		$n=11 \quad m=30$	
\mathcal{G}	count	\mathcal{G}	count	\mathcal{G}	count	4	67062913
2	86823105	4	79703160	2	79352188	3	7484052
6	2555602	0	9064209	6	4110963	0	2938840
7	1794764	3	5647841	1	2404976	1	775943
8	1430024	8	889351	7	2035620	10	766077
1	1211677	7	796384	8	1905090	7	745591
9	1177935	9	756856	9	1530901	9	730037
10	909291	6	734744	10	1281469	8	726002
11	577782	10	683967	11	808695	6	634320
5	522004	11	497995	12	534827	11	624885
12	375352	1	496804	5	385921	12	466357
13	195447	12	355499	13	325133	13	340462
0	114544	5	253262	14	194062	14	225212
14	96942	13	228394	0	140569	5	211716
3	71123	14	130387	3	100554	15	128753
15	31953	15	57487	15	92201	16	61474
4	10959	16	19367	16	37692	17	19223
16	8269	17	3160	17	8648	18	19223
17	753	2	894	4	3197	18	1966
18	45	18	311	18	1301	19	297
	4	19	3	19	39	20	2

$n=11 \quad m=31$		$n=11 \quad m=32$		$n=11 \quad m=33$		$n=11 \quad m=34$	
\mathcal{G}	count	\mathcal{G}	count	\mathcal{G}	count	4	15485426
2	50977458	4	38501464	2	20907514	3	15880870
6	4973298	3	6381586	6	4569451	1	592751
1	3690412	1	932652	1	3824767	10	535750
7	1896931	0	870672	7	1241034	11	525832
8	1829597	10	821872	8	1236178	9	451027
9	1423453	11	729933	10	1212368	12	424563
10	1322544	9	720810	9	1156068	13	367264
11	818581	7	611220	11	812578	0	335609
12	539041	8	569964	12	576716	8	324122
13	367048	12	544636	13	443773	14	308077
14	240021	6	427047	14	329142	7	293167
5	239686	13	417659	15	229900	15	248663
15	141958	14	290765	5	183368	16	196989
0	101367	15	185427	16	156314	6	146357
3	78278	5	177357	17	85549	17	134352
16	74371	16	110851	0	64791	5	105608
17	27668	17	47791	18	38121	18	83282
18	7130	18	16364	3	35515	19	36744
4	1132	2	4657	19	11044	20	9810
19	886	19	2811	20	1513	2	4831
20	384	20	220	4	1098	21	1105
		21	3	21	63	22	45

$n=11 \quad m=35$		$n=11 \quad m=36$		$n=11 \quad m=37$		$\begin{aligned} & n=11 \quad m=38 \\ & \mathcal{G} \mid \text { count } \end{aligned}$	
\mathcal{G}	count		count			3	769324
2	4479125	4	4226043	6	1566799	4	755623
6	3240081	3 11	1962342	1	1423102	11	83640
1	2715569	11	234021	2	423002	10	78458
10	718191	10	218739	10	161130	0	69077
9	675024	12	203854	9	136951	12	67784
8	535344	13	195048	8	113856	13	65266
7	480721	14	184044	5	110205	8	61734
11	480365	9	177427	11	99482	14	60896
12	350944	15	164044	7	92784	9	60077
13	282359	0	152327	12	78265	7	49766
14	240526	16	140338	13	68886	15	47646
15	194792	8	139094	14	64609	16	36261
16	158613	1	132405	15	56699	17	25815
5	156270	7	116058	16	49244	18	17572
17	119180	17	113257	17	41837	5	15971
18	86051	18	87467	18	34123	19	10609
19	51766	19	56874	19	25563	20	5632
0	43594	5	46944	0	24112	1	4328
20	22469	20	30377	20	15521	2	2950
3	12692	6	16647	21	7646	21	2531
21	5811	21	12094	3	2724	6	972
4	1309	2	5828	22	2689	22	888
22	661	22	2857	4	1374	23	231
23	12	23	267	23	571	24	40
		24	5	24	54	25	2

$n=11 \quad m=39 \quad n=11 \quad m=40$							
\mathcal{G}	count	$n=11 \quad m=40$		$n=11 \quad m=41$		$n=11 \quad m=42$	
1	475360		count	\mathcal{G}	count		
6	387682	3	198391	6	74511	G	count
5	56853	4	82083	1	66047	3	34191
2	29527	0	29314	5	30115	0	10896
10	11082	10	25673	0	3027	10	6421
0	9891	7	20388	2	2611	7	4752
14	9606	11	20198	14	2100	4	3885
13	9421	8	19461	13	1751	8	3450
8	9365	12	15079	12	1723	11	3029
12	8972	9	13486	15	1678	9	2326
15	8870	13	13403	16	1411	12	1939
7	8495	14	10070	11	1305	13	1703
11	8278	15	5965	10	1090	14	853
16	8102	5	4494	17	1003	5	502
9	7109	16	3559	8	996	15	439
17	7065	17	2141	4	99	16	237
18	5254	18	1166	4	799	2	230
19	3584	2	769	9	792	17	189
20	1875	19	769	7	717	18	97
20	1875	20	377	18	560	6	85
4	1122	6	276	19	215	19	61
21	795	21	189	20	107	1	51
3	318	21	189	3	54	1	51
22	246	1	155	21	42	20	23
23	38	22	50	22		21	12
24	8	23	15	2	13	22	1
25	2	24	1	23	4		

