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Chapter 1

Introduction

Mathematical Physics

Throughout history, the fields of mathematics and physics have been closely linked to each
other. The great physicists of the past have always been great mathematicians and vice versa:
Carl Friedrich Gauss, one of the most brilliant mathematicians, did not only find plenty of
mathematical relations, prove a lot of theorems and develop many new ideas, which should
become rich and fruitful new fields in later mathematics, but he also has a large number of credits
in physics: the recovery of the dwarf planet Ceres in astronomy, new results in electromagnetism
(like the Gauss’s law or a representation for the unit of magnetism, which was named after him)
and the Gaussian lens formula in geometric optics are just some of his best known merits. Isaac
Newton on the other hand may have been rather a physicist, but it was his so-called second law
of motion that used for the first time something like differential calculus and therefore opened up
the door for new branches of mathematics. Even if one want claims that differential calculus was
actually invented by Gottfried Wilhelm Leibniz, this does not change the basic observation, since
Leibniz wrote a lot of essays on physics and can be considered as the inventor of the concept of
kinetic energy (or, as he called it, the vis viva) and its conservation in certain mechanical systems.
Of course one has to name Joseph-Louis Lagrange, who was an ingenious mathematician with
rich contributions to number theory and algebra, but also to the fields of analytical mechanics
and astronomy. Still today, every physics student has to learn his Lagrangian formalism in
the lecture on theoretical mechanics and how one can derive the laws of motion for various
mechanical systems from it. A last name we want to mention here is Paul Dirac, who is certainly
one of the founding fathers of quantum mechanics. He provided the ideas for a lot of structures
and relations in differential geometry, functional analysis and distribution theory. Many of the
concept he introduced using his physicist’s intuition have been later proven to be correct or used
as starting points for new theories by mathematicians.

A lot of developments in mathematics can be seen as triggered by physics: they were necessary
to describe the physical behaviour of our world and therefore pushed forward by scientists. We
already mentioned differential calculus, without whom modern analysis, the theory of ordinary
or partial differential equations or differential geometry would not be possible. Besides the also
named field of functional analysis, also Lie theory and many parts of geometry provide examples
for mathematics which was inspired by physics. Of course, this correspondence is not a one way
street since the understanding of nature made great progress due to a better knowledge of the
mathematical laws that describe it. A good example fir this is Lebesgue’s theory of integration
and its application to quantum mechanics: the space L2(R3n) is the state space of standard
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6 CHAPTER 1. INTRODUCTION

n-particle system in quantum mechanics.
There are good reasons to say that this extremely tight binding of mathematics and physics

persisted until the 20th century. Without any doubt, these two areas are still closely linked, but
one could say that at a certain point in history they started walking away from each other. Of
course, there have always been mathematicians who did not take their motivation from physics
and physicists who did not use elaborate mathematics or even find new theorems to describe
aspects of the world around them, but for a long time, the vast majority of both groups showed at
least an interest for the other domain. This definitely changed during the 20th century. The main
reason for this can surely be found in the extremely fast development which both of the domains
experienced in this time. It is already impossible for one person to overview the whole field of
mathematics or the one of physics, since there are too many new things coming up every day and
one has to specialize for being able to do research. Another reason is surely the fact that modern
mathematics is strongly influenced by the desire to formulate things as clean as possible, without
using handwaving “physical arguments”. This is a principle which surely allowed many new and
fruitful evolutions in the last decades and which is mostly due to the Bourbaki movement in the
middle of the last century, but it also forgets about the fact that physical intuition was often
a powerful tool for new ideas or also for heuristics which led to proofs of important theorems.
Another reason, which is more situated in the domain of physics, is certainly the incredibly fast
development of the knowledge about semiconductors. This became possible due to quantum
mechanics which forms the foundation of this theory, but for very most of modern applications
a basic understanding of the quantum theory behind is enough or one can even get new results
with so called semi-classical approaches. Here, a lot of new results can be established without
going deep into mathematics and hence without giving a new stimulus to it. In this sense, it is
enough for many modern physicists to acquire a certain amount of mathematical knowledge and
then they never have to care about mathematical theories again.

Certainly, this situation is due to a natural development does not present a problem, although
it is a bit of a pity. However, it would be too much to say that those fields are falling apart: there
are still a lot of intersections of the two sciences and these contact areas provide rich domains
of research. The range of topics, where either mathematics takes its motivation from physics, or
where theoretical physics needs very elaborate mathematical methods, is usually grouped under
the name mathematical physics.

A Mathematical Theory of Quantization

One of the younger branches in this field is the theory of quantization. It belongs to the area of
pure mathematics, but takes its inspiration from physics and is therefore a part of mathematical
physics. The idea is, roughly spoken, to find a correspondence between the quantum and the
classical world in physics. The mathematical description of their laws are different but yet there
are a lot of similarities. It is more or less clear, how the classical world emerges out of a huge
number of quantum objects and the mathematics of classical mechanics can be understood as a
limit case the behaviour of n quantum objects where n −→ ∞. The other way round, it is not
clear how one can create the mathematical description of a quantum system out of the one of a
classical system. This reversed process is usually called quantization and its understanding is a
mathematical task, not a physical one.

One has to say that the question of how to quantize a given classical system is still far from
being well understood and there are various approaches to it. We will give an overview of them in
Chapter 2.2.3. However, all these attempts to create a mathematical theory of quantization have
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led to many new developments in mathematics, also in other fields: they had a strong drawback
on differential and algebraic geometry, Lie theory and functional analysis. In particular the
theory of Poisson Lie groups is completely due to them.

Deformation Quantization and how this Master Thesis fits in

Deformation quantization is not the only one, but maybe the most developed theory in this area.
Roughly speaking, it tries to deform the (idealized) commutative algebra of smooth functions on
a manifold (of classical physical observables) by making it noncommutative and wants to get an
(idealized) algebra (of quantum mechanical observables) this way. This is done by replacing the
pointwise product of functions with a noncommutative product, which takes into account certain
derivatives of the functions and plugs in a formal parameter which is called ~ and which should
correspond to Planck’s constant in physics. This new product is then called a star product.
There are basically two different ways of constructing such a star product: either by integral
formulas, or by formal power series in ~. These two approaches are linked by the fact that
one gets a formal series out of the integral formulas by an asymptotic expansion. This mostly
algebraic theory of formal power series is called formal deformation quantization, and it is quite
well understood: although there are still a lot of open questions remaining, many existence and
classification results for star products were found, there is also a light physical interpretation:
The zeroth order of the formal parameter represents classical mechanics and the first order
quantum mechanics. Different mechanical systems allow different star products, and of course
it is interesting to ask whether some star products are more “natural” for a given system than
others.

Besides the algebraic aspects of this theory, one can also speak about convergence of these
formal series or study the integral formulas: so one can ask the question, if the deformation is
continuous or smooth in some sense. This leads to the field of strict deformation quantization.
Here, no closed theory exists yet and there are just very few things known about continuous star
products. The approach via integral formulas is better developed at the moment, but it is only
possible for finite-dimensional systems. For a formal power series, the first question is of course
in what topology one wants it to converge. Once one has an answer to it, one has to do some
more or less complicated analysis of the formal power series, in order to control it somehow.

For this second approach via formal power series, there are just very few examples of contin-
uous star products known. They are all related to classical systems, which can be described as
symplectic vector spaces. This master thesis presents a new example of a formal star product,
which can be turned into a convergent series and which does not come from a symplectic vector
spaces, but from a class of vector spaces with a more general (Poisson) structures. So it enlarges
this theory of strict deformation quantization by a very substantial and big group of examples
and provides new scientific results. The core part of it is hence made public as a preprint [42] by
now. This preprint will not be cited again in this thesis, but it is clear that the latter contains
the whole content of the former and even a bit more.

Besides the fact, that this work presents a contribution to the theory of quantization, its
main parts are also of independent interest. The topologized, deformed algebra, which is treated
here is nothing else but the universal enveloping algebra U (g) of a Lie algebra g. So it also has
an impact on Lie theory, since there is no canonical topology on U (g): we give a candidate for
it by an explicit and functorial construction, which also applies to some infinite-dimensional Lie
algebras. To the best of our knowledge, such a topology for infinite-dimensional cases has not
been known before.
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An Outlook

Although (or maybe because) we found many new results, we have to face a lot of open questions.
The first one is of course, how far we can generalize the construction of the topology on the
universal enveloping algebra and how large its completion can be. It is almost answered by this
thesis, but some limiting cases are left to consider, as pointed out in the Chapters 6.2 and 6.4.
Another question considers the representation theory of U (g): now we have a topology and can
ask for continuous representations, for example. Some more questions rather touch the field of
deformation quantization again. First: we can think of continuous star products not only on
vector spaces, but also on some really geometric manifolds, namely on the coadjoint orbits of a
Lie group G. The results of this work are a very big step into this direction and may allow new
examples of strict deformations. There is of course still work to be done, but this would be the
very first class of such examples. Second: we can think of more complicated classes of quantized
classical mechanical systems on vector spaces and try to make those more general star products
convergent, too. The final aim would be to find results for the so-called Kontsevich construction,
which is somehow the biggest result in formal deformation quantization. The question, how this
can be transferred into a strict setting is completely open. Third: a big class of star products
can be generated using twists. That is a technique, which uses the Hopf algebra structure of
U (g). Since we now have a topology, we can think of convergent twists and ask, if this leads
to a convergent (non-formal) power series, hence to a continuous star product. This question is
closely linked to symmetries of the quantized system and could lead to a better understanding
of such things as “quantized symmetries” which have yet not been understood at all.

Summary and Organization

Summary

This work focusses on a particular star product, the so-called Gutt star product. It can be
established on a certain class of classical mechanical systems, which turn out to be vector spaces
with a particular type of biderivation (a Poisson bracket) on their algebra of smooth functions.
The aim of this thesis is to find a large subalgebra of the smooth functions and a (locally convex)
topology on them, such that the Gutt star product is continuous and that the commutative
classical algebra can be deformed smoothly into the noncommutative quantum algebra. Of
course, we must give a proper definition how this smoothness is meant. We also establish many
helpful properties of this construction, like a certain functoriality. Moreover, this work relates to
other fields of mathematics, such as Lie theory. For example, the quantized algebra of smooth
functions is closely linked to a universal enveloping algebra of a Lie algebra, which naturally
appears for the considered classical systems. Therefore, it carries the structure of a Hopf algebra,
which is also continuous with respect to the constructed topology.

Organization

This master thesis is organized as follows: In Chapter 2, we will introduce the most important
concepts of classical and quantum mechanics, explain their relations and give an overview over
the field of deformation quantization, its history and its current state. We will also classify it
this thesis into the theory of deformation quantization. We will also give an outlook on the next
steps, which can be done using the results of this work. In the third chapter, we will explain in
more detail the kind of Poisson systems this thesis deals with and see that they are in fact Lie
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algebras. We will construct the Gutt star product, which is characteristic for those systems, in
different ways and show that these constructions are equal. We will explain the link to Lie theory,
the Poincaré-Birkhoff-Witt and the Baker-Campbell-Hausdorff theorem and will introduce those
results on the Baker-Campbell-Hausdorff series, which we will need for our later work. Chapter
four is devoted to finding explicit formulas for the Gutt star product and explaining them using
two examples, as well as to some easy conclusions one can draw from those formulas. Chapter five
is the core of this thesis. First, we will introduce briefly the concept of locally convex topologies
and explain why they are the convenient setting for our task. We will show in detail how the
locally convex topology for the Gutt star product is constructed, what their properties are and
what kind of topology our Poisson system must have had such that the construction of our
topology is possible. At this point, we will introduce the concept of asymptotic estimate algebras,
which can be seen as a concept between locally multiplicatively convex algebras a general locally
convex ones. Then we will show that the Gutt star product is indeed continuous with respect
to our topology, that the deformation is analytic (even entire, if the underlying field is C), that
the construction is functorial and we will analyse the completion of this algebra. We will also
show that this topology is optimal in a certain way. The sixth chapter is devoted to particular
systems, namely to nilpotent Lie algebras. We will show how the results we found previously
can be improved, but we will also see the limits of our construction. We will establish the link to
a work of Stefan Waldmann’s and we will show that we come to the same conclusion by taking
a different way using the Gutt star product. Finally, we will see that those stronger results
are not limited to the very case of strictly nilpotent Lie algebras, but that there are (in infinite
dimensions) weaker notions of nilpotency which lead to the same result, when the construction
of the topology is adapted a bit. In the end, Chapter seven treats the Hopf algebraic part which
is very short due to the algebraic properties of the deformation. We will see that the coproduct
and the antipode remain undeformed and continuous with respect to our topology, too.

Summary and Organization (German)

Diese Masterarbeit befasst sich mit dem Gutt-Sternprodukt. Es kann für bestimmte Poisson-
mannigfaltigkeiten definiert werden, nämlich für Vektorräume mit linearem Poissontensor. Die
Poissonmannigfaltigkeit stellt dann den Dualraum einer Lie-Algebra dar. Auf der Polynomalge-
bra über diesem Dualraum, bzw. der symmetrischen Tensoralgebra über der Lie-Algebra, lässt
sich dann das Gutt-Sternprodukt definieren, welches als formale Deformation der symmetrischen
Tensoralgebra aufgefasst werden kann. Im Rahmen dieser Arbeit wird mit Hilfe einer von Wald-
mann entwickelten Konstruktion die symmetrische Tensoralgebra lokal-konvex topologisiert und
dann der Nachweis erbracht, dass das Gutt-Sternprodukt in dieser Topologie tatsächlich stetig
ist. Das besondere bei diesem Vorgehen ist, dass es sich insbesondere auch auf eine große Klasse
von unendlich-dimensionalen Lie-Algebren anwenden lässt. Damit trägt diese Arbeit neue wis-
senschaftliche Ergebnisse zum Themengebiet der strikten Deformationsquantisierung bei.

Im nächsten Abschnitt, Kapitel 2, wird der Begriff ”Quantisierung” und insbesondere der The-
menbereich der Deformationsquantisierung näher erläutert und die Fragestellung motiviert. Im
dritten Kapitel werden die notwendigen Vorkenntnisse über Kirillov-Kostant-Souriau-Strukturen,
das Gutt-Sternprodukt und die beiden Theoreme nach Poincaré, Birkhoff und Witt sowie Baker,
Campbell und Hausdorff vermittelt. Kapitel 4 beschäftigt sich mit der Herleitung verschiedener
Formeln für das Gutt-Sternprodukt. Im fünften Kapitel wird dann die lokal-konvexe Topolo-
gie auf der Tensoralgebra eingeführt sowie die notwendige Unterkategorie lokal-konvexer Lie-
Algebren erklärt, mit der wir uns befassen. Danach wird die Stetigkeit des Sternprodukts be-
wiesen, ebenso wie die analytische Abhängigkeit vom Deformationsparameter, die Funktorialität
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der Konstruktion und die Optimalität des Ergebnisses. Kapitel 6 beschäftigt sich mit nilpoten-
ten Lie-Algebren und damit, wie weit sich die bisherigen Ergebnisse in diesem Fall ausbauen
lassen. Darüber hinaus wird der Zusammenhang mit einer Arbeit von Waldmann bezüglich der
Weyl-Algebra aufgezeigt. Im siebten Kapitel wird gezeigt, dass neben der assoziativen Algebra-
auch eine Hopf-Struktur vorliegt, die ebenfalls lokal-konvex topologiert werden kann und stetig
ist.
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Chapter 2

Deformation quantization

The starting point for every theory of quantization is without any doubt the theory of mechanics.
Here, mechanics means both, the classical and the quantum theory. Since we want to explain
how one can link those two together, we will give a short overview of both theories and show their
similarities and their differences in the first section of this chapter. Afterwards we will explain
what a quantization should actually be and collect the existing approaches to it. In Section three,
we will focus on Deformation quantization and give an overview of this rather young theory.

2.1 Mechanics: The Classical and the Quantum World

2.1.1 Classical Mechanical Systems

We want to briefly recall the notions of classical mechanics. There are many good books on
this subject and also the notation for the basic concepts is more or less uniform everywhere.
Nevertheless, we want to refer to the books of Marsden and Ratiu [63] and Arnold [3], which
give very good introductions and overviews of the theory. Imagine the simplest model for a
mechanical system, which is not trivial: a single particle with mass m moving in R3 in a scalar
potential V . We will denote its position by q = (q1, q2, q3) ∈ Q = R

3 and call the set Q of
all possible positions the configuration space. Since we also have a time coordinate t ∈ R, we
can describe the path on which the particle moves by a parametrized curve q(t). The state of
the particle is completely described by its position and its velocity (q(t), q̇(t)) and the velocity
should be understood as a tangent vector q̇(t) ∈ Tq(t)Q = R

3. Therefore, the tangent bundle
TQ, which is in this case R6, is sometimes called the state space. In classical mechanics, we
can describe the movement of the particle using the Euler-Lagrange equations, which are derived
from the so-called Lagrange function by a variational principle. The Lagrange function of this
system reads

L(q, q̇) = T (q, q̇)− V (q, q̇)

and T (q, q̇) = m
2

∑3
i=1

(
q̇i
)2

is the kinetic energy. The action along a path is defined as the
integral

S(q, q̇) =
t1∫

t0

L(q, q̇)dt.

It is a physical observation, similar to a mathematical axiom, that this action functional is
stationary along the trajectories of the particle. So by fixing a starting point q0 and an end point

11



12 CHAPTER 2. DEFORMATION QUANTIZATION

q1 of a trajectory, we find
δS
∣∣
q(t0)=q0,q(t1)=q1

= 0.

From this, one finds the Euler-Lagrange equations for i = 1, 2, 3

d

dt

∂L
∂q̇i

− ∂L
∂qi

= 0.

In our case this means
d

dt

∂T

∂q̇i
− ∂V

∂qi
= mq̈ − ∂V

∂qi
= 0

and we can integrate the equations to get the trajectory. So far, we described the system in the
state space. This description is called the Lagrange formalism. It is not the only picture, which
describes to behaviour of the system: one can go to the so-called Hamilton formalism, which is
based on the conjugate momenta p = (p1, p2, p3) ∈ T ∗

q(t)Q

pi(t) =
∂L
∂q̇i

and linked to the Lagrange formalism by a Legendre transformation. The set T ∗Q also describes
all possible states of the system and is called the phase space. Now we can define the Hamilton
function

H(q, p) = piq
i − L(q, q̇),

which is the crucial quantity in this setting. It represents the energy of the system. One finds
the equations

∂H

∂pi
=
dqi

dt
and − ∂H

∂qi
=
dpi

dt
.

They strongly remind of a symplectic structure and indeed this is the case: using the standard
sympectic matrix

ω =

(
0 1

−1 0

)

one finds
d

dt

(
qi

pi

)
= ω

(
∂H
∂qi

∂H
∂pi

)
.

More generally, one can define the Poisson bracket {f, g} for two functions C∞(T ∗Q) by

{f, g} =

3∑

i=1

(
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)

and finds the time evolution of a function f given by

d

dt
f = {f,H}.

All of those objects have, of course, geometrical interpretations which allow generalizations from
this very easy example. For a more complex system than one particle in a scalar potential, the
configuration space Q is a smooth manifold, the state space TQ is described by the tangent
bundle and the phase space T ∗Q by the cotangent bundle. Points in the phase space, which
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can also be understood as Dirac measures in T ∗Q, describe the possible states of the system.
This interpretation allows us to speak of positive Borel measures on T ∗Q as mixed states, which
describe a probabilistic distribution of the state of the system. The transition from the Lagrange
to the Hamilton formalism is done by a fiber derivative, the kinetic energy has a mathematical
interpretation as a Riemannian metric and the Poisson bracket is the one which is due to the
canonical symplectic form on the cotangent bundle. So in some sense, classical mechanics can
be described by symplectic geometry.

The last conclusion, however, was a bit too fast. There are mechanical systems like the rigid
body, which can not be described in the symplectic formalism, or which have certain symmetries
and therefore allow a reduction. If a given system has a symmetry (which is described by a
certain type of Lie group action), there will be mathematical tools, which allow to divide out a
part of phase space. One gets a reduced phase space, which is a quotient of T ∗Q and which, in
general, is not symplectic any more. In these cases, we end up with a more general structure
than a symplectic manifold. The Poisson bracket however is still be there. So the objects we
actually want to use in order to describe classical mechanics are Poisson manifolds.

Definition 2.1.1 (Poisson Manifold) A Poisson manifold is a pair (M, {·, ·}) of a smooth

manifold M and a Poisson bracket {·, ·}. The bracket is a biderivation

{·, ·} : C
∞(M)× C

∞(M) −→ C
∞(M),

which is anti-symmetric and fulfils the Jacobi identity

{{f, g}, h} + {{g, h}, f} + {{h, f}, g} = 0.

It is worth mentioning that sometimes, it will be more convenient not to talk about the Poisson
bracket {·, ·}, but about the Poisson tensor π ∈ Γ∞(Λ2(TV )), which is a equivalent description.
Like the bracket, the tensor has to fulfil the Jacobi identity. We have for all f, g ∈ C∞(M) and
x ∈M

{f, g}(x) = π
∣∣
x
(df,dg)(x).

The “physical observables” in this setting are the smooth functions on the Poisson manifold.
Together with the Poisson bracket, they form the prototype of a Poisson algebra: an algebra
with a bracket, which is an antisymmetric biderivation and which fulfils the Jacobi identity.
The range, sometimes also called the spectrum, of a given smooth function has the physical
interpretation as the measurable values of this observable. So in full generality, we could say
that a classical mechanical system is a Poisson manifold together with a Hamilton function H,
and the time evolution of every observable f ∈ C∞(M) is given by the relation

d

dt
f(t) = {f(t),H}.

We will soon see that this formalism is as close as we can get to the one of quantum mechanics.

2.1.2 Quantum Mechanics

In quantum theory, the model of a physical system looks completely different on the first sight.
There is indeed no obvious way to describe how this formalism was derived out of the one de-
scribing classical mechanics. It was a hard and non-straightforward way, taken in small steps
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of which some were more or less obvious and some were ingenious guesses. Built up on first
ideas by Max Planck, who described the radiation of a black body, Albert Einstein, who ex-
plained the photo-electrical effect and Niels Bohr, who solved the problem of atomic spectra, a
hand full of physicists including Max Born, Werner Heisenberg, Erwin Schrödinger, Paul Dirac,
Wolfgang Pauli and Pascual Jordan developed a complex, counter-intuitive but extremely well
working theory, which was able to give precise answers to very most of the open questions at
that time. However, this theory, mainly risen between 1925 and 1928, did not have a satisfying
mathematical fundament. It took around ten more years until mathematicians, mainly John von
Neumann, worked out a mathematical theory for quantum mechanics and gave also a physical
interpretation to their mathematical formulation [94]. Today, quantum mechanics is usually in-
troduced as a mathematical theory based on axioms and most of the textbooks (at least most
of the more mathematical ones) use this axiomatical approach to explain the theory. Two very
nice mathematical introductions are given by Bongaarts [19] and Hall [52].

The state of a physical system is described by a vector ψ on a Hilbert space H and the
observables are self-adjoint (and usually unbounded) operators on it. The spectra of these
operators describe their measurable values. The theory is probabilistic, but has a deterministic
time evolution: the pair (A,ψ) gives a probabilistic distribution, from which we can calculate the
probability to measure A with the value a ∈ spec(A) in the state ψ using the spectral resolution
of A. We want to look again at the example of a particle in R3 moving in a potential. Let x =

(x1, x2, x3) ∈ R3 be a coordinate vector, then we have the so-called Schrödinger representation
given by the Hilbert space H = L2(R3) of square integrable functions with the Lebesgue measure.
The state ψ of a particle is a time-dependent element of this Hilbert space which fulfils the
Schrödinger equation

i~
d

dt
ψ(x, t) = Ĥψ(x, t) (2.1.1)

where Ĥ denotes the Hamilton operator which is given by

Ĥ = − ~2

2m
∆+ V (x), (2.1.2)

where ∆ denotes the Laplace operators and V the potential. Similar to the Hamilton function
in classical mechanics, the Hamilton operator (or more precisely: its spectrum) describes the
energy of this system, m is the mass of the particle and V the potential. The operators which
correspond to the coordinate xi and the momentum pj of the particle are given by

(q̂iψ)(x, t) = xiψ(x, t)

(p̂jψ)(x, t) = −i~ ∂

∂xj
ψ(x, t).

This turns Equation (2.1.1) into

i~
d

dt
ψ(x, t) =

(
p̂2

2m
+ V (x)

)
ψ(x, t)

and looks therefore similar to the classical time evolution. Since the state is a function of
the coordinate x, one calls this the representation in position space. Sometimes it is more
convenient to describe a state in terms of its momentum and one changes to momentum space

via Fourier transformation. Both representations are equivalent, very similar to the variables
q and p in the Hamilton form of classical mechanics, from which this picture is very much
inspired. Unlike the classical position and momentum observables being functions, the quantum
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mechanical observables are operators and do not commute any longer. One can check these by
calculating commutators and finds the so-called Heisenberg or classical commutations relations

[pi, pj ] = [qi, qj ] = 0, (2.1.3)

[qi, pj ] = i~δij . (2.1.4)

These relations are the starting point for all quantization theories. The main goal is always
to find an algebra which fulfils these (or maybe equivalent) relations and this is what makes
a quantum algebra so different from a classical one. Physically spoken, this noncommutativity
means that a measurement of the position of a particle influences its momentum and vice versa,
such that it becomes impossible to measure both, position and momentum, at the same time
with arbitrarily high precision. This still very vague statement can be made precise using the
Hilbert norm and the Cauchy-Schwarz inequality and yields the famous Heisenberg uncertainty
relation

∆Aψ∆Bψ ≥ 1

2
|〈ψ, [A,B]ψ〉|.

Here A,B are observables and ∆Aψ,∆Bψ denote their standard deviations in the state ψ. For
the position and momentum of a particle, this gives

∆p̂∆q̂ ≥ ~

2
.

However, the Schrödinger picture is not the only possibility to describe the behaviour of a quan-
tum system. Heisenberg proposed a description in which not the particles, but the observables
depend on the time. Since quantum mechanics, time evolution is described by a one-parameter
group of unitary operators, we have

ψ(x, t) = U(t− t0)ψ(x, t0),

at least in systems where the interactions are not explicitly time dependent. This makes it
possible to apply unitary transformations to the states as well as to the operators

ψ(x) = ψ(x, t0) = U(t0 − t)ψ(x, t) and A(t) = U(t0 − t)AU(t− t0).

One gets the so called Heisenberg picture, in which the time-dependence is not expressed in the
states but in the operators. Both pictures are equivalent and it is just a question of convenience
which one is used. In our example, the unitary operators are given by

U(t− t0) = e−
i
~
Ĥt,

since they describe the time evolution of solutions of the Schrödinger equation. If one differenti-
ates an operator with respect to t in the Heisenberg picture, one finds the Heisenberg equation

d

dt
A(t) =

1

i~
[A(t),H].

This reminds us of course of the time evolution in terms of Poisson brackets in classical mechanics.
The idea that both objects, the quantum mechanical commutator and the Poisson bracket, should
somehow be seen as counterparts to each other, is called the correspondence principle. It is the
second staring point for nearly all theories of quantization.
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2.2 Making Things Noncommutative: Quantization

2.2.1 The Task

We have had a brief overview over the mathematical formulation of classical and quantum me-
chanics. On one hand, if we compare for example the way in which states of a physical system
are described (a point in the cotangent bundle of a manifold and a vector in a Hilbert space) we
will see that they are very different. On the other hand, we have seen that both theories have
certain things in common: the time evolution can be described in a similar way. We want to
give a short list of the main concepts of both theories and compare them (a much more detailed
list and discussion can be found in Chapter 5 of [95]):

Classical Quantum

Observables
Poisson(-*)-algebra ACl of
smooth functions C∞(M)

on a Poisson manifold

*-algebra AQM of self-adjoint
operators on a Hilbert space
H

Measurable Values spec(f) ⊆ R spec(A) ⊆ R

States Points in the phase space Vectors in a Hilbert space

Time evolution Hamilton function H Hamilton operator Ĥ

Infinitesimal
time evolution

d
dt
f(t) = {f(t),H} d

dt
A(t) = 1

i~
[A(t),H]

When we look at this table, we see that it is probably a good guideline to understand the
observable algebras as the main concepts of mechanics, rather than the states. We know that
the classical theory emerges as a limit of many quantum systems, such that the physical constant
~ becomes small in enough (in comparison to the characteristic action scale of the system) to
be neglected. How to construct a correspondence the other way round is the question which
the theory of quantization addresses. Physicists used to solve this by “making a hat on the
variables p and q and saying that they the do not commute any more”. Surprisingly enough,
this approach, which is called canonical quantization in physics, works for most of the simple
examples. In particular, this is the case when we do not have high powers of p̂ and q̂ and no
mixed terms. That this idea is however not canonical in a mathematical sense is almost needless
to say and of course it causes severe problems when higher and mixed terms in position and
momentum appear. Briefly stated, the problem is that in the classical theory, the expressions
q2p, qpq, pq2 describe the same polynomial, but in the quantum theory, they do not. So we must
think about the question, to which operators we want to map mixed polynomials, and canonical
quantization does not provide an answer. To create a mathematical theory of quantization, one
needs to impose an ordering on the p̂ and q̂. Already Hermann Weyl knew about this problem
and looked for ways how to solve it by proposing a totally symmetrized expression [99] for such
terms. This ordering is now known as the Weyl ordering and his formula became the starting
point for the theory of deformation quantization many years later.

2.2.2 A Definition

First, we want to take a step back and try to formalize what we actually mean by a quantization.
See also Section 3.2 in [41] or Section 5.1.2 in [95] for a good introduction to this topic. For us,
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a quantization should be a correspondence

Q : AClassical −→ AQuantum

between a commutative algebra AClassical and a noncommutative algebra AQuantum, which is a
“bijection” in some sense: all classical observables appear as classical limits from quantum observ-
ables, hence we should expect Q to be ”injective”. On the other hand, if the quantum algebra was
bigger than the classical algebra, the whole concept of quantization would be pointless, since we
could never recover all observables, thus we want Q to be “surjective”, too. The correspondence
should also keep somehow track of the physical meaning of our observables, or at least tell us,
what the observable Q(f) should be for some f ∈ AClassical. Moreover, Q−1 should behave like
the classical limit, since this is the rather well-understood part of both. Finally, we want the
correspondence to keep associative structures: the classical algebra is associative and we want
the product in our noncommutative algebra to correspond to the concatenation of operators on a
Hilbert space which is associative, too. One possibility of formulating this would be the following:
in the very prototype of a classical observable algebra, a symplectic vector space of dimension
2n, we want that the following three axioms are fulfilled:

(Q1) We want a “map”, which allows a representation in the standard picture of quantum me-
chanics: Q(1) = 1, Q(qi) = q̂i, Q(pj) = −i~ ∂

∂qj
.

(Q2) The correspondence principle should be fulfilled: [Q(f),Q(g)] = i~Q({f, g}), for all f, g ∈
AClassical.

(Q3) For mathematical simplicity, Q should be linear.

We finally split up the whole process: in a first step, we quantize the system and in a second
step, we look for representations on a Hilbert space.

Classical
Smooth functions on a

Poisson manifold

Quantum
Self-adjoint operators on a

Hilbert space

Intermediate
Abstract algebra

Goal

Q
u
an

tization
Repre

se

nt
at

io
n

2.2.3 Different approaches

There exist various ideas about how to build up such a scheme. For example, in axiomatic
quantum field theory one usually wants the quantum algebra to be a C∗-algebra (see for example
[50] or [5]). The reason is that the bounded operators B(H) naturally form such an algebra (and
actually even more than that). Unfortunately, most of the operators in quantum mechanics are
unbounded. This problem is cured by looking at the exponentiated operators

A 7−→ eitA, t ∈ R.
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This way, one gets a one parameter group for t ∈ R and unitary operators are clearly bounded.
Moreover, there is a very nice correspondence between C∗-algebras and locally compact Haus-
dorff spaces, which is known as the Gelfand-Naimark theorem. Roughly stated, this means that
there is an equivalence of categories between compact Hausdorff spaces and unital commutative
C∗-algebras: every such space gives rise to a commutative algebra of complex-valued, contin-
uous functions, which form a C∗-algebra. On the other hand, from every unital commutative
C∗-algebra A one can construct a compact Hausdorff space X such that A ∼= C (X). This
correspondence can be extended to open and closed subsets of the space, to homeomorphism,
locally compact spaces, their compactification, vector bundles and even more. There is a strong
link between commutative algebra and topology or geometry. One possibility to think of a quan-
tized system is to think of continuous or smooth functions on a noncommutative space, which
then should correspond to a noncommutative C∗-algebra. This idea leads to noncommutative
geometry, which is mostly due to Alain Connes. A very detailed, but not necessarily easy to read
book is [30] by Connes, another and rather brief introduction is for example [93].

A different approach, called geometric quantization, tries to fulfil all of the three axioms (Q1)
- (Q3) from the previous part. Unfortunately, this causes problems: already for a symplectic
vector space, it is impossible to have a one-to-one correspondence of the Poisson bracket and the
quantum mechanical commutator. This is known as the Groenewold-van Hove theorem, which
was found around 1950 [47, 91]. More precisely spoken: no representation of the Lie algebra,
which is generated by the qi and pj and which is defined by the classical commutation relations,
can be extended irreducibly and faithfully to the commutator Lie algebra which comes from the
associative unital algebra which is generated by the qi and pj . Thus geometric quantization
restricts to smaller observable algebras, which are not problematic. At its present state, this
approach is however still far from being a general theory, but it provide a procedure for number
of exemplary cases. Its ideas are mostly due to Souriau [87], Kostant and Segal.

There are also different approaches. Berezin proposed a quantization scheme for particular
Kähler manifolds, [11–13]. Still, new ideas keep coming up, but in the following, we want to
concentrate on a particular type of quantization, which is called deformation quantization.

2.3 Deformation Quantization

2.3.1 The Concept

Deformation quantization tries to realize the three points (Q1) and (Q2) from the previous
section, but weakens the third. If it is not possible to have such a correspondence exactly, we
will at least want to have it asymptotically. The motivating example is the Weyl quantization
which we already talked about. There are actually two such formulas, that can be given: the
first maps a function f in the variables q, p ∈ Rn to a differential operator on Rn, which is
actually a formal power series in the parameter ~. For polynomial functions, this series is a sum
(more precisely: a polynomial again) and well defined, for general functions this will really be
a formal power series, hence a truly infinite sequence, which a priori has no analytical, but just
an algebraic meaning. The second is given by an integral formula and holds for another class of
functions (Schwartz functions), but one gets the first formula out of the second as an asymptotic
expansion for ~ −→ 0. With these quantizations, one can also define a product of two functions
f, g, which will necessarily take those two functions to a formal power series in ~. Moyal showed
that the commutator of this product can be understood as a series which approximates the
quantum mechanical commutator [66]. The reason why seemingly all of a sudden power series
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appear is the following: if one wants the correspondence principle to be asymptotically fulfilled,
i.e.

[Q(f),Q(g)] = i~Q({f, g}) +O(~2)

and the multiplication of these quantized functions to be associative (as needed for representa-
tions on the Hilbert space), one will necessarily get higher and higher orders in ~. This iteration
can never be stopped without loosing associativity. Motivated by this observation, a group of
mathematicians, the so called Dijon-school, started working out this idea of products as formal
power series. They understood quantization as a deformation of the commutative product by a
formal parameter (mostly called ~, λ or ν, in this work we will call it z from now on), which
controls the noncommutativity of the theory. These deformed products should moreover fulfil
some compatibility conditions with the classical theory. This was the hour of birth of deforma-
tion quantization. The main characters of this group were Flato, Lichnerowicz, Bayen, Frønsdal
and Sternheimer, who published their ideas in the late 70’s [6, 7] and gave a first definition of
a star product. These two articles became the starting point for what has now become a rich
and fruitful theory. The deformed products are tits corner stone and one defines them in the
following way.

Definition 2.3.1 (Star Product) Let (M, {·, ·}) be a Poisson manifold over a field K (K = R

or C). A star product on M is a bilinear map

⋆z : C
∞(M)× C

∞(M) −→ C
∞(M)JzK, (f, g) 7−→ f ⋆z g =

∞∑

n=0

znCn(f, g)

such that its KJzK-linear extension to C∞(M)JzK fulfils the following properties:

i.) ⋆z is associative.

ii.) C0(f, g) = f · g, ∀f,g∈C∞(M) (Classical limit).

iii.) C1(f, g)− C1(g, f) = z{f, g}, ∀f,g∈C∞(M) (Semi-classical limit).

iv.) 1 ⋆z f = f ⋆z 1 = f, ∀f∈C∞(M).

If the Cn are bidifferential operators, the star product is said to be differential and if the order of

differentiation of the Cn does not exceed n in both arguments, a differential star product is said

to be natural. Moreover, we will say that a star product ⋆z is of Weyl-type, if f ⋆z g = g ⋆z f for

all f, g ∈ C∞(M) where denotes the complex conjugation.

They also defined a notion of equivalence of star products. The idea behind is that two equivalent
star products should give rise to the same physics.

Definition 2.3.2 (Equivalence of Star Products) Two star products ⋆z and ⋆̂z for a Pois-

son manifold (M, {·, ·}) are said to be equivalent, if there is a formal power series

T = id+

∞∑

n=0

znTn

of linear maps Tn : C∞(M) −→ C∞(M), which extends KJzK-linearly to C∞(M)JzK, such that

the following statements hold:

f ⋆z g = T−1(T (f)⋆̂zT (g)), ∀f,g∈C∞(M)JzK and T (1) = 1.

For differential or natural star products, we accordingly speak of differential or natural equiva-

lences.



20 CHAPTER 2. DEFORMATION QUANTIZATION

Note that these definitions are purely algebraic, since we do not ask for the convergence of those
power series. Hence the theory which was developed from this in the following years is also a
mostly algebraic theory. Like for the Weyl product, there were also integral formulas around for
other types of star products for which one can also make sense of convergence. But as already
pointed out, one has to strongly restrict the algebra of functions, for example to the Schwartz
space.

2.3.2 A Mathematical Theory

Deformation quantization is a good example for a mathematical theory, which is motivated by
a physical idea. It is not really talking about a physical problem, since the world does not need
to be quantized – it already is. It is talking about a mathematical problem: how to recover
the quantized (and very counter-intuitive) mathematics, which describe the world on very small
scales out of the classical (and much more intuitive) mathematics, which describe the world on
our scale? Deformation quantization tries to give an answer to that, but is unfortunately (at
least at its present state) still far from doing so completely. Like many such theories, it started
of from a more or less precise physical background and developed into something very different:
a mostly algebraic, purely mathematical theory. That is also due to the fact that the questions,
which had to be answered in the beginning, were very hard and of mathematical nature. It
took a lot of time to find answers and meanwhile, the mathematicians working on them were
interested other aspects of the theory. We want to give a short overview of those questions and
their answers very briefly and summarize a bit the history of deformation quantization next. A
more detailed summary can be found in section 6.1 of [95].

The prototype is, as already mentioned, a symplectic vector space, for which Weyl proposed
a star product with a certain (symmetric) ordering (although the definition of a star product
did not exist at his time). However, other orderings are possible: one can have a standard or an
anti-standard ordering, where the p̂’s are all ordered to the right or to the left, respectively, or
something in between. One of the first questions was, if one could also construct star products
on symplectic manifolds and if these products will be standard or Weyl ordered, if they will be
differential or natural and so on. Locally, the answer was yes, but it took some time and many
small steps, until DeWilde and Lecomte could show that every cotangent bundle of a smooth
manifold has star products [34] and then extended this result to arbitrary smooth manifolds [33].
Another proof was given independently from that by Omori, Maeda and Yoshioka [72] and then
by Fedosov, who presented a simple and very geometric construction [43], which always give rise
to natural star products, as shown in [21] or more generally in [49]. Moreover, every star product
on a symplectic manifold is equivalent to a Fedosov star product [14]. A lot of results were
found for Kähler manifolds and also the already mentioned procedure, which is due to Berezin,
gives rise to star products. There are moreover standard, anti-standard ordered and many other
types of star products on every cotangent bundle. The next question was the one concerning the
equivalence classes of star products in the symplectic case. One can show that locally, two star
products on a symplectic manifold are always equivalent. Hence a classification result should
depend on global phenomena. Indeed, this is the case and it can be shown that star products
on a symplectic manifold are classified by its second deRham cohomology H2

dR(M). This result
is due to Deligne [32], a different proof was given by Nest and Tsygan [69], another one by
Bertelson, Cahen and Gutt [14]. More precisely: the choice of an equivalence class of closed,
nondenerate 2-forms ω ∈ Ω2(M) determines a Fedosov star product and from every Fedosov star
product one can calculate such an equivalence class. This already determines all star products
on symplectic manifolds, since every star product on such a manifold is equivalent to a Fedosov
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star product. The case of Poisson manifolds took longer and was much harder to solve, since
associativity turned out to be a complicated condition to fulfil. There were some examples of
star products known for particular Poisson structure, like the Gutt star product [48], which was
also found by Drinfel’d [37] independently, but the general existence (and also the classification)
result was proven by Kontsevich [59, 60] many years later. His classification result is known as
the formality theorem and needs the notion of L∞-algebras, which are fairly involved objects.
He gave an explicit construction, how star products can be built out of Poisson brackets on Rd.
This construction was extended by Cattaneo, Felder and Tomassini to Poisson manifolds [28] and
indepedently from that by Dolgushev [36]. Another and easier formulation of the Kontsevich
construction on Rd in terms of operads was later given by Tamarkin [88].

2.3.3 From Formal to Strict

So far, one could say that the big cornerstones of the theory are already there and that it is
somehow “finished”. For two reasons, this is not the case. First, a mathematical theory is never
actually “finished”, since there are always a lot of new things which can be found. There are
still many different types of star products to classify, like invariant or equivariant star products
in the case that one has Lie group or Lie algebra actions. A very recent result concerning the
classification of equivariant star products on symplectic manifolds is, for example, due to Reichert
and Waldmann [76]. Second, the theory of deformation quantization still has a different aspect:
all we talked about so far was purely algebraic and there is no notions of convergence of these
formal power series. If some day, this theory shall have a real drawback on physics, it will be
necessary to talk about the convergence properties of these star products, since in physics ~

is not a formal parameter but a constant with a dimension and a fixed value and therefore the
question of convergence matters. When we dace those problems and speak about continuous star
products, we leave the field of formal deformation quantization and come to strict deformation
quantization.

Although it is closer to physics, strict deformation quantization is still a mathematical theory.
There are two different approaches to it: we already mentioned integral formulas, which allow to
speak of continuous star products. The second approach uses the formal power series instead and
wants to construct a topology on the polynomial algebra, such that the star product becomes
continuous. Then one completes the tensor algebra over the vector space to a subalgebra of the
smooth functions, on which the star product will still be continuous.

The first approach is mostly due to Rieffel, who developed these ideas in some of his papers
[77–79]. He wants to realize a strict deformation quantization by actions of an abelian Lie
group on a C∗-algebra of classical observables. Later Rieffel formulated a list of open questions,
which strict deformation quantization should try to answer [80] in the next years. His approach
was carried on by Bieliavsky and Gayral [15, 16], who extended these concepts to much more
general Lie groups and different manifolds. To get reasonably big observable algebras, they used
oscillatory integrals and pushed this theory forward. A similar idea was realized by Natsume, Nest
and Peter [68], who could show that under certain topological conditions, symplectic manifolds
always admit strict deformations.

The second approach is due to Beiser and Waldmann [8, 9, 96]. They restrict to the local
situation, that means to Poisson structures on vector spaces. Then, they look at the polynomial
functions on this vector spaces and try to find continuity estimates for them by constructing
an explicit locally convex topology on the symmetric tensor algebra (which is isomorphic to the
polynomial algebra). The aim is to make the topology as coarse as possible, to get then a large
completion and hence a big quantized algebra of observables. There are two big advantages
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of this approach: the first one is that it can be applied to infinite dimensional vector spaces,
what is necessary for quantum field theory, which deals with infinitely many degrees of freedom.
The second is that we can really speak about all observables, also those which will correspond
to unbounded operators, without having to exponentiate. In this sense, this idea is somehow
more fundamental. The disadvantage is, however, that it is just a local theory at the moment.
The idea is worked out just for one type of star products by now, which are star products of
exponential type like the Weyl product. This means until now one can only control star products
on symplectic vector spaces which come from a constant Poisson tensor [96]. This theory was
carried on in the master thesis of Matthias Schötz [82], who rephrased it using semi-inner product,
which are a somehow more physical notion, since one can interpret spaces with such a topology
as projective limits of pre-Hilbert spaces. This also allows a slightly coarser topology and hence
a larger completion of the symmetric tensor algebra.

In this work, we will follow the second approach and apply it to another type of star product,
the Gutt star product, which comes from a linear Poisson tensor on a vector space. Of course,
this is the next logical step after constant Poisson tensors. However, these are also the first non-

symplectic Poisson structures, which will be strictly quantized this way. Thus this master thesis
really contributes something new to the theory of strict deformation quantization: a second ex-
ample, in which Waldmann’s locally convex topology on the tensor algebra leads to a continuous
star product, when considered as a power series and not as an integral. Note that this also has
a certain effect on Lie theory: the result can be seen as a functorial construction for a locally
convex topology on the universal enveloping algebra U (g) of a (possibly infitely-dimensional)
Lie algebra g. Therefore they may have applications to, for example, the representation theory
of U (g).



Chapter 3

Algebraic Preliminaries

3.1 Linear Poisson Structures in Infinite Dimensions

As we have seen before, there has already been done some work on how to strictly quantize
Poisson structures on vector spaces. Star products of exponential type on locally convex vector
spaces were topologized by Stefan Waldmann in [96] and then investigated more closely by
Matthias Schötz in [82]. The Poisson tensor which cooresponds to the Poisson bracket in these
cases, is constant. Hence, as a the next step, we want to investigate linear Poisson structures
on locally convex vector spaces. This will give a new big class of Poisson structures, which will
be deformable in a strict way. Before we do so in the rest of this master thesis, we recall briefly
some basics on linear Poisson structures.

In the following, we always consider a vector space V and study Poisson structures on the
coordinates which are elements of the dual space V ∗. In order to cover most of the physically
interesting examples by our reflections, we want to allow vector spaces of very general type and
therefore assume that V is a locally convex vector space. Every finite-dimensional vector space
is normable and hence locally convex, so it fits in this framework. In this case, it is clear what
V ∗ should be and there is just one interesting topology on it. For infinite-dimensional spaces,
the situation is more delicate: we have to think about what coordinates should be and how a
Poisson structure on them could look like. A priori, it is not clear which dual we should consider:
the algebraic dual V ∗ of all linear forms on V , or the topological dual V ′ which contains just the
continuous linear forms? Here, one could argue that only V ′ is of real interest, since otherwise
we would encounter the very strange effect of having discontinuous polynomials, and the aim of
constructing a continuous star product on them seems somehow pointless. But even if we stick
to V ′, the question of the topology still remains: do we want to consider the weak or the strong
topology there and why one of them should be more interesting. In any case, we have to choose
a topology on this space. Once this is done, we have to think about a good notion of Poisson
structures in this context. However, we encounter quite a number of question, which have no
trivial answer. For this reason, it is worth looking at some equivalent formulations of Pol•(V ∗)

in the finite-dimensional case, since they may allow better generalizations.
Let V be a finite-dimensional vector space. Now, there is no question about the dual or its

topology, since V ∗ = V ′ is finite-dimensional, too, and we deal with polynomials on it. It is easy
to see that a linear Poisson structure on V ∗ is something very familiar: it is equivalent to a Lie
algebra structure on V .

Proposition 3.1.1 Let V be a vector-space of dimension n ∈ N and π ∈ Γ∞(Λ2(TV ∗)). Then

the two following things are equivalent:

23
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i.) π is a linear Poisson tensor.

ii.) V has a uniquely determined Lie algebra structure.

Proof: We choose a basis {e1, . . . , en}subsetV and denote its dual basis {e1, . . . , en} ⊂ V ∗.
Then we call the linear coordinates in these bases x1, . . . , xn ∈ C∞(V ∗) and ξ1, . . . , ξn ∈ C∞(V ),
such that for all ξ ∈ V, x ∈ V ∗

ξ = ξi(ξ)ei and x = xi(x)e
i.

In these coordinates, the Poisson tensor reads

π =
1

2
πij(x)

∂

∂xi
∧ ∂

∂xj
,

where π is linear in the coordinates. Since πij(x) is linear in the coordinates, we can write it as

πij(x) = ckijxk.

This gives for f, g ∈ C∞(V ∗)

{f, g}(x) = π(df, dg)(x) = xkc
k
ij

∂f

∂xi

∂g

∂xj
, (3.1.1)

using the identification T ∗V ∗ ∼= V ∗∗ ∼= V . But now, the statement is obvious, since antisymmetry
of π means antisymmetry of the ckij in the indices i and j and the Jacobi identity for the Poisson
tensor gives

cℓijc
m
ℓk + cℓjkc

m
ℓi + cℓkic

m
ℓj = 0 (3.1.2)

for all i, j, k,m, since it must be fulfilled for all smooth functions. Vicely versa, (3.1.2) ensures
the Jacobi identity of π in (3.1.1). Hence the map

[·, ·] : V × V −→ V (ei, ej) 7−→ ckijek (3.1.3)

defines a Lie bracket, since the ckij are antisymmetric and fulfil the Jacobi identity and are
therefore structures constants. Conversely, the structure constants of a Lie algebra on V define
a Poisson tensor on V ∗ via (3.1.1). �

A more detailed explanation of Poisson manifolds in general, their correspondence to Lie alge-
broids this special correspondence of linear Poisson structures and a vector space and Lie algebras
can be found in the textbook of Waldmann [95] or in his lecture notes [98]. The fact that V is
a Lie algebra in the situation we want to consider motivates a change of notation: from now on,
we will call the original vector space g, which is more intuitive for a Lie algebra. Since this kind
of Poisson systems has a particular structure, there is a proper name for them.

Definition 3.1.2 (Kirillov-Kostant-Souriau bracket) Let g be a finite-dimensional Lie al-

gebra. We call the Poisson bracket, which is given on g∗ by Equation (3.1.1), the Kirillov-Kostant-

Souriau bracket and denote it by {·, ·}KKS.

Proposition 3.1.1 gives us a hint how we could think of infinite-dimensional vector spaces with
linear Poisson tensor: We take g to be an infinite-dimensional Lie algebra, which gives something
like a linear Poisson structure on g′. If we chose directly g′ to have a linear Poisson tensor, we
would get a Lie algebra structure on g′′. Of course, we could think of using this structure on
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g, since it canonically injects into g′′. The problem is that in general, this will not be closed:
taking the Lie bracket of ξ, η ∈ g, we might drop out of g and have [ξ, η] ⊆ g′′\g. Usually, such a
behaviour will not be of interest, since the algebras of physical systems are closed objects and the
double-dual is not what we are aiming for. This is why we will translate the term “linear Poisson
structure on g∗” by “g is a Lie algebra” in infinite dimensions. Remark however that, from a
mathematical point of view, this way of thinking about infinite-dimensional Poisson structures
is a choice, not a logical necessity and other choices would have been possible.

The next task are the polynomials on g′. As already mentioned, it is not easy to find a good
generalization for them, since for a locally convex Lie algebra g, even g′ will be a huge vector
space. Again, it is helpful to go back to the finite-dimensional case, where we have the following
result:

Proposition 3.1.3 Let g be a vector space of dimension n ∈ N. Then the algebras S•(g) and

Pol•(g∗) are canonically isomorphic.

Proof: Since this is a very well-known result, we just want to sketch the proof briefly: take
a basis {e1, . . . , en} of g and its linear coordinates x1, . . . , xn ∈ C∞(g∗) with xi(x) = ei(x) for
x ∈ g∗. On homogeneous symmetric tensors this yields the map

J : S•(g) −→ Pol•(g∗), e
µ1
1 · · · eµnn 7−→ ξ

µ1
1 · · · ξµnn .

We see immediately that this is an isomorphism, but note that we have used the identification
g∗∗ ∼= g via

ei(x) = 〈x, ei〉. �

In infinite dimensions, the last identification we used in the last step will not work in both
directions any more, but just in one: we have a canonical injection S•(g) ⊆ Pol•(g′), so every
symmetric tensor still gives a polynomial. Anyway, this gives an idea how to avoid speaking
about Pol•(g∗) and its topology: we restrict from the beginning to S•(g). For finite-dimensional
systems, both points of view are equivalent, but in infinite dimensions, this becomes a choice.
However, we have good reasons to think that this is enough: we get a closed and reasonably big
subalgebra of the polynomials. Moreover, the symmetric tensor algebra is defined on infinite-
dimensional spaces exactly in the same way as on finite-dimensional ones, and the construction
is identical.

So finally, we found a suitable way of speaking about our object of interest: we replace linear
Poisson structures on Pol•(g∗) by S•(g).

3.2 The Gutt Star Product

The aim of this chapter is to endow the symmetric algebra, and as a consequence the polynomial
algebra, with a new, noncommutative product. This is possible in a very natural way, due to the
Poincaré-Birkhoff-Witt theorem. It links the symmetric tensor algebra S•(g) of a Lie algebra g

to its universal enveloping algebra U (g).

3.2.1 The Universal Enveloping Algebra

If A is an associative algebra, one can construct a Lie algebra out of it by using the commutator

[a, b] = a · b− b · a, a, b ∈ A .
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This construction is functorial, since it does not only map associative algebras to Lie algebras, but
also morphisms of the former to those of the latter. While constructing a Lie algebra out of an
associative algebra is easy, the reversed process is more complicated, but also possible. Every Lie
algebra g can be embedded into a particular associative algebra, known as the universal envelop-
ing algebra U (g), which is uniquely determined (up to isomorphism) by the universal property:
for every unital associative algebra A and every Lie algebra homomorphism φ : g −→ A using
the commutator on A , one gets a unital homomorphism of associative algebras Φ: U (g) −→ A

such that the following diagram commutes:

U (g)

A

g

Φ

φ

ι

where ι denotes the embedding of g into U (g). The proof of existence and uniqueness of the
universal enveloping algebra can be found in standard textbooks on Lie theory like [54] or [92],
and we will not explain it here in detail. Just recall that existence is proven by an explicit
construction: one takes the tensor algebra T•(g) and considers the two-sided ideal

I = 〈ξ ⊗ η − η ⊗ ξ − [ξ, η]〉, for ξ, η ∈ g

inside of it. Then one gets the universal enveloping algebra by the quotient

U (g) =
T•(g)

I
. (3.2.1)

To avoid confusion, we will always denote the multiplication in U (g) by ⊙, whereas the commu-
tative product in S•(g) will be denoted without a sign. It follows from this construction, that
U (g) is a filtered algebra

U (g) =
⋃

k∈N

U
k(g), U

k(g) =
{
x =

∑

i

ξi1 ⊙ · · · ⊙ ξin

∣∣∣ ξij ∈ g, 1 ≤ j ≤ n, i ∈ I
}
.

Generally, we just get a filtration, not a graded structure, since the ideal I is not homogeneous in
the symmetric degree. We will get a graded structure on U (g), if and only if g was commutative.
Then U (g) is isomorphic to the symmetric tensor algebra and thus also commutative. But
U (g) is much more than an associative algebra: it is also a Hopf algebra, since one can define a
coassociative, cocommutative coproduct on it by

∆: U (g) −→ U (g)⊗ U (g), ξ 7−→ ξ ⊗ 1+ 1⊗ ξ, for ξ ∈ g

which extends to U (g) via algebra homomorphism, as well as an antipode

S : U (g) −→ U (g), ξ 7−→ −ξ, for ξ ∈ g

which extends to U (g) via algebra antihomomorphism. We will come back to those two maps
and to the Hopf structure in Chapter 7, when we talk about their continuity. More details on
the algebraic aspect of deformation theory using Hopf algebras can be found in [29] and [61], for
example.
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3.2.2 The Poincaré-Birkhoff-Witt Theorem

The algebra U (g) always admits a basis, which must be infinite. This result is due to the already
mentioned theorem of Poincaré, Birkhoff and Witt:

Theorem 3.2.1 (Poincaré-Birkhoff-Witt theorem) Let g be a Lie algebra with a basis Bg =

{βi}i∈I . Then the set

BU (g) =
{
β
µi1
i1

⊙ · · · ⊙ β
µin
in

∣∣ n ∈ N, ik ∈ I with i1 4 · · · 4 in and βik ∈ Bg, µi1 , . . . , µin ∈ N
}

defines a basis of U (g).

There are different proofs for this statement. While a geometrical proof (like e.g. in [98]) is very
convenient in the finite-dimensional case, a combinatorial argument must be used for infinite-
dimensional Lie algebras. Most textbooks restrict to finite-dimensional Lie algebras and give a
version of the latter one, except [23], which does it in full generality. The idea of most of the
combinatoric proof works with minor changes also for any Lie algebra, since it relies on ordered
index sets which can be defined in any dimension. The PBW theorem allows us to set up an
isomorphism between S•(g) and U (g) immediately, since a basis of the former can be given by
almost the same expression

BS•(g) =
{
β
µi1
i1

· · · βµinin

∣∣ n ∈ N, ik ∈ I, 1 ≤ k ≤ n, i1 4 · · · 4 in and βik ∈ Bg, µi1 , . . . , µin ∈ N
}

where we just have replaced the noncommutative product in U (g) by the symmetric tensor
product in S•(g). This allows us to write down an isomorphism between the symmetric tensor
algebra and the universal enveloping algebra, just by mapping the basis vectors to each other in
a naive way. Of course, this can never be an isomorphism in the sense of algebras, but only of
(filtered) vector spaces, because one of the algebras is commutative and the other isn’t. Moreover,
the symmetric algebra has a graded structure, which comes from the one on the tensor algebra,
that the universal enveloping algebra does not have:

S•(g) =

∞⊕

n=0

Sn(g), Sn(g) = g ∨ . . . ∨ g︸ ︷︷ ︸
n times

.

We will denote by πn : S•(g) −→ Sn(g) the canonical projections of this grading. This induces a
filtration by S(k)(g) =

∑k
j=0 S

j(g). Our simple isomorphism will respect the filtration, but not
the grading. However, it is not the only isomorphism which one can write down. In [10], Berezin
proposed another isomorphism which is more helpful to use:

qn : S
n(g) −→ U

n(g), βi1 · · · βin 7−→ 1

n!

∑

σ∈Sn

βiσ(1)
⊙ · · · ⊙ βiσ(n)

, q =

∞∑

n=0

qn. (3.2.2)

We will refer to it as the quantization map, for reasons that will soon become clear. It also
respects the filtration and transfers the symmetric product to another symmetric expression. In
this sense, we can now switch between both algebras and use the setting, which is more convenient
in the current situation: the graded structure of S•(g), or the Hopf algebra structure of U (g).

3.2.3 The Gutt Star Product

Since we know, that the universal enveloping and the symmetric tensor algebra are isomorphic
as vector spaces, we have a good tool at hand to endow the symmetric tensor algebra, and hence
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the polynomials, with a noncommutative product by pulling back the product from U (g) to
S•(g) via q. This is exactly what Gutt did in [48]. She constructed a star product on Pol•(g∗)

from U (g) while encoding the noncommutativity in a formal parameter z ∈ C in a convenient
way.

Definition 3.2.2 (Gutt star product) Let g be a Lie algebra, z ∈ C, and f, g ∈ S•(g) of

degree k and ℓ respectively. Then we define the Gutt star product by:

⋆z : S
•(g)× S•(g) −→ S•(g), (f, g) 7−→

k+ℓ−1∑

n=0

znπk+ℓ−n
(
q−1(q(f)⊙ q(g))

)
. (3.2.3)

This is the original way in which Gutt defined the star product in [48], but there are two more
ways to do it. Define

Iz = 〈ξ ⊗ η − η ⊗ ξ − z[ξ, η]〉

for z ∈ C. Then we set

U (gz) =
T•(g)

Iz
, (3.2.4)

and get the map

qz,n : S
n(g) −→ U (gz), βi1 · · · βin 7−→ 1

n!

∑

σ∈Sn

βiσ(1)
⊙ · · · ⊙ βiσ(n)

, qz =

∞∑

n=0

qz,n. (3.2.5)

This way, we also get a star product:

⋆̂z : S
•(g)× S•(g) −→ S•(g), (f, g) 7−→ q−1

z (qz(f)⊙ qz(g)). (3.2.6)

In [37], Drinfel’d also constructed a star product using the Baker-Campbell-Hausdorff series:
take ξ, η ∈ g and set

exp(ξ) ∗z exp(η) = exp

(
1

z
BCH(zξ, zη)

)
, (3.2.7)

where the exponential series is understood a formal power series in ξ and η. By formally differ-
entiating, one gets the star product on all polynomials.

Of course, our aim is to show that these three maps are in fact identical and that they define
a star product. Since this is a long way to go, we postpone the proof to the end of this chapter.
It will be useful to learn something about the Baker-Campbell-Hausdorff series and the Bernoulli
number first.

3.3 The Baker-Campbell-Hausdorff Series

Since we have a formula for ⋆z which involves the Baker-Campbell-Hausdorff series, we want to
give a short overview about it and introduce some results that will be helpful later on. Note
however, that there is not the BCH formula, since one can always rearrange terms using anti-
symmetry or Jacobi identity, but for ξ, η ∈ g, we can always write it as

BCH(ξ, η) =
∞∑

n=1

BCHn(ξ, η) =
∞∑

a,b=0

BCHa,b(ξ, η), (3.3.1)
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where BCHn(ξ, η) denotes all expressions having n letters and BCHa,b(ξ, η) denotes all ex-
pressions with a times the letter ξ and b times the letter η. We have BCH0,0(ξ, η) = 0,
BCH1,0(ξ, η) = ξ and BCH0,1(ξ, η) = η. Clearly this gives

BCHn(ξ, η) =
∑

a+b=n

BCHa,b(ξ, η).

Of course, this only moves the problem of non-uniqueness to a later point when we will have to
discuss the partial expressions. Yet, in the beginning, this will be helpful.

3.3.1 Some General and Historical Remarks

Assume g to be the Lie algebra of a finite-dimensional Lie group G. From the geometric point
of view, the BCH formula is the infinitesimal counterpart of the multiplication law in G. Since
the multiplication is smooth and the exponential function locally diffeomorphic around the unit
element e, we would expect that there is a Lie algebraic analogon to the group multiplication,
at least near the origin, which depends somehow “smoothly on the arguments”. Finding this
expression is, however, a different task.

One approach to this would be the following: consider an algebra A with the noncommuting
elements ξ, η. We want to study the identity of formal power series

exp(χ) = exp(ξ) exp(η).

There should be a χ ∈ A , which fulfils this relation. We can rewrite the right hand side as

exp(ξ) exp(η) =

∞∑

n,m=0

ξnηm

n!m!

and use the formal power series for the logarithm

log(χ) =

∞∑

k=1

(−1)k−1

k
(χ− 1)k

in order to get an expression for χ. This yields

χ = log(exp(ξ) exp(η)) =
∞∑

k=1

(−1)k−1

k

∑

i∈{1,...,k}
ni,mi≥0
ni+mi≥1

ξn1ηm1 · · · ξnkηmk

n1!m1! · · · nk!mk!
. (3.3.2)

It is far from trivial, if and how this can be expressed using Lie brackets. The first one who found
a general way for this was Dynkin in the 1950’s [38, 39]. Of course, the question of convergence
still remains, although we would expect the expression to converge at least in a neighbourhood
of 0.

A different approach works via differential equations. We can consider flows on the Lie group.
This gives also an expression of the group multiplication in logarithmic coordinates just using Lie
brackets. One gets recursive relations for the BCHn(ξ, η) and the first formulas due to Baker [4],
Campbell [24, 25] and Hausdorff [53] were of this kind. For the first terms, one finds

BCH(ξ, η) = log(exp(ξ) exp(η))

= ξ + η +
1

2
[ξ, η] +

1

12
([[η, ξ], ξ] + [[ξ, η], η]) +

1

24
[[[η, ξ], ξ], η]
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+
1

120
([[[[η, ξ], η], ξ], η] + [[[[ξ, η], ξ], η], ξ]) +

1

360
([[[[η, ξ], ξ], ξ], η] + [[[[ξ, η], η], η], ξ])

− 1

720
([[[[η, ξ], ξ], ξ], ξ] + [[[[ξ, η], η], η], η]) + · · · (3.3.3)

which coincides of course with the result from Dynkin.

3.3.2 Forms of the BCH Series

As already mentioned, there are different forms of stating the BCH formula and depending on
the problem one wants to solve, not every one is equally well suited. One can classify them
roughly into four groups.

i.) There are recursive formulas, which calculate each term from the previous one. The first
expressions due to Baker, Campbell and Hausdorff were of this kind. Though the idea is
old, this approach is still much in use and allows powerful applications: Casas and Murua
found an efficient algorithm [27] for calculating a form of BCH series without redundancies
based on a recursive formula, which was given by Varadarajan in his textbook [92]. For
such a non-redundant formula one needs a notion of basis of the free Lie algebra. There
are approaches to such (Hall or Hall-Viennot) basis, which can e.g. be found in [84].

ii.) Most textbooks prove an integral form of the series, like [51] and [54]. Since we will use it,
too, we want to introduce it briefly. Take the function

g : C −→ C, z 7−→ z log(z)

z − 1
(3.3.4)

and denote for ξ ∈ g by

adξ : g −→ g, η 7−→ [ξ, η]

the usual adjoint operator. Then one has for ξ, η ∈ g

BCH(ξ, η) = ξ +

1∫

0

g(exp(adξ) exp(t adη))(η)dt. (3.3.5)

iii.) As already mentioned, Dynkin found a closed form for (3.3.2), which is the only one of this
kind known so far. A proof can be found in [56], for example. It reads

BCH(ξ, η) =

∞∑

k=1

(−1)k−1

k

∑

i∈{1,...,k}
ni,mi≥0
ni+mi≥1

1
∑k

i=1(ni +mi)

[ξn1ηm1 · · · ξnkηmk ]

n1!m1! · · · nk!mk!
, (3.3.6)

where the expression [. . .] denotes Lie brackets nested to the left: for instance, we have

[ξηηξ] = [[[ξ, η], η], ξ].

Unfortunately, the combinatorics get extremely complicated for higher degrees and increas-
ingly many terms belong to the same Lie bracket expression.
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iv.) Goldberg gave a form of the series which is based on words in two letters:

BCH(ξ, η) =
∞∑

n=1

∑

|w|=n

gww. (3.3.7)

The gw are coefficients, which can be calculated using the recursively defined Goldberg
polynomials (see [45]). It was put into commutator form by Thompson in [89]:

BCH(ξ, η) =

∞∑

n=1

∑

|w|=n

gw

n
[w]. (3.3.8)

Again, the [w] are Lie brackets nested to the left. Of course, this formula will also have
redundancies, but its combinatorial aspect is much easier than the one of Equation (3.3.6).
Since there are estimates for the coefficients gw, we will use this form for our Main Theorem.

3.3.3 The Goldberg-Thompson Formula and some Results

Goldberg’s Theorems

We now introduce the results of Goldberg: he denoted a word in the letters ξ and η as

wξ(s1, s2, . . . , sm) = ξs1ηs2 · · · (ξ ∨ η)sm ,

with m ∈ N and the last letter will be ξ if m is odd and η if m is even. The index ξ of wξ means
that the word starts with a ξ. Now we can assign to each word wξ∨η(s1, . . . , sm) a coefficient
cξ∨η(s1, . . . , sm). This is done by the following formula:

cξ(s1, . . . , sm) =

1∫

0

tm
′

(t− 1)m
′′

Gs1(t) · · ·Gsm(t)dt, (3.3.9)

where we have m′ = ⌊m2 ⌋, m′′ = ⌊m−1
2 ⌋ with ⌊·⌋ denoting the entire part of a real number and

we have n =
∑m

i=1 si. The Gs are the recursively defined Goldberg polynomials

Gs(t) =
1

s

d

dt
t(t− 1)Gs−1(t), (3.3.10)

for s > 1 and G1(t) = 1. For cη we have

cη(s1, . . . , sm) = (−1)n−1cξ(s1, . . . , sm) (3.3.11)

and furthermore
cη(s1, . . . , sm) = cξ(s1, . . . , sm)

if m is odd. This yields immediately

cξ(s1, . . . , sm) = cη(s1, . . . , sm) = 0

if m is odd and n is even. Of course, Goldberg found interesting identities which are fulfilled by
the coefficients. A very remarkable one is that for all permutations σ ∈ Sm one has

cξ(s1, . . . , sm) = cξ
(
sσ(1), . . . , sσ(m)

)
,
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since (3.3.9) obviously does not see the ordering of the si and m′, m′′ and n are not affected by
reordering. For words with m = 2, an easier formula can be found:

cξ(s1, s2) =
(−1)s1

s1!s2!

s2∑

n=1

(
s2

n

)
Bs1+s2−n,

where the Bs denote the Bernoulli numbers, which will be explained more precisely in the next
paragraph. First, we note that the only case which matters to us is of course s1 = 1, since for
s1, s2 > 1 we will find something like [[ξ, ξ], . . .] = 0. For simplicity, let’s set s2 = 1 and to
permute s1 ↔ s2:

cξ(1, s) =
(−1)s

s!
Bs. (3.3.12)

Bernoulli numbers

We have seen the Bernoulli numbers Bn showing up and we will encounter them very often in
the following. Hence it is useful to learn a few important things about them. They are defined
by the series expansion of

g : C −→ C, z 7−→ z

ez − 1
=

∞∑

n=0

Bn

n!
zn. (3.3.13)

Clearly, g has poles at z = 2kπi, k ∈ Z\{0}. Moreover, one can easily show that all odd Bernoulli
numbers are zero, except for B1 = −1

2 and since in some applications one wants B1 to be positive,
there is a different convention for naming them: one often encounters B∗

n = (−1)nBn (which
only differs for n = 1). The nonzero Bernoulli numbers alternate in sign. For their absolute
value, one can show the asymptotic behaviour (see [85, 86])

|B2n| ∼ (−1)n−1 2(2n)!

(2π)2n
.

This is not surprising, since we know that the generating function g had poles at ±2πi. The
Bernoulli numbers can also be calculated by the recursion formula

Bn = − 1

n+ 1

n−1∑

k=0

(
n+ 1

k

)
Bk, (3.3.14)

which is well-known in the literature (e.g. [2]). Since we will deal with them, we want to give the
first numbers of this series here.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bn 1 −1
2

1
6 0 − 1

30 0 1
42 0 − 1

30 0 5
66 0 691

2730 0 7
6 0 3617

510

BCH up to first order

Proposition 3.3.1 Let g be a Lie algebra and the Bernoulli numbers as defined before. Then

we have for ξ, η ∈ g

BCH(ξ, η) =
∞∑

n=0

B∗
n

n!
(adξ)

n(η) +O
(
η2
)

(3.3.15)

=

∞∑

n=0

Bn

n!
(adη)

n(ξ) +O
(
ξ2
)

(3.3.16)
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Proof: We want to can calculate this using the Goldberg coefficients. Remind that we put
words to Lie brackets, and for computing the coefficients we need the words ηξn and ξηξn−1

because of antisymmetry and words of the form ξkηξn−k with k > 1 give vanishing expressions.
Now let n ∈ N. We have

cη(1, n) = (−1)ncξ(1, n) = (−1)n
(−1)n

n!
Bn =

Bn

n!
.

By n-fold skew-symmetry and (3.3.8), we get the contribution

(−1)n

(n+ 1)!
Bn(adξ)

n(η) =
1

(n+ 1)!
B∗
n(adξ)

n(η)

Now we need cξ(1, 1, n − 1): let n > 1, then

cξ(1, 1, n − 1) =

1∫

0

t(t− 1)Gn−1(t)dt

= −
1∫

0

t
d

dt
(t(t− 1)Gn−1(t))dt

= −
1∫

0

ntGn(t)dt

= −ncξ(1, n)

= −n(−1)n

n!
Bn

= (−1)n+1 1

(n− 1)!
Bn,

where we have done an integration by parts in the third step. So by using n − 1 times the
skew-symmetry of the Lie bracket, we get

1

n+ 1
· (−1)n+1 1

(n− 1)!
Bn[. . . [ξ, η], ξ] . . .], ξ] =

n

(n+ 1)!
Bn(adξ)

n(η).

For n > 1 we add up those two and use the fact that Bn = B∗
n and find the result we want. For

n = 1, there is just the first contribution and cξ(1, 1) = −B1, which gives

B∗
1 adξ(η)

in total. For n = 0 , we get cξ(1) = cη(1) = 1 and finally get (3.3.15). For (3.3.16), note
that we need cξ(1, n) and cη(1, 1, n − 1). We have cξ(1, n) = (−1)ncη(1, n) and cη(1, 1, n − 1) =

(−1)ncξ(1, 1, n − 1. This gives (−1)n and switches Bn to B∗
n. �

Remark 3.3.2 (Alternative Proof) Note that we could also have used the integral formula
(3.3.5) to prove this. We want to sketch an alternative proof here: if we write the second of the
two exponential functions as a series, we see that it can be cut after the constant term, since
we are looking for contributions which are linear in η. The function left to integrate is then just
(g ◦ log)(z). Since we insert exp(adξ), we get

BCH(ξ, η) = ξ +

∫ 1

0
g(adξ)(η)dt+O

(
η2
)
= ξ +

∞∑

n=1

B∗
n

n!
(adξ)

n(η) +O
(
η2
)
,
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since there is no dependence on t left and we get the same result.

Thompson’s estimates on the coefficients

We know that we can put the BCH series into the form of Equation (3.3.8):

BCH(ξ, η) =

∞∑

n=1

∑

|w|=n

gw

n
[w]. (3.3.17)

Later, we will need estimates on the coefficients gw in order to show the continuity of the Gutt
star product. The first simple estimate (together with a table of the first Goldberg coefficients
and good explanation of Goldberg polynomials) was given by Newman and Thompson in [71].
The idea behind it was an analysis of the structure of the polynomials an its roots. This allows
to put tight bounds on the values of |gw|. We will need a bit more than that, but luckily,
Thompson [90] gave an estimate in exactly the form we will need.

Proposition 3.3.3 Let n ∈ N and gw denotes the Goldberg coefficient of a word in two letters.

Then we have the estimate ∑

|w|=n

|gw| ≤ 2 (3.3.18)

Proof: We want to sketch the proof here for convenience. One can see from the recursion
formula (3.3.10), that the Gs(t) are symmetric around z = 1

2 (maybe up to a factor t− 1
2): doing

a shift t 7→ t12 , they are of the form

Gs(t) =
1

s!

d

dt
(t2 − 1

4
) · · · d

dt
(t2 − 1

4
).

Their roots lie all in the interval (0, 1) and the polynomials are normed (which can also be seen
from the recursion formula). This means that they can be written (in the shifted form) as

Gs(t) = ts0(t+ ts1)(t− ts1) · · · (t+ tsr)(t− tsr)

with r = ⌊s−1
2 ⌋, tsi ∈ (0, 12) and s0 = 0 if s is odd and s0 = 1 if s is even. The symmetric,

quadratic terms are bounded in their absolute value by 1
4 and the linear term by 1

2 , since t ∈
(−1

2 ,
1
2 ). Hence we have the estimate |Gs(t)| ≤ 2−s+1 for the integral domain. Now note that

integration by parts yields
1∫

0

ta(t− 1)bdt =
a!b!

(a+ b+ 1)!
.

We can put this together to get an estimate for gw = cξ,η(s1, . . . , sm). Note again by n =

s1 + · · · + sm. A slight rearranging of the factor from integration by parts using the fact that
one of the numbers m′ = m

2 and m′′ = m−1
2 is not an integer and will therefore be rounded

downwards gives

|gw| ≤ 2−n+m
m′!m′′!

(m′ +m′′ + 1)!

= 2−n+m
1

m

(
m− 1

m′

)−1

.
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Now we just need to sum up all the expressions corresponding to words of the length n. Note,
that the words can start with ξ or η and we therefore get a factor 2 in front. The number
of possible arrangements (s1, . . . , sm) is due to a combinatorial argument (n −m balls into m
buckets, since every bucket must contains at least one ball) given by

(
n−1
m−1

)
and we have to sum

over all possible m. We get

∑

|w|=n

|gw| ≤
n∑

m=1

2

(
n− 1

m− 1

)
2−n+m

1

m

(
m− 1

m′

)−1

= 2−n+1
n∑

m=1

(
n− 1

m− 1

)
2m

1

m

(
m− 1

m′

)−1

︸ ︷︷ ︸
≤2 (∗)

≤ 2−n+2
n∑

m=1

(
n− 1

m− 1

)

= 2.

In (∗) we used the fact that
(
m−1
m′

)
is the biggest term (or one of the two) biggest terms in the

binomial expansion of (1 + 1)m−1 and hence we have m
(
m−1
m′

)
≥ 2m−1. �

3.4 The Equality of the Star Products

We want to prove the equality of the three star products. For a general and possibly infinite-
dimensional Lie algebra, this is quite tedious. As a first step, it will be helpful to show their
associativity.

Remark 3.4.1 In the finite-dimensional case, there are different proofs for Theorem 3.4.6, the
main theorem of this section, which mostly rely on geometric arguments, like the one in [20].
Unluckily, these techniques are not at hand in infinite dimensions and one has to find an algebraic
proof instead. Since in the community of deformation quantization, this statement is somehow
folklore and believed for any Lie algebra, it strongly seems like such a proof already exists.
However, the we were not able to trace it down in literature and therefore give an own proof.

Proposition 3.4.2 The three maps ⋆z, ⋆̂z and ∗z from (3.2.3), (3.2.6) and (3.2.7) respectively

define associative multiplications.

Proof: All maps are defined as S•(g) × S•(g) −→ S•(g), so we have to show bilinearity and
associativity.

i.) For ⋆̂z, associativity and bilinearity are clear from the construction, since we just pull-back
the multiplication in U (gz).

ii.) For ⋆z , bilinearity follows from the fact that all maps, that are used in its definition, are
(bi-)linear. For associativity, we have to interchange sums and shift projections. Recall
that πn(f ⋆z g) = 0, if n > deg(f) + deg(g). Take homogeneous tensors f, g, h ∈ S•(g) of
degree k, ℓ,m ∈ N respectively. Then we have
(
f ⋆z g

)
⋆z h

=
k+ℓ−1∑

j=0

k+ℓ+m−j−1∑

i=0

zi
(
πk+ℓ+m−j−i ◦ q−1

)(
q
(
zj
(
πk+ℓ−j ◦ q−1

)
(q(f)⊙ q(g))

)
⊙ q(h)

)



36 CHAPTER 3. ALGEBRAIC PRELIMINARIES

=

k+ℓ−1∑

j=0

k+ℓ+m−1∑

i=0

zi−j
(
πk+ℓ+m−i ◦ q−1

)(
q
(
zj
(
πk+ℓ−j ◦ q−1

)
(q(f)⊙ q(g))

)
⊙ q(h)

)

=

k+ℓ+m−1∑

i=0

zi
(
πk+ℓ+m−i ◦ q−1

)

q



k+ℓ−1∑

j=0

z−jzj
(
πk+ℓ−j ◦ q−1

)
(q(f)⊙ q(g))


⊙ q(h)




=

k+ℓ+m−1∑

i=0

zi
(
πk+ℓ+m−i ◦ q−1

)
(q(f)⊙ q(g) ⊙ q(h)),

and we just need to do the reversed process on the right hand side to get the wanted result.

iii.) For ∗z, we get associativity using the exponential function and the logarithm. We have

(exp(ξ) ∗z exp(η)) ∗z exp(χ) = exp

(
1

z
BCH

((
1

z
BCH(zξ, zη)

)
, zχ

))

= exp

(
1

z
BCH

(
zξ,

(
1

z
BCH(zη, zχ)

)))

= exp(ξ) ∗z (exp(η) ∗z exp(χ)),

since

BCH

((
1

z
BCH(zξ, zη)

)
, zχ

)
= log

(
exp

(
log

(
1

z
exp(zξ) exp(zη)

))
exp(zχ)

)

= log

(
1

z
exp(zξ) exp(zη) exp(zχ)

)

= log

(
exp(zξ) log

((
1

z
exp(zη) exp(zχ)

)))

= BCH

(
zξ,

(
1

z
BCH(zη, zχ)

))
.

Bilinearity follows from differentiating. �

Note that star products must fulfil the classical and the semi-classical limit. We will do this in
Corollary 4.2.1 and so just the equality is left to show. It is enough to prove the coincidence
for terms of the form ξk ⋆ η with ξ, η ∈ g and k ∈ N, because S•(g) is a commutative algebra
and hence we get the coincidence on arbitrary monomials by polarization. The equality for the
product of two monomials then follows by iteration, which is possible due to associativity. The
next lemma presents a first big step.

Lemma 3.4.3 Let ξ, η ∈ g, then we have

ξk⋆̂zη =

k∑

n=0

zn
(
k

n

)
B∗
nξ
k−n(adξ)

n(η). (3.4.1)

Proof: This proof is divided into the two following lemmata:

Lemma 3.4.4 Let ξ, η ∈ g and k ∈ N. Then we have

qz

(
k∑

n=0

zn
(
k

n

)
B∗
nξ
k−n(adξ)

n(η)

)
=

k∑

s=0

K(k, s)ξk−s ⊙ η ⊙ ξs
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with

K(k, s) =
1

k + 1

k∑

n=0

(
k + 1

n

)
B∗
n

n∑

j=0

(−1)j
(
n

j

) k−n∑

ℓ=0

δs,ℓ+j.

Proof: Since the map qz is linear, we can pull out the constants and get

qz

(
k∑

n=0

zn
(
k

n

)
B∗
nξ
k−n(adξ)

n(η)

)
=

k∑

n=0

(
k

n

)
B∗
nqz

(
znξk−n(adξ)

n(η)
)
.

Now we need the two equalities

qz(ξ
nη) =

1

n+ 1

n∑

ℓ=0

ξk−ℓ ⊙ η ⊙ ξℓ

and

qz((z
n adξ)

n(η)) =

n∑

j=0

(−1)j
(
n

j

)
ξn−j ⊙ η ⊙ ξj

which can easily be shown by induction. They give

k∑

n=0

(
k

n

)
B∗
nqz

(
znξk−n(adξ)

n(η)
)

=
k∑

n=0

(
k

n

)
B∗
n

k − n+ 1

k−n∑

ℓ=0

ξk−n−ℓ ⊙




n∑

j=0

(−1)j
(
n

j

)
ξn−j ⊙ η ⊙ ξj


⊙ ξℓ

=

k∑

n=0

(
k

n

)
B∗
n

k − n+ 1

k−n∑

ℓ=0

n∑

j=0

(−1)j
(
n

j

)
ξk−ℓ−j ⊙ η ⊙ ξℓ+j

=
1

k + 1

k∑

n=0

(
k + 1

n

)
B∗
n

n∑

j=0

(−1)j
(
n

j

) k−n∑

ℓ=0

ξk−ℓ−j ⊙ η ⊙ ξℓ+j

We just need to collect those terms for which we have ℓ+ j = s for all s = 0, . . . , k. If we do this
with a Kronecker-delta, we will get exactly the K(k, s). ▽

For the second lemma, we need some statements on Bernoulli numbers and binomial coefficients.
Let k,m, n ∈ N. Then we have the following identities:

k∑

j=0

(
k + 1

n

)
B∗
j = k + 1 (3.4.2)

(−1)k
k∑

j=0

(
k

j

)
Bm+j = (−1)m

m∑

i=0

(
m

i

)
Bk+i (3.4.3)

m∑

j=0

(−1)j
(
n

j

)
= (−1)m

(
n− 1

m

)
(3.4.4)

(
n

m

)(
m

k

)
=

(
n

k

)(
n− k

m− k

)
. (3.4.5)
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The first one can easily be proven using the recursive definition of the Bernoulli numbers (3.3.14).
Equation (3.4.4) and (3.4.5) are standard identities in combinatorics and can be found in the
textbook of Aigner [1]. Finally, Equation (3.4.3) is a theorem due to Carlitz [26]. With them,
we can show the next lemma which will finish this proof.

Lemma 3.4.5 Let K(k, s) be defined as in Lemma 3.4.4, then we have for all k ∈ N

K(k, s) =

{
1 s = 0

0 else.

Proof: This is divided into three parts. First, we show the statement for s = 0, then we show
it for s = 1 and then proceed by induction.

(i) s = 0: The Kronecker-delta will always be zero unless l = j = 0. So we get

K(k, 0) =
1

k + 1

k∑

n=0

(
k + 1

n

)
B∗
n =

k + 1

k + 1
= 1,

where we have used (3.4.2).

(ii) s = 1: To get a contribution from the δ, we must have (j, ℓ) = (1, 0) or (0, 1). Except for
n = 0 and n = k, both cases are possible. We split them off:

K(k, 1) =
1

k + 1︸ ︷︷ ︸
n=0

− kB∗
k︸︷︷︸

n=k

+
1

k + 1

k−1∑

n=1

(
k + 1

n

)
B∗
n

(
1 + (−1)

(
n

1

))

=
1

k + 1
+

1

k + 1

k−1∑

n=1

(
k + 1

n

)
B∗
n −

1

k + 1

k−1∑

n=1

(
k + 1

n

)
nB∗

n − kB∗
k

=
1

k + 1

k−1∑

n=0

(
k + 1

n

)
B∗
n

︸ ︷︷ ︸
=1−B∗

k

− 1

k + 1

k∑

n=0

(
k + 1

n

)
nB∗

n

= 1−B∗
k −

k + 1

k + 1

k∑

n=0

(
k + 1

n

)
B∗
n

︸ ︷︷ ︸
=k+1

+

k∑

n=0

k + 1− n

k + 1

(
k + 1

n

)

︸ ︷︷ ︸
(kn)

B∗
n

= 1−B∗
k − k − 1 +

k−1∑

n=0

(
k

n

)
B∗
n +B∗

k

= −k +
k−1∑

n

(
k

n

)
B∗
n

= 0.

(iii) s 7→ s+1: Due to the induction, it is sufficient to prove K(k, s+1)−K(k, s) = 0. In order
to do that, we must get rid of the δ’s and therefore rewrite K(k, s):

K(k, s) =
1

k + 1

k∑

n=0

(
k + 1

n

)
B∗
n

n∑

j=0

(−1)j
(
n

j

) k−n∑

ℓ=0

δs,ℓ+j
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=
1

k + 1

s∑

n=0

(
k + 1

n

)
B∗
n

n∑

j=0

(−1)j
(
n

j

) k−n∑

ℓ=0

δs,ℓ+j

+
1

k + 1

k∑

n=s+1

(
k + 1

n

)
B∗
n

s∑

j=0

(−1)j
(
n

j

) k−n∑

ℓ=0

δs,ℓ+j

=
1

k + 1

s∑

n=0

(
k + 1

n

)
B∗
n

n∑

j=max{0,s+n−k}

(−1)j
(
n

j

)

+
1

k + 1

k∑

n=s+1

(
k + 1

n

)
B∗
n

s∑

j=max{0,s+n−k}

(−1)j
(
n

j

)
.

As long as max{0, s+n− k} = 0, the first sum over j will be zero as it is just the binomial
expansion of (1− 1)n, except for n = 0. Hence we get a special case and a shorter first sum
over n. In the sums over j we use again the binomial expansion of (1− 1)n and get

K(k, s) =
1

k + 1


1 +

s∑

k+1−s

(
k + 1

n

)
B∗
n


−

s+n−k−1∑

j=0

(−1)j
(
n

j

)


+

k∑

n=s+1

(
k + 1

n

)
B∗
n


−

s+n−k−1∑

j=0

(−1)j
(
n

j

)
−

n∑

j=s+1

(−1)j
(
n

j

)


.

Now it is helpful to use (3.4.4) and
(
k

n−k

)
=
(
k
n

)
. We also get (−1)n-terms which we can

put together with the B∗
n to get Bn:

K(k, s) =
1

k + 1

[
1 +

s∑

n=k+1−s

(
k + 1

n

)
Bn(−1)k−s

(
n− 1

k − s

)

+

k∑

n=s+1

(
k + 1

n

)
Bn

(
(−1)k−s

(
n− 1

k − s

)
+ (−1)n+s

(
n− 1

s

))]
.

We finally made the δ disappear. Hence we must compute K(k, s + 1)− K(k, s). Since we
want to show that it is 0, we can multiply it with k + 1 in order to get rid of the factor in
front:

(k + 1)(K(k, s + 1)−K(k, s))

=

s+1∑

n=k−s

(
k + 1

n

)
Bn(−1)k−s−1

(
n− 1

k − s− 1

)
−

s∑

n=k+1−s

(
k + 1

n

)
Bn(−1)k−s

(
n− 1

k − s

)

+
k∑

n=s+2

(
k + 1

n

)
Bn

(
(−1)k−s−1

(
n− 1

k − s− 1

)
+ (−1)n+s+1

(
n− 1

s+ 1

))

−
k∑

n=s+1

(
k + 1

n

)
Bn

(
(−1)k−s

(
n− 1

k − s

)
+ (−1)n+s

(
n− 1

s

))

= −
k∑

n=k−s

(
k + 1

n

)
Bn(−1)k−s

(
n− 1

k − s− 1

)
−

k∑

n=k−s+1

(
k + 1

n

)
Bn(−1)k−s

(
n− 1

k − s

)

−
k∑

n=s+2

(
k + 1

n

)
Bn(−1)n+s

(
n− 1

s+ 1

)
−

k∑

n=s+1

(
k + 1

n

)
Bn(−1)n+s

(
n− 1

s

)
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= −
k∑

n=k−s

(
k + 1

n

)
Bn(−1)k−s

((
n− 1

k − s− 1

)
+

(
n− 1

k − s

))

−
k∑

n=s+1

(
k + 1

n

)
Bn(−1)n+s

((
n− 1

s+ 1

)
+

(
n− 1

s

))
.

We have rearranged the sums, added some zeros and shortened the expression. Now we
will use the recursion formula for the binomial coefficients

(
n− 1

k − 1

)
+

(
n− 1

k

)
=

(
n

k

)

and our binomial multiplication equality (3.4.5):

= −
k∑

n=k−s

(
k + 1

n

)
Bn(−1)k−s

(
n

k − s

)
−

k∑

n=s+1

(
k + 1

n

)
Bn(−1)n+s

(
n

s+ 1

)

= −
k∑

n=k−s

(
k + 1

s+ 1

)(
s+ 1

n+ s− k

)
Bn(−1)k−s −

k∑

n=s+1

(
k + 1

s+ 1

)(
k − s

n− s− 1

)
Bn(−1)n+s.

Since we want to show that this is 0, we can divide by
(
k+1
s+1

)
which will never be zero

because s ∈ {0, 1, . . . , k}. After doing so, can use n > 1 in the second sum and thus only
even n will show up, because for odd n the Bernoulli numbers are zero. For this reason we
have (−1)n = 1. Then we rewrite these sums by shifting the indices and we add two zeros:

−
k∑

n=k−s

(
s+ 1

n+ s− k

)
Bn(−1)k−s +

k∑

n=s+1

(
k − s

n− s− 1

)
Bn(−1)s+1

= (−1)s+1
k−s−1∑

ℓ=0

(
k − s

ℓ

)
Bℓ+s+1 − (−1)k−s

s∑

ℓ=0

(
s+ 1

ℓ

)
Bℓ+k−s

= (−1)s+1
k−s∑

ℓ=0

(
k − s

ℓ

)
Bℓ+s+1 − (−1)k−s

s+1∑

ℓ=0

(
s+ 1

ℓ

)
Bℓ+k−s

− (−1)s+1

(
k − s

k − s

)
Bk+1 + (−1)k−s

(
s+ 1

s+ 1

)
Bk+1.

The first two terms give the Carlitz-identity (3.4.3) and vanish. So we are left with the last
two terms and get

−(−1)s+1Bk+1 + (−1)k−sBk+1 = (−1)sBk+1

(
1 + (−1)k

)
= 0,

since the bracket will be zero if k is odd and Bk+1 = 0 if k is even. ▽

Finally, Lemma 3.4.3 is proven. �

In Lemma 4.1.1, we will see that also ∗z fulfils this identity. Hence ∗z = ⋆̂z. We only need to
show ⋆̂z = ⋆z. For z = 1, the two maps are clearly identical and therefore we find

ξk ⋆1 η =
k∑

n=0

(
k

n

)
B∗
nξ
k−n(adξ)

k(η).

But now ⋆̂z = ⋆z follows from the definition of ⋆z: we just have to plug in powers of z and find
(3.4.1). So with the proofs in Chapter 4, we will have proven the following theorem:
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Theorem 3.4.6 The three maps ⋆z, ⋆̂z and ∗z coincide on S•(g) and define star products.





Chapter 4

Formulas for the Gutt star product

We have seen some results on the Baker-Campbell-Hausdorff series and an identity for the Gutt
star product. The latter one, stated in Theorem 3.4.6, will be a very useful tool in the following,
since we want to get explicit formulas for ⋆z. There is still a part of the proof missing, but this
will be caught up at the beginning of the first section of this chapter. From there, we will come
to a first easy formula for ⋆z. Afterwards, we will use the same procedure to find two more
formulas for it: the first is a rather involved one for the n-fold star product of vectors. It will not
be helpful for algebraic computations, but very useful for estimates. The second one is a more
explicit formula for the product of two monomials.

From those formulas, we will be able to draw some easy, but nice conclusion in the second
section and we will prove the classical and the semi-classical limit. Then, we will show how to
calculate the Gutt star product explicitly by computing two easy examples.

4.1 Formulas for the Gutt Star Product

4.1.1 A Monomial with a Linear Term

The easiest case for which we will develop a formula is surely the following one: for a given Lie
algebra g and ξ, η ∈ g we would like to compute

ξk ⋆z η =
k∑

n=0

znCn(ξ
k, η)

We have already done this for ⋆z and ⋆̂z in Lemma 3.4.3, and want to do the same for ∗z now.
This will finish the proof of the equality of the star products from Theorem 3.4.6. We will use
that

ξk =
∂k

∂tk

∣∣∣
t=0

exp(tξ). (4.1.1)

Now we have all the ingredients to prove the following lemma:

Lemma 4.1.1 Let g be a Lie algebra and ξ, η ∈ g. We have the following identity for ∗z:

ξk ∗z η =
k∑

j=0

(
k

j

)
zjB∗

j ξ
k−j(adξ)

j(η). (4.1.2)

43
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Proof: We start from the simplified form for the Baker-Campbell-Hausdorff series from Equa-
tion (3.3.15) in Proposition 3.3.1:

BCH(ξ, η) = ξ +

∞∑

n=0

B∗
n

n!
(adξ)

n(η) +O(η2).

If we insert this into the definition of the Drinfel’d star product and use Equation (4.1.1) we get

ξk ∗z η =
∂k

∂tk
∂

∂s

∣∣∣
t=0,s=0

exp

(
1

z
BCH(ztξ, zsη)

)

=
∂k

∂tk
∂

∂s

∣∣∣
t=0,s=0

exp


tξ +

∞∑

j=0

zj
B∗
j

j!
(adtξ)

j(sη) +O(η2)


.

We see that only terms which have exactly k of the ξ’s in them and which are linear in η will
contribute. This means we can cut off the sum at j = k and omit higher orders in η. We now
use the exponential series, cut it at k for the same reason and get

ξk ∗z η =
∂k

∂tk
∂

∂s

∣∣∣
t=0,s=0

k∑

n=0

1

n!


tξ +

k∑

j=0

(zt)j
B∗
j

j!
(adξ)

j(sη)



n

=
∂k

∂tk
∂

∂s

∣∣∣
t=0,s=0

k∑

n=0

1

n!

n∑

m=0

(
n

m

)
(tξ)n−m




k∑

j=0

(zt)j
B∗
j

j!
(adξ)

j(sη)



m

=
∂k

∂tk
∂

∂s

∣∣∣
t=0,s=0




k∑

n=0

1

n!
(tξ)n +

k∑

n=0

k∑

j=0

1

(n− 1)!
tn+j−1zj

B∗
j

j!
ξn−1(adξ)

j(sη)


.

In the last step we set m = 1 since the other term have either too many or not enough η’s and
will vanish because of the differentiation with respect to s. We can finally differentiate to get
the formula

ξk ∗z η =

k∑

n=0

k∑

j=0

δk,n+j−1
k!

j!(n − 1)!
zjB∗

j ξ
n−1(adξ)

j(η)

=

k∑

j=0

(
k

j

)
zjB∗

j ξ
k−j(adξ)

j(η),

which is the wanted result. �

Remark 4.1.2 We have proven the equality of the star products ⋆̂z ∗z by deriving an easy
formula for both of them. From now on, we will get all other formulas from ∗z , since this is the
one which is easier to compute.

Now it is actually easy to get the formula for monomials of the form ξ1 . . . ξk with η ∈ g:

Proposition 4.1.3 Let g be a Lie algebra and ξ1, . . . , ξk, η ∈ g. We have

ξ1 · · · ξk ⋆z η =

k∑

j=0

1

k!

(
k

j

)
zjB∗

j

∑

σ∈Sk

[ξσ(1), [. . . [ξσ(j), η] . . .]]ξσ(j+1) · · · ξσ(k) and (4.1.3)

η ⋆z ξ1 · · · ξk =
k∑

j=0

1

k!

(
k

j

)
zjBj

∑

σ∈Sk

[ξσ(1), [. . . [ξσ(j), η] . . .]]ξσ(j+1) · · · ξσ(k). (4.1.4)
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Proof: We get the result by just polarizing the formula from Lemma 4.1.1. Let ξ1, . . . , ξk ∈ g,
then we introduce the parameters ti for i = 1, . . . , k and set

Ξ = Ξ(t1, . . . , tk) =
k∑

i=1

tiξ
i.

Then we see that

ξ1 · · · ξk =
1

k!

∂k

∂t1 · · · ∂tk

∣∣∣
t1,··· ,tk=0

Ξk

since for every i = 1, . . . , k we have
∂

∂ti

∣∣∣
ti=0

Ξ = ξi. (4.1.5)

By writing out the Ξ’s and using multilinearity, we find

ξ1 · · · ξk ⋆z η =
1

k!

∂k

∂t1 · · · ∂tk

∣∣∣
t1,··· ,tk=0

k∑

j=0

(
k

j

)
zjB∗

jΞ
k−j(adΞ)

j(η)

=
1

k!

k∑

j=0

(
k

j

)
zjB∗

j

∑

{i1,...,ik}∈{1,...,k}k

∂k

∂t1 · · · ∂tk

∣∣∣
t1,··· ,tk=0

ti1 · · · tik

· ξi1 · · · ξik−j
adξik−j+1

◦ · · · ◦ adξik (η)

=
k∑

j=0

1

k!

(
k

j

)
zjB∗

j

∑

σ∈Sk

[ξσ(1), [. . . [ξσ(j), η] . . .]]ξσ(j+1) · · · ξσ(k).

In the last step, all expression which did not contain each ξi exactly once disappeared due to the
differentiation. The proof of Equation (4.1.4) works analogously. �

Remark 4.1.4 This formula is actually not a new result: Gutt already gave it in her paper [48,
Prop. 1] and referred to Dixmier [35, part 2.8.12 (c)], who already gave it in his textbook.
It can also be found in the diploma thesis of Neumaier [70, Rem. 5.2.8] and a work due to
Kathotia [58, Eq. 2.23]. Probably the first one to mention it was Berezin in [10, Eq. 30].

4.1.2 An Iterated Formula for the General Case

Proposition 4.1.3 allows theoretically to get a formula for the case of ξ1, . . . , ξk ∈ g

ξ1 ⋆z . . . ⋆z ξk =

k∑

j=0

Cz,j(ξ1, . . . , ξk)

which we will need to prove the functoriality of our later construction. This could also be used to
give an alternative proof for our main theorem. Unluckily, this approach has a problem: iterating
this formula, we get strangely nested Lie brackets, which would be very difficult to bring into a
nice form with Jacobi identity. So this is not a good way to find a handy formula for the usual
star product of two monomials. Nevertheless, we want to pursue it for a moment, since we will
get an equality which will be, although rather involved looking, very useful in the following: for
analytic observations, it will be enough to put (even rough) estimates on it and the exact nature
of the combinatorics in the formula will not be important. Hence we rewrite Equation (4.1.3) in
order to cook up such a formula.
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Take ξ1, . . . , ξk, η ∈ g, then we have

ξ1 · · · ξk ⋆z η =
k∑

n=0

Cn(ξ1 . . . ξk, η)

with the Cn being as bilinear operators which are given explicitly on monomials by

Ckn : S
k(g)× g −→ Sk−n+1(g) (4.1.6)

(ξ1 · · · ξk, η) 7−→
1

k!

∑

σ∈Sk

(
k

j

)
B∗
j z
jξσ(1) · · · ξσ(k−j)[ξσ(k−j+1), [. . . , [ξσ(k), η]]] (4.1.7)

with

Cn =

∞∑

k=0

Ckn.

This gives us a good way of writing the n-fold star product of vectors:

Proposition 4.1.5 Let g, 2 ≤ k ∈ N and ξ1, . . . , ξk ∈ g. Then we have

ξ1 ⋆z . . . ⋆z ξk =
∑

1≤j≤k−1
ij∈{0,...,j}

zi1+...+ik−1Cik−1
(. . . Ci2(Ci1(ξ1, ξ2), ξ3) . . . , ξk). (4.1.8)

Proof: This is an easy prof by induction over k. For k = 2 the statement is clearly true. For
the step k → k + 1 we get

ξ1 ⋆z . . . ⋆z ξk+1 =

( ∑

1≤j≤k−1
ij∈{0,...,j}

zi1+···+ik−1Cik−1
(. . . Ci2(Ci1(ξ1, ξ2), ξ3) . . . , ξk)

)
⋆z ξk+1

=

k∑

ik=0

zikCik

( ∑

1≤j≤k−1
ij∈{0,...,j}

zi1+···+ik−1Cik−1
(. . . Ci2(Ci1(ξ1, ξ2), ξ3) . . . , ξk), ξk+1

)

=
∑

1≤j≤k
ij∈{0,...,j}

zi1+···+ik
(
Cik−1

(. . . Ci2(Ci1(ξ1, ξ2), ξ3) . . . , ξk), ξk+1

)
�

Remark 4.1.6

i.) Of course, Proposition 4.1.5 is an easy consequence from Proposition 4.1.3. It’s value,
however, is that we know how the Cn’s look like and what the summation range in (4.1.8)
is. This will allow us to put estimates on things like iterated star products.

ii.) As already mentioned, we would get an identity for the star product of two monomials via

ξ1 · · · ξk ⋆z η1 · · · ηℓ =
1

k!ℓ!

∑

σ∈Sk

∑

τ∈Sℓ

ξσ(1) ⋆z · · · ⋆z ξσ(k) ⋆z ητ(1) ⋆z · · · ⋆z ητ(ℓ). (4.1.9)

This can be proven from the definition of the map qz. Unfortunately, this would give a very
clumsy formula to deal with.
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4.1.3 A Formula for two Monomials

If we want to get an identity for the star product of two monomials, we have to go back to
Equation (3.2.7). This will not give a simple looking formula either, but we will at least be able
to do some computations with concrete examples. As a first step, we must introduce a bit of
notation:

Definition 4.1.7 (G-Index) Let k, ℓ, n ∈ N and r = k + ℓ− n. Then we call an r-tuple J

J = (J1, . . . , Jr) = ((a1, b1), . . . , (ar, br))

a G-index if it fulfils the following properties:

(i) Ji ∈ {0, 1, . . . , k} × {0, 1, . . . , ℓ}

(ii) |Ji| = ai + bi ≥ 1 ∀i=1,...,r

(iii)
r∑
i=1

ai = k and
r∑
i=1

bi = ℓ

(iv) The tuple is ordered in the following sense: i > j ⇒ |Ji| ≥ |Jj | ∀i,j=1,...,r and |ai| ≥ |aj| if

|Ji| = |Jj |

(v) If ai = 0 [or bi = 0] for some i, then bi = 1 [or ai = 1].

We call the set of all such G-indices Gr(k, ℓ).
Definition 4.1.8 (G-Factorial) Let J = ((a1, b1), . . . , (ar, br)) ∈ Gr(k, ℓ) be a G-Index. We set

for a given tuple (a, b) ∈ {0, 1, . . . , k} × {0, 1, . . . , ℓ}

#J(a, b) = number of times that (a, b) appears in J.

Then we define the G-factorial of J ∈ {0, 1, . . . , k} × {0, 1, . . . , ℓ} as

J ! =
∏

(a,b)∈{0,1,...,k}×{0,1,...,ℓ}

(#J(a, b))!

Each pair (a, b) will later correspond to BCHa,b(ξ, η). Now we can state a good formula for the
Gutt star product:

Lemma 4.1.9 Let g be a Lie algebra, ξ, η ∈ g and k, ℓ ∈ N. Then we have the following identity

for the Gutt star product:

ξk ⋆z η
ℓ =

k+ℓ−1∑

n=0

znCn

(
ξk, ηℓ

)
,

where the Cn are given by

Cn

(
ξk, ηℓ

)
=

k!ℓ!

(k + ℓ− n)!

∑

a1,b1,...,ar ,br≥0
ai+bi≥1

a1+···+ar=k
b1+···+br=ℓ

BCHai,bi(ξ, η) · · ·BCHar ,br(ξ, η) (4.1.10)

=
∑

J∈Gk+ℓ−n(k,ℓ)

k!ℓ!

J !

k+ℓ−n∏

i=1

BCHai,bi(ξ, η) (4.1.11)

and the product is taken in the symmetric tensor algebra.
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Proof: We want to see what the Cn look like. Let’s denote r = k + ℓ− n for brevity. Then we
have

Cn

(
ξk, ηℓ

)
∈ Sr(g).

Of course, the only part of the series

exp

(
1

z
BCH(zξ, zη)

)
=

k+ℓ∑

n=0

(
1

z
BCH(zξ, zη)

)n
+O(ξk+1, ηℓ+1)

which lies in Sr(g) is the summand for n = r. We introduce the formal parameters t and s. Since
we differentiate with respect to them, we can omit terms of higher orders in ξ and η than k and
ℓ respectively.

znCn

(
ξk, ηℓ

)
=

∂k

∂tk
∂ℓ

∂sℓ

∣∣∣
t,s=0

1

zr
BCH(ztξ, zsη)r

r!

=
1

zr
1

r!

∂k

∂tk
∂ℓ

∂sℓ

∣∣∣
t,s=0



k+ℓ∑

j=1

BCHj(ztξ, zsη)



r

=
1

zr
1

r!

∂k

∂tk
∂ℓ

∂sℓ

∣∣∣
t,s=0

∑

j1,...,jr≥1
j1+...+jr=k+ℓ

BCHj1(ztξ, zsη) · · ·BCHjr(ztξ, zsη)

= zn
k!ℓ!

r!

∑

a1,b1,...,ar ,br≥0
ai+bi≥1

a1+···+ar=k
b1+···+br=ℓ

BCHai,bi(ξ, η) · · ·BCHar ,br(ξ, η)

We sum over all possible arrangements of the (ai, bi). In order to find an easier summation range,
we put the ordering from Definition 4.1.7 on these multi-indices and avoid therefore double
counting. We loose the freedom of arranging the (ai, bi) and need to count the number of multi-
indices ((a1, b1), . . . , (ar, br)) which belong to the same G-index J . This number will be r!

J ! , since
we can not interchange the (ai, bi) any more (therefore r!), unless they are equal (therefore J !−1).
Since the ranges of the (ai, bi) in Equation (4.1.10) and of the elements in Gr(k, ℓ) are the same,
we can change the summation there to J ∈ Gr(k, ℓ) and need to multiply by r!

J ! . This gives

znCn

(
ξk, ηℓ

)
= zn

k!ℓ!

J !

∑

J∈Gr(k,ℓ)

BCHai,bi(ξ, η) · · ·BCHar ,br(ξ, η)

which is equivalent to Equation (4.1.11). �

Now we need to generalize this to factorizing tensors. To do so, we need a last definition:

Definition 4.1.10 Let a, b ∈ N and ξ1, . . . , ξa, η1, . . . , ηb ∈ g. Then we define by

B̃CHa,b : g
a+b −→ g

the map which we get when we replace in BCHa,b(ξ, η) the i-th ξ by ξi and the j-th η by ηj for

i = 1, . . . , a and j = 1, . . . , b.

Proposition 4.1.11 Let g be a Lie algebra, k, ℓ ∈ N and ξ1, . . . , ξk, η1, . . . , ηℓ ∈ g. Then we

have the following identity for the Gutt star product:

ξ1 . . . ξk ⋆z η1 . . . ηℓ =
k+ℓ−1∑

n=0

znCn(ξ1 · · · ξk, η1 · · · ηℓ),
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where the Cn are given by

Cn(ξ1 · · · ξk, η1 · · · ηℓ) =
∑

J∈Gk+ℓ−n(k,ℓ)

1

J !

∑

σ∈Sk

∑

τ∈Sℓ

l+ℓ−n∏

i=1

B̃CHai,bi
(
ξσ(a1+···+ai−1+1), . . . ,

. . . , ξσ(a1+···+ai)

)(
ητ(b1+···+bi−1+1), . . . , ητ(b1+···+bi)

)
. (4.1.12)

=
1

(k + ℓ− n)!

∑

σ∈Sk ,τ∈Sℓ

∑

a1,b1,...,ar ,br≥0
ai+bi≥1

a1+···+ar=k
b1+···+br=ℓ

B̃CHai,bi

(
ξσ(1), . . . , ξσ(a1); ητ(1), . . . , ητ(b1)

)
· · ·

B̃CHar ,br

(
ξσ(k−ar+1), . . . , ξσ(k); ητ(ℓ−br+1), . . . , ητ(ℓ)

)
. (4.1.13)

Proof: The proof relies on polarization again and is completely analogous to the one of Propo-
sition 4.1.3. We set

Ξ =

k∑

i=1

tiξ
i and H =

ℓ∑

i=1

tjη
j.

Then it is easy to see that we will get rid of the factorials in Equation (4.1.11) since

ξ1 · · · ξk ⋆z η1 · · · ηℓ =
1

k!ℓ!

∂k+ℓ

∂t1 · · · ∂sℓ

∣∣∣
t1,...,sℓ=0

Ξk ⋆z H
ℓ .

Instead of the factorials, we get symmetrizations over the ξi and the ηj as we did in Proposition
4.1.3, which gives the wanted result. �

Remark 4.1.12 This formula was in some sense already found by Cortiñas in [31]. However,
his formula is somewhat less transparent, since he uses an explicit form of the Baker-Campbell-
Hausdorff series, namely the one due to Dynkin (3.3.6). As already mentioned, this formula is
very complicated from a combinatorial point of view and hence also less adapted to put continuity
estimates on it, as we will have to do. This is why we derived another formula for it.

4.2 Consequences and Examples

4.2.1 Some Consequences

Proposition 4.1.11 allows us to get some algebraic results. For example, we would like to see that
the Gutt star product fulfils the classical and the semi-classical limit from Definition 2.3.1. We
can prove this using Proposition 4.1.3. This will finish the proof of Theorem 3.4.6.

Corollary 4.2.1 Let g be a Lie algebra and S•(g) endowed with the Gutt star product

x ⋆z y =
∞∑

n=0

znCn(x, y).

i.) On factorizing tensors ξ1 . . . ξk and η1 . . . ηℓ, C0 and C1 give

C0(ξ1 · · · ξk, η1 · · · ηℓ) = ξ1 · · · ξkη1 · · · ηℓ (4.2.1)

C1(ξ1 · · · ξk, η1 · · · ηℓ) =
1

2

k∑

i=1

ℓ∑

j=1

ξ1 · · · ξ̂i · · · ξkη1 · · · η̂j · · · ηℓ[ξiηj], (4.2.2)

where the hat denotes elements which are left out.
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ii.) For g finite-dimensional and the canonical isomorphism J : S•(g) −→ Pol•(g∗) from Propo-

sition 3.1.3, we have for f, g ∈ Pol•(g∗)

C1

(
J−1(f),J −1(g)

)
− C1

(
J−1(f),J −1(g)

)
= J−1({f, g}KKS)

where {·, ·}KKS is the Kirillov-Kostant-Souriau bracket.

iii.) The map ⋆z fulfils the classical and the semi-classical limit and is therefore a star product.

Proof: We take ξ1 · · · ξk, η1 · · · ηℓ ∈ S•(g) and consider the G-indices in Gk+ℓ(k, ℓ) first. This is
easy, since there is just one element inside:

Gk+ℓ(k, ℓ) =
{
((0, 1), . . . , (0, 1)︸ ︷︷ ︸

ℓ times

, (1, 0), . . . , (1, 0)︸ ︷︷ ︸
k times

)
}
.

So we find

C0(ξ1 · · · ξk, η1 · · · ηℓ) =
∑

σ∈Sk

∑

τ∈Sℓ

1

J !
BCH0,1

(
∅, ξσ(1)

)
· · ·BCH0,1

(
∅, ξσ(k)

)

· BCH1,0

(
ητ(1),∅

)
· · ·BCH1,0

(
ητ(ℓ),∅

)

=
∑

σ∈Sk

∑

τ∈Sℓ

1

k!ℓ!
ξσ(1) · · · ξσ(k)ητ(1) · · · ητ(ℓ)

= ξ1 · · · ξkη1 · · · ηℓ
where we used J ! = k!ℓ! according to Definition 4.1.8. We do the same for C1. Also here, we
have just one element in Gk+ℓ−1(k, ℓ):

Gk+ℓ(k, ℓ) =
{
((0, 1), . . . , (0, 1)︸ ︷︷ ︸

ℓ−1 times

, (1, 0), . . . , (1, 0)︸ ︷︷ ︸
k−1 times

, (1, 1))
}
.

Using

BCH1,1(ξ, η) =
1

2
[ξ, η]

and J ! = (k − 1)!(ℓ − 1)!, we find

C1(ξ1 · · · ξk, η1 · · · ηℓ) =
1

2

∑

σ∈Sk

∑

τ∈Sℓ

1

(k − 1)!(ℓ− 1)!
ξσ(1) · · · ξσ(k−1)ητ(1) · · · ητ(ℓ−1)[ξσ(k), ητ(ℓ)]

=
1

2

k∑

i=0

ℓ∑

j=0

ξ1 · · · ξ̂i · · · ξkη1 · · · η̂j · · · ηℓ[ξi, ηj ].

This finishes part one. From this, the anti-symmetry of the Lie bracket yields

C1(ξ1 · · · ξk, η1 · · · ηℓ)− C1(η1 · · · ηℓ, ξ1 · · · ξk) =
k∑

i=0

ℓ∑

j=0

ξ1 · · · ξ̂i · · · ξkη1 · · · η̂j · · · ηℓ[ξi, ηj ].

We now need to compute the KKS brackets on polynomials. Because of the linearity in both
arguments, it is sufficient to check it on monomials of coordinates. Let e1, . . . , en be a basis of
g with linear coordinates x1, . . . , xn on g∗. Now take µ1, . . . , µn, ν1, . . . νn ∈ N and consider the
monomials f = x

µ1
1 · · · xµnn and g = xν11 · · · xνnn . We use the notation from Proposition 3.1.1 and

find for x ∈ g∗

{f, g}KKS(x) = xkc
k
ij

∂f

∂xi

∂g

∂xj
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= µiνjc
k
ijxkx

µ1
1 · · · xµi−1

i · · · xµnn xν11 · · · xνj−1
j · · · xνnn .

Applying J−1 to it gives

J−1({f, g}KKS) =
n∑

i=0

n∑

j=0

µiνje
µ1
1 · · · eµi−1

i · · · eµnn eν11 · · · eνj−1
j · · · eνnn [ei, ej ]. (4.2.3)

On the other hand, we have

J−1(f) = e
µ1
1 · · · eµnn and J−1(g) = eν11 · · · eνnn .

Together with (4.2.2) this gives (4.2.3) and proves part two. Due to the bilinearity of the Cn,
the third part follows. �

It is clear, that the formulas from Proposition 4.1.11 and Proposition 4.1.3 should coincide.
However, we want to check it, to have the evidence that everything works as we wanted.

Corollary 4.2.2 Given ξ1, . . . , ξk, η ∈ g, the results of the Equations (4.1.12) and (4.1.3) are

compatible.

Proof: We have to compute sets of G-indices for ξ1, . . . , ξk, ηℓ ∈ g. Again, they only have one
element:

Gk+1−n(k, 1) =
{
((1, 0), . . . , (1, 0)︸ ︷︷ ︸

k−n times

, (n, 1))
}
.

So we have with J ! = (k − n)! and BCHn,1(ξ, η) =
B∗

n

n! (adξ)
n(η)

znCn(ξ1 . . . ξk, ηℓ) = zn
∑

σ∈Sk

1

(k − n)!

B∗
n

n!
ξσ(1) . . . ξσ(k−n)[ξσ(k−n+1), [. . . , [ξσ(k),η ] . . .]]

= zn
1

k!

∑

σ∈Sk

(
k

n

)
B∗
nξσ(1) . . . ξσ(k−n)[ξσ(k−n+1), [. . . , [ξσ(k),η ] . . .]]

Summing up over all n gives Equation (4.1.3). �

4.2.2 Two Examples

Equation (4.1.12) is useful if one wants to do real computations with the star product, but it is
maybe not intuitive to apply. This is why we will give two examples here. The easiest one which
is not covered by the simpler formula (4.1.3) will be the star product of two quadratic terms.
The second one should be the a bit more complex case of a cubic term with a quadratic term.

Two quadratic terms

Let ξ1, ξ2, η1, η2 ∈ g. We want to compute

ξ1ξ2 ⋆z η1η2 = C0(ξ1ξ2, η1η2) + zC1(ξ1ξ2, η1η2) + z2C2(ξ1ξ2, η1η2) + z3C3(ξ1ξ2, η1η2).

The very first thing we have to do is computing the set of G-indices. Then we calculate the
G-factorial and finally go through the permutations.
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C0: We already did this in Corollary 4.2.1, and know that the zeroth order in z is just the
symmetric product. Therefore we have

C0(ξ1ξ2, η1η2) = ξ1ξ2η1η2

C1: We also did this one in Corollary 4.2.1: There is just one G-index and we finally get

C1(ξ1ξ2, η1η2) =
1

2
(ξ2η2[ξ1, η1] + ξ2η1[ξ1, η2] + ξ1η2[ξ2, η1] + ξ1η1[ξ2, η2]).

C2: This is the first time, something interesting happens. We have three G-indices:

G2(2, 2) = {J1, J2, J3} =
{(

(0, 1), (2, 1)
)
,
(
(1, 0), (1, 2)

)
,
(
(1, 1), (1, 1)

)}
.

The G-factorials give J1! = J2! = 1 and J3! = 2, since the index (1, 1) appears twice in J3.
We take BCHa,b(ξ, η) from Equation (3.3.3) for (a, b) ∈ {(1, 2), (2, 1)}:

BCH1,2(ξ, η) =
1

12
[[ξ, η], η] and BCH2,1(ξ, η) =

1

12
[[η, ξ], ξ].

So we have to insert the ξi and the ηj into 1
12ξ[[ξ, η], η] and 1

12η[[η, ξ], ξ] respectively and
then we go on with the last one, which is

1

2
BCH1,1(ξ, η)BCH1,1(ξ, η) =

1

8
[ξ, η][ξ, η].

We hence get

C2(ξ1, ξ2, η1, η2) =
1

12

(
η1[[η2, ξ1], ξ2] + η1[[η2, ξ2], ξ1] + η2[[η1, ξ1], ξ2] + η2[[η1, ξ2], ξ1]+

ξ1[[ξ2, η1], η2] + ξ1[[ξ2, η2], η1] + ξ2[[ξ1, η1], η2] + ξ2[[ξ1, η2], η1]
)
+

1

4

(
[ξ1, η1][ξ2, η2] + [ξ1, η2][ξ2, η1]

)

C3: Here, we only have one G-index:

G1(2, 2) =
{(

(2, 2)
)}

The G-factorial is 1. We take again Equation (3.3.3) and see

BCH2,2(ξ, η) =
1

24
[[[η, ξ], ξ], η].

This gives

C3(ξ1, ξ2, η1, η2) =
1

24

(
[[[η1, ξ1], ξ2], η2] + [[[η1, ξ2], ξ1], η2] + [[[η2, ξ1], ξ2], η1] + [[[η2, ξ2], ξ1], η1]

)

We just have to put all the four terms together and have the star product.
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A cubic and a quadratic term

Let ξ1, ξ2, ξ3, η1, η2 ∈ g. We compute

ξ1ξ2ξ3 ⋆G η1η2 =
4∑

n=0

znCn(ξ1ξ2ξ3, η1η2)

C0: The first part is again just the symmetric product:

C0(ξ1ξ2ξ3, η1η2) = ξ1ξ2ξ3η1η2.

C1: Here we have again the term from Corollary 4.2.1:

C1(ξ1ξ2ξ3, η1η2) =
1

2

(
ξ2ξ3η2[ξ1, η1] + ξ2ξ3η1[ξ1, η2] + ξ1ξ3η2[ξ2, η1]+

ξ1ξ3η1[ξ2, η2] + ξ1ξ2η2[ξ3, η1] + ξ1ξ2η1[ξ3, η2]
)

C2: Here the calculation is very similar to the one of C2 in the example before. We have three
G-indices:

G3(3, 2) = {J1, J2, J3} =
{(

(0, 1), (1, 0), (2, 1)
)
,
(
(1, 0), (1, 0), (1, 2)

)
,
(
(1, 0), (1, 1), (1, 1)

)}
.

The G-factorials are now J1! = 1 and J2! = J3! = 2. Again, we take the BCH terms from
Equation (3.3.3) and see, that we must insert the ξi and the ηj into

1

12
ξη[[η, ξ], ξ] +

1

24
ξξ[[ξ, η], η] +

1

8
ξ[ξ, η][ξ, η].

Now we go through all the possible permutations and get

C2(ξ1ξ2ξ3, η1η2) =
1

12

(
ξ1ξ2[[ξ3, η1], η2] + ξ1ξ2[[ξ3, η2], η1] + ξ1ξ3[[ξ2, η1], η2]+

ξ1ξ3[[ξ2, η2], η1] + ξ2ξ3[[ξ1, η1], η2] + ξ2ξ3[[ξ1, η2], η1]
)
+

1

12

(
ξ1η1[[η2, ξ2], ξ3] + ξ1η2[[η1, ξ2], ξ3] + ξ1η1[[η2, ξ3], ξ2]+

ξ1η2[[η1, ξ3], ξ2] + ξ2η1[[η2, ξ1], ξ3] + ξ2η2[[η1, ξ1], ξ3]+

ξ2η1[[η2, ξ3], ξ1] + ξ2η2[[η1, ξ3], ξ1] + ξ3η1[[η2, ξ2], ξ1]+

ξ3η2[[η1, ξ2], ξ1] + ξ3η1[[η2, ξ1], ξ2] + ξ3η2[[η1, ξ1], ξ2]
)
+

1

4

(
ξ1[ξ2, η1][ξ3, η2] + ξ1[ξ3, η1][ξ2, η2] + ξ2[ξ1, η1][ξ3, η2]+

ξ2[ξ3, η1][ξ1, η2] + ξ3[ξ1, η1][ξ2, η2] + ξ3[ξ2, η1][ξ1, η2]
)
.

C3: We first calculate the G-indices:

G2(3, 2) = {J1, J2, J3} =
{(

(0, 1), (3, 1)
)
,
(
(1, 0), (2, 2)

)
,
(
(1, 1), (2, 1)

)}
.

We can omit J1, since BCH3,1(ξ, η) = 0. The G-factorials for the other two indices are 1.
The BCH terms have been computed before. So we have to fill in the expression

1

24
ξ[[[η, ξ], ξ], η] +

1

2 · 12[ξ, η][[η, ξ], ξ].



54 CHAPTER 4. FORMULAS FOR THE GUTT STAR PRODUCT

Going through the permutations we get

C3(ξ1ξ2ξ3, η1η2) =
1

24

(
ξ1[[[η1, ξ2], ξ3], η2] + ξ1[[[η2, ξ2], ξ3], η1] + ξ1[[[η1, ξ3], ξ2], η2]+

ξ1[[[η2, ξ3], ξ2], η1] + ξ2[[[η1, ξ1], ξ3], η2] + ξ2[[[η2, ξ1], ξ3], η1]+

ξ2[[[η1, ξ3], ξ1], η2] + ξ2[[[η2, ξ3], ξ1], η1] + ξ3[[[η1, ξ2], ξ1], η2]+

ξ3[[[η2, ξ2], ξ1], η1] + ξ3[[[η1, ξ1], ξ2], η2] + ξ3[[[η2, ξ1], ξ2], η1]
)
+

1

24

(
[ξ1, η1][[η2, ξ2], ξ3] + [ξ1, η2][[η1, ξ2], ξ3] + [ξ1, η1][[η2, ξ3], ξ2]+

[ξ1, η2][[η1, ξ3], ξ2] + [ξ2, η1][[η2, ξ1], ξ3] + [ξ2, η2][[η1, ξ1], ξ3]+

[ξ2, η1][[η2, ξ3], ξ1] + [ξ2, η2][[η1, ξ3], ξ1] + [ξ3, η1][[η2, ξ2], ξ1]+

[ξ3, η2][[η1, ξ2], ξ1] + [ξ3, η1][[η2, ξ1], ξ2] + [ξ3, η2][[η1, ξ1], ξ2]
)
.

C4: Now there is only C4 left. We have one G-index:

G1(3, 2) =
{(

(3, 2)
)}
,

but there are more terms which belong to it. We have to go through

BCH3,2(ξ, η) =
1

120
[[[[ξ, η], ξ], η], ξ] +

1

360
[[[[η, ξ], ξ], ξ], η].

So we permute and get

C4(ξ1ξ2ξ3, η1η2) =
1

120

(
[[[[ξ1, η1], ξ2], η2], ξ3] + [[[[ξ1, η2], ξ2], η1], ξ3] + [[[[ξ1, η1], ξ3], η2], ξ2]+

[[[[ξ1, η2], ξ3], η1], ξ2] + [[[[ξ2, η1], ξ1], η2], ξ3] + [[[[ξ2, η2], ξ1], η1], ξ3]+

[[[[ξ2, η1], ξ3], η2], ξ1] + [[[[ξ2, η2], ξ3], η1], ξ1] + [[[[ξ3, η1], ξ2], η2], ξ1]+

[[[[ξ3, η2], ξ2], η1], ξ1] + [[[[ξ3, η1], ξ1], η2], ξ2] + [[[[ξ3, η2], ξ1], η1], ξ2]
)
+

1

360

(
[[[[η1, ξ1], ξ2], ξ3], η2] + [[[[η2, ξ1], ξ2], ξ3], η1] + [[[[η1, ξ1], ξ3], ξ2], η2]+

[[[[η2, ξ1], ξ3], ξ2], η1] + [[[[η1, ξ2], ξ1], ξ3], η2] + [[[[η2, ξ2], ξ1], ξ3], η1]+

[[[[η1, ξ2], ξ3], ξ1], η2] + [[[[η2, ξ2], ξ3], ξ1], η1] + [[[[η1, ξ3], ξ2], ξ1], η2]+

[[[[η2, ξ3], ξ2], ξ1], η1] + [[[[η1, ξ3], ξ1], ξ2], η2] + [[[[η2, ξ3], ξ1], ξ2], η1]
)
.

Now we only have to add up all those terms and we have finally computed the star product.



Chapter 5

A Locally Convex Topology for the

Gutt Star Product

We have finished the algebraic part of this work, except for one little lemma concerning the
Hopf theoretic chapter. Our next goal is setting up a locally convex topology on the symmetric
tensor algebra, in which the Gutt star product will be continuous. At the beginning of this
chapter, we will first give a motivation why the setting of locally convex algebras is convenient
and necessary. In the second section, we will briefly recall the most important things on locally
convex algebras and introduce the topology which we will work with. In the third section, the
core of this chapter, the continuity of the star product and the analytic dependence on the formal
parameter are proven. We also show that continuous representations of Lie algebras lift to those
of the deformed symmetric algebra and that our construction is in fact functorial. Part four
treats the case when the formal parameter z = 1 and hence talks about a locally convex topology
on universal enveloping algebras. We will show, that our topology is “optimal” in a specific sense.

5.1 Why Locally Convex?

There are very different types of topologies on vector spaces and algebras. On one hand, we want
a topology on the symmetric tensor algebra – which will after its completion be the algebra of
observables – that has as many convenient features as possible, of course. On the other hand, if we
choose a too good topology, we will risk to have no representations of our algebra as (unbounded)
operators on a Hilbert space, which means something like the q̂ and p̂ operators. Thus we have
to think of the possible options first. Assume that g is a complex Lie algebra (if not, we can
always complexify it), then the complex conjugation plays the role of a star involution on the
algebra of observables A , that means it is an automorphism

∗ : A −→ A , a 7−→ a∗,

which fulfils for all a ∈ A the identity (a∗)∗ = a. We want to summarize briefly the options,
which we would have in this case.

i.) We can try a C∗-algebra. This means that we have a norm ‖·‖ on our algebra, which fulfils
the two properties

‖a · b‖ ≤ ‖a‖‖b‖, ∀a,b∈A (5.1.1)

and
‖a∗ · a‖ = ‖a‖2, ∀a,b∈A . (5.1.2)

55
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The bounded operators on a Hilbert space form a C∗-algebra, for example. In particular,
we can define continuous functions of algebra elements in this case, see e.g. [17] or [97].

ii.) A Banach-∗-algebra is a bit less: we still have a norm, which fulfils (5.1.1), but not (5.1.2)
any more. This stil allows holomorphic functions of algebra elements (like it can be seen
in [81]).

iii.) A weaker choice is a locally multiplicatively convex ∗-algebra. We do not have a norm any
more in this case, but a set of submultiplicative seminorms {pi}i∈I . A seminorm p is
almost the same as a norm, except that we may have p(x) = 0 for some x ∈ A with x 6= 0.
Submultiplicativity means that every seminorm p fulfils

p(a · b) ≤ p(a)p(b), ∀a,b∈A . (5.1.3)

Examples for such algebras are the entire functions on C or the continuous functions on
R. In this case, entire functions of algebra elements can still be defined (see e.g. [64]).

iv.) As a last possibility, we can have a locally convex ∗-algebra. Here again, we have seminorms,
but without (5.1.3). Instead, we have to use another seminorm q to control p of the product
of two elements. We will make this statement more precise later. Examples for such
structures are distributions or vector fields on vector space. Good books on this kind of
structure are [55], [81] or [57].

So in principle, we have a lot of possibilities. Unfortunately, the canonical commutation relations,
which should be fulfilled, do not allow submultiplicative structures: this is precisely what we show
in the next proposition (and what can also be found in some textbooks, like [75], for example).
So all the nice features like a continuous or an entire calculus will simply not be there, and
therefore we have to aim at an honestly locally convex topology on the symmetric tensor algebra.

Proposition 5.1.1 Let A be a unital associative algebra which contains the quantum mechanical

observables q̂ and p̂ and in which the canonical commutation relation

[q̂, p̂] = i~1

is fulfilled. Then the only submultiplicative seminorm on it is 0.

Proof: First, we need to show a little lemma:

Lemma 5.1.2 In the algebra given above, we have for n ∈ N

(adq̂)
n(p̂n) = (i~)nn!1. (5.1.4)

Proof: To show it, we use the fact that for a ∈ A the operator ada is a derivation. This is
always true for the commutator Lie algebra of an associative algebra, since for a, b, c ∈ A we
have

[a, bc] = abc− bca = abc− bac+ bac− bca = [a, b]c+ b[a, c].

For n = 1, Equation (5.1.4) is certainly true. So let’s look at the step n → n+ 1. We make use
of the derivation property and have

(adq̂)
n+1(p̂n+1

)
= (adq̂)

n(i~p̂n + p̂ adq̂(p̂
n))
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= (i~)n+1n! + (adq̂)
n(p̂ adq̂(p̂

n))

= (i~)n+1n! + (adq̂)
n−1
(
[q̂, p̂] adq̂(p̂

n) + p̂(adq̂)
2(p̂n)

)

= (i~)n+1n! + i~(adq̂)
n(p̂n) + (adq̂)

n−1
(
p̂(adq̂)

2(p̂n)
)

= 2(i~)n+1n! + (adq̂)
n−1
(
p̂(adq̂)

2(p̂n)
)

(∗)
=

...

= n(i~)n+1n! + adq̂(p̂(adq̂)
n(p̂n))

= n(i~)n+1n! + i~(i~)nn!

= (i~)n+1(n+ 1)!.

At (∗), we actually used another statement which is to be proven by induction over k and says

(adq̂)
n+1(p̂n+1

)
= k(i~)n+1n! + (adq̂)

n+1−k
(
p̂(adq̂)

k(p̂n)
)
.

Since this proof is analogous to the first lines of the computation before, we omit it here and the
lemma is proven. ▽

Now we can go on with the actual proof. Let ‖·‖ be a submultiplicative seminorm. Then we see
from Equation (5.1.4) that

‖(adq̂)n(p̂n)‖ = |~|nn!‖1‖.

On the other hand, we have

‖(adq̂)n(p̂n)‖ = ‖q̂(adq̂)n−1(p̂n)− (adq̂)
n−1(p̂n)q̂‖

≤ 2‖q̂‖‖(adq̂)n−1(p̂n)‖

≤ ...

≤ 2n‖q̂‖n‖p̂n‖
≤ 2n‖q̂‖n‖p̂‖n

So in the end we get

|~|nn!‖1‖ ≤ cn

for 1‖q̂‖‖p̂‖ = c ∈ R. This cannot be fulfilled for all n ∈ N unless ‖1‖ = 0. But then, by
submultiplicativity, the seminorm itself must be equal to 0. �

Remark 5.1.3 The so called Weyl algebra, which fulfils the properties of the foregoing propo-
sition, can be constructed from a Poisson algebra with constant a Poisson tensor. On one hand,
it is a fair to ask the question, why this restriction of not being locally m-convex should also be
apply to linear Poisson systems. On the other hand, there is no reason to expect that things
become easier when we make the Poisson structure more complex. Moreover, the Weyl algebra
is actually nothing but a quotient of the universal enveloping algebra of the so called Heisenberg
algebra, which is a particular Lie algebra. There is no reason why the original algebra should
have a “better” analytical structure than its quotient, since the ideal, which is divided out by
this procedure, is a closed one.
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There is a second good reason why we should avoid our topology to be locally m-convex. The
topology we set up on S•(g) for a Lie algebra g will also give a topology on U (g). In Proposition
5.4.1, we will show that, under weak (but for our purpose necessary) additional assumptions,
there can be no topology on U (g), which allows an entire holomorphic calculus. This underlines
the results from Proposition 5.1.1, since locally m-convex algebras always have such a calculus.

In this sense, we have good reasons to think that S•(g) will not allow a better setting than
the one of a locally convex algebra if we want the Gutt star product to be continuous. Before
we go to this task, we have to recall some technology from locally convex analysis.

5.2 Locally Convex Algebras

5.2.1 Locally Convex Spaces and Algebras

Every locally convex algebra is also a locally convex space which is, of course, a topological
vector space. To make clear what we talk about, we first give a definition which is taken
from [81, Definition 1.6].

Definition 5.2.1 (Topological vector space) Let V be a vector space endowed with a topol-

ogy τ . Then we call (V, τ) (or just V , if there is no confusion possible) a topological vector space,

if the two following things hold:

i.) for every point in x ∈ V the set {x} is closed and

ii.) the vector space operations (addition, scalar multiplication) are continuous.

Not all books require axiom (i) for a topological vector space. It is, however, useful, since it
assures that our topological vector space is Hausdorff – a feature which we always want to have.
The proof for this is not difficult, but since we do not want to go too much into details here, we
refer to [81] again, where it can be found in Theorem 1.10 and 1.12.

The most important class of topological vector spaces are, at least from a physical point of
view, locally convex ones. Almost all interesting physical examples belong to this class: Finite-
dimensional spaces, inner product (or pre-Hilbert) spaces, Banach spaces, Fréchet spaces, nuclear
spaces and many more. There are at least two equivalent definitions of what is a locally convex
space. While the first is more geometrical, the second is better suited for our analytic purpose.

Theorem 5.2.2 For a topological vector space V , the following things are equivalent.

i.) V has a local base B of the topology whose members are convex, i.e. for all UinB we have

for all x, y ∈ U and all λ ∈ [0, 1]: λx+ (1− λ)y ∈ U .

ii.) The topology on V is generated by a separating family of seminorms P.

Proof: This theorem is a very well-known result and can be found in standard literature, such
as [81] again, where it is divided into two Theorems (namely 1.36 and 1.37). �

Definition 5.2.3 (Locally convex space) A locally convex space is a topological vector space

in which one (and thus all) of the properties from Theorem 5.2.2 are fulfilled.

The first property explains the term “locally convex”. For our concrete computations, the second
property is more helpful, since in this setting proving continuity just means putting estimates
on seminorms. For this purpose, one often extends the set of seminorms P to the set of all
continuous seminorms P which contains all seminorms that are compatible with the topology:

p ∈ P ⇐⇒ ∃n∈N∃c1,...,cn>0∃p1,...,pn∈P : p ≤
n∑

i=1

cipi.
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In particular, one can take maxima of finitely many continuous seminorms to get again a contin-
uous seminorm. From here, we can start looking at locally convex algebras.

Definition 5.2.4 (Locally convex algebra) A locally convex algebra is a locally convex vector

space with an additional algebra structure which is continuous.

More precisely, let A be a locally convex algebra and P the set of all continuous seminorms,
then for all p ∈ P there exists a q ∈ P such that for all x, y ∈ A one has

p(a · b) ≤ q(a)q(b). (5.2.1)

Remind that we did not require our algebras to be associative. The product in this equation
could also be a Lie bracket. If we talk about associative algebras, we will always say it explicitly.

5.2.2 A Special Class of Locally Convex Algebras

For our study of the Gutt star product, the usual continuity estimate (5.2.1) will not be enough,
since there will be an arbitrarily high number of nested brackets to control. We will need an
estimate which does not depend on the number of Lie brackets involved. Since Lie algebras
are just one type of algebras, we can define the property we need also for other locally convex
algebras.

Definition 5.2.5 (Asymptotic estimate algebra) Let A be a locally convex algebra (not

necessarily associative) with · denoting the multiplication and P the set of all continuous semi-

norms. Let p ∈ P.

i.) We call q ∈ P an asymptotic estimate for p, if

p(wn(x1, . . . , xn)) ≤ q(x1) · · · q(xn) (5.2.2)

for all words wn(x1, . . . , xn) made out of n − 1 products of the elements x1, . . . , xn ∈ A

with arbitrary position of placing brackets.

ii.) A locally convex algebra is said to be an asymptotic estimate algebra (AE algebra), if every

p ∈ P has an asymptotic estimate.

Remark 5.2.6 (The notion “asymptotic estimate”)

i.) The term asymptotic estimate has, to the best of our knowledge, first been used by Boseck,
Czichowski and Rudolph in [22]. They gave a seemingly weaker definition of asymptotic
estimates, which is in fact equivalent. They wanted that for every seminorm p ∈ P, there
is a m ∈ N and a q ∈ P such that for all n ≥ m one has

p(x1 · · · xn) ≤ q(x1) · · · q(xn) ∀x1,...,xn∈A . (5.2.3)

But here we can set m = 1, since we just need to take the maximum of a finite number of
continuous seminorms. Let q satisfy (5.2.3). By Continuity, we have for all i = 2, . . . ,m− 1

p(x1 · · · xi) ≤ q(i)(x1) · · · q(i)(xi) ∀x1,...,xi∈A

Now we get an asymptotic estimate q′ for p in our sense by setting

q′ = max{p, q(2), . . . , q(m−1), q}.
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Also AE algebras were defined by Boseck et al. in [22], but here the notion is really different
from ours: for them, in an AE algebra every continuous seminorm admits a sequence of
asymptotic estimates. This sequence must fulfil two additional properties, which actually
make the algebra locally m-convex. Our definition is weaker, since it does not imply, a
priori, the existence of an topologically equivalent set of submultiplicative seminorms.

ii.) In [44], Glöckner and Neeb used a property to which they referred as (∗) for associative
algebras. It was then used in [18] by Bogfjellmo, Dahmen and Schmedig, who called it the
GN -property. It is rather easy to see that it is equivalent to our AE condition.

There are, of course, a lot of examples of AE (Lie) algebras. All finite dimensional and Banach
(Lie) algebras fulfil Inequality (5.2.2), just as locally m-convex (Lie) algebras do. The same is
true for nilpotent locally convex Lie algebras, since here again one just has to take the maximum
of a finite number of semi-norms, analogously to the procedure in Remark 5.2.6. On the other
hand, it is not clear what the AE property implies exactly. Are there examples for associative
algebras which are AE but not locally m-convex, for example? Are there Lie algebras which are
truly AE and not locally m-convex or nilpotent? We don’t have an answer to this questions, but
we can make some simple observations, which allow us to give an answer for special cases.

Proposition 5.2.7 (Entire calculus) Let A be an associative AE algebra. Then it admits an

entire calculus.

Proof: The proof is the same as for locally m-convex algebras: let f : C −→ C be an entire
function with f(z) =

∑∞
n=0 anz

n and p a continuous seminorm with an asymptotic estimate q.
Then one has ∀x∈A

p(f(x)) = p

(
∞∑

n=0

anx
n

)
≤

∞∑

n=0

|an|p(xn) ≤
∞∑

n=0

|an|q(x)n <∞. �

Remark 5.2.8 (Entire Calculus, AE and LMC algebras) The fact that associative AE al-
gebras have an entire calculus makes them very similar to locally m-convex ones. Now there is
something we can say about associative algebras which have an entire calculus: if such an algebra
is additionally commutative and Fréchet, then must be even locally m-convex. This statement
was proven in [65] by Mitiagin, Rolewicz and Żelazko. Oudadess and El kinani extended this
result to commutative, associative algebras, in which the Baire category theorem holds [40]. For
non-commutative algebras, the situation is different. There are associative ”Baire algebras” hav-
ing an entire calculus, which are not locally m-convex. Żelazko gave an example for such an
algebra in [101]. Unfortunately, his example is also not AE. It seems to be is an interesting (and
non-trivial) question, if a non locally m-convex but AE algebra exists at all and if yes, how an
example could look like.

5.2.3 The Projective Tensor Product

We want to set up a topology on S•(g). Therefore, we first construct a topology on the tensor
algebra T•(g). Since the construction is possible starting from any locally convex vector space,
we want to go back to this more general setting for a moment. V will always denote a locally
convex vector space and P the set of its continuous seminorms. In this situation, we can use the
projective tensor product ⊗π to get a locally convex topology on each tensor power V ⊗πn. The
precise construction of the projective tensor product can be found in good textbooks on locally
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convex analysis like [57, Chapter 15] or in the lecture notes [97, Lemma 4.1.4]. Recall that for
p1, . . . , pn ∈ P we have a continuous seminorm on V ⊗πn via

(p1 ⊗π · · · ⊗π pn)(x) = inf

{∑

i

p1

(
x
(1)
i

)
· · · pn

(
x
(n)
i

) ∣∣∣∣∣ x =
∑

i

x
(1)
i ⊗ · · · ⊗ x

(n)
i

}
.

On factorizing tensors, we moreover have the property

(p1 ⊗π · · · ⊗π pn)(x1 ⊗π · · · ⊗π xn) = p1(x1) · · · pn(xn) (5.2.4)

which will be extremely useful in the following and which can be proven by the Hahn-Banach
theorem. We also have

(p1 ⊗ · · · ⊗ pn)⊗ (q1 ⊗ · · · ⊗ qm) = p1 ⊗ · · · ⊗ pn ⊗ q1 ⊗ · · · ⊗ qm.

For a given p ∈ P we will denote pn = p⊗πn and p0 is just the absolute value on the field K.
The π-topology on V ⊗πn is set up by all the projective tensor products of continuous seminorms,
or, equivalently, by all the pn for p ∈ P.

The projective tensor product has a very helpful feature: if we want to show a (continuity)
estimate on the tensor algebra, it is enough to do so on factorizing tensors. We will use this very
often and just refer to it as the “infimum argument”.

Lemma 5.2.9 (Infimum argument for the projective tensor product) Let V1, . . . , Vn,

W be locally convex vector spaces and

φ : V1 × · · · × Vn −→W

a n-linear map, from which we get the linear map Φ: V1⊗π · · ·⊗πVn −→W . Then Φ is continuous

if and only if this is true for φ. If the estimate

p(Φ(x1 ⊗ · · · ⊗ xn)) ≤ qi(x1) · · · qi(xn) (5.2.5)

is fulfilled for p ∈ PV , qi ∈ PWi
and all xi ∈ Vi, i = 1, . . . , n then we have

p(Φ(x)) ≤ (q1 ⊗ · · · ⊗ qn)(x) (5.2.6)

for all x ∈ V1 ⊗ · · · ⊗ Vn.

Proof: If Φ is continuous, the continuity of φ is clear. The other implication is more interest-
ing. Continuity for φ means, that for every continuous seminorm p on W we have continuous
seminorms qi on Vi with i = 1, . . . , n such that for all x(i) ∈ Vi the estimate

p
(
φ
(
x(1), . . . , x(n)

))
≤ q1

(
x(1)

)
· · · qn

(
x(n)

)
(5.2.7)

holds. Let x ∈ V1 ⊗π . . .⊗π Vn, then it has a representation in terms of factorizing tensors like

x =
∑

j

x
(1)
j ⊗π · · · ⊗π x

(n)
j .

We thus have

p(Φ(x)) = p


∑

j

Φ
(
x
(1)
j ⊗π · · · ⊗π x

(n)
j

)
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≤
∑

j

p
(
φ
(
x
(1)
j , · · · , x(n)j

))

≤
∑

j

q1

(
x
(1)
j

)
· · · qn

(
x
(n)
j

)
.

Now we take the infimum over all possibilities of writing x as a sum of factorizing tensors
on both sides. While nothing happens on the left hand side, on the right hand side we find
(q1 ⊗π . . . ⊗π qn)(x):

p(Φ(x)) ≤ inf




∑

j

q1

(
x
(1)
j

)
· · · qn

(
x
(n)
j

)
∣∣∣∣∣∣
x =

∑

j

x
(1)
j · · · x(n)j



.

This is the estimate we wanted and the Lemma is proven. �

Most of the time, we will deal with the symmetric tensor algebra. Therefore, we want to
recall some basic facts about Sn(V ), when it inherits the π-topology from the V ⊗πn. We will
call it Snπ(V ) when we endow it with this topology.

Lemma 5.2.10 Let V be a locally convex vector space, p a continuous seminorm and n,m ∈ N.

i.) The symmetrization map

S n : V
⊗πn −→ V ⊗πn, (x1 ⊗ . . . ⊗ xn) 7−→

1

n!

∑

σ∈Sn

xσ(1) ⊗ . . . ⊗ xσ(n)

is continuous and we have for all x ∈ V ⊗πn the estimate

pn(S n(x)) ≤ pn(x). (5.2.8)

ii.) Each symmetric tensor power Snπ(V ) ⊆ V ⊗πn is a closed subspace.

iii.) For x ∈ Snπ(V ) and y ∈ Smπ (V ) we have

pn+m(xy) ≤ pn(x)pm(y).

Proof: The first part is very easy to see and uses most of the tools which are typical for the
projective tensor product. We have the estimate for factorizing tensors x1 ⊗ . . .⊗ xn

pn(S (x1 ⊗ . . . ⊗ xn)) = pn

(
1

n!

∑

σ∈Sn

xσ(1) ⊗ . . .⊗ xσ(n)

)

≤ 1

n!

∑

σ∈Sn

pn
(
xσ(1) ⊗ . . . ⊗ xσ(n)

)

=
1

n!

∑

σ∈Sn

p
(
xσ(1)

)
. . . p

(
xσ(n)

)

= p(x1) . . . p(xn)

= pn(x1 ⊗ . . .⊗ xn).

Then we use the infimum argument from Lemma 5.2.9 and we are done. The second part is also
easy since the kernel of a continuous map is always a closed subspace of the initial space and we
have

Snπ = ker(id−S n).

The third part is a consequence from the first. �
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One could maybe think that the inequality in the first part of this lemma is just an artefact
which is due to the infimum argument and should actually be an equality, if one looked at it
more closely. It is very interesting to see, that this is not the case, since it may happen that this
inequality is strict. The following example illustrates this.

Example 5.2.11 We take V = R

2 with the standard basis e1, e2 and V is endowed with the
maximum norm. Hence we have ‖e1‖ = ‖e2‖ = 1. Now look at e1 ⊗ e2, which has the norm

‖e1 ⊗ e2‖ = ‖e1‖ ⊗ ‖e2‖ = 1.

We now evaluate the symmetrization map on V ⊗π V :

S (e1 ⊗ e2) =
1

2
(e1 ⊗ e2 + e2 ⊗ e1).

Our aim is to show, that the projective tensor product of the norm of this symmetrized vector
is not 1. Therefore we need to find another way of writing it which has a norm of less than 1.
Observe that

1

2
(e1 ⊗ e2 + e2 ⊗ e1) =

1

4
((e1 + e2)⊗ (e1 + e2) + (−e1 + e2)⊗ (e1 − e2))

and we have

1

4
‖(e1 + e2)⊗ (e1 + e2) + (−e1 + e2)⊗ (e1 − e2)‖

≤ 1

4
(‖(e1 + e2)⊗ (e1 + e2)‖+ ‖(−e1 + e2)⊗ (e1 − e2)‖)

≤ 1

4
(‖e1 + e2‖ · ‖e1 + e2‖+ ‖−e1 + e2‖ · ‖e1 − e2‖)

=
1

4
(1 · 1 + 1 · 1)

=
1

2
.

So we have ‖S (e1 ⊗ e2)‖ ≤ 1
2 < 1.

5.2.4 A Topology for the Gutt Star Product

The next step is to set up a topology on T•(V ) which has the π-topology on each component. A
priori, there are a lot of such topologies and at least two natural ones: the direct sum topology
which is very fine and has a very small closure, and the cartesian product topology which is very
coarse and therefore has a very big closure. We need something in between, which we can adjust
in a convenient way.

Definition 5.2.12 (TR-topology) Let p be a continuous seminorm on a locally convex vector

space V and R ∈ R. We define by

pR =

∞∑

n=0

n!Rpn

a seminorm on the tensor algebra T•(V ). We write for the tensor or the symmetric algebra

endowed with all such seminorms T•
R(V ) or S•R(V ) respectively.

Now we want to collect the most important results on the locally convex algebras (T•
R(V ),⊗)

and (S•R(V ),∨).
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Lemma 5.2.13 (The TR-topology) Let R′ ≥ R ≥ 0 and q, p are continuous semi-norms on

V .

i.) If q ≥ p then qR ≥ pR and pR′ ≥ pR.

ii.) The tensor product is continuous and satisfies the following inequality:

pR(x⊗ y) ≤
(
2Rp

)
R
(x)
(
2Rp

)
R
(y)

iii.) For all n ∈ N the induced topology on Tn(V ) ⊂ T•
R(V ) and on Sn(V ) ⊂ S•R(V ) is the π-

topology.

iv.) For all n ∈ N the projection and the inclusion maps

T•
R(V )

πn−→ V ⊗πn
ιn−→ T•(V )

S•R(V )
πn−→ Snπ(V )

ιn−→ S•R(V )

are continuous.

v.) The completions T̂
•

R(V ) of T•
R(V ) and Ŝ•R(V ) of S•R(V ) can be described explicitly as

T̂
•

R(V ) =

{
x =

∞∑
n=0

xn

∣∣∣∣ pR(x) <∞, for all p

}
⊆

∞∏
n=0

V ⊗̂πn

Ŝ•R(V ) =

{
x =

∞∑
n=0

xn

∣∣∣∣ pR(x) <∞, for all p

}
⊆

∞∏
n=0

Sn
⊗̂π

with p running through all continuous semi-norms on V and the pR are extended to the

Cartesian product allowing the value +∞.

vi.) If R′ > R, then the topology on T•
R′(V ) is strictly finer than the one on T•

R(V ), the same

holds for S•R′(V ) and S•R(V ). Therefore the completions get smaller for bigger R.

vii.) The inclusion maps T̂
•

R′(V ) −→ T̂
•

R(V ) and Ŝ•R′(g) −→ Ŝ•R(g) are continuous.

viii.) The topology on T•
R(V ) with the tensor product and on S•R(V ) with the symmetric product

is locally m-convex if and only if R = 0.

ix.) The algebras T•
R(V ) and S•R(V ) are first countable if and only if this is true for V .

x.) The evaluation functionals δϕ : S
•
R(V ) −→ K for ϕ ∈ g′ are continuous.

Proof: The first part is clear on factorizing tensors and extends to the whole tensor algebra
via the infimum argument. For part (ii), take two factorizing tensors

x = x(1) ⊗ · · · ⊗ x(n) and y = y(1) ⊗ · · · ⊗ y(m)

and compute:

pR(x⊗ y) = (n+m)!Rpn+m
(
x(1) ⊗ · · · ⊗ x(n) ⊗ y(1) ⊗ · · · ⊗ y(m)

)

= (n+m)!Rpn
(
x(1) ⊗ · · · ⊗ x(n)

)
pm
(
y(1) ⊗ · · · ⊗ y(m)

)

=

(
n+m

n

)R
n!Rm!Rpn

(
x(1) ⊗ · · · ⊗ x(n)

)
pm
(
y(1) ⊗ · · · ⊗ y(m)

)

≤ 2(n+m)RpR

(
x(1) ⊗ · · · ⊗ x(n)

)
pR

(
y(1) ⊗ · · · ⊗ y(m)

)

=
(
2Rp

)
R

(
x(1) ⊗ · · · ⊗ x(n)

)(
2Rp

)
R

(
y(1) ⊗ · · · ⊗ y(m)

)
.
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The parts (iii) and (iv) are clear from the construction of the R- topology. In part (v) we used
the completion of the tensor product ⊗̂, the statement itself is clear and implies (vi) directly,
since we have really more elements in the completion for R < R′, like the series over xn 1

n!t for
t ∈ (R,R′) and 0 6= x ∈ V . Statement (vii) follows from the first. For (viii), it is easy to see
that T•

0(V ) and S•0(V ) are locally m-convex. For every R > 0 we have

pR(x
n) = n!Rp(x)n

for all n ∈ N and all x ∈ V . If we had a submultiplicative seminorm ϕ from an equivalent
topology, then we would have some x ∈ V , and a continuous seminorm p with p(x) 6= 0 such
that pR ≤ ϕ, and hence

n!Rp(x)R ≤ ϕ(xn) ≤ ϕ(x)n.

Since this is valid for all n ∈ N, we get a contradiction. For the ninth part, the tensor algebras
can not be first countable if this is not true for V itself. On the other hand, if V has a finite base
of the topology, then T•

R(V ) and S•R(V ) are just a countable multiple of V and stay therefore first
countable. The last part finally assures, that every symmetric tensor really gives a continuous
function and comes from the continuity of ϕ. �

The projective tensor product obviously keeps a lot of important and strong properties of the
original vector space V . But Lemma 5.2.13 still leaves out some important things. We will not
make use of them in the following, but it is worth naming them for completeness. To do this in
full generality, we need one more definition, which will be also very important in Chapter 6.

Definition 5.2.14 For a locally convex vector space V and R ≥ 0 we set

S•R−(V ) = proj lim
ǫ−→0

S•1−ǫ(V )

and call its completion Ŝ•
R−(V ).

The projective limit is the intersection of all the algebras S•R(V ) for R < 1. Its completion can
be understood as all those series in the cartesian product, which converge for all pR for R < 1

and p a continuous seminorm on V . We hence see that the completion Ŝ•
R−(V ) is bigger than

Ŝ•R(V ) without the projective limit. This will become important in Chapter 6. Now we can state
two more propositions. Since we won’t use them, we omit the proofs here. They can be found
in [96].

Proposition 5.2.15 (Schauder bases) Let R ≥ 0 and V a locally convex vector space. If

{ei}i∈I is an absolute Schauder basis of V with coefficient functionals {ϕi}i∈I , i.e. for every

x ∈ V we have

x =
∑

i∈I

ϕi(x)ei

such that for every p ∈ P there is a q ∈ P such that
∑

i∈I

|ϕi(x)|p(ei) ≤ q(x), (5.2.9)

then the set {ei1 ⊗ . . .⊗ ein}i1,...,in∈I defines an absolute Schauder basis of T•
R(V ) together with

the linear functionals {ϕi1 ⊗ . . .⊗ ϕin}i1,...,in∈I which satisfy

∞∑

n=0

∑

i1,...,in∈I

∣∣(ϕi1 ⊗ . . .⊗ ϕin
)
(x)
∣∣pR(ei1 ⊗ . . .⊗ ein) ≤ qR(x)



66 CHAPTER 5. A LOCALLY CONVEX TOPOLOGY FOR THE GUTT STAR PRODUCT

for every x ∈ T•
R(V ) whenever p and q satisfy (5.2.9). The same statement is true for S•R(V )

and for S•
R−(V ) (for R > 0) when we choose a maximal linearly independent subset out of the

set {ei1 . . . ein}i1,...,in∈I .
Proposition 5.2.16 (Nuclearity) Let V be a locally convex space. For R ≥ 0 the following

statements are equivalent:

i.) V is nuclear.

ii.) T•
R(V ) is nuclear.

iii.) S•R(V ) is nuclear.

If moreover R > 0, then the following statements are equivalent:

i.) V is strongly nuclear.

ii.) T•
R(V ) is strongly nuclear.

iii.) S•R(V ) is strongly nuclear.

Nuclearity is an important and natural property in physics. Actually every example of a locally
convex vector space, which play a role in physics, is either a normed space or nuclear. Therefore
we want this property to be conserved.

Remark 5.2.17 (The TR-topology in the literature) It seems that this topology is actu-
ally not a new construction, but it was already found and refound in the past. A very similar
construction is due to Goodman [46], who looked at finite-dimensional Lie algebras. He studied
differential operators on the Lie group, that means the universal enveloping algebra, which he
topologised via the tensor algebra using basically the same weights. He needed a basis to do so
and proved afterwards that the topology he found is independent of the choice of the basis. He
also showed the continuity of the multiplication, but by going a different way: he proved that
certain ideals are closed in this topology and divided them out. In this sense his approach is less
explicit than ours and also does not apply to infinite-dimensional Lie algebras, where the proofs
are more involved. Goodman was more interested in the representation theory which arises from
his construction and he also knew about its functoriality. However, he did not know about the
deformation aspect behind it, since the ideas of deformation quantization did not exist at that
time. It seems a bit like his work has gone more or less unnoticed, we could not find a work
which used this topology later for studies in Lie theory. A very different way of constructing a
topology which coincides with ours for R = 1 was moreover given before by Raševskĭi in [74],
who also restricted to the finite-dimensional case and used bases of his Lie algebra to construct
the topology. For this reason, also his ideas are bounded to finite-dimensional Lie algebras.

5.3 Continuity Results for the Gutt Star Product

From now on, we start with an AE Lie algebra g rather than with a general locally convex space
V . We have most of the tools at hand to show the continuity of the Gutt star product, except

for precise estimates on the B̃CHa,b-terms. Therefore, we state the following lemma.

Lemma 5.3.1 Let g be a AE-Lie algebra, ξ, η ∈ g, p a continuous seminorm, q an asymptotic

estimate for it and a, b, n ∈ N with a+ b = n. Then, using the Goldberg-Thompson form of the

Baker-Campbell-Hausdorff series, we have the following estimates:

i.) The coefficients gw from (3.3.8) fulfil the estimate
∑

|w|=n

∣∣∣gw
n

∣∣∣ ≤ 2

n
. (5.3.1)
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Recall that |w| denotes the length of a word w and [w] is the word put in Lie brackets nested

to the left.

ii.) For every word w, which consists of a ξ and b η, we have

p([w]) ≤ q(ξ)aq(η)b. (5.3.2)

iii.) We have the estimate

p
(
B̃CHa,b(ξ1, . . . , ξa; η1, . . . , ηb)

)
≤ 2

a+ b
q(ξ1) · · · q(ξa)q(η1) · · · q(ηb) (5.3.3)

Proof: We already showed part (i) in Proposition 3.3.3 and put in the factor 1
n

because these
factors will appear later. The next estimate (5.3.2) is due to the AE property which does not
see the way how brackets are set but just counts the number of ξi and ηj in the whole expression.
Let us use the notation |w|ξ for the number of ξ’s appearing in a word w and |w|η for the number
of η’s. Clearly, |w| = |w|ξ + |w|η . With (5.3.1) and the AE property of g, we get

p
(
B̃CHa,b(ξ1, . . . , ξa; η1, . . . , ηb)

)
≤
∑

|w|ξ=a
|w|η=b

pa+b
(

gw

a+ b
[w]

)

≤
∑

|w|ξ=a
|w|η=b

|gw|
a+ b

p([w])

≤
∑

|w|=a+b

|gw|
a+ b

q(ξ1) · · · q(ξa)q(η1) · · · q(ηb)

≤ 2

a+ b
q(ξ1) · · · q(ξa)q(η1) · · · q(ηb). �

For showing the continuity of the star product we can either proceed via the big formula (4.1.12)
for two monomials or via the smaller one (4.1.3) for a monomial with a vector and iterate it.
While the results are a bit better for the first approach, the second makes the proof easier.
Nevertheless, both approaches give strong results, and this is why we will to give both proofs
here.

There will be a very general way how most of the proofs will work and which tools will be
used in the following. If we want to show the continuity of a map f : S•R(g) −→ S•R(g), we will
proceed most of the time like this:

i.) First, we extend the map to the whole tensor algebra by symmetrizing beforehand: f =

f ◦S . This is a real extension since the symmetrization does not affect symmetric tensors.
We do this here for the Gutt star product

⋆z : T•(g)⊗ T•(g) −→ T•(g), ⋆z = ⋆z ◦ (S ⊗)

and for the Cn-operators analogously.

ii.) Then we start with an estimate which we prove only on factorizing tensors in order to use
the infimum argument (Lemma 5.2.9).

iii.) During the estimation process, we find products of Lie brackets. Those will be split up
by the continuity of the symmetric product (5.2.8) from Lemma 5.2.10 the AE property
(5.2.2).
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iv.) Finally, we rearrange the split up seminorms to the seminorm of a factorizing tensor by
(5.2.4).

5.3.1 Continuity of the Product

In the first proof, we want to give an estimate via the formula

ξ1 · · · ξk ⋆z η1 · · · ηℓ =
k+ℓ−1∑

n=0

znCn(ξ1 · · · ξk, η1 · · · ηℓ). (5.3.4)

To shorten the very long expression from Equation (4.1.13), we abbreviate the summations by

Cn(ξ1 · · · ξk, η1 · · · ηℓ) =
1

r!

∑

σ,τ

∑

ai,bj

B̃CHa1,b1
(
ξσ(i); ητ(j)

)
· · · B̃CHar ,br

(
ξσ(i); ητ(j)

)
, (5.3.5)

meaning the summations as given in Proposition 4.1.11 and using r = k + ℓ− n.

Theorem 5.3.2 (Continuity of the star product) Let g be an AE-Lie algebra, R ≥ 0, p a

continuous seminorm with an asymptotic estimate q and z ∈ C.

i.) For n ∈ N, the operator Cn is continuous and for all x, y ∈ T•
R(g) we have the estimate:

pR(Cn(x, y)) ≤
n!1−R

2 · 8n (16q)R(x)(16q)R(y) (5.3.6)

ii.) For R ≥ 1, the Gutt star product is continuous and for all x, y ∈ T•
R(g) we have the estimate:

pR(x ⋆z y) ≤ (cq)R(x)(cq)R(y) (5.3.7)

with c = 16(|z| + 1). Hence, the Gutt star product is continuous and the estimate (5.3.7)
holds on Ŝ•R(g) for all z ∈ C

Proof: Let us use r = k + ℓ − n as before and recall that the products are taken in the
symmetric algebra. Then we can use Equation (5.3.5) and put estimates on it. Let p be a
continuous seminorm and let q be an asymptotic estimate for it. Then we get

pR
(
Cn
(
ξ1 ⊗ · · · ⊗ ξk,η1 ⊗ · · · ⊗ ηℓ

))

= pR

(
1

r!

∑

σ,τ

∑

ai,bj

B̃CHa1,b1
(
ξσ(i); ητ(j)

)
· · · B̃CHar ,br

(
ξσ(i); ητ(j)

))

(a)
≤ 1

r!
r!R
∑

σ,τ

∑

ai,bj

p
(
B̃CHa1,b1

(
ξσ(i); ητ(j)

))
· · · p

(
B̃CHar ,br

(
ξσ(i); ητ(j)

))

(b)
≤ 1

r!1−R

∑

σ,τ

∑

ai,bj

2

a1 + b1
. . .

2

ar + br
q(ξ1) · · · q(ξk)q(η1) · · · q(ηℓ)

(c)
≤ q(ξ1) · · · q(ξk)q(η1) · · · q(ηℓ)2r

k!ℓ!

r!1−R

∑

ai,bj

1,

where we just used the continuity estimate for the symmetric tensor product in (a), Lemma 5.3.1,
iii.), in (b) and 2

ai+bi
≤ 2 in (c). We estimate the number of terms in the sum and get

∑

a1,b1,...,ar ,br≥0
ai+bi≥1

a1+···+ar=k
b1+···+br=ℓ

1 ≤
∑

a1,b1,...,ar ,br≥0
a1+b1+···+ar+br=k+ℓ

1 =

(
k + ℓ+ 2r − 1

k + ℓ

)
≤ 23(k+ℓ)−2n−1.
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Using this estimate, we get

pR
(
Cn
(
ξ1 ⊗ · · · ⊗ ξk, η1 ⊗ · · · ⊗ ηℓ

))

≤ q(ξ1) · · · q(ξk)q(η1) · · · q(ηℓ)2k+ℓ−n
k!ℓ!

(k + ℓ− n)!1−R
23(k+ℓ)−2n−1

= qR(ξ1 ⊗ · · · ⊗ ξk)qR(η1 ⊗ · · · ⊗ ηℓ)2
4(k+ℓ)−3n−1

(
k!ℓ!n!

(k + ℓ− n)!n!

)1−R

≤ qR(ξ1 ⊗ · · · ⊗ ξk)qR(η1 ⊗ · · · ⊗ ηℓ)2
4(k+ℓ)−3n−12(1−R)(k+ℓ)n!1−R

=
n!1−R

2 · 8n (16q)R(ξ1 ⊗ · · · ⊗ ξk)(16q)R(η1 ⊗ · · · ⊗ ηℓ).

The estimate (5.3.6) is now proven on factorizing tensors. For general tensors x, y ∈ T•
R(g), we

use the infimum argument from Lemma 5.2.9 and the first part is done. For the second part, let
x and y be tensors of degree at most k and ℓ respectively. We use (5.3.6) in (a), the fact that
R ≥ 1 in (b) and have

pR(x ⋆z y) = pR

(
l+ℓ−1∑

n=0

znCn(x, y)

)

≤
k+ℓ−1∑

n=0

pR(z
nCn(x, y))

(a)
≤

k+ℓ−1∑

n=0

|z|n
2 · 8nn!

1−R(16q)R(x)(16q)R(y) (5.3.8)

(b)
≤ (|z|+ 1)k+ℓ

2
(16q)R(x)(16q)R(y)

∞∑

n=0

1

8n

≤ (16(|z| + 1)q)R(x)(16(|z| + 1)q)R(y).

Since estimates on S•R(g) also hold for the completion, the theorem is proven. �

Remark 5.3.3 (Uniform continuity) Part (i) of the theorem makes clear, why exactly conti-
nuity will only hold if R ≥ 1: the estimate in (5.3.6) shows, that all the Cn are indeed continuous
for any R ≥ 0, but only for R ≥ 1 there is something like a uniform continuity. When R de-
creases, the continuity of the Cn “gets worse” and the uniform continuity finally breaks down
when the threshold R = 1 is trespassed. But we need this uniform estimate, since we have to
control the operators up to an arbitrarily high order if we want to guarantee the continuity of
the whole star product. Continuity up to a previously fixed order n does not suffice.

Now, we want to give a second proof, which relies on (4.1.3). Approaching like this, we do
not account for the fact that we will encounter terms like [η, η] which vanish, but we estimate
more brutally. During this procedure, we also count the formal parameter z more often than it
is actually there. This is why we now have to make assumptions on R and z which are a bit
stronger than before. Moreover, we split up tensor products and put them together again various
times, which is the reason why an AE Lie algebra does not suffice any more: we need g to be
locally m-convex. But if we make these assumptions, we get the following lemma, which finally
simplifies the proof.
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Lemma 5.3.4 Let g be a locally m-convex Lie algebra and R ≥ 1. Then if |z| < 2π or R > 1

there exists, for x ∈ T•(g) of degree at most k, η ∈ g and each continuous submultiplicative

seminorm p, a constant cz,R only depending on z and R such that the following estimate holds:

pR(x ⋆z η) ≤ cz,R(k + 1)RpR(x)q(η) (5.3.9)

Proof: We have for ξ1, . . . , ξk, η ∈ g

pR(ξ1 ⊗ · · · ⊗ ξk ⋆z η) = pR




k∑

n=0

B∗
nz

n

n!(k − n)!

∑

σ∈Sk

ξσ(1) · · · ξσ(k−n)
(
adξσ(k−n+1)

◦ · · · ◦ adξσ(k)

)
(η)




=

k∑

n=0

|B∗
n||z|n

n!(k − n)!

∑

σ∈Sk

(k + 1− n)!Rpk+1−n
(
ξσ(1) · · · ξσ(k−n)

(
adξσ(k−n+1)

◦ · · · ◦ adξσ(k)

)
(η)
)

≤ (k + 1)R
k∑

n=0

|B∗
n||z|n
n!

(k − n)!R−1k!p(ξ1) · · · p(ξk)p(η)

= (k + 1)R
k∑

n=0

|B∗
n||z|n
n!R

(
(k − n)!n!

k!

)R−1

pR(ξ1 ⊗ · · · ⊗ ξk)p(η)

≤ (k + 1)RpR(ξ1 ⊗ · · · ⊗ ξk)p(η)
k∑

n=0

|B∗
n||z|n
n!R

.

Now if |z| < 2π the sum can be estimated by extending it to a series which converges. So we get
a constant cz,R depending on R and on z such that

pR(ξ1 ⊗ · · · ⊗ ξk ⋆z η) ≤ (k + 1)Rcz,RpR(ξ1 ⊗ · · · ⊗ ξk)p(η).

On the other hand, if |z| ≥ 2π and R > 1 we can estimate

pR(ξ1 ⊗ · · · ⊗ ξk ⋆z η) ≤ (k + 1)RpR(ξ1 ⊗ · · · ⊗ ξk)p(η)

(
k∑

n=0

|B∗
n|
n!

)(
k∑

n=0

|z|n
n!R−1

)
.

Again, both series will converge and give constants depending only on z and R. Hence, we have
the estimate on factorizing tensors and can extend this to generic tensors of degree at most k by
using the infimum argument. �

In the following, we assume again that either R > 1 or R ≥ 1 and |z| < 2π in order the
use Lemma 5.3.4. Now we can give a simpler proof of Theorem 5.3.2 for the case of a locally
m-convex Lie algebra:

Proof (Alternative Proof of Theorem 5.3.2): Assume that g is now even locally m-
convex. We want to replace η in the foregoing lemma by an arbitrary tensor y of degree at
most ℓ. Again, we do that on factorizing tensors first and get

pR
(
ξ1 ⊗ · · · ⊗ ξk ⋆z η1 ⊗ · · · ⊗ ηℓ

)
= pR


 1

ℓ!

∑

τ∈Sℓ

ξ1 ⊗ · · · ⊗ ξk ⋆z ητ(1) ⊗ · · · ⊗ ητ(ℓ)




≤ 1

ℓ!

∑

τ∈Sℓ

pR
(
ξ1 ⊗ · · · ⊗ ξk ⋆z ητ(1) ⊗ · · · ⊗ ητ(ℓ)

)
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≤ cz,R(k + ℓ)R
1

ℓ!

∑

τ∈Sℓ

pR
(
ξ1 ⊗ · · · ⊗ ξk ⋆z ητ(1) ⋆ · · · ⋆z ητ(ℓ−1)

)
p
(
ητ(ℓ)

)

≤ ...

≤ cℓz,R((k + ℓ) · · · (k + 1))R
1

ℓ!

∑

τ∈Sℓ

pR(ξ1 ⊗ · · · ⊗ ξk)p
(
ητ(1)

)
· · · p

(
ητ(ℓ)

)

= cℓz,R

(
(k + ℓ)!

k!ℓ!

)R
pR(ξ1 ⊗ · · · ⊗ ξk)pR(η1 ⊗ · · · ⊗ ηℓ)

≤ (2Rp)R(ξ1 ⊗ · · · ⊗ ξk)(2
Rcz,R p)R(η1 ⊗ · · · ⊗ ηℓ).

Once again, we extend the estimate via the infimum argument to the whole tensor algebra, since
the estimate depends no longer on the degree of the tensors. �

Using this approach for continuity, it is easy to see that nilpotency of the Lie algebra would
change the estimate substantially: if we knew that we had at most N brackets because N + 1

brackets vanish, then the sum in the proof of Lemma 5.3.4 would end at N instead of k and
would therefore be independent of the degree of x.

In both proofs, it is easy to see that we need at least R ≥ 1 to get rid of the factorials which
come up because of the combinatorics of the star product. It is nevertheless interesting to see
that this result is sharp, that means the Gutt star product really fails continuity for R < 1:

Example 5.3.5 (A counter-example) Let 0 ≤ R < 1 and g be the Heisenberg algebra in
three dimensions, i.e. the Lie algebra generated by the elements P , Q and E with the bracket
[P,Q] = E and all other brackets vanishing. This is a very simple example for a non-abelian Lie
algebra and if continuity of the star product fails for this one, then we can not expect it to hold
for more complex ones. We impose on g the ℓ1-topology with the norm n and n(P ) = n(Q) =

n(E) = 1. This will be helpful, since here we really have the equality

nk+ℓ
(
XkY ℓ

)
= nk

(
Xk
)
nℓ
(
Y ℓ
)

for the symmetric product of vectors X,Y . Then we consider the sequences

ak =
P k

k!R+ǫ
and bk =

Qk

k!R+ǫ

with 2ǫ < 1−R. It is easy to see that

nR(ak) = nR(bk) = k!−ǫ

and hence we get the limit for any c > 0 by

lim
n−→∞

(cn)R(ak) = lim
n−→∞

(cn)R(ak) = 0

We want to show that there is no c > 0 such that

nR(ak ⋆z bk) ≤ (cn)R(ak)(cn)R(bk).

In other words, nR(ak ⋆z bk) grows faster than exponentially. But this is the case, since we can
calculate the star product explicitly and see

nR(ak ⋆z bk) = nR




k∑

j=0

(
k

j

)(
k

j

)
j!

1

k!2R+2ǫ
P k−jQk−jEj
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=

k∑

j=0

k!2j!(2k − j)!R

(k − j)!2j!2k!2R+2ǫ
n2k−j(P k−jQk−jEj)︸ ︷︷ ︸

=1

=

k∑

j=0

(
k

j

)2(2k
k

)(
2k

j

)−1

︸ ︷︷ ︸
≥1

j!1−R

k!2ǫ

≥
k∑

j=0

j!1−R

k!2ǫ

≥ k!1−R−2ǫ.

Finally, we get a contradiction to the continuity of the star product since ak ⋆z bk is unbounded
in the topology of SR(g) although the sequences themselves go to zero.

5.3.2 Dependence on the Formal Parameter

Now we want to analyse the completion Ŝ•R(g) of the symmetric algebra with ⋆z. Concerning
exponential functions, we get the following negative result:

Proposition 5.3.6 Let ξ ∈ g and R ≥ 1, then exp(ξ) 6∈ Ŝ•R(g), where exp(ξ) =
∑∞

n=0
ξn

n! .

Proof: Take a seminorm p such that 1 ≥ p(ξ) 6= 0. Then set c = p(ξ)−1 ≥ 1. For ξn the powers
in the sense of either the usual tensor product, or the symmetric product or the star product are
the same. So we have for N ∈ N

(cp)R

(
N∑

n=0

1

n!
ξn

)
=

N∑

n=0

n!R

n!
cnp(ξ)n =

N∑

n=0

n!R−1 ≥ N,

and hence exp(ξ) does not converge for the seminorm (cp)R. �

When we go back to Theorem 5.3.2, we see that we have actually proven slightly more than we
stated: we showed that the star product converges absolutely and locally uniform in z. This
means that the star product is not only continuous, but also that the formal series converges to

the star product in the completion. We can take a closer look at this proof in order to get a new
result for the dependence on the formal parameter z:

Proposition 5.3.7 (Dependence on z) Let R ≥ 1, then for all x, y ∈ Ŝ•R(g) the map

K ∋ z 7−→ x ⋆z y ∈ Ŝ•R(g) (5.3.10)

is analytic with (absolutely convergent) Taylor expansion at z = 0 given by Equation (4.1.11).

For K = C, the collection of algebras
{(

Ŝ•R(g), ⋆z

)}
z∈C

is an entire holomorphic deformation

of the completed symmetric tensor algebra
(
Ŝ•R(g),∨

)
.

Proof: The crucial point is that for x, y ∈ Ŝ•R(g) and every continuous seminorm p we have an
asymptotic estimate q such that

pR(x ⋆z y) = pR

(
∞∑

n=0

znCn(x, y)

)
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=

∞∑

n=0

|z|npR(Cn(x, y))

≤ (16q)R(x)(16q)R(y)
∞∑

n=0

|z|nn!1−R
2 · 8n ,

where we used the fact that the estimate (5.3.6) extends to the completion. For R > 1, this map
is clearly analytic and absolutely convergent for all z ∈ K. If R = 1, then for every M ≥ 1 we go
back to homogeneous, factorizing tensors x(k) and y(ℓ) of degree k and ℓ respectively, and have

MnpR

(
Cn

(
x(k), y(ℓ)

))
≤ Mn

2 · 8n (16q)R
(
x(k)

)
(16q)R

(
y(ℓ)
)

≤Mk+ℓ(16q)R

(
x(k)

)
(16q)R

(
y(ℓ)
)

= (16Mq)R

(
x(k)

)
(16Mq)R

(
y(ℓ)
)
,

where we used that 0 ≤ n ≤ k + ℓ− 1. The infimum argument gives the estimate on all tensors
x, y ∈ T•

R(g) and it extends to the completion such that

pR(z
nCn(x, y)) ≤ (16Mq)R(x)(16Mq)R(y)

|z|n
2 · (8M)n

and hence

pR(x ⋆z y) ≤ (16Mq)R(x)(16Mq)R(y)
∞∑

n=0

|z|n
2 · (8M)n

.

So the power series converges for all z ∈ C with |z| < 8M and converges uniformly if |z| ≤ cM

for c < 8. But then, the map (5.3.10) converges on all open discs centered around z = 0, and it
must therefore be entire. �

Remark 5.3.8 ((Weakly) holomorphic maps with values in locally convex spaces)

One could argue that the term “holomorphic” in a locally convex space V does not necessarily
mean that a map has a absolutely convergent Taylor expansion, but one should rather see the
map (5.3.10) as a collection of paths C −→ Ŝ•R(g) and ask for their complex differentiability
in the sense of a differential quotient. Of course, this is also a valid formulation of the word
“holomorphic” and it is actually even the standard definition for holomorphic maps with values
in locally convex spaces. According to this definition one calls a map “weakly holomorphic”, if
every continuous linear form λ : V −→ C applied to it gives a holomorphic map C −→ C. Using
this terminology, we would just have proven the map (5.3.10) to be weakly holomorphic. Yet, we
have also proven “strong” holomorphicity, since in [81, Theorem 3.31] Rudin proved that the two
notions of holomorphicity coincide in locally convex spaces.

5.3.3 Representations

We now want to identify the deformed symmetric algebra (S•R(g), ⋆z) with the the universal
enveloping algebra U (gz) with the scaled product.

Definition 5.3.9 (The UR-Topology) We denote by UR(gz) the locally convex algebra which

we get from U (gz) by pulling back the S•R(g)-topology via the Poincaré-Birkholl-Witt isomophism

q.
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We know this algebra has the universal property that Lie algebra homomorphisms into associative
algebras can be lifted to unital homomorphisms of associative algebras. As a commutative
diagram, this reads

UR(g) S•R(g)

g A

q−1

Φ Φ̃ι

φ

where A is the mentioned associative algebra. Since we endowed UR(gz) and S•R(g) with a
topology, we can now ask if the homomorphisms Φ and Φ̃ are continuous. This question is partly
answered by the following result:

Proposition 5.3.10 (Universal property) Let g be an AE-Lie algebra, A an associative AE

algebra and φ : g −→ A is a continuous Lie algebra homomorphism. If R ≥ 1, then the induced

algebra homomorphisms Φ and Φ̃ are continuous.

Proof: We define an extension of Φ on the whole tensor algebra again:

Ψ: T•
R(g) −→ A , Ψ = Φ̃ ◦ S

It is clear that if Ψ is continuous on factorizing tensors, we will get the continuity of Φ̃ and of Φ
via the infimum argument. So let p be a continuous seminorm on A with an asymptotic estimate
q and ξ1, . . . , ξn ∈ g. Since φ is continuous, we find a continuous seminorm r on g such that for
all ξ ∈ g we have q(φ(ξ)) ≤ r(ξ). Then we have

p(Ψ(ξ1 ⊗ · · · ⊗ ξn)) = p
(
Φ̃(ξ1 ⋆z · · · ⋆z ξn)

)

= p(φ(ξ1) · · · φ(ξn))
≤ q(φ(ξ1)) · · · q(φ(ξn))
≤ r(ξ1) · · · r(ξn)
≤ rR(ξ1 ⊗ · · · ⊗ ξn),

where the last inequality is true for all R ≥ 0 and hence for all R ≥ 1. �

Although this is a nice result, our construction fails to be a universal object in the category of
associative AE algebras, since the universal enveloping algebra endowed with our topology is not

AE in general. This is even very easy to see directly.

Example 5.3.11 Take ξ ∈ g, then we know that ξ⊗n = ξ⋆zn = ξn for n ∈ N. Let R > 0 and p
and q be a continuous seminorms on g with q(ξ) 6= 0, then we find

pR(ξ
n) = n!Rp(ξ)n =

n!R

cn
q(ξ)n (5.3.11)

for c = p(ξ)
q(ξ) . But since n!R

cn
always diverges for n −→ ∞, we never get an asymptotic estimate

for p.
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Another argument would be that we know that we can not have exponential functions in Ŝ•R(g).
If Ŝ•R(g) (and hence UR(gz)) were AE, then we would have an entire calculus which clearly
includes exponential functions. Although the construction is not universal, we can draw a strong
conclusion from Proposition 5.3.10:

Corollary 5.3.12 (Continuous Representations) Let R ≥ 1 and UR(g) the universal en-

veloping algebra of an AE-Lie algebra g, then for every continuous representation φ of g into the

bounded linear operators B(V ) on a Banach space V the induced homomorphism of associative

algebras Φ: U(g) −→ B(V ) is continuous.

Proof: This follows directly from Proposition 5.3.10 and B(V ) being a Banach algebra. �

Remark 5.3.13 From this, we get the special case that all finite-dimensional representations of
an AE-Lie algebra can be lifted to continuous representations of UR(gz). For infinite-dimensional
Lie algebras, this statement will not be very important, since there, one rather has strongly
continuous representations and no norm-continuous ones. Nevertheless, our topology may help
to think about continuous linear functionals on UR(gz). We could then do GNS-representation
theory with it. This procedure would yield a representation of UR(gz) on a (Pre-)Hilbert space
and we could talk about what strongly continuous representations of the universal enveloping
algebra should be. In this sense, the results of this chapter may also open a door towards some
new approaches in this field.

5.3.4 Functoriality

Now let g, h be two AE-Lie algebras. We know that a homomorphism of Lie algebras from g to
U (hz) would lift to a homomorphism U (gz) −→ U (hz), if the latter one was AE, but this is
not the case. Yet, we would like to have this result and prove that our construction is functorial,
but it will be more complicated than that. We draw the commutative diagram to clarify the
situation.

S•R(g) S•R(h)

UR(gz) UR(hz)

g h

Φ̃z

q−1
z

Φz

q−1
z

φ

ιz ιz

Assume that φ is a continuous Lie algebra homomorphism. We want to know if Φz and Φ̃z will
be continuous, too. Luckily, the answer is yes and our construction is functorial. For the proof,
we need the next two lemmas.

Lemma 5.3.14 Let g be an AE-Lie algebra, n ∈ N, ξ1, . . . , ξn ∈ g, ij ∈ {0, . . . , j}, ∀j=1,...,n−1

and denote I =
∑

j ij . Then we have the formula

zin−1Cin−1

(
. . . zi2Ci2

(
zi1ci1(ξ1, ξ2), ξ3

)
. . . , ξn

)
= zIB∗

in−1
· · ·B∗

i1
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·
( 1
i1

)

1!

(2−i1
i2

)

(2− i1)!
· · ·

(
n−1−i1−···−in−2

in−1

)

(n− 1− i1 − · · · − in−2)!

∑

σ1∈S2−i1
...

σn−1∈Sn−1−i1−...−in−2

[w1] · · · [wn−I ], (5.3.12)

where the expressions [wi] denote nested Lie brackets in the ξi.

Proof: The statement follows from the bilinearity of the Cij -operators. They are always applied
to homogeneous symmetric tensors. The proof itself is an easy induction and follows very directly
from Formula (4.1.3). �

Lemma 5.3.15 Let g be an AE-Lie algebra, R ≥ 1, z ∈ C and p a continuous seminorm with

an asymptotic estimate q. Then for every n ∈ N and all ξ1, . . . , ξn ∈ g the estimate

pR(ξ1 ⋆z · · · ⋆z ξn) ≤ cnn!Rqn(ξ1 ⊗ · · · ⊗ ξn) (5.3.13)

holds with c = 8e(|z| + 1).

Proof: We start with a continuous seminorm p:

pR
(
ξ1⋆z · · · ⋆z ξn

)
= pR

(
n−1∑

ℓ=0

∑

1≤j≤n−1
ij∈{0,...,j}∑n−1

j=1 ij=ℓ

zin−1Cin−1

(
. . . zi2Ci2

(
zi1Ci1(ξ1, ξ2), ξ3

)
. . . , ξn

)
)

≤
n−1∑

ℓ=0

(n− ℓ)!R
∑

1≤j≤n−1
ij∈{0,...,j}∑n−1

j=1 ij=ℓ

pn−ℓ
(
zin−1Cin−1

(
. . . zi2Ci2

(
zi1Ci1(ξ1, ξ2), ξ3

)
. . . , ξn

))

≤
n−1∑

ℓ=0

(n− ℓ)!R
∑

1≤j≤n−1
ij∈{0,...,j}∑n−1

j=1 ij=ℓ

|B∗
in−1

| · · · |B∗
i1
||z|in−1 · · · |z|i1

(
1
i1

)

1!

(
2−i1
i2

)

(2− i1)!
· · ·

·
(
n−1−i1−···in−2

in−1

)

(n− 1− i1 − · · · − in−2)!

∑

σ1∈S2−i1
...

σn−1∈Sn−1−i1−...−in−2

pn−ℓ([w1] · · · [wn−ℓ]). (5.3.14)

In the last step, we used Lemma 5.3.14. Now we can apply the AE property to it and get
q(ξ1) · · · q(ξn). Thus the sum over the σj vanishes with the inverse factorials. By using the fact
that |B∗

m| ≤ m! for all m ∈ N and grouping together the powers of |z|, we find

pR(ξ1 ⋆z · · · ⋆z ξn)
(a)
≤

n−1∑

ℓ=0

(n − ℓ)!R
∑

1≤j≤n−1
ij∈{0,...,j}∑n−1

j=1 ij=ℓ

|z|ℓ 1!(2 − i1)! · · · (n − 1− i1 − · · · − in−2)!

(1− i1)! · · · (n− 1− i1 − · · · in−1)!
q(ξ1) · · · q(ξn)

(b)
≤

n−1∑

ℓ=0

(n − ℓ)!R
∑

1≤j≤n−1
ij∈{0,...,j}∑n−1

j=1 ij=ℓ

|z|ℓ1i12i2 · · · (n− 1)in−1q(ξ1) · · · q(ξn)
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(c)
≤

n−1∑

ℓ=0

(n− ℓ)!R
∑

1≤j≤n−1
ij∈{0,...,j}∑n−1

j=1 ij=ℓ

|z|ℓnℓq(ξ1) · · · q(ξn)

(d)
≤

n−1∑

ℓ=0

(n− ℓ)!R
∑

1≤j≤n−1
ij∈{0,...,j}∑n−1

j=1 ij=ℓ

|z|ℓ(2e)nℓ!q(ξ1) · · · q(ξn).

In (a), the factorials coming from the Bernoulli numbers cancelled out with the the ij from the
binomial coefficients and in (b) we used

(k − i1 − · · · − ik−1)!

(k − i1 − · · · − ik)!
≤ kik .

We can estimate the product of all those expressions by (n − 1)i1+···+in−1 and this by nℓ, since
the sum over all ij equals ℓ. In the last step (d) we used nℓ ≤ en n!

(n−ℓ)! = en
(
n
ℓ

)
ℓ! ≤ en2nℓ!. But

now we can simply estimate |z|ℓ ≤ (|z| + 1)n and (n − ℓ)!Rℓ! ≤ n!R for R ≥ 1. We just need to
count the number of summands and get

pR(ξ1 ⋆z · · · ⋆z ξn) ≤ n!R(2e)n(|z|+ 1)nq(ξ1) · · · q(ξn)
n−1∑

ℓ=0

∑

1≤j≤n−1
ij∈{0,...,j}∑n−1

j=1 ij=ℓ

1

(a)
≤ n!R(2e)n(|z|+ 1)nq(ξ1) · · · q(ξn)

n−1∑

ℓ=0

(
n− 1 + ℓ− 1

ℓ− 1

)

(b)
≤ n!R(2e)n(|z|+ 1)nq(ξ1) · · · q(ξn)22n

≤ cnn!Rqn(ξ1 ⊗ · · · ⊗ ξn),

with c = 8e(|z|+1). In (a) the estimate for the big sum is the following: for every j = 1, . . . , n−1

we have surely ij ∈ {0, 1, . . . , n − 1} and the sum of all the ij is ℓ. If we forget about all other
restrictions, we will just get more terms. But then the number of summands is same as there
are ways to distribute ℓ items on n− 1 places, which is given by

(
n−1+ℓ−1

ℓ−1

)
. Then in (b) we use

(
n− 1 + ℓ− 1

ℓ− 1

)
≤
(

2n

ℓ− 1

)

with the binomial coefficient being zero for ℓ = 0. Then it is just the standard estimate for
binomial coefficients via the sum over all ℓ. �

Proposition 5.3.16 (Functoriality) Let R ≥ 1, g, h be AE-Lie algebras and φ : g −→ h a

continuous homomorphism between them. Then it lifts to a continuous unital homomorphism of

locally convex algebras Φz : UR(gz) −→ UR(hz).

Proof: First, if φ : g −→ h is continuous, then for every continuous seminorm q on h, we have
a continuous seminorm r on g such that for all ξ ∈ g

q(φ(ξ)) ≤ r(ξ).
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Second, we define Ψz on factorizing tensors via

Ψz : T•
R(g) −→ S•R(h), Ψz = Φ̃z ◦ S

and extend it linearly to T•
R(g). Clearly, Φz and Φ̃z will be continuous if Ψz is continuous. From

this, we get for a seminorm p on h, an asymptotic estimate q and ξ1, . . . , ξn

pR(Ψz(ξ1 ⊗ · · · ⊗ ξn)) = pR(φ(ξ1) ⋆z · · · ⋆z φ(ξ1))
≤ cnn!Rq(φ(ξ1)) · · · q(φ(ξn))
≤ cnn!Rr(ξ1) · · · r(ξn)
= (cr)R(ξ1 ⊗ . . . ⊗ ξn).

Again, we use the infimum argument and we have the estimate on all tensor in T•
R(g). It extends

to the completion and the statement is proven. �

5.4 Alternative Topologies and an Optimal Result

In this section we set the formal parameter z = 1 and make some observations. So far, we found
a topology on S•R(g) which gives a continuous star product and which has a reasonably large
completion, but it is always fair to ask if we can do better than that: we have seen that our
completed algebra does not contain exponential series, which would be a very good feature to
have. So is it possible to put another locally convex topology on S•R(g) which gives a completion
with exponentials? The answer is no, at least under mild additional assumptions.

Proposition 5.4.1 (Optimality of the TR-topology) Let g be an AE Lie algebra in which

one has elements ξ, η for which the Baker-Campbell-Hausdorff series does not converge. Then

there is no locally convex topology on S•(g) such that all of the following things are fulfilled:

i.) The Gutt star product ⋆G is continuous.

ii.) For every ξ ∈ g the series exp(ξ) converges absolutely in the completion of S•(g).

iii.) For all n ∈ N the projection and inclusion maps with respect to the graded structure

S•(g)
πn−→ Sn(g)

ιn−→ S•(g)

are continuous.

First of all, we should make clear what “the Baker-Campbell-Hausdorff series does not converge”
actually means. This may be clear for a finite-dimensional Lie algebra, but in the locally convex
setting, it is not that obvious. For simplicity, we assume our local convex space to be complete in
the following, since we can always achieve this by completing it. First, we note here that a net or
a sequence in a locally convex space is convergent [or Cauchy], if and only if it is convergent [or
Cauchy] with respect to all p ∈ P. Quite similar to a normed space, we can make the following
definition.

Definition 5.4.2 Let V be a locally convex vector space, P the set of continuous seminorms,

p ∈ P and α = (αn)n∈N ⊆ V a sequence in V . We set

̺p(α) =

(
lim sup
n−→∞

n
√
p(αn)

)−1

where ̺p(α) = ∞ if lim supn−→∞
n
√
p(αn) = 0 as usual.
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From this, we immediately get the two following lemmas.

Lemma 5.4.3 (Root test in locally convex spaces) Let V be a complete locally convex vec-

tor space, p ∈ P and α = (αn)n∈N ⊆ V a sequence. Then, if ̺p(α) > 1, the series

Sn(α) =
n∑

j=0

αj

converges absolutely with respect to p. Conversely, if this series converges with respect to p, then

we have ̺p(α) ≥ 1.

Proof: The proof is completely analogous to the one in finite dimensions. �

Lemma 5.4.4 Let V be a complete locally convex vector space, p ∈ P, α = (αn)n∈N ⊆ V a

sequence and M > 0. Then, if the power series

lim
n−→∞

n∑

j=0

αjz
j

converges with respect to p for all z ∈ C with |z| ≤ M , it converges absolutely with respect to p

for all z ∈ C with |z| < M .

Proof: Like in the finite-dimensional setting, we use the root test: convergence for |z| ≤ M

means ̺p(αz) ≥ 1, where we have set αz = (αnz
n)n∈N. Hence, for every z′ < z we get ̺p(αz′) > 1

and absolute convergence by Lemma 5.4.3. �

But this means that a convergent power series αz in a locally convex space has ̺p(αz) = ∞ for
all p ∈ P: if there was a p ∈ P with a finite radius of convergence, we could take a multiple
of p in order to get a seminorm with arbitrarily small radius of convergence. Hence αz could
not converge for any z 6= 0. This helps us to make clear, how “BCH does not converge” can be
interpreted, since we can read it as a power series in two variables:

BCH(tξ, sη) =
∞∑

a,b=0

tasbBCHa,b(ξ, η).

So if it converges for ξ and η, then it converges absolutely for all tξ and sη with t, s ∈ [0, 1). If
it even converges for all tξ and sη with t, s ∈ K, then it converges absolutely for all t, s. If this
is the case, we can reorder the sums as we like to, and the series

N∑

n=0

BCHn(ξ, η)

converges if and only if the series

BCH(tξ, sη) =
∞∑

a=0

∞∑

b=0

BCHa,b(ξ, η)

converges. Now we can prove a Lemma, from which Proposition 5.4.1 follows immediately.

Lemma 5.4.5 Let g be an AE Lie algebra and S•(g) is endowed with a locally convex topology,

such that the conditions (i)− (iii) from Proposition 5.4.1 are fulfilled. Then the Baker-Campbell-

Hausdorff series converges absolutely for all ξ, η ∈ g.
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Proof: First, we complete the algebra to Ŝ•(g). We need the projection π1 to the Lie algebra.
Take ξ, η ∈ g. Now, since the the Gutt star product is continuous and the exponential series is
absolutely convergent for all ξ, η ∈ g, we get for t, s ∈ K

π1(exp(tξ) ⋆ exp(sη)) = π1

(
lim
N→∞

(
N∑

n=0

tnξn

n!

)
⋆ lim
M→∞

(
M∑

m=0

smηm

m!

))

(a)
= π1

(
lim
N→∞

lim
M→∞

(
N∑

n=0

tnξn

n!

)
⋆G

(
M∑

m=0

smηm

m!

))

(b)
= lim

N→∞
lim
M→∞

π1

((
N∑

n=0

tnξn

n!

)
⋆G

(
M∑

m=0

smηm

m!

))

(c)
= lim

N→∞
lim
M→∞

N,M∑

n,m=0

BCHtξ,sη(n,m)

where we used the continuity of the star product in (a), the continuity of the projection in (b)
and evaluated the projection in (c). Since exp(tξ) and exp(sη) are elements in the completion,
their star product exists and hence the double series at the end of this equation converges for
any two elements ξ, η ∈ g. But now we can use the result that in this setting the BCH series
converges absolutely. We can rearrange the terms and get the convergence of

N∑

n=1

BCHn(tξ, sη).

Therefore, the BCH series must converge globally. �

Obviously, this proves Proposition 5.4.1.
Now we want to use a result due to Wojtyński [100], who showed that for Banach-Lie algebras,

global convergence of the BCH series is equivalent to the fact that for any ξ we have

lim
n−→∞

‖(adξ)n‖
1
n = 0.

A Banach-Lie algebra with this property is sometimes called quasi-nilpotent, radical or nil, see for
example [67] for various generalizations of nilpotency in the case of Banach algebras. For finite-
dimensional Lie algebras, quasi-nilpotency implies nilpotency. Hence for a finite-dimensional Lie
algebra g, BCH is globally convergent if and only if g is nilpotent.

From this, we see that at least for “non-quasi-nilpotent” Banach-Lie algebras, our result is in
some sense optimal, at least if we want the grading structure to compatible with the topology.

Remark 5.4.6 (Another topology in U (g)) In [73] Schottenloher and Pflaum mention an
alternative topology on the universal enveloping algebra for finite-dimensional Lie algebras: they
take the coarsest locally convex topology, such that all finite-dimensional representations of g

extend to continuous algebra homomorphisms. This topology is in fact even locally m-convex and
has therefore an entire holomorphic calculus. In particular, this completion contains exponential
functions for all Lie algebra elements. Therefore, as we have seen in Proposition 5.4.1, it can not
respect the grading structure, as our topology does. The TR-topology must hence be different
from that. As we have seen in Corollary 5.3.12, it is finer for R ≥ 1, and since the topologies are
different, it is even strictly finer. One could argue that the R-topology is “just” locally convex, but
its advantage (for our purpose) is that the grading is necessary for the holomorphic dependence
on the formal parameter which is a feature that we want.



Chapter 6

Nilpotent Lie Algebras

At the end of the last chapter, we have seen that the Baker-Campbell-Hausdorff series and its
convergence play an important role for a topology on the universal enveloping algebra. Thus it
is natural to ask whether things will change, if we restrict our observations to Lie algebras with
globally convergent BCH series. To make things not too complicated from the beginning, we
focus on locally convex and truly nilpotent Lie algebras. Recall that a Lie algebra g is nilpotent,
if there exists a N ∈ N, such that for all n > N and all ξ1, . . . , ξn ∈ g we have

adξ1 ◦ · · · ◦ adξn = 0. (6.0.1)

In the infinite-dimensional case, this is a priori not the same as

(adξ)
n = 0 (6.0.2)

for all ξ ∈ g and and n > N , but something stronger. In the case of finite-dimensional Lie
algebras, the notions (6.0.1) and (6.0.2) coincide due to the Engel theorem, which makes use of
the existence of a finite descending series of nilpotent ideals in the Lie algebra. Such a terminating
series does not need to exist in infinite dimensions. At least as soon as we are in the setting of
Banach-Lie algebras, these two notions coincide again, but note that one can give different forms
of quasi-nilpotency, which weaken the statements from (6.0.1) and (6.0.2), respectively. Those
generalized notions do not coincide any more, so we have to be careful.

Before we look at this case more closely, we first want to make a list of things, which we
expect to change or not when we go to this more particular setting.

i.) In Example 5.3.5 we have seen that we can not expect to get a continuous algebra structure
for R < 1, even for very simple nilpotent, but non-abelian Lie algebras. Therefore, we
should not expect to get much larger completions now.

ii.) In [96], Waldmann showed that for example the Weyl-Moyal star product converges in the
TR-topology for R ≥ 1

2 . This so-called Weyl algebra is, however, nothing but a quotient
of the Heisenberg algebra. It would be interesting to understand this a bit better, since
we know that we need R ≥ 1 for the Heisenberg algebra. The quotient procedure must
therefore have some strong influence on this construction. Can we reproduce the value
R ≥ 1

2 somehow by dividing out an ideal?

iii.) The argument we used in Proposition 5.4.1, namely the non-global convergence of BCH, is
not given any more. Now there is no longer a reason to expect that exponentials are not
part of the completion. In this sense, it would be at least nice to have something more
than “just” R = 1. Can we do that?

81
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iv.) As already mentioned, there are generalizations or weaker forms of nilpotency in infinite-
dimensions, especially for Banach-Lie algebras, which are equivalent to the usual notion of
nilpotency in finite dimensions. If we get a stronger result for nilpotent Lie algebras, will
it be possible to extend it to some of these generalizations?

The very fascinating and highly interesting answer to the three questions from (ii)− (iv) is: yes,
we can. The first section of this chapter will be devoted to the question from point (iii): we
get a bigger completion by using a projective limit. We will also see how to get again the good
functorial properties we had before. The next section treats another phenomenon, which was
not there in the generic case: we can observe bimodule-structures within S•R(g). In third section,
we will reproduce one of the results of Waldmann’s, at least for the finite-dimensional case. The
fourth part will take care of some generalizations of nilpotentcy for Banach-Lie algebras and will
extend the result of the projective limit to a particular subcase there.

6.1 The Projective Limit

6.1.1 Continuity of the Product

As already mentioned, it is possible to extend the continuity result. Therefore, we take a locally
convex, nilpotent Lie algebra g and look at

S•1−(g) = proj lim
ǫ−→0

S•1−ǫ(g).

A tensor will be in the completed vector space Ŝ•1−(g), if and only if it lies for every ǫ > 0 in the
completion of S•1−ǫ(g). Otherwise stated: let P be the set of all continuous seminorms of the
Lie algebra g, then

f ∈ Ŝ•1−(g) ⇐⇒ p1−ǫ(f) <∞ ∀p∈P∀ǫ>0.

So, if we want to show, that the Gutt star product is continuous on Ŝ•1−(g), we need to show
that for every p ∈ P and R < 1, there exists a q ∈ P and a R′ with R ≤ R′ < 1, such that we
have for all x, y ∈ S•(g)

pR(x ⋆z y) ≤ qR′(x)qR′(y).

Before we prove the next theorem, we want to remind that locally convex, nilpotent Lie algebras
are always AE Lie algebras. So the results we have found so far are valid in this case, too.

Theorem 6.1.1 Let g be a nilpotent locally convex Lie algebra with continuous Lie bracket and

N ∈ N such that N + 1 Lie brackets nested into each other vanish.

i.) If 0 ≤ R < 1, the Cn-operators are continuous and fulfil the estimate

pR(Cn(x, y)) ≤
1

2 · 8n (32eq)R+ǫ(x)(32eq)R+ǫ(y), (6.1.1)

for all x, y ∈ S•R(g), where p is a continuous seminorm, q an asymptotic estimate and

ǫ = N−1
N

(1−R).

ii.) The Gutt star product ⋆z is continuous for the locally convex projective limit S•1−(g) and we

have

pR(x ⋆z y) ≤ (cq)R+ǫ(x)(cq)R+ǫ(y) (6.1.2)

with c = 32e(|z|+1) and the ǫ from the first part. The Gutt star product extends continuously

to Ŝ•R(g), where it converges absolutely and coincides with the formal series.
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Proof: We use again ⋆z on the whole tensor algebra and compute the estimate for ξ1⊗ · · ·⊗ ξk
and η1⊗ · · ·⊗ ηℓ. The important point is that now, we get restrictions for the values of n. Recall
that k + ℓ− n is the symmetric degree of Cn(ξ1 ⊗ · · · ⊗ ξk, η1 ⊗ · · · ⊗ ηℓ) and that we can have
at most N letters in one symmetric factor. This means

(k + ℓ− n)N ≥ k + ℓ ⇐⇒ n ≤ (k + ℓ)
N − 1

N
.

Hence we can estimate n!1−R in Equation (5.3.6): set δ = N−1
N

and also denote a factorial where
we have non-integers, meaning the gamma function. We get

n!1−R ≤ (δ(k + ℓ)!)1−R

≤ (δ(k + ℓ))(1−R)δ(k+ℓ)

≤ (k + ℓ)(1−R)δ(k+ℓ)

=
(
(k + ℓ)(k+ℓ)

)(1−R)δ

≤
(
ek+ℓ2k+ℓk!ℓ!

)(1−R)δ

=
(
(2e)δ(1−R)

)k+ℓ
k!ǫℓ!ǫ,

using ǫ = δ(1 −R). Hence

pR
(
Cn
(
ξ1 ⊗ · · · ⊗ ξk,η1 ⊗ · · · ⊗ ηℓ

))

≤
(
(2e)δ(1−R)

)k+ℓ
k!ǫℓ!ǫ

2 · 8n (16q)R(ξ1 ⊗ · · · ⊗ ξk)(16q)R(η1 ⊗ · · · ⊗ ηℓ)

≤ 1

2 · 8n (cq)R+ǫ(ξ1 ⊗ · · · ⊗ ξk)(cq)R+ǫ(η1 ⊗ · · · ⊗ ηℓ)

with c = 16(2e)δ(1−R) ≤ 32e. We then get the estimate on all tensors by the infimum argument
and extend it to the completion. Note, that for every R < 1 we also have R + ǫ < 1 with the
ǫ = δ(1 − R) from above. Iterating this continuity estimate, we get closer and closer to 1 and
it is not possible to repeat this process an arbitrary number of times and stop at some value
strictly less than 1. For the second part, we can conclude analogously to the second part of
Theorem 5.3.2. �

We have proven one of the four statements. This projective limit is interesting, because it has a
bigger completion than just R = 1. For example, we get the following result.

Corollary 6.1.2 Let g be a nilpotent, locally convex Lie algebra.

i.) Let exp(ξ) be the exponential series for ξ ∈ g, then we have exp(tξ) ∈ Ŝ•1−(g) for all t ∈ K.

ii.) For ξ, η ∈ g and z 6= 0 we have exp(ξ) ⋆z exp(η) = exp
(
1
z
BCH(zξ, zη)

)
.

iii.) For s, t ∈ K and ξ ∈ g we have exp(tξ) ⋆z exp(sξ) = exp((t+ s)ξ).

Proof: For the first part, recall that the completion of the projective limit 1− contains all those
series (an)n∈N0 such that

∞∑

n=0

ann!
1−ǫcn <∞

for all c > 0. This is the case for the exponential series of tξ for t ∈ K and ξ ∈ g. The second
part follows from the fact that all the projections πn onto the homogeneous subspaces Snπ are
continuous. The third part is then a direct consequence of the second. �
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So the exponential series is what we want it to be, somehow. It generates a one parameter group.
Recall that we can just exponentiate vectors. If we wanted to exponentiate a quadratic tensor,
this would yield something like a Gaussian, which is again not part of the completion.

In the general case, we could find easier proof by assuming submultiplicativity of the semi-
norms. This is again the case for nilpotent Lie algebras. We get something like an alternative
version of Lemma 5.3.4.

Lemma 6.1.3 Let g be a locally m-convex, nilpotent Lie algebra such that more than N Lie

brackets nested into each other vanish. Let p be a continuous seminorm, z ∈ K and R ≥ 0.

Then, for every tensor x ∈ S•R(g) of degree at most k ∈ N and η ∈ g, we have the estimate

pR(x ⋆z η) ≤ c(k + 1)RkN(1−R)pR(x)p(η) (6.1.3)

with the constant c =
∑N

n=0
|B∗

n|
n! |z|n.

Proof: We do the estimate on factorizing tensors and apply the infimum argument later. So
let ξ1, . . . , ξk, η ∈ g, k ∈ N, p a continuous seminorm on g and z ∈ K. Then, we have for R ≥ 0

pR
(
ξ1 ⊗ · · · ⊗ ξk ⋆z η

)

=

k∑

n=0

(k + 1− n)!R
(
k

n

)
|B∗

n||z|npk+1−n


 1

k!

∑

σ∈Sk

ξσ(1) · · · ξσk−n

(
adξσ(k−n+1)

◦ · · · ◦ adξσ(k)

)
(η)




≤ (k + 1)R
N∑

n=0

k!(k − n)!R

(k − n)!n!
|B∗

n||z|np(ξ1) · · · p(ξk)p(η)

= (k + 1)RpR(ξ1 ⊗ · · · ⊗ ξk)p(η)

N∑

n=0

(
k!

(k − n)!

)1−R |B∗
n||z|n
n!

≤ (k + 1)RkN(1−R)pR(ξ1 ⊗ · · · ⊗ ξk)p(η)

N∑

n=0

|B∗
n||z|n
n!

. �

Now, we can iterate Lemma 6.1.3 in the same way we did in Chapter 5:

Proof (Alternative Proof of Theorem 6.1.1): The calculation is done only on factoriz-
ing tensors. We need to transform the kN(1−R) into a very small factorial somehow. This is
possible, since for given N ∈ N and 0 ≤ R < 1, the sequence

(
kN√
k!

)1−R

converges to 0 for k −→ ∞ and is therefore bounded by some κN > 0. Hence we get

kN(1−R) ≤ κN
√
k!

1−R
,

and together with Lemma 6.1.3 we find

pR(x ⋆z η) ≤ cκN (k + 1)Rk!
1−R
2 pR(x)p(η)

for any tensor x of degree at most k. Now, we can iterate this result for ξ1, . . . , ξk, η1, . . . , ηℓ ∈ g,
R ≥ 0:

pR
(
ξ1 ⊗ · · · ⊗ ξk ⋆z η1 · · · ηℓ

)
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= pR


 1

ℓ!

∑

τ∈Sℓ

ξ1 ⊗ · · · ⊗ ξk ⋆z ητ(1) ⋆z · · · ⋆z ητ(ℓ)




≤ 1

ℓ!

∑

τ∈Sℓ

cκN (k + ℓ)R(k + ℓ− 1)!
1−R
2

· pR


 1

ℓ!

∑

τ∈Sℓ

ξ1 ⊗ · · · ⊗ ξk ⋆z ητ(1) ⋆z · · · ⋆z ητ(ℓ−1)


p
(
ητ(ℓ)

)

≤ ...

≤ (cκN )ℓ
(
(k + ℓ)!

k!

)R
(k + ℓ− 1)!

1−R
2 . . . k!

1−R

2N pR(ξ1 ⊗ · · · ⊗ ξk)p
(
ητ(1)

)
· · · p

(
ητ(ℓ)

)

≤ (cκN )ℓ
(
k + ℓ

k

)R
ℓ!R(k + ℓ)!

(2N−1)(1−R)

2N pR(ξ1 ⊗ · · · ⊗ ξk)p
(
ητ(1)

)
· · · p

(
ητ(ℓ)

)

≤ (cκN )ℓ2(k+ℓ)Rℓ!Rk!
(2N−1)(1−R)

2N ℓ!
(2N−1)(1−R)

2N 2
(k+ℓ) (2

N
−1)(1−R)

2N

· pR(ξ1 ⊗ · · · ⊗ ξk)p
(
ητ(1)

)
· · · p

(
ητ(ℓ)

)

≤ (2p)R+ǫ(ξ1 ⊗ · · · ⊗ ξk)(2cκNp)R+ǫ(η1 ⊗ · · · ⊗ ηℓ),

where we have set ǫ = (2N−1)(1−R)
2N

. From this, we have R+ ǫ < 1 and get the wanted result for
the projective limit. �

Again, just like in the case of AE-Lie algebras for R ≥ 1, we can show that the star product
depends analytically on the formal parameter.

Proposition 6.1.4 (Dependence on z) Let g be a nilpotent locally convex Lie algebra, 0 ≤
R < 1 and z ∈ K, then for all x, y ∈ Ŝ•1−(g) the map

K ∋ z 7−→ x ⋆z y ∈ Ŝ•1−(g) (6.1.4)

is analytic with (absolutely convergent) Taylor expansion at z = 0 given by Equation (4.1.11).

For K = C, the collection of algebras
{(

Ŝ•1−(g), ⋆z

)}
z∈C

is an entire holomorphic deformation

of the completed symmetric tensor algebra
(
Ŝ•1−(g),∨

)
.

Proof: The proof is completely analogue to the case of AE Lie algebras when R = 1. �

6.1.2 Representations and Functoriality

In the general AE case, we had some useful results concerning representations of Lie algebras
and the functorialty of our construction. These results can be extended to the projective limit
S•1−(g).

Proposition 6.1.5 (Universal Property) Let g be a locally convex nilpotent Lie algebra, A

an associative AE algebra and φ : g −→ A is a continuous homomorphism of Lie algebras. Then,

the lifted homomorphisms from S•1−(g) and U (gz) to A are continuous.

Proof: The proof is exactly the same as in the general AE case, since there, we actually only
needed R ≥ 0. �
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Again, this construction is not universal in the categorial sense, since S•1−(g) fails to be AE. But
also here, we get the case of continuous representations into a Banach space (and in particular
into a finite-dimensional space) as a corollary.

Corollary 6.1.6 (Continuous Representations) Let UR(gz) the universal enveloping alge-

bra of locally convex nilpotent Lie algebra g with bracket scaled by z ∈ C, then for every contin-

uous representation φ of g into the bounded linear operators B(V ) on a Banach space V , the

induced homomorphism of associative algebras Φ: UR(gz) −→ B(V ) is continuous.

We can also extend the functoriality statement to the projective limit, but we need to get an-
other version of Lemma 5.3.15 for nilpotent Lie algebras, since this is the corner stone of the
functoriality proof.

Lemma 6.1.7 Let g be locally convex nilpotent Lie algebra and N ∈ N such that N + 1 Lie

brackets vanish, 0 ≤ R < 1 and z ∈ C. Then for p a continuous seminorm, q an asymptotic

estimate, n ∈ N and all ξ1, . . . , ξn ∈ g the estimate

pR(ξ1 ⋆z · · · ⋆z ξn) ≤ cnn!R+ǫqn(ξ1 ⊗ · · · ⊗ ξn) (6.1.5)

holds with c = 16e2(|z| + 1) and ǫ = N−1
N

(1−R) and the estimate is locally uniform in z.

Proof: We take R < 1 and go directly into the proof of Lemma 5.3.15 at (5.3.14). We know
that, since we may have at most N brackets, also the values for ℓ are restricted to

ℓ ≤ N − 1

N
n = δn.

Using that in the proof of Lemma 5.3.15 leads to

pR(ξ1 ⋆z · · · ⋆z ξn)

≤
δn∑

ℓ=0

(n− ℓ)!R
∑

1≤j≤n−1
ij∈{0,...,j}∑n−1

j=1 ij=ℓ

|z|ℓ 1!(2 − i1)! · · · (n− 1− i1 − · · · − in−2)!

(1− i1)! · · · (n− 1− i1 − · · · − in−1)!
q(ξ1) · · · q(ξn)

≤
δn∑

ℓ=0

(n− ℓ)!R
∑

1≤j≤n−1
ij∈{0,...,j}∑n−1

j=1 ij=ℓ

|z|ℓ(2e)nℓ!q(ξ1) · · · q(ξn)

≤ (2e)n(|z|+ 1)nq(ξ1) · · · q(ξn)
δn∑

ℓ=0

(n− ℓ)!Rℓ!

(
n+ ℓ− 2

ℓ− 1

)
.

We have

ℓ! = ℓ!Rℓ!1−R ≤ ℓ!R
(
(δn)δn

)1−R
≤ ℓ!Rnδn(1−R) ≤ ℓ!Rn!δ(1−R)eδn(1−R).

Together with ℓ!R(n− ℓ)!R ≤ n!R this gives

pR(ξ1 ⋆z · · · ⋆z ξn) ≤ (2e)n(|z|+ 1)nn!Rn!δ(1−R)q(ξ1) · · · q(ξn)
δn∑

ℓ=0

(
n+ ℓ− 2

ℓ− 1

)
eδn(1−R)

≤ (2e)n(|z|+ 1)n
(
e(1−R)δ

)n
4nn!R+ǫq(ξ1) · · · q(ξn),
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with ǫ = δ(1 −R). It is clear that for all R < 1 we have R+ ǫ < 1. Set

c = 8e(|z| + 1)e(1−R)δ ≤ 16e2(|z|+ 1)

and note that the estimate is locally uniform in z. �

Proposition 6.1.8 Let R ≥ 1, g, h be two locally convex nilpotent Lie algebras and φ : g −→ h

a continuous homomorphism between them. Then it lifts to a continuous unital homomorphism

of locally convex algebras Φz : UR(gz) −→ UR(hz).

Proof: The proof is analogous to the one of Proposition 5.3.16. �

6.2 Module Structures

The projective limit 1− is not the only additional structure we will get, if our Lie algebra g is
nilpotent. For every R ∈ R, the symmetric tensor algebra S•R(g) is a locally convex vector space.
For R ≥ 0, the (symmetric) tensor product is continuous, which is very important for many
estimates, and for R ≥ 1−, we have an algebra structure. In between however, we have more
than “only” vector spaces: the spaces S•R(g) form locally convex bimodules over the S•R′(g) for
certain values of R′. The next proposition makes this more exact.

Proposition 6.2.1 (Bimodules in S•R(g)) Let g be a nilpotent, locally convex Lie algebra, N ∈
N such that N + 1 Lie brackets vanish, z ∈ K and 0 ≤ R < 1. Then, for all x, y ∈ S•(g) and

every continuous seminorm p, we have a continuous seminorm q, such that the estimates

pR(x ⋆z y) ≤ (16q)R(x)(16cq)R+N(1−R)(y) (6.2.1)

and

pR(x ⋆z y) ≤ (16cq)R+N(1−R)(x)(16q)R(y) (6.2.2)

hold with c = (Ne)N(1−R). Hence, the vector space Ŝ•R(g) forms a bimodule over the algebra

Ŝ•
R+N(1−R)(g). In particular, if g is 2-step nilpotent, the vector space Ŝ•0(g) is a Ŝ•1(g)-bimodule.

Proof: Note that for every degree n we loose, we get a bracket of ξ’s and η’s. Since we can not
have too highly nested brackets, we get the following bounds:

n ≤ Nk and n ≤ Nℓ.

We prove the statement only on factorizing tensors again. We want to show Estimate (6.2.1) and
take x = ξ1 ⊗ · · · ⊗ ξk and y = η1 ⊗ · · · ⊗ ηℓ. So

(ℓN)!1−R ≤ (ℓN)(ℓN(1−R))

≤ (Ne)ℓN(1−R)ℓ!N(1−R).

This allows us again to go back to the proof of Theorem 6.1.1 and we find

pR
(
Cn
(
ξ1 ⊗ · · · ⊗ ξk,η1 ⊗ · · · ⊗ ηℓ

))

≤ (Ne)ℓN(1−R)ℓ!N(1−R)

2 · 8n (16q)R(ξ1 ⊗ · · · ⊗ ξk)(16q)R(η1 ⊗ · · · ⊗ ηℓ)
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≤ 1

2 · 8n (16q)R(ξ1 ⊗ · · · ⊗ ξk)(cq)R−N(1−R)(η1 ⊗ · · · ⊗ ηℓ)

with c = 16(Ne)N(1−R). The rest of the proof is analogue to the proofs of the Theorems 6.1.1 or
5.3.2. �

Once again, assuming submultiplicativity of the seminorms, it is possible to give an easier proof
for Proposition 6.2.1 which relies on Lemma 6.1.3.

Proof (Alternative proof for Proposition 6.2.1): We do the calculation on factorizing
tensors: let ξ1, . . . , ξk, η1, . . . , ηℓ ∈ g, R ≥ 0, k, ℓ ∈ N. Using Lemma 6.1.3, we get

pR
(
ξ1⊗ · · · ⊗ ξk ⋆z η1 ⊗ · · · ⊗ ηℓ

)

= pR


 1

ℓ!

∑

τ∈Sℓ

ξ1 ⊗ · · · ⊗ ξk ⋆ ητ(1) ⋆z · · · ⋆z ητ(ℓ)




≤ c(k + ℓ)R(k + ℓ− 1)N(1−R) 1

ℓ!

∑

τ∈Sℓ

pR
(
ξ1 ⊗ · · · ⊗ ξk ⋆ ητ(1) ⋆z · · · ⋆z ητ(ℓ−1)

)
p
(
ητ(ℓ)

)

≤ ...

≤ cℓ
(
(k + ℓ)!

k!

)R((k + ℓ− 1)!

(k − 1)!

)N(1−R)

pR(ξ1 ⊗ · · · ⊗ ξk)p
(
ητ(1

)
· · · p

(
ητ(ℓ)

)

≤ cℓ2k+l2N(k+ℓ)ℓ!N(1−R)pR(ξ1 ⊗ · · · ⊗ ξk)p
(
ητ(1

)
· · · p

(
ητ(ℓ)

)

=
(
2N+1p

)
R
(ξ1 ⊗ · · · ⊗ ξk)

(
2N+1cp

)
R+N(1−R)

(η1 ⊗ · · · ⊗ ηℓ).

The proof of the second estimate is analogous. �

Remark 6.2.2 (Possible extensions) This result immediately raises new questions, like the
one about possible generalizations to “weaker forms” of nilpotency, for example. They may
be issues of some future work, but can not be addressed here, since we rather want to present
something like the “big picture”, instead of getting lost in its details too much. There are, without
any doubt, questions that are more significant than extending those estimates to very special
cases and finding sharp bounds there, although this is interesting and important, too.

Though it seems clear from the construction that these bimodules can not be there for general
Lie algebras, we can give a concrete counter-example, which shows that there are Lie algebras,
which don not allow them.

Example 6.2.3 Choose R < 1 and take g = R3 with the basis e1, e2, e3 and the vector product
as Lie bracket:

[e1, e2] = e3 [e2, e3] = e1 [e3, e1] = e2

Again, we take a ℓ1-norm n such that n(e1) = n(e2) = n(e3) = 1. It has the nice property that
for k, ℓ,m ∈ N we get on the projective tensor product

nk+ℓ+m
(
ek1e

ℓ
2e
m
3

)
= 1.

Now choose an ǫ > 0 such that R+ ǫ < 1 and we define the sequence (ak)k∈N

ak =
1

k!R
ek1 ,
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for which we get limk−→∞ nR(ak) = 0. Now, we want to show that ak ⋆z e2 grows faster than
exponentially:

nR(ak ⋆z e2) = nR




k∑

j=0

(
k

j

)
B∗
j

1

k!R+ǫ
e
n−j
1 (ade1)

j(e2)




=
k∑

j=0

(
k

j

)
|B∗

j |
1

k!R+ǫ
(k − j + 1)!R nk−j(e1(e2 ∧ e3))︸ ︷︷ ︸

=1

=

k∑

j=0

(k − j + 1)R
(
k

j

) |B∗
j |
j!

(k − j)!RjR

k!R+ǫ
j!1−R

=

k∑

j=0

(k − j + 1)R
(
k

j

)1−R |B∗
j |
j!

j!1−R

k!ǫ

≥
k∑

j=0

|B∗
j |
j!

j!1−R

k!ǫ

≥ |B∗
k|

k!R+ǫ
.

We know that for R+ ǫ < 1 and any c > 0

lim sup
n−→∞

|B∗
n|

cnn!R+ǫ
= ∞.

Hence the Limes superior of nR(ak ⋆z e2) grows faster than any exponential function and can not
be absorbed into the seminorm of e2. So the multiplication in the module can not be continuous.

6.3 The Heisenberg and the Weyl Algebra

Now we want to see how we get the link to the Weyl algebra from [96], since we have something
like a discrepancy for the parameter R concerning the continuity of the product in the Weyl and
the Heisenberg algebra. In the following, we will show that this gap actually makes a lot of sense.
For simplicity, we consider the easiest case of the Weyl/Heisenberg algebra with two generators
Q and P , but the calculation for the Heisenberg/Weyl algebra in 2n+1 [2n] dimensions is done
exactly in the same way. Recall that the Weyl algebra is a quotient of the enveloping algebra of
the Heisenberg algebra h which one gets from dividing out its center. So let h ∈ K and we have
a projection

π : S•R(h) −→ WR(h) =
S•R(h)

〈E − h1〉 (6.3.1)

Of course we want to know if this projection is continuous.

Proposition 6.3.1 The projection π is continuous for R ≥ 0.

Proof: We extend π to the whole tensor algebra by symmetrizing beforehand. Let then p be a
continuous seminorm on h and k, ℓ,m ∈ N0. We have

pR(π(Q
⊗k ⊗ P⊗ℓ ⊗ E⊗m)) = pR(Q

kP ℓhm)

= |h|m(k + ℓ)!Rpk+ℓ(QkP ℓ)



90 CHAPTER 6. NILPOTENT LIE ALGEBRAS

≤ (|h| + 1)k+ℓ+m(k + ℓ+m)!Rp(Q)kp(P )ℓp(E)m

= ((|h| + 1)p)R(Q
⊗k ⊗ P⊗ℓ ⊗ E⊗m).

Then we do the usual infimum argument and have the result on arbitrary tensors again. �

To establish the link to the continuity results of the Weyl algebra, we need more: π ◦ ⋆z
should to be continuous for R ≥ 1

2 .

Proposition 6.3.2 Let R ≥ 1
2 and π the projection from (6.3.1). Then the map π ◦ ⋆z is

continuous.

Proof: Since we are in finite dimensions, we can choose a submultiplicative norm p with p(Q) =

p(P ) = p(E) without restrictions. Moreover, let k, k′, ℓ, ℓ′,m,m′ ∈ N0. Then we have to get

an estimate for pR
(
π
(
QkP ℓEm ⋆z Q

k′P ℓ
′

Em
′

))
. If we calculate the star product explicitly, we

will see that we only get Lie brackets where we have P ’s and Q’s. Let r = k + ℓ + m and
s = k′ + ℓ′ +m′, then we can actually simplify the calculations by

pR

(
π
(
QkP ℓEm ⋆zQ

k′P ℓ
′

Em
′

))
= (pR ◦ π)

(
r+s−1∑

n=0

znCn(Q
kP ℓEm, Qk

′

P ℓ
′

Em
′

)

)

≤
r+s−1∑

n=0

|z|n(pR ◦ π)
(
Cn(Q

kP ℓEm, Qk
′

P ℓ
′

Em
′

)
)

≤
r+s−1∑

n=0

|z|n(pR ◦ π)(Cn(Qr, P s))

=

r+s−1∑

n=0

|z|n r!s!

(r − n)!(s− n)!n!
(pR ◦ π)

(
Qr−nP s−nEn

)

=

r+s−1∑

n=0

|z|n|h|n r!s!

(r − n)!(s− n)!n!
pR
(
Qr−nP s−n

)

≤
r+s−1∑

n=0

|z|n|h|n r!s!

(r − n)!(s− n)!n!

(r + s− 2n)!R

r!Rs!R
pR
(
Q⊗r

)
pR
(
P⊗s

)

≤
r+s−1∑

n=0

|z|n|h|n
(
r

n

)(
s

n

)
(r + s− 2n)!Rn!

r!Rs!R
pR
(
Q⊗r

)
pR
(
P⊗s

)

(a)
≤

r+s−1∑

n=0

|z|n|h|n
(
r

n

)(
s

n

)(
r + s

s

)R(
r + s

2n

)−R

pR
(
Q⊗r

)
pR
(
P⊗s

)

≤
r+s−1∑

n=0

(|z| + 1)n(|h| + 1)n4r+spR
(
Q⊗r

)
pR
(
P⊗s

)

(b)
≤ (8(|z| + 1)(|h| + 1))r+s︸ ︷︷ ︸

=c̃r+s

pR
(
Q⊗r

)
pR
(
P⊗s

)

= (c̃p)R
(
Q⊗r

)
(c̃p)R

(
P⊗s

)

(c)
= (c̃p)R

(
Q⊗k ⊗ P⊗ℓ ⊗ E⊗m

)
(c̃p)R

(
Q⊗k′ ⊗ P⊗ℓ′ ⊗ E⊗m′

)
,

where we have set c = 8(|z|+1)(|h|+1). We rearranged the factorials in (a) and used R ≥ 1
2 . The

estimates (b) are the standard binomial coefficient estimates. In (c) we used p(Q) = p(P ) = p(E).
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Now we just use
(
Q⊗k ⊗ P⊗ℓ ⊗ E⊗m

)
⋆z

(
Q⊗k′ ⊗ P⊗ℓ′ ⊗ E⊗m′

)
= QkP ℓEm ⋆z Q

k′P ℓ
′

Em
′

and the infimum argument to expand this estimate to all tensors. This concludes the proof. �

The previous proposition can be seen as something like the “finite-dimensional version” of Lemma
3.10 in [96], just that we took a large detour for proving it. One could, most probably, redo
some more results of this paper using finite-dimensional versions the Heisenberg algebra and the
projection onto the Weyl algebra, but this would yield, also most probably, nothing new. It is
good to know that this connections exists, but it is not something which is very helpful to pursue,
since an evident generalization to infinite dimensions does not seem be obvious.

6.4 Banach-Lie Algebras

Now we want to focus a bit on weaker notions than true nilpotency. Since there are many of
them, we want to restrict to the easier case of Banach-Lie algebras, where a somewhat developed
theory already exists.

6.4.1 Generalizations of Nilpotency

In [67], Müller gives a list of weaker forms of nilpotency for associative Banach algebras. We can
mostly copy the ideas and use them for Banach-Lie algebras, too

Definition 6.4.1 Let g be a Banach-Lie algebra in which the Lie bracket fulfils the estimate

‖[ξ, η]‖ ≤ ‖ξ‖‖η‖.

Denote by B1(0) all elements ξ ∈ g with ‖ξ‖ = 1. We say that

i.) g is topologically nil (or radical, or quasi-nilpotent), if every ξ ∈ g is quasi-nilpotent, i.e.

lim
n−→∞

‖adnξ ‖
1
n = 0.

ii.) g is uniformly topologically nil, if

lim
n−→∞

N1(n) = 0

for

N1(n) = sup
{
‖adnξ ‖

1
n

∣∣∣ξ ∈ B1(0)
}
. (6.4.1)

iii.) g is topologically nilpotent, if for every sequence (ξn)n∈N ⊂ B1(0) we have

lim
n−→∞

‖adξ1 ◦ . . . ◦ adξn‖
1
n = 0.

iv.) g is uniformly topologically nilpotent, if

lim
n−→∞

N (n) = 0

for

N (n) = sup
{
‖adξ1 ◦ . . . ◦ adξn‖

1
n

∣∣∣ξ1, . . . , ξn ∈ B1(0)
}
. (6.4.2)
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It is clear that (ii) ⇒ (i) and (iv) ⇒ (iii). In the associative case, we have (iii) ⇔ (iv) and
hence (iii) ⇒ (ii). Of course, it is a good question, if this remains true for Banach-Lie algebras.
We have already encountered notion (i): in [100] Wojtyński gave a proof that it is equivalent to
the global convergence of the BCH series. In the following, we will make use of notion (iv): we
will show, that it is possible to generalize the result of Theorem 6.1.1 to this case.

6.4.2 An Adapted Topology for the Tensor Algebra

The idea consists in changing the TR-topology a bit: instead of taking n!R as weights with
0 ≤ R < 1, we take sequence (αn)n∈N with a certain asymptotic behaviour for n −→ ∞ and use
n!
αn

as weights. This will generalize the idea of n!R and will be the starting point for estimates.
First, we observe that every uniformly topologically nilpotent Banach-Lie algebra g comes

with a characteristic, monotonously decreasing sequence

ωn = sup
m≥n

N (m). (6.4.3)

If there exists a N ∈ N, such that ωn = 0 for all n ≥ N , then g is actually nilpotent and we can
use the results of the first section in this chapter. We may hence restrict to those Banach-Lie
algebras, where we have ωn > 0 for all n ∈ N. This allows the next definition.

Definition 6.4.2 (Rapidly increasing sequences) Let g be a uniformly topologically nilpo-

tent Banach-Lie algebra and (ωn)n∈n the sequence defined in (6.4.3). Then we define the char-

acteristic sequence (χg
n)n∈N of g by

χg
n = max

{
1

ωn
, 2

}
. (6.4.4)

Furthermore, we will say that a sequence (αn)n∈N in (1,∞) is g-rapidly increasing, if it fulfils

the following properties:

i.) It grows fast than exponentially, i.e.

lim
n−→∞

log(αn)

n
= ∞.

ii.) There exists a constant c > 0, such that

αn ≤ cnχg
n.

We denote by Ig the set of all g-rapidly increasing sequences.

Clearly, (χg
n)n∈N is a g-rapidly increasing sequence itself. Note that with this definition we get

for every sequence (ξn)n∈N ⊂ B1(0)

‖[. . . [[ξ1, ξ2], ξ3], . . . ξn]‖ ≤ 2n

χ
g
n
. (6.4.5)

Remark 6.4.3 The number 2 in (6.4.4) may look a bit confusing at the first sight, since it is
somehow arbitrary, but for technical reasons, we will need χ

g
n > 1 later. So actually every real

number c > 1 could have been used there. In this sense, the previous definition is rather a
technical tool than a “general concept”.
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Each (αn)n∈N ∈ Ig gives a continuous seminorm.

Definition 6.4.4 (Adapted seminorms) Let (αn)n∈N ∈ Ig. Then

pα =

∞∑

n=0

n!

αn
‖·‖⊗πn

defines a seminorm on the tensor algebra with the projective tensor product T•
π(g). We denote

the set of all continuous seminorms with respect to those coming from such sequences by P.

It will be important to see that every rapidly increasing sequence (αn)n∈N yields a continuous
function fα by

fα : R
+
0 −→ R

+, fα(0) = 2, fα(n) = log(αn), ∀n∈N (6.4.6)

and linear interpolation between the values at the integers. The idea behind is that this will
allow us to use a technical lemma, which we now introduce. This lemma shows that there are
always “many” rapidly increasing functions in a certain sense. It is taken from a work [65] by
Mitiagin, Rolewicz and Żelazko, where it is stated in Lemma 2.1 and Lemma 2.2.

Lemma 6.4.5 Let f : R+
0 −→ R

+ be a continuous functions, such that

lim
n−→∞

f(x)

x
= ∞. (6.4.7)

Then there exists a convex, continuous function g : R+
0 −→ R

+, fulfilling (6.4.7) and

g(t1 + · · · + tn) ≤ 8(g(t1) + · · · + g(tn)) + f(n), ∀n∈N and all ti ∈ R+
0 . (6.4.8)

Proof: We refer the reader to the paper [65], since we just want to use this lemma and do not
want to go too much into details here. �

Note that if we have (αn)n∈N ∈ Ig, then we can apply Lemma 6.4.5 to the function fα, which is
defined according to Equation 6.4.6.

6.4.3 A New Continuity Result

Now, we have finally prepared our toolbox well enough to prove a new result.

Proposition 6.4.6 Let g be a uniformly topologically nilpotent Banach-Lie algebra, (αn)n∈N ∈
Ig, pα the corresponding seminorm according to (6.4.6) and z ∈ K. Then, there exists a series

(βn)n∈N ∈ Ig, such that for all x, y ∈ T•(g) we have the estimate

pα(x ⋆z y) ≤ (cp)β(x)(cp)β(y) (6.4.9)

with a c > 0, which only depends on α, z and the Lie algebra g.

Proof: We compute the estimate on factorizing tensors and extend it with the infimum ar-
gument later. Let hence k, ℓ ∈ N and ξ1, . . . , ξk, η1, . . . , ηℓ ∈ g. We need to estimate the
Cn-operators for n = 0, 1, . . . , k+ ℓ− 1. Therefore we note r = k+ ℓ−n and use the short-hand
notation for the sums, which appear in the Gutt star product, again. We take (αn)n∈N ∈ Ig and
get for pα

pα
(
Cn
(
ξ1 ⊗ · · · ⊗ ξk,η1 ⊗ · · · ⊗ ηℓ

))
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= pα

(
1

r!

∑

σ,τ

∑

ai,bj

B̃CHa1,b1

(
ξσ(i); ητ(j)

)
· · · B̃CHar ,br

(
ξσ(i); ητ(j)

))

≤ 1

r!

r!

αr

∑

σ,τ

∑

ai,bj

‖B̃CHa1,b1
(
ξσ(i); ητ(j)

)
‖ · · · ‖B̃CHar ,br

(
ξσ(i); ητ(j)

)
‖

≤ k!ℓ!

αr

∑

ai,bj

2

χ
g
a1+b1

. . .
2

χ
g
ar+br

‖ξ1‖ · · · ‖ξk‖‖η1‖ · · · ‖ηℓ‖,

where we have used the estimate from Lemma 5.3.1 (iii) and Estimate (6.4.5) in the last step.
Rearranging this, we have

pα

(
Cn

(
ξ⊗k, η⊗ℓ

))
≤ k!ℓ!2r‖ξ1‖ · · · ‖ξk‖‖η1‖ · · · ‖ηℓ‖

∑

a1,b1,...,ar ,br≥0
ai+bi≥1

a1+...+ar=k
b1+...+br=ℓ

1

αr · χg
a1+b1

· · ·χg
ar+br

,

and we would like to find a (βn)n∈N ∈ Ig such that

sup





βk · βℓ
αr · χg

a1+b1
. . . χ

g
ar+br

∣∣∣∣∣k, ℓ ∈ N, ai + bi ≥ 1,
∑

i

ai = k,
∑

j

bj = ℓ



 ≤ κk+ℓ (6.4.10)

for some κ > 0, just depending on (α). Then we would have

pα
(
Cn
(
ξ1 ⊗ · · · ⊗ ξk,η1 ⊗ · · · ⊗ ηℓ

))

≤ k!ℓ!

βkβℓ
2r‖ξ1‖ · · · ‖ξk‖‖η1‖ · · · ‖ηℓ‖

∑

a1,b1,...,ar ,br≥0
ai+bi≥1

a1+...+ar=k
b1+...+br=ℓ

κk+ℓ

= 2−n(2κ)k+ℓpβ(ξ1 ⊗ · · · ⊗ ξk)pβ(η1 ⊗ · · · ⊗ ηℓ)
∑

a1,b1,...,ar ,br≥0
ai+bi≥1

a1+...+ar=k
b1+...+br=ℓ

1

≤ 1

2 · 8n (16κ)
k+ℓpβ(ξ1 ⊗ · · · ⊗ ξk)pβ(η1 ⊗ · · · ⊗ ηℓ)

=
1

2 · 8n (16κp)β(ξ1 ⊗ · · · ⊗ ξk)(16κp)β(η1 ⊗ · · · ⊗ ηℓ).

From this we could conclude analogously to the procedure in the proof of Theorem 5.3.2 and the
statement would follow. However, we need to show the existence of a (βn)n∈N ∈ Ig and a κ > 0,
such that (6.4.10) holds.

Lemma 6.4.7 For fα defined as in (6.4.6), we take the function g we get from Lemma 6.4.5.

Then the sequence ((βn)n∈N defined by

βn = exp

(
g(n)

8

)
(6.4.11)

and κ = ce8g(1) fulfil (6.4.10), where c > 0 is a constant such that αn ≤ cnχ
g
n.

Proof: First, note that there is a fixed c ≥ 1 such that

αn ≤ cnχg
n ⇐⇒ 1

χ(g)n
≤ c′n

αn
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by the definition of a rapidly increasing sequence. Denote ai + bi = ni. Then we have

βk · βℓ
αr · χg

n1 · · ·χg
nr

≤ ck+ℓβk · βℓ
αr · αn1 · · ·αnr

and hence

log

(
βk · βℓ

αr · χg
n1 · · ·χg

nr

)

≤ log

(
ck+ℓβk · βℓ

αr · αn1 . . . αnr

)

= (k + ℓ) log(c) +
g(k)

8
+
g(ℓ)

8
− fα(r)− fα(n1)− · · · − fα(nr)

(a)
≤ (k + ℓ) log(c) +

g(k + ℓ)

8
− fα(r)− fα(n1)− · · · − fα(nr)

(b)
≤ (k + ℓ) log(c) + g(n1) + · · ·+ g(nr) +

fα(r)

8

− fα(r)− fα(n1)− · · · − fα(nr)

(c)
≤ (k + ℓ) log(c) + (g(n1)− fα(n1)) + · · · + (g(nr)− fα(nr))

(d)
≤ (k + ℓ) log(c′) + 8g(1)n1 + · · ·+ 8g(1)nr

= (k + ℓ)(log(c′) + 8g(1)).

In (a), we have used the convexity of g and Lemma 6.4.5 in (b). Then, (c) is just fα(n)
8 ≤ fα(n).

In (d) we used Lemma 6.4.5 again by estimating

g(n) = g(1 + . . . + 1) ≤ 8ng(1) + fα(n) ⇐⇒ g(n)− fα(n) ≤ 8ng(1).

Now we need to exponentiate the inequality we just found and get

βk · βℓ
αr · χg

n1 · · ·χg
nr

≤ ek+ℓ)(log(c
′)+8g(1)) =

(
ce8g(1)

)k+ℓ
.

Since the n1, . . . , nr have been arbitrary, (βn)n∈N and κ fulfil (6.4.10) and the Lemma is proven.▽

Now, we only need to take the sum of the Cn. We know this is possible from Chapter 5, and we
finally get a continuity estimate which is locally uniform in z. �

From the result of the previous proposition, we see that the next definition is useful:

Definition 6.4.8 (The S1−−-Topology) Let g be a uniformly topologically nilpotent Banach-

Lie algebra. Then we denote by S•1−−(g) the symmetric tensor algebra endowed with the topology,

which is defined by the set of seminorms P from Definition 6.4.4 and which is based g-rapidly

increasing sequences.

Now we can rephrase the statement of Proposition 6.4.6 in the following way: S•1−−(g) endowed
with the Gutt star product is a locally convex algebra. We also see analogously to Corollary 6.1.2
that exponentials functions are in the completion Ŝ•1−−(g).

At the end of Chapter 5, we showed that a finite-dimensional Lie algebra g is nilpotent if and
only if its universal enveloping algebra U (g) admitted a locally convex topology, such that the
following three things are fulfilled.
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i.) The product in U (g) is continuous.

ii.) For every ξ ∈ g the series exp(ξ) converges absolutely in the completion of U (g).

iii.) Pulling back the topology to the symmetric tensor algebra, the projection and inclusion
maps with respect to the graded structure

S•(g)
πn−→ Sn(g)

ιn−→ S•(g)

are continuous for all n ∈ N.

For Banach-Lie algebras, we came quite close to a similar statement: we know from Proposi-
tion 5.4.1 and the result of Wojtyǹski, that a Banach-Lie algebra must at least be topologically

nil to satisfy the three upper points, so being topologically nil is necessary. We also know, that
a uniformly topologically nilpotent Banach-Lie algebra g allows us to construct such a locally
convex topology on U (g) explicitly, hence uniform topological nilpotency is sufficient. Maybe it
is possible to find a notion of generalized nilpotency, which is equivalent to those three points.



Chapter 7

The Hopf Algebra Structure

As already pointed out in Chapter 3, universal enveloping algebras of a Lie algebras are more
than just associative, unital algebras: they constitute one of the most important types of Hopf

algebras, which are very common structures in mathematics. Hopf algebras are a particular
bialgebras, which in turn are on one hand associative, unital algebras, and on the other hand
coassociative, counital coalgebras. Those two substructures of bialgebras must of course fulfil
certain compatibility conditions. Note at this point, that coalgebras play a crucial role in the
theory of formal deformation quantization, which is due to Kontsevich, but which has been a
lot further developed since. Good references on this so-called formality theory are given by
Esposito [41] and Manetti [62].

In a Hopf algebra however, we have an additional map, called the antipode, which again
must fulfil some compatibility relations. So, in brief, a Hopf algebra over a field K is a tuple
(H, ·, η,∆, ε, S) of a vector space H together with the following maps

· : H ⊗ H −→ H, multiplication

η : K −→ H, unit

∆: H −→ H ⊗ H, coproduct

ε : H −→ K, counit

S : H −→ H, antipode,

such that we have a certain set of commuting diagrams. A very nice introduction to the theory
of Hopf algebras with a lot of examples can e.g. be found in [83].

In the previous chapters, we have mostly studied the properties of the multiplication in U (gz),
endowed with a particular topology. In this last chapter of this thesis, we will treat the remaining
Hopf algebra structure maps. In the first section, we will see that the comultiplication and the
antipode are not touched by our deformation procedure. Hence, it will be enough to show the
continuity of the undeformed versions of those maps, which we will do in second section.

7.1 An Undeformed Hopf Structure

To get show the continuity of the remaining structure maps of UR(gz), we have to put estimates
on seminorms again. For this purpose, we need explicit formulas for the antipode

Sz : U (gz) −→ U (gz) (7.1.1)

and the coproduct
∆z : U (gz) −→ U (gz)⊗ U (gz) (7.1.2)

97
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in the UR(gz) and in S•(g). We pull them back to the symmetric algebra and extend them to
the whole tensor algebra by symmetrizing beforehand. We define

S̃z : T•(g) −→ S•(g), S̃z = q−1
z ◦ Sz ◦ qz ◦ S (7.1.3)

and
∆̃z : T•(g) −→ S•(g)⊗ S•(g), ∆̃z = (q−1

z ⊗ q−1
z ) ◦∆z ◦ qz ◦ S , (7.1.4)

to avoid that the maps on S•(g) and on U (gz) are denoted by the same symbols. The next
lemma gives us the two explicit formulas we need.

Lemma 7.1.1 For ξ1, . . . , ξn ∈ g we have the identities

S̃z(ξ1 ⊗ · · · ⊗ ξn) = (−1)nξ1 · · · ξn (7.1.5)

and

∆̃z(ξ1 ⊗ · · · ⊗ ξn) =
∑

I⊆{1,...,n}

ξI ⊗ ξ1 · · · ξ̂I · · · ξn (7.1.6)

where ξI denotes the symmetric tensor product of all ξi with i ∈ I and ξ̂I means that the ξi with

i ∈ I are left out.

Proof: First, we derive Formula 7.1.5: the antipode gives Sz(ξ) = −ξ for ξ ∈ g and extends to
U (gz) by algebra antihomomorphism, hence

Sz(ξ1 ⊙ · · · ⊙ ξn) = (−1)nξn ⊙ · · · ⊙ ξ1

in U (gz) for ξ1, . . . , ξn ∈ g. This means

S̃z(ξ1 ⋆z · · · ⋆z ξn) = (−1)nξn ⋆z · · · ⋆z ξ1

in S•(g). But now, using the linearity of S̃z we get

S̃z(ξ1 · · · ξn) = S̃z

(
1

n!

∑

σ∈Sn

ξσ(1) ⋆z · · · ⋆z ξσ(n)
)

=
1

n!

∑

σ∈Sn

S̃z
(
ξσ(1) ⋆z · · · ⋆z ξσ(n)

)

=
1

n!

∑

σ∈Sn

(−1)nξσ(n) ⋆z · · · ⋆z ξσ(1)

= (−1)nξ1 · · · ξn.

For the coproduct, we have well-known formula with shuffle permutations:

∆z(ξ1 ⊙ · · · ⊙ ξn) =

n∑

k=0

∑

1≤i1<...<ik≤n
I={i1,...,ik}

ξi1 ⊙ · · · ⊙ ξik ⊗ ξ1 ⊙ · · · ξ̂I · · · ⊙ ξn.

We can derive it from the fact that ∆z has the following form on Lie algebra elements:

∆z(ξ) = ξ ⊗ 1+ 1⊗ ξ.
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The coproduct extends to U (gz) by algebra homomorphism. This yields

∆z(ξ1 ⊙ · · · ⊙ ξn) = ∆z(ξ1)⊙ · · · ⊙∆z(ξn)

= (ξ1 ⊗ 1+ 1⊗ ξ1)⊙ · · · ⊙ (ξn ⊗ 1+ 1⊗ ξn)

=
n∑

k=0

∑

1≤i1<...<ik≤n
I={i1,...,ik}

ξi1 ⊙ · · · ⊙ ξik ⊗ ξ1 ⊙ · · · ξ̂I · · · ⊙ ξn.

Now we can pull this back to S•(gz). We get a ⋆z for every ⊙. For symmetric tensors we have
by linearity

∆̃z(ξ1 · · · ξn)

= ∆̃z

(
1

n!

∑

σ∈Sn

ξσ(1) ⋆z · · · ⋆z ξσ(n)
)

=
1

n!

∑

σ∈Sn

∆̃z

(
ξσ(1) ⋆z · · · ⋆z ξσ(n)

)

=
1

n!

∑

σ∈Sn

n∑

k=0

∑

1≤i1<...<ik≤n
I={i1,...,ik}

ξiσ(1)
⋆z · · · ⋆z ξiσ(k)

⊗ ξσ(1) ⋆z · · · ξ̂σ(I) · · · ⋆z ξσ(n)

=
1

n!

n∑

k=0

∑

σ∈Sk

∑

τ∈Sn−k

∑

{i1,...,ik}⊆{1,...,n}

n!

k!(n− k)!
· ξiσ(1)

⋆z · · · ⋆z ξiσ(k)
⊗ ξτ(1) ⋆z · · · ξ̂I · · · ⋆z ξτ(n)

=

n∑

k=0

∑

{i1,...,ik}⊆{1,...,n}

ξi1 · · · ξik ⊗ ξ1 · · · ξ̂I · · · ξn. �

This lemma yields immediately the following result.

Corollary 7.1.2 If we deform the symmetric tensor algebra of an AE-Lie algebra S•(g) with the

Gutt star product, the coproduct and the antipode will remain undeformed.

Remark 7.1.3 (Hopf structures on the tensor algebra)

i.) On the first sight, this result looks astonishing, but actually it is not. The Hopf algebra
structure we found here is just the Hopf algebra structure which comes from the tensor
algebra of g. To be more precise: it is the Hopf algebra structure using the tensor product
and the shuffle coproduct. There is also a second Hopf algebra structure: the one using
the deconcatenation coproduct and the shuffle product. We find these structures on every
tensor algebra of a vector space, it does not need to be a tensor algebra over a Lie algebra.
Since the coalgebra structure on U (gz) is inherited from T•(g) and does not make use of
the Lie bracket, there is no reason why a rescaling of the Lie bracket should change it.

ii.) What we have seen is hence just one possibility to deform the symmetric algebra. Another
way to do so would be to deform the costructure and leave the product untouched. Such a
deformation of a Hopf algebra would lead to the notion of quantum groups.

7.2 Continuity of the Hopf Structure

We need a topology on the tensor product in (7.1.6), since we want to prove the continuity of
this map. As we have always used the projective tensor product for our construction so far, it
seems just logic to do so again. The continuity of the two maps is then very easy to show.
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Proposition 7.2.1 Let g be an AE-Lie algebra and R ≥ 0. For every continuous seminorm p

and all x ∈ T̂
•

R(g) the following estimates hold:

pR

(
S̃z(x)

)
≤ pR(x) (7.2.1)

and

(pR ⊗ pR)
(
∆̃z(x)

)
≤ (2p)R(x). (7.2.2)

Proof: We just need to show both estimates on factorizing tensors and extend them with the
infimum argument. Inequality (7.2.1) is clear, since we only get a sign. To get Equation (7.2.2),
we compute:

(pR ⊗ pR)
(
∆̃z(ξ1 ⊗ · · · ⊗ ξn)

)
= (pR ⊗ pR)


 ∑

I⊆{1,...,n}

ξI ⊗ ξ1 · · · ξ̂I · · · ξn




≤
∑

I⊆{1,...,n}

|I|!R(n− |I|)!Rp|I|(ξI)pn−|I|
(
ξ1 · · · ξ̂I · · · ξn

)

≤
∑

I⊆{1,...,n}

|I|!R(n− |I|)!Rp(ξ1) · · · p(ξn)

≤
∑

I⊆{1,...,n}

n!Rp(ξ1) · · · p(ξn)

= 2nn!Rp(ξ1) · · · p(ξn)
= (2p)R(ξ1 ⊗ · · · ⊗ ξn).

This shows the statement. �

Remark 7.2.2 We see that we get no dependence on the parameter R. Also this is not sur-
prising: the Hopf structure of the symmetric or the universal enveloping algebra over a vector
space is cocommutative. The symmetric tensor product is commutative and its continuity esti-
mate does not depend on the parameter R either. Note that for an abelian Lie algebra, also the
product structure remains undeformed and all Hopf algebra maps are continuous for R ≥ 0. In
this sense, the independence of R fits into the picture.

The only maps which are left to consider are the unit and the counit. Since their continuity
is clear by the definition of the TR-topology, we get the a final result.

Theorem 7.2.3 Let g be an AE-Lie algebra and z ∈ K. Then, if R ≥ 1, Ŝ•R(g) will be a

locally convex Hopf algebra. The same will hold for Ŝ•1−(g), if g is a nilpotent locally convex Lie

algebra with continuous Lie bracket and for Ŝ•1−−(g), if g is a uniformly topologically nilpotent

Banach-Lie algebra.
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