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DIVISIBILITY OF BINOMIAL COEFFICIENTS BY

POWERS OF PRIMES

LUKAS SPIEGELHOFER AND MICHAEL WALLNER

Abstract. For a prime p and nonnegative integers j and n let ϑp(j, n)
be the number of entries in the n-th row of Pascal’s triangle that are ex-
actly divisible by pj . Moreover, for a finite sequence w = (wr−1 · · ·w0) 6=
(0, . . . , 0) in {0, . . . , p− 1} we denote by |n|w the number of times that
w appears as a factor (contiguous subsequence) of the base-p expan-
sion n = (nν−1 · · ·n0)p of n. It follows from the work of Barat and
Grabner (Digital functions and distribution of binomial coefficients, J.
London Math. Soc. (2) 64(3), 2001), that ϑp(j, n)/ϑp(0, n) is given by
a polynomial Pj in the variables Xw, where w are certain finite words
in {0, . . . , p − 1}, and each variable Xw is set to |n|w. This was later
made explicit by Rowland (The number of nonzero binomial coefficients
modulo pα, J. Comb. Number Theory 3(1), 2011), independently from
Barat and Grabner’s work, and Rowland described and implemented
an algorithm computing these polynomials Pj . In this paper, we express
the coefficients of Pj using generating functions, and we prove that these
generating functions can be determined explicitly by means of a recur-
rence relation. Moreover, we prove that Pj is uniquely determined, and
we note that the proof of our main theorem also provides a new proof
of its existence. Besides providing insight into the structure of the poly-
nomials Pj , our results allow us to compute them in a very efficient
way.

1. Introduction

The history of binomial coefficients in congruence classes modulo m be-

gins not later than in the middle of the 19th century, when Kummer [28]

stated his famous theorem on the highest prime power pm dividing a bino-

mial coefficient
(
n
t

)
: m is the number of borrows occurring in the subtraction

n − t in base p. In other words, this is the number of indices k such that

n mod pk < t mod pk. Kummer’s theorem was generalised to multinomial
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and q-multinomial coefficients by Fray [18], and to generalised binomial co-

efficients by Knuth and Wilf [27].

A complete list of results related to Pascal’s triangle modulo powers

of primes would go beyond the scope of any research paper; we refer the

reader to the surveys [21, 34] by Granville and Singmaster respectively for

an overview of the topic. The question also attracts other areas of research:

in [3, Section 14.6] and [1], connections with automatic sequences and com-

binatorics on words are highlighted. Moreover, the paper [4] considers the

related question of counting coefficients equal to a given value of a polyno-

mial over a finite field.

In this paper we restrict ourselves to questions concerning exact divi-

sibility of binomial coefficients by powers of primes. This means that we

are only concerned with the residue class pj modulo pj+1, in other words,

we study the case νp
(
n
t

)
= j, where νp(m) denotes the largest k such that

pk | m.

We therefore introduce the following notion, which is central in our pa-

per. Let j and n be nonnegative integers and p a prime number, and define

ϑp(j, n) =

∣∣∣∣
{
t ∈ {0, . . . , n} : νp

(
n

t

)
= j

}∣∣∣∣ .

Put into words, ϑp(j, n) is the number of entries in the n-th row of Pascal’s

triangle that are exactly divisible by pj . The case j = 0 can be reduced

to properties of the base-p expansion of the row number n by appealing to

Lucas’ congruence [29]. This well-known congruence asserts that for t ≤ n

having the (not necessarily proper) base-p representations n = (nν−1 · · ·n0)p

and t = (tν−1 · · · t0)p, we have
(
n

t

)
≡
(
nν−1

tν−1

)
· · ·
(
n0

t0

)
mod p.

Since p is a prime number, we have p ∤
(
n
t

)
if and only if none of the factors

is divisible by p, which in turn is equivalent to ti ≤ ni for all i < ν. We

obtain, denoting by |n|a the number of times the digit a 6= 0 occurs in the

base-p expansion of n,

ϑ2(0, n) = 2|n|1

for the case p = 2 (Glaisher [19]) and more generally (Fine [15])

(1.1) ϑp(0, n) =
∏

0≤i<ν

(ni + 1) = 2|n|13|n|24|n|3 · · · p|n|p−1.

Lucas’ congruence has been generalised and extended in different directions,

see for example [18], [26] (reproved in [32]), [9, 20, 21]; moreover [10] for an
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account of less recent results. In order to be able to formulate our results

concerning general j ≥ 0, we need some notation.

Notation. The letter p always denotes a prime number; we use typewriter

font to indicate digits in the base-p expansion, except for variables repre-

senting digits. For the (p − 1)-st digit we write q, a letter supposed to be

a mnemonic relating to 9 in the decimal expansion. If v is an infinite word

over the alphabet {0, . . . , q} such that vi 6= 0 for only finitely many i ≥ 0,

let (v)p =
∑

i≥0 vip
i be the integer represented by v in base p. Moreover, if

w = (wν−1 · · ·w0) ∈ {0, . . . , q}ν contains at least one nonzero digit and v

is as above, let |v|w be the number of times that w occurs as a factor of v.

More precisely,

|v|w = |{i ≥ 0 : (vi+ν−1, . . . , vi) = (wν−1, . . . , w0)}| .

For finite words v we extend the above notions by padding with zeros.

Moreover, if n is a nonnegative integer and n = (v)p, we set |n|w := |v|w.
Occurrences of factors may overlap: for example, for p = 2 we have |42|

1010
=

|101010|
1010

= 2. Moreover, as a consequence of the padding with zeros we

have |1|
1
= |1|

01
= |1|

001
= · · · = 1, while |1|

10
= 0.

The following statement is an easy reformulation of [31, Theorem 2]. The

method used for proving this theorem is very similar to the method used

in the older paper [5, Theorem 5], which proves a less detailed form of the

result, but can be adapted to yield the full statement. See also Remark 1.

Theorem 0 (Rowland [31]–Barat–Grabner [5]). Let p be a prime and j ≥ 0.

Then ϑp(j, n)/ϑp(0, n) is given by a polynomial Pj of degree j in the variables

Xw, where w ranges over the set

(1.2) Wj =
{
w ∈ {0, . . . , q}ν : 2 ≤ ν ≤ j + 1, wν−1 6= 0, w0 6= q

}
,

and Xw is set to |n|w.

Note that W0 = ∅ and P0(x) = 1. Determining ϑp(j, n)/ϑp(0, n) by

means of this theorem is a two-step procedure:

(1.3) n 7→
(
|n|w

)
w∈Wj

7→ Pj

((
|n|w

)
w∈Wj

)
=
ϑp(j, n)

ϑp(0, n)
.

Barat and Grabner [5, Theorem 5] used a representation of ϑp(j, n)/ϑp(0, n)

of this kind in order to establish an asymptotic formula for the partial

sums
∑

0≤n<N ϑp(j, n). Their Theorem 5 generalises the case j = 0 [16] (see

also [6, 36]), and yields a quantitative version of the statement “any integer

divides almost all binomial coefficients” [33].
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Theorem 0 implies, as noted by Rowland, that n 7→ ϑp(j, n)/ϑp(0, n)

is a p-regular sequence in the sense of Allouche and Shallit [2, 3]. We will

however not follow this line of research in this paper.

In Proposition 2.1 we will prove that a polynomial Pj as in Theorem 0

is uniquely determined, so that we may talk about the coefficients of Pj

without ambiguity. These polynomials are the main object of study in this

paper, and want to obtain a better understanding of its coefficients. Our

main theorem (restated in Section 2) concerns the behaviour of the coeffi-

cients of a single monomial in the sequence (Pj)j≥0 of polynomials.

Theorem. Let W be the set of all words (wν−1, . . . , w0) ∈ {0, . . . , q}ν such

that ν ≥ 2, wν−1 6= 0 and w0 6= q. Assume that w(1), . . . , w(ℓ) ∈ W , and

k1, . . . , kℓ are positive integers. Let cj be the coefficient of the monomial

Xk1
w(1) · · ·Xkℓ

w(ℓ)

in the polynomial Pj. Then
∑

j≥0

cjx
j =

1

k1!

(
log rw(1)(x)

)k1 · · · 1

kℓ!

(
log rw(ℓ)(x)

)kℓ ,

where rw is a rational function defined at 0 such that rw(0) = 1.

The rational function rw can be determined explicitly by means of a re-

currence, see Section 2. The easiest nontrivial example is r10(x) = 1 + x/2

(p = 2). Note that the coefficients cj always belong to a fixed monomial

Xk1
w(1) · · ·Xkℓ

w(ℓ). However, in order to increase readability we will not empha-

size this relationship by additional sub- or superscripts. It will always be

clear from the context which monomial is referred to.

As a direct consequence of our results we will obtain the following corol-

lary.

Corollary. Let p = 2. The coefficient cj of the monomial X10 in Pj equals

[xj ] log(1 + x/2). In particular,
∑

j≥0

cj = log(3/2).

This special case confirms an observation by Rowland [31], who noted

that a plot of the first few partial sums c′j = c0 + · · ·+ cj−1 “suggests that

the limit of this sequence exists”. He computed the first seven polynomials

P ′
j = P0 + · · ·+ Pj−1

with the help of his Mathematica package BinomialCoefficients, which

is based on his paper [31] and available from his website, and determined the
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coefficients c′j that way. By the above corollary the limit does exist indeed,

and its value is log(3/2). It is however not true for each monomial M that

the sequence of coefficients ofM in P ′
j converges as j → ∞, nor is it the case

that all coefficients of P ′
j are nonnegative. A simultaneous counterexample

for both questions is given by X1010 (see the examples after Corollary 2.10).

The sequence of coefficients of this monomial has the generating function

log
(
1 + 1

2
x3/
(
1 + x/2

)2)
,

which has a unique dominant singularity x0 ∼ −0.86408. Therefore negative

signs occur infinitely often and the sequence of coefficients diverges to ∞ in

absolute value (this is true for the coefficients in Pj as well as in P
′
j).

While the above results concern the behaviour of a single monomial in

different polynomials Pj , we will also prove an “orthogonal” result, namely

an asymptotic estimate of the number of nonzero coefficients in Pj and P
′
j

(Corollary 2.7).

The results that we have outlined above provide answers to questions

posed by Rowland [31] at the end of his paper. For more details, we refer to

Section 2. Finally, we want to note that our main theorem together with the

recurrence for rw enables us to compute the polynomials Pj very efficiently

(see Remark 5).

We will also use the following notations in this article. The integer

s2(n) := |n|
1
is the sum of digits of n in base 2, more generally sp(n) :=

|n|
1
+ 2 |n|

2
+ · · · + (p − 1) |n|

q
is the sum of digits of n in base p. For a

finite word w we denote by |w| the length of w. Finally, N denotes the set

of nonnegative integers.

Plan of the paper. In Section 1.1 we will meet the fundamental recurrence

relation for the values ϑp(j, n), found by Carlitz [7], while in Section 1.2

we list some of the polynomials Pj for the case p = 2. In Sections 2.1

and 2.2, we will state in detail the results we announced above, and study

the rational functions rw more carefully. Section 2.3 gives an alternative form

of the fundamental recurrence relation for ϑp(j, n), which can be written as

an elegant but enigmatic infinite product. This also yields a new proof of

Carlitz’ recurrence relation. Finally, we note in Section 2.4 that we can reuse

the polynomials Pj for the columns in Pascal’s triangle. Proofs not given in

the main section are stated in Section 3.

1.1. A recurrence for the values ϑp(j, n), and the case j = 1. Car-

litz [7] gave a recurrence relation for the values ϑp(j, n), which also involves
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another family ψp defined by1

ψp(j, n) =

∣∣∣∣
{
t ∈ {0, . . . , n} : νp

(
n

t

)
= j − νp(n + 1)

}∣∣∣∣ .

He then obtains [7, Equations (1.7)–(1.9)] for n ≥ 0 and j ≥ 1, using the

convention ψp(j,−1) = 0,

(1.4)

ϑp(j, pn+ a) = (a+ 1)ϑp(j, n)

+ (p− a− 1)ψp(j − 1, n− 1), 0 ≤ a < p;

ψp(j, pn+ a) = (a+ 1)ϑp(j, n)

+ (p− a− 1)ψp(j − 1, n− 1), 0 ≤ a < p− 1;

ψp(j, pn + p− 1) = pψp(j − 1, n).

Rewriting the recurrence (1.4) using the obvious identity

ψp(j, n) =

{
ϑp(j − νp(n+ 1), n), j ≥ νp(n + 1);

0, j < νp(n+ 1),

we obtain for 0 ≤ a < p

(1.5) ϑp(j, pn+ a) = (a + 1)ϑp(j, n)

+

{
(p− a− 1)ϑp(j − 1− νp(n), n− 1), j > νp(n);

0, j ≤ νp(n).

Among other things, Carlitz evaluates ϑp(j, n) for special values of n, using

associated generating functions. Moreover, he proves the explicit formula [7,

Equation (2.5)], saying that for the base-p expansion n =
∑ν−1

i=0 nip
i we have

ϑp(1, n) =
∑

0≤i<ν−1

(nν−1+1) · · · (ni+2+1)ni+1(p−ni−1)(ni−1+1) · · · (n0+1).

By (1.1) this implies that

ϑp(1, n)

ϑp(0, n)
=

∑

0≤i<ν−1

ni+1

ni+1 + 1
· p− ni − 1

ni + 1
.

In particular, counting identical summands, we obtain

(1.6)
ϑp(1, n)

ϑp(0, n)
=

∑

0≤c,a<p
c 6=0,a6=p−1

c

c+ 1
· p− a− 1

a+ 1
|n|ca .

Note that we defined the quantity |n|ca as the number of occurrences of

(c, a) = (ni+1, ni) in the base-p expansion n =
∑∞

i=0 nip
i. Since c is nonzero,

1Our notation differs slightly from Carlitz’ who wrote θj(n) instead of ϑp(j, n) and
ψj(n) instead of ψp(j, n), omitting p altogether.



DIVISIBILITY OF BINOMIAL COEFFICIENTS 7

this is equal to the number of occurrences of this pattern for 0 ≤ i < ν − 1.

For the prime p = 2 only one summand remains, yielding the formula

ϑ2(1, n)

ϑ2(0, n)
=

1

2
|n|

10
.

This formula was observed by Howard [23, Equation (2.4)], see also [22,

Theorem 2.2]. (The latter is however not correct if n is a power of 2.)

1.2. The polynomials Pj for j > 1. In 1971, Howard [23] also found

formulas for ϑ2(2, n), ϑ2(3, n), and ϑ2(4, n) in terms of factor counting func-

tions |n|w. In different notation, he obtained the formulas

ϑ2(2, n)

ϑ2(0, n)
= −1

8
|n|

10
+

1

8
|n|2

10
+ |n|

100
+

1

4
|n|

110
,

ϑ2(3, n)

ϑ2(0, n)
=

1

24
|n|

10
− 1

16
|n|2

10
− 1

2
|n|

100
− 1

8
|n|

110
+

1

48
|n|3

10
+

1

2
|n|

10
|n|

100

+
1

8
|n|

10
|n|

110
+ 2 |n|

1000
+

1

2
|n|

1010
+

1

2
|n|

1100
+

1

8
|n|

1110
,

ϑ2(4, n)

ϑ2(0, n)
= − 1

64
|n|

10
+

11

384
|n|2

10
− 1

4
|n|

100
+

1

32
|n|

110
− 1

64
|n|3

10

− 3

8
|n|

10
|n|

100
− 3

32
|n|

10
|n|

110
− |n|

1000
− 1

2
|n|

1010
− 1

2
|n|

1100

− 1

16
|n|

1110
+

1

384
|n|4

10
+

1

8
|n|2

10
|n|

100
+

1

32
|n|2

10
|n|

110
+

1

2
|n|2

100

+
1

4
|n|

100
|n|

110
+

1

32
|n|2

110
+ |n|

10
|n|

1000
+

1

4
|n|

10
|n|

1010

+
1

4
|n|

10
|n|

1100
+

1

16
|n|

10
|n|

1110
+ 4 |n|

10000
+ |n|

10010
+ |n|

10100

+
1

4
|n|

10110
+ |n|

11000
+

1

4
|n|

11010
+

1

4
|n|

11100
+

1

16
|n|

11110
.

Moreover, Howard [24] found an expression for ϑp(2, n) for general primes p;

see also [25, 38]. We also refer to Spearman and Williams [35, Theorem 1].

They reproved the formulas above by expressing ϑ2(j, n)/ϑ2(0, n) as a sum

of nonoverlapping subwords of the binary expansion of n. We note that the

factors that are counted in the expressions for ϑ2(j, n) always start with the

digit 0 (read from right to left) and end with the digit 1. That is, the words w

occurring in these expressions belong to the setWj defined in Theorem 0, for

some j ≥ 1. By this theorem we can always require the condition w ∈ Wj ,

while Proposition 2.1 ensures uniqueness of an expression for ϑ2(j, n) as

above.

We refrained from listing formulas for j ≥ 5 for the obvious reason: P5

contains 69 monomials, P6 already 174.
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Remark 1. As we noted before, the statement of the Theorem 0 formu-

lated by Rowland can already be found implicitly in Barat and Grabner [5].

That is, their method of proof can be adapted to show the theorem. More

precisely, in the course of proving Theorem 5 in that paper, they proved

that ϑp(j, n)/ϑp(0, n) is a sum of products of block-additive functions. Here

a function f : N → C is called ℓ-block-additive in base p, if there is a func-

tion F : {0, . . . , q}ℓ → C satisfying F (0, . . . , 0) = 0 such that for the base-p

expansion n =
∑

i≥0 εip
i we have

f(n) =
∑

i≥0

F (εi+ℓ−1, · · · , εi).

These functions were first defined by Cateland in his thesis [8]. We note that

ℓ-block-additive functions are precisely the complex linear combinations of

factor counting functions |·|w, where w contains a nonzero letter and the

length |w| is bounded by ℓ. It follows from [5, (3.3), (3.4)] that the ℓ-block-

additive functions occurring in the representation of ϑp(j, n)/ϑp(0, n) take

only those factors (wν−1 · · ·w0) ∈ {0, . . . , q}ν into account such that wν−1 6=
0 and w0 6= q. Moreover, enhancing the induction hypothesis in the proof

of [5, Theorem 5], it can be shown that only ℓ-block-additive functions,

where 1 ≤ ℓ ≤ j, appear, and that the occurring products of block-additive

functions have length ≤ j.

Rowland [31] used an approach very similar to Barat and Grabner’s [5]

(see also Spearman and Williams [35]) in order to obtain Theorem 0. More

precisely, it follows from the proof of this theorem that the monomials

Xw(1) · · ·Xw(ℓ) occurring in the polynomial Pj satisfy

(1.7)
∣∣w(1)

∣∣ + · · ·
∣∣w(ℓ)

∣∣− ℓ ≤ j.

For example, if p = 2 and j = 2, only the monomials 1, X10, X
2
10, X100

and X110 can occur. Based on (1.7) we will derive in Corollary 2.7 an upper

bound for the number of monomials in Pj.

We note that we always write words from right to left, since our interest

in them stems from base-p expansions of an integer. Correspondingly, to

name a consequence of this convention, a prefix of a word starts with the

rightmost letter.

2. Results

2.1. Computing the coefficients of Pj. Let p be a prime number through-

out this section. For brevity of notation, we omit the index p whenever there
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is no risk of confusion. As in Theorem 0, let

Wj =
{
w ∈ {0, . . . , q}ν : 2 ≤ ν ≤ j + 1, wν−1 6= 0, w0 6= q

}
,

moreover we define the set of admissible words,

W =
⋃

j≥1

Wj.

In order to get meaningful statements on the coefficients of Pj , we have to

show that the polynomial Pj is well-defined, i.e., uniquely determined. Note

that it is not clear a priori that there is only one polynomial Pj representing

ϑp(j, n)/ϑp(0, n) as in (1.3): the values inserted into this polynomial are not

independent of each other, therefore we can not use Lagrange interpolation

directly for establishing uniqueness. For example, we have |n|
10

≥ |n|
100

for

all n, so that not all tuples (nw)w∈Wj
of nonnegative integers can occur as

family (|n|w)w∈Wj
of block counts of a nonnegative integer n. Moreover, for

the polynomial to be unique it is necessary that the blocks we are counting

satisfy some restrictions, since there are obvious identities such as |n|
1
=

|n|
01
+ |n|

11
. We will show that the restriction wν−1 6= 0, w0 6= q leads to a

unique polynomial Pj after all.

Proposition 2.1. There is at most one polynomial Pj in the variables Xw,

where w ∈ W , such that

ϑp(j, n)

ϑp(0, n)
= Pj

(
(|n|w)w∈W

)

for all n ≥ 0.

In order to prepare for the main theorem, we define generating functions

of the values ϑp(j, n), which occupy a central position in the statements of

the main results.

(2.1) Tn(x) :=
∑

j≥0

ϑp(j, n)x
j =

∑

0≤t≤n

xνp(
n
t).

Obviously, Tn(x) is a polynomial of degree max0≤t≤n νp
(
n
t

)
, which is se-

quence A119387 in Sloane’s OEIS for the case p = 2. The recurrence (1.5)

for ϑp translates to the generating functions Tn(x) as follows:

(2.2)
Ta(x) = a + 1,

Tpn+a(x) = (a + 1)Tn(x) + (p− a− 1)xs+1Tn−1(x),

for n ≥ 1 and 0 ≤ a < p, where s = νp(n). We note the special case

Tcpt−1(x) = T(c−1)qt = cpt, 1 ≤ c < p, t ≥ 0,

which we will use often.
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Remark 2. Using the recurrence (2.2), one can show by induction that

deg Tn(x) = λ− νp(m+ 1)

for n ≥ 1, where λ ≥ 0 and m ∈ {0, . . . , pλ − 1} are chosen such that

n = cpλ +m for some c ∈ {1, . . . , p− 1}.

Let us compute some polynomials Tn for p = 2. From the recurrence (2.2),

we obtain

T0(x) = 1, T1(x) = 2,

T2(x) = 2 + x, T3(x) = 4,

T4(x) = 2 + x+ 2x2, T5(x) = 4 + 2x,

T6(x) = 4 + 2x+ x2, T7(x) = 8,

T8(x) = 2 + x+ 2x2 + 4x3, T9(x) = 4 + 2x+ 4x2.

Note that Tn(1) = n + 1, since the n-th row of Pascal’s triangle contains

n+ 1 entries. Moreover, we define normalized generating functions T n:

T n(x) =
1

ϑp(0, n)
Tn(x).

By definition, we have [x0]T n(x) = 1. We are extending these notations to

finite words v in {0, . . . , q} via the base-p expansion: if (v)p = n, we set

Tv := Tn and T v := T n. Based on the polynomials T n(x), we shall define

the rational functions rw occurring in the main theorem. In order to do so,

we define the left truncation wL and the right truncation wR on the set

W ∪ {ε}, as follows. For w ∈ W , r ≥ 1 s ≥ 0, and digits c 6= 0 and a 6= q,

let

εL = ε, (c0r)L = ε, (c0sa)L = ε, (c0sw)L = w;

εR = ε, (qra)R = ε, (cqsa)R = ε, (wqsa)R = w.

In other words, for w ∈ W the word wL is the longest proper prefix u

of w (read from right to left) such that u ∈ W ∪ {ε}. Analogously, wR

is the longest proper suffix u of w such that u ∈ W ∪ {ε}. Note that we

have (wL)R = (wR)L for all w ∈ W ∪ {ε}; we write wLR for the common

value. In what follows, we write Tw ≡ Tw(x) as a shorthand. The following

proposition, a telescoping product, is the first out of two pillars on which

the main theorem rests.

Proposition 2.2. Let v ∈ W ∪ {ε}. Then we have the identity

(2.3) T v =
∏

w∈W

(
TwTwLR

TwR
TwL

)|v|w
.
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We note that we do not use the explicit definition of Tw in the proof

of this proposition. We only need the property Tw(0) = 1, so that we may

take quotients, and the property T ε = 1. In other words, we will show that

the product reduces to the fraction T v/T ε by cancelling identical factors.

The following example clarifies this point.

Example. Let p = 2 and v = 100100. Then we have

T v

T ε

=

(
T 10T ε

T εT ε

)2(
T 100T ε

T 10T ε

)2(
T 10010T ε

T 100T 10

)(
T 100100T 10

T 10010T 100

)
.

For each admissible word w we can finally define the rational generating

function

rw(x) :=
Tw(x)TwLR

(x)

TwR
(x)TwL

(x)
.

Now that we know rw, our main theorem can be stated completely explicitly.

Theorem 2.3. Let w(1), . . . , w(ℓ) be admissible words and k1, . . . , kℓ positive

integers. Assume that cj is the coefficient of the monomial

Xk1
w(1) · · ·Xkℓ

w(ℓ)

in the polynomial Pj. Then

∑

j≥0

cjx
j =

1

k1!

(
log rw(1)(x)

)k1 · · · 1

kℓ!

(
log rw(ℓ)(x)

)kℓ .

We list the first few rational functions rw for the case p = 2:

r10(x) = 1 + 1
2
x, r100(x) = 1 +

x2

1 + x/2
,

r110(x) = 1 +
1
4
x2

1 + x/2
, r1000(x) = 1 +

2x3

1 + x/2 + x2
,

r1010(x) = 1 +
1
2
x3

(1 + x/2)2
, r1100(x) = 1 +

1
2
x3

(1 + x/2 + x2)(1 + x/2 + x2/4)
.

As a straightforward application of Theorem 2.3 we obtain the corollary

from the introduction, which we restate here.

Corollary 2.4. Let p = 2. The coefficient of X10 in the polynomial Pj

equals [xj ] log(1 + x/2). In particular,
∑

j≥0

cj = log(3/2).

Proof. In this simple case all we need is r10(x) = T 2(x) = 1+ x
2
, which does

not have a singularity or a zero in the closed unit disc. �
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We continued the computation of the rational functions rw and per-

formed analogous experiments for the prime numbers 3, 5, 7 in order to

obtain a conjecture on the structure of rw. The statement of the following

proposition is the result of these experiments and constitutes the second

main ingredient in the proof of our theorem. The proof can be found at the

end of this paper.

Proposition 2.5. Let p be a prime and assume that w = wν−1 · · ·w0 ∈ W .

The rational function rw(x) satisfies

rw(x) = 1 +
αxν−1

TwL
(x)TwR

(x)
,

where

(2.4) α = pν−2 wν−1

wν−1 + 1
· p− w0 − 1

w0 + 1

∏

2≤d≤p

d−2|w′|d−1,

and w′ = wν−2 · · ·w1.

Remark 3. Consider the special case w = ca of this proposition. We obtain

α = c
c+1

p−a−1
a+1

, which gives the formula T ca(x) = rca(x) = 1 + c
c+1

p−a−1
a+1

x

(compare to (3.4)). By Theorem 2.3 we obtain the coefficient of Xca in the

polynomial P1 by extracting the coefficient

[
x1
]
log

(
1 +

c

c+ 1

p− a− 1

a+ 1
x

)
=

c

c+ 1

p− a− 1

a + 1
,

which is consistent with (1.6).

The proof of Theorem 2.3 is a combination of Propositions 2.2 and 2.5,

and consists of a series of identities.

Proof of Theorem 2.3. By Proposition (2.2), by the definition [xj ]T n(x) =

ϑp(j, n)/ϑp(0, n), and by Theorem 0, we have

[
xj
] ∏

w∈W
rw(x)

|n|w = Pj

((
|n|w

)
w∈Wj

)

for all n ∈ N. Proposition 2.5 implies that words w ∈ W \ Wj do not

contribute to the left hand side, since |w| ≥ j + 2 for these words and

therefore rw(x) = 1 +O
(
xj+1

)
. Let us reveal how the polynomial structure

emerges in the left hand side. The idea is to apply an exp-log decomposition

on (2.3). This is legitimate, as the constant term of T n(x) and therefore of

rw(x) is 1, compare (2.1). We have the identities
[
xj
] ∏

w∈W
rw(x)

|n|w =
[
xj
] ∏

w∈Wj

rw(x)
|n|w
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=
[
xj
] ∏

w∈Wj

exp
(
|n|w log rw(x)

)

=
[
xj
] ∏

w∈Wj

∑

k≥0

|n|kw
(
log rw(x)

)k

k!

=
∑

kw≥0
w∈Wj



[xj
] ∏

w∈Wj

(
log rw(x)

)kw

kw!




∏

w∈Wj

|n|kww ,

where the last step is justified since there are only finitely many sum-

mands contributing to the j-th coefficient. (This is the case by the condition

rw(0) = 1, which implies log rw(x) = O(x) for x→ 0).

The right hand side is a polynomial in |n|w for w ∈ W , and by the

uniqueness result (Proposition 2.1) the theorem is proved. �

Note that the argument given in the proof also gives a new proof of

existence of the polynomials Pj.

Remark 4. By Proposition 2.5 we can determine exactly for which j a

given monomial occurs first. Since Tw(0) = 1 for all admissible words w, we

have rw(x) = 1+αxk +O
(
xk+1

)
, where α is given by (2.4) and k = |w|−1,

therefore log rw(x) = αxk + O(xk+1) for some α 6= 0. By Theorem 2.3 the

monomial Xw occurs first in the polynomial Pj , where j = |w| − 1. More

generally, the monomial Xw(1) · · ·Xw(ℓ) (repetitions allowed) occurs first in

Pj, where j =
∣∣w(1)

∣∣+ · · ·+
∣∣w(ℓ)

∣∣− ℓ. That is, the lower bound for the first

occurrence of a monomial given by (1.7) is sharp.

We note that this observation is not sufficient to determine the number

of terms in Pj; in the generating function appearing in Theorem 2.3 some

higher coefficients may vanish. This is for example the case for w = 110.

We have

log r110(x) = log

(
1− (x/2)3

1− (x/2)2

)
=
∑

i≥1

x2i

i4i
−
∑

i≥1

x3i

i8i
,

and consequently the monomial X110 does not occur in Pj for j = 6ℓ ± 1,

where ℓ ≥ 1. It is however true that each nontrivial monomial occurs in

infinitely many Pj.

Corollary 2.6. Each monomial Xk1
w(1) · · ·Xkℓ

w(ℓ) except for the constant term

1 occurs in infinitely many Pj.

Proof. By Theorem 2.3 the claim is equivalent to the statement that the

power series
∏ℓ

i=1

(
log rw(i)(x)

)ki is not a polynomial. We will analyse the

possible singularities, which will contradict a polynomial behaviour.
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Assume that ρi is the radius of convergence of the power series log rw(i)(x)

and choose j ∈ {1, . . . , ℓ} such that ρj = min1≤i≤ℓ ρi, moreover let xj be a

singularity of log rw(j)(x) on the circle {x : |x| = ρj}. By Proposition 2.5 we

have 0 < ρj <∞, and that the power series log rw(i)(x) does not have a zero

apart from x = 0. Therefore the singularities cannot cancel, which implies

that xj is a singularity of
(
log rw(1)(x)

)k1 · · ·
(
log rw(ℓ)(x)

)kℓ . Consequently,
this expression is not a polynomial. �

Moreover, we want to derive an asymptotic estimate of the number of

terms in Pj , using Proposition 2.5.

Corollary 2.7. The number of terms Nj in the polynomial Pj satisfies the

bound

Nj ≤
[
xj
] 1

1− x
exp

(
∑

k≥1

1

k

(p− 1)2xk

1− pxk

)
.

Asymptotically, for j → ∞, this upper bound is

eµ(σ−1/2)

2pµ1/4
√
π

e2
√
µjpj

j3/4

(
1 +O

(
1√
n

))
,

with the constants µ = (p−1)2

p
and σ =

∑
k≥2

1
k

1
pk−1−1

. Moreover, we have

Nj = Θ
(
pje2

√
µjj−3/4

)
.

The same estimates are true for the number N ′
j of terms in the polynomials

P ′
j.

Proof. The terms in Pj are built from the variables in Wj , see (1.2). In

W =
⋃

j≥1Wj there are p
k−1(p−1)2 many words w of weight |w|−1 equal to

k, for k ≥ 2. The corresponding generating function is W(x) = (p−1)2 x
1−px

.

First, we want to determine the number of monomials having total weight

j. These are the monomials that, by (1.7), may appear in Pj, but cannot ap-

pear in Pj−1. We obtain therefore the maximal number of “new” monomials

in Pj.

A monomial is nothing else but a multiset of variables in W . Thus, by

the multiset construction (see [17, page 27]) we obtain the exp-part of the

generating function in the corollary. Finally, the factor 1
1−x

stems from the

fact that also monomials from P0, . . . , Pj−1 are allowed in Pj.

For the asymptotic result, we first need to find the dominant singularity,

i.e., the one closest to the origin. Note that the possible singularities are

at ωℓ
kp

−1/k, for ℓ = 0, . . . , k − 1, where ωk = exp(2πi/k) is a k-th root of

unity. As p ≥ 2, the dominant one is found at 1/p for k = 1. Thus, we may
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decompose our generating function into

exp

(
(p− 1)2x

1− xp

)
S(x),

where S(x) is the generating function of the remaining factors. The crucial

observation is that S(x) is analytic for |x| < 1/
√
p, hence, for |x| < 1/p. This

is a well-known type of functions for which a complete asymptotic expansion

is known. Using Wright’s result from [39, Theorem 2] we get the final result.

The constants are coming from S(1/p). The last statement follows from

Proposition 2.5 and the asymptotic statement, since all monomials of weight

j actually appear in Pj with a nonzero coefficient, and their number is a

positive portion of the asymptotic main term. �

This type of functions was already intensively considered in the litera-

ture. It appears in the enumeration of permutations. The analysis builds

on a saddle point method, see [17, Example VIII.7, p. 562]. Wright [39]

derived the asymptotics for the general form of an exponential singularity

we encounter here, extending the work of Perron [30].

Remark 5. We note that for the upper bound in Corollary 2.7 we do not

need Proposition 2.5, but it suffices to use Rowland’s paper, see (1.7). The

lower bound however uses Proposition 2.5, which implies that all monomials

of weight j do occur in the polynomial Pj.

For the prime p = 2, we implemented the method of finding the coeffi-

cients of Pj by Theorem 2.3 in the Sage Mathematics Software System [37].

In particular, we retrieve the formulas for ϑ2(2, n), . . . , ϑ2(4, n) obtained by

Howard [23], Spearman and Williams [35] and Rowland [31] before. Com-

puting P0, . . . , P11 took less than five minutes using our implementation,

which is a significant improvement over Rowland’s algorithm [31].

We compare the actual number of nonzero coefficients in Pj (first line of

numbers) with the upper bound from Corollary 2.7 (second line).

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

1 1 4 11 29 69 174 413 995 2364 5581 13082
1 2 5 12 30 72 176 420 1005 2378 5611 13144

From this numerical evidence it seems reasonable to conjecture that the

upper bound given in Corollary 2.7 gives in fact the asymptotic main term of

the number Nj of nonzero coefficients of Pj . However, the exact behaviour of

the integers Nj seems to be difficult to grasp, and remains an open problem

at the moment.
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2.2. Asymptotic behaviour of coefficients of a given monomial. In

this chapter we study the different asymptotic behaviours exhibited by a

sequence (cj)j≥0 of coefficients of a monomial. More precisely, we restrict

ourselves to p = 2 and monomials Xw for w ∈ W . The following lemma

explains how the coefficients of the logarithm of a rational function behave

asymptotically. We will apply it repeatedly in the subsequent discussion.

Lemma 2.8 (Coefficient asymptotics of log ◦ rat). Let r(x) be a rational

function defined at 0 such that r(0) = 1. Choose L ≥ 0, ε0, . . . , εL−1 ∈ Z\{0}
and pairwise different ξ0, . . . , ξL−1 ∈ C \ {0} in such a way that

r(x) = (1− ξ0x)
ε0 · · · (1− ξL−1x)

εL−1 .

(Note that this decomposition is unique up to the order of the factors.) Then

(2.5) [xn] log r(x) = −1

n

∑

0≤i<L

εiξ
n
i

for n ≥ 1. In particular, assume without loss of generality that ξ0, . . . , ξm−1,

for some 1 ≤ m ≤ L, have maximal absolute value among the ξi, and

M = |ξ0|. Then

[xn] log r(x) = −1

n

∑

0≤i<m

εiξ
n
i +O

(
(M − ε)n

)

for some ε > 0. If moreover m = 1, we have for all k ≥ 1

(2.6) [xn]
(
log r(x)

)k
= k(−ε0)k

(
log n

)k−1 ξn0
n

(
1 +O

(
1

n

))
.

Proof. The first two statements follow immediately from the identity

[xn] log

(
1

1− x

)
= [xn]

∑

n≥1

xn

n
=

1

n
.

The asymptotic statements can be proved using standard results from sin-

gularity analysis (see Flajolet and Sedgewick [17]). We begin with the case

m = 1. First of all, the location of the dominant singularity (the one closest

to the origin) is responsible for the exponential growth of the coefficients.

Next note that the function log r(x) is singular if the rational function is

either singular, or takes the value 0. If we assume that ε0 > 0, the domi-

nant singularity comes from the zero 1/ξ0 of the numerator of r(x), and the

exponential growth of the n-th coefficient is given by ξn0 . More precisely, a

Taylor expansion of r(x) at x = r shows that

log (r(x)) = log
(
h(x)(x− r)dr

)
= −dr log

(
1

1− x/r

)
+ log(h(x)),
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where log(h(x)) is analytic for |x| ≤ |r| + ε. If ε0 < 0, we simply swap

numerator and denominator of r(x) and adjust the sign. If m > 1 one deals

separately with the different singularities.

If higher powers of the logarithm are considered we have to deal with

Cauchy products. In this case one can elementarily show the appearance

of the
(
log n

)k−1
terms by partial summation combined with

∑n
k=1

1
k

=

logn +O (1) . For more details we refer to [17, Chapter VI]. �

Examples. Let p = 2 and consider log (r110(x)) = log
(

1+x/2+x2/4
1+x/2

)
. Here,

the numerator has the two roots 2e2πi/3 and 2 e−2πi/3, whereas the denomi-

nator has the root −2. In this case all roots lie on the same circle |x| = 2,

and therefore cancellations take place (compare Remark 4). By (2.5) we

obtain

[xn] log r110(x) =
2−n

n

(
(−1)n − e2πin/3 − e−2πin/3

)
.

In this special case we have equality, as no other roots are involved. Since

the radius of convergence is larger than 1, we can obtain the infinite sum of

coefficients cj of X110 by inserting 1 into the generating function:

∑

j≥0

cj =
∑

j≥0

[
xj
]
log r110(x) = lim

j→∞

[
xj
] log r110(x)

1− x

= log r110(1) = log(7/6).

Now we consider the generating function 1
2

(
log(1+x/2)

)2
corresponding

to the coefficients cj of X
2
10. In this case we have, by (2.6),

cj =
(−1)j log j

j · 2j
(
1 +O(1/j)

)
.

In this simple case an exact form of the coefficients can be obtained from (2.5),

using the Cauchy product of

log r10(x) =
∑

j≥1

(−1)j

j · 2j x
j

with itself:

cj =
[
xj
] 1
2

(
log r10(x)

)2
=

(−1)j

2j+1

∑

i1,i2≥1
i1+i2=j

1

i1i2
.

Moreover, similarly as in the first example we have
∑

j≥0

cj =
1

2

(
log(3/2)

)2
.

Let us now consider special classes of monomials, whose generating func-

tion has a large radius of convergence and can be evaluated at x = 1.
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Corollary 2.9. Consider the words w = 1s0 or w = 14s+100 for s ≥
1. For fixed word w and an integer k ≥ 0 let cj be the coefficient of the

corresponding monomial Xk
w. Then the radius of convergence of

∑
j≥0 cjx

j

is greater than 1 (more precisely, equal to 2 for the first family of values).

Thus,
∑

j≥0

cj =
1

k!

(
log rw(1)

)k
.

Proof. By the main theorem the considered generating function is given by
1
k!
log
(
rw(x)

)k
. Let us start with the first family of words. We need to analyse

the rational function rw(x) =
T1s0(x)

T
1s−10(x)

, as our plan is to apply Lemma 2.8.

It is not difficult to show (see also (3.2)) that

T1s0(x) =
1− (x/2)s+1

1− x/2
.

Thus, rw(x) =
1−(x/2)s+1

1−(x/2)s
, and we see that all roots of the numerator and the

denominator are located on the circle |x| = 2.

For the second family of words, we get

T1r00(x) =
qr+1(x/2)

qr(x/2)
· 1− (x/2)r

1− (x/2)r+1
, with qr(t) = 4tr+1 + tr − 4t2 − 1.

Hence, we are interested in the roots of the polynomials qr(x). By Rouche’s

Theorem there are exactly 2 roots inside the disc |t| < 2−1(1+2−r+2). These

two are very close to ±i/2. In particular, by Newton’s method starting with

i/2, we get after one iteration the very good approximation

i

2
+

(
i

2

)r (
1

2
− i

4

)
+O

(
1

22r

)
.

Therefore, the roots of qr(t) are in absolute value greater than 1/2 for r ≡
1, 2 mod 4 and less than 1/2 for r ≡ 0, 3 mod 4. In particular, for r ≡ 1

mod 4 we have that the roots of qr+1(x/2) and qr(x/2) are both in absolute

value greater than 1. Thus, the radius of convergence is larger than 1, and

it is legitimate to insert 1. �

By Lemma 2.8 the sequence of coefficients (cj)j≥0 for a given word w

can exhibit different kinds of behaviours, corresponding to the position of

the zeros and singularities of rw(x). Because of the construction of rw(x),

there is a convergence–divergence dichotomy, which we summarize in the

following corollary.

Corollary 2.10. Let w ∈ W and write rw(x) = (1−ξ0x)ε0 · · · (1−ξL−1x)
εL−1

with pairwise different, nonzero ξi ∈ C and nonzero εi ∈ Z, such that |ξ0| ≥
· · · ≥ |ξL−1|.



DIVISIBILITY OF BINOMIAL COEFFICIENTS 19

(a) If |ξ0| ≤ 1, the sequence cw converges, moreover we have the convergent

series
∑

j≥0

cj = log rw(1).

(b) If |ξ0| > 1, the sequence cw diverges. If moreover 1/ξ0 is the only dom-

inant singularity, then ξ0 is a real number in (−∞,−1], and we have

cw(j) ∼ −ε0ξj0/j.

Proof. The case |ξ0| < 1 is clear, since the function log rw(x) has no singu-

larity in the closed unit circle in this case. For the case |ξ0| = 1 we note

that ξi 6= 1 for all i, since Tv has only positive coefficients. Since the sum∑
j≥1 ξ

j/j converges for all j on the unit circle such that j 6= 1, the sum∑
j≥1 cj converges by (2.5). Abel’s limit theorem finishes the proof for this

case. Finally, case (b) follows from Lemma 2.8 and the positivity of coeffi-

cients of Tv. �

In the following, let p = 2. We have seen (Corollaries 2.4 and 2.9) that

case (a) occurs for w = 1s0, where s ≥ 1.

Case (b) appears for w = 1010 (dominant singularity at x0 ∼ −0.86408).

In this case the singularity is coming from the log, as rw(x0) = 0. Thus log

becomes singular. This is also called a supercritical composition scheme, as

the outer function is responsible for the singularity.

This case also appears for w = 10100 (dominant singularity again at

x0 ∼ −0.86408). In this case however, the denominator of rw is zero at

x0, thus the singularity is coming from a simple pole. This is also called a

subcritical composition scheme, as the inner function is responsible for the

singularity.

By approximate computation of the roots of T v using GNU Octave [12]

we determined all words of length at most 10 for which case (a) occurs.

Besides for the words of the form 1s0 or 14s+100, this also seems to be

the case for the words 1s01t0, where s ≥ 1 and t ≥ 2. Here is the list of

remaining words w ∈ W of length at most 10, not falling into one of these

three classes, for which this case occurs too.

10011110, 101101110, 101110110, 101111010,
101111100, 111011010, 1011011110, 1011101110,

1011110110, 1101101110, 1101110110, 1101111010,
1101111100, 1111011010.

We leave the classification of the words w ∈ W for which the sum
∑

j≥0 cj

converges as an open problem.
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2.3. A simplified recurrence for ϑp(j, n). Rarefying ϑp(j, n) in the first

coordinate by the factor p − 1, and shifting j by sp(n) many places, the

recurrence (1.5) is transformed into a simpler form: the term νp disappears,

instead the maximal shift occurring in the first coordinate is 2p − 1. We

pass to the details. Define, for k, n ≥ 0,

ϑ̃p(k, n) =

{
ϑp

(
k−sp(n)

p−1
, n
)
, k ≥ sp(n) and p− 1 | k − sp(n);

0, otherwise.

Setting for simplicity ϑ̃p(k, n) = 0 if k < 0 or n < 0, we obtain the

following recurrence relation for k, n ≥ 0, where we use the Kronecker delta,

which is defined by δi,i = 1, and δi,j = 0 for i 6= j.

ϑ̃p(0, n) = δ0,n, n ≥ 0;

ϑ̃p(k, 0) = δk,0, k ≥ 0,

and for n ≥ 0 and 0 ≤ a < p,

ϑ̃p(k, pn+ a) = (a + 1)ϑ̃p(k − a, n) + (p− a− 1)ϑ̃p(k − p− a, n− 1).

The proof of this new recurrence is straightforward and uses the identity

(2.7) sp(n + 1)− sp(n) = 1− (p− 1)νp(n+ 1),

which follows immediately by writing n in base p and counting the number

of times the digit q occurs at the lowest digits of n, and also the recurrence

sp(pn+ a) = sp(n) + a (0 ≤ a < p).

In Tables 1–3 we list some coefficients of ϑ̃p(k, n) for p = 2, 3, 5, respec-

tively.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 1

1 2 2 2 2 2

2 1 4 1 4 4 1 4 4 4 1 4

3 2 2 2 8 2 2 4 8 2 8 8 2 2

4 1 4 4 1 4 5 4 4 16 4 4

5 2 2 2 2 8 8

6 1

Table 1. Some coefficients of ϑ̃2(k, n). The variable k corre-
sponds to the row number in this table.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 1

1 2 2 2

2 3 4 3 4 4

3 2 6 6 2 6 8 6

4 1 4 9 4 5 12 12

5 2 6 6 4 8 18

6 3 4 3 4

7 2 2

8 1

Table 2. Some coefficients of ϑ̃3(k, n).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 1

1 2 2

2 3 4 3

3 4 6 6 4

4 5 8 9 8

5 4 10 12 12

6 3 8 15

7 2 6 12

8 1 4 9

9 2 6

Table 3. Some coefficients of ϑ̃5(k, n).

We want to derive a product representation for ϑ̃p(j, n). In order to do

so, we note the well-known fact due to Legendre stating that

(2.8) νp(n!) =
n− sp(n)

p− 1
,

for prime p. This can be proved easily by summing the identity (2.7). Ap-

plying (2.8) three times, we obtain

(2.9) νp

(
n

t

)
=
sp(n− t) + sp(t)− sp(n)

p− 1
.
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We note that, by Kummer’s theorem [28], the left hand side of (2.9) is the

number of borrows occurring in the subtraction n − t. Let us define the

bivariate generating function T̃ (x, z) :=
∑

k,n≥0 ϑ̃p(k, n)x
kzn. We will prove

that T̃ can be written compactly as an infinite product. By the definition

of ϑ̃, the binomial coefficient
(
n
t

)
contributes to k = sp(n) + (p − 1)νp

(
n
t

)
.

Thus, we obtain by (2.9)

T̃ (x, z) =
∑

n≥0

zn
n∑

t=0

xsp(n)+(p−1)νp(nt) =
∑

n≥0

zn
n∑

t=0

xsp(t)+sp(n−t)

=

(
∑

n≥0

znxsp(n)

)2

=
∏

i≥0

(
1 + xzp

i

+ x2z2p
i

+ · · ·+ xp−1z(p−1)pi
)2
,

where the last equality holds due the uniqueness of the base-p expansion

of an integer n. This product representation should be compared to [7,

Equations (3.3), (3.12)]. Since Carlitz does not use the transformation in

the first coordinate, his product takes a more complicated form. For p = 2

we have the special case
∑

k,n≥0

ϑ̃2(k, n)x
kzn =

∏

i≥0

(
1 + xz2

i
)2
.

We note that this product representation can be used for an alternative

proof of Carlitz’ recurrence (1.4).

We finish this section with a remark on divisibility in columns of Pascal’s

triangle.

2.4. Divisibility in columns of Pascal’s triangle. In the recent pa-

per [11] by Drmota, Kauers, and the first author, we deal with a conjecture

by Cusick (private communication, 2012, 2015) stating that

ct := dens{m ≥ 0 : s2(m+ t) ≥ s2(m)} > 1/2,

for all t ≥ 0. Here densA denotes the asymptotic density of a set A ⊆
N, which exists in this case. By (2.9) this corresponds to a problem on

divisibility in columns of Pascal’s triangle: if we define ρ2(j, t) = dens
{
m ≥

0 : ν2
(
m+t
m

)
= j
}
2, the conjecture states that

∑

j≤s2(t)

ρ2(j, t) > 1/2.

We gave [11, Theorem 1] a partial answer, solving the conjecture for almost

all t in the sense of asymptotic density. More precisely, we proved that for

2In [11], we use the notations δ(j, t) = dens
{
m ≥ 0 : s2(m + t) − s2(m) = j} for all

j ∈ Z, and b2j = dens
{
m : 2j ∤

(
m+t

m

)
}. We have ρ2(j, t) = δ(s2(t)− j, t) for all j ≥ 0 and

b2j (t) = ρ2(0, t) + · · ·+ ρ2(j − 1, t) for j ≥ 1.
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all ε > 0,
∣∣{t ≤ T : 1/2 < ct < 1/2 + ε}

∣∣ = T +O(T/ logT ).

The full statement of Cusick’s conjecture is however still an open problem.

We also want to note the recent work by Emme and Hubert [13] (preprint),

which continues earlier work by Emme and Prikhod’ko [14] (preprint). They

proved that for almost allX ∈ {0, 1}N with respect to the balanced Bernoulli

measure the values

dens
{
n ∈ N : s2(n+ aX(k))− s2(n) ≤ x

√
k/2
}

converge pointwise to the standard normal distribution as k → ∞, where

aX(k) =
∑

0≤j<kXj2
j.

Surprisingly, the “column densities” ρ2(j, t) can be expressed by the same

polynomial Pj as the “row counts” ϑ2(j, n) (see [11, Sections 3.2 and 3.3]).

We have ρ2(0, t) = 2−|t|
1 and, for example,

ρ2(1, t)/ρ2(0, t) =
1

2
|t|

01
,

ρ2(2, t)/ρ2(0, t) = −1

8
|t|

01
+

1

8
|t|2

01
+ |t|

011
+

1

4
|t|

001
.

In general, if we denote by w the Boolean complement of the word w ∈ W ,

these expressions are obtained by inserting the value |t|w for the variable

Xw in Pj (compare to (1.3)):

t 7→
(
|t|w
)
w∈Wj

7→ Pj

((
|t|w
)
w∈Wj

)
=
ρ2(j, t)

ρ2(0, t)
.

3. Proofs

Proof of Proposition 2.1. Assume that Pj and P̃j are two polynomials in the

variables Xw (w ∈ W ), representing ϑ(j, n)/ϑ(0, n), and let R be the maxi-

mal degree with which a variable Xw occurs in Pj or P̃j. Moreover, let ℓ be

such that ℓ+1 is the maximal length of a word w such that the variable Xw

occurs in one of the polynomials. The strategy is to compute the coefficients

of a polynomial starting from its values. For a multivariate polynomial in

M variables, where the degree of each variable is bounded by R, this can

be done by evaluating the polynomial at each tuple in {0, . . . , R}M , and

applying recursively the fact that a univariate polynomial q is determined

by deg q + 1 of its values. We adapt this strategy, taking the dependence

between the variables into account.

On the set Wℓ we have a partial order � defined by v � w if and only if

v is a factor of w. For convenience, we extend this order to a total order on

Wℓ and denote it the same symbol �. Let w0, . . . , wM−1 be the increasing
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enumeration of Wℓ (where M = |Wℓ|). We will work with certain “test

integers”, defined as follows. For a vector a = (am)m<M in {0, . . . , R}M let

n(a) be the integer whose binary expansion is given by the concatenation

vM−1 · · · v0, where
vm =

(
wmq

ℓ0ℓ
)am (

qℓ0ℓ
)R−am

.

The idea behind this is that qℓ0ℓ acts as a “separator” in the sense that

admissible factors of n(a) of length ≤ ℓ + 1 are contained completely in

one of the building blocks wmq
ℓ0ℓ or qℓ0ℓ. (At this point the restrictions

wν−1 6= 0, w0 6= q for a word wν−1 · · ·w0 ∈ W come into play.) By varying

the values am we can therefore vary the factor count |·|wm
without changing

|·|wm′
for m′ > m. For simplicity, we rename the variables Xwm

to Xm. We

prove the following statement by induction on s.

Claim. Assume that s is an integer, 0 ≤ s ≤ M . For all a0, . . . , aM−1,

k0, . . . , ks−1 ∈ {0, . . . , R} we have
[
Xk0

0 · · ·Xks−1

s−1

] (
Pj − P̃j

)(
X0, . . . , Xs−1, |n(a)|ws

, . . . , |n(a)|wM−1

)
= 0.

The case s = 0 follows from the assumption that Pj and P̃j yield the

same value for all assignments Xw = |n|w, where n ≥ 0. The case s = M

is the desired statement that Pj = P̃j , by the fact that the degree of each

variable in Pj and P̃j is bounded by R. Assume therefore that the statement

holds for some s < M and let a0, . . . , aM−1, k0, . . . , ks−1 ∈ {0, . . . , R}. We

define polynomials Q(Xs) and Q̃(Xs) in one variable, of degree at most R,

by

Q(Xs) =
[
Xk0

0 · · ·Xks−1

s−1

]
Pj

(
X0, . . . , Xs, |n(a)|ws+1

, . . . , |n(a)|wM−1

)
,

analogously Q̃. By the definition of the total order � we have
∣∣n
(
a(r)
)∣∣

wm
=
∣∣n(a)

∣∣
wm

for 0 ≤ r ≤ R and m > s, where

a
(r)
ℓ =

{
aℓ, ℓ 6= s;

r, ℓ = s.

By applying the induction hypothesis for a(0), . . . , a(R), we obtain the equal-

ity Q(N) = Q̃(N) for the R + 1 values
∣∣n
(
a(0)
)∣∣

ws
, . . . ,

∣∣n
(
a(R)

)∣∣
ws

of N ,

therefore

0 =
[
Xks

s

]
(Q− Q̃)(Xs)

=
[
Xk0

0 · · ·Xks
m

] (
Pj − P̃j

)(
X0, . . . , Xs, |n(a)|ws+1

, . . . , |n(a)|wM−1

)
.

This proves that Pj = P̃j. �
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Proof of Proposition 2.2. Let v ∈ W ∪ {ε}. The proof is by induction on

the length of v, the case v = ε being trivial. Moreover, for the words c0sa,

where c ∈ {1, . . . , q}, s ≥ 0 and a ∈ {0, . . . , q− 1}, we obtain

∏

w∈W

(
TwTwLR

TwR
TwL

)|v|w
=
T c0sa

T c0s
· T c0s

T c0s−1

· · · T c0

T ε

= T c0sa.

Suppose that the statement holds for some v′ ∈ W . It is sufficient to show

that it is also true for v = a0sv′, where a ∈ {1, . . . , q} and s ≥ 0.

Since words inW do not end with the letter 0 (read from right to left), an

admissible factor of v is either a factor of v′ or a suffix of v. This implies that

the product corresponding to v is obtained from the product corresponding

to v′, multiplying by TwTwLR
/(TwR

TwL
) for each suffix w of v such that

w ∈ W . This product of suffixes equals

∏

w suffix of v
w∈W

TwTwLR

TwR
TwL

=
∏

w suffix of v
w∈W

Tw

TwR

∏

w suffix of v′
w∈W

TwR

Tw

=
T v

T v′
.

This shows the desired form and together with the induction hypothesis it

yields the claim. �

Finally, we prove Proposition 2.5 by a somewhat tedious case distinction.

Proof of Proposition 2.5. Assume that w = wν−1 · · ·w0 ∈ W . The state-

ment we want to prove is equivalent to

(3.1) TwTwLR
− TwL

TwR
= αxν−1,

where

α = pν−2 wν−1

wν−1 + 1

p− w0 − 1

w0 + 1

∏

2≤d≤p

d−2|w′|d−1,

and w′ is obtained from w by omitting the left- and rightmost digits. We

want to prove the statement by induction on the right depth of w ∈ W .

This is the number of right truncations needed to map w to a base case,

which are words v such that vLR = ε. Among the base cases there are words

v satisfying vL = ε. These are exactly the words of the form c0ta, for c 6= 0,

t ≥ 0 and a 6= q. Each remaining base case falls into exactly one of the

following classes, where c ∈ {1, . . . , q} and a ∈ {0, . . . , q− 1}.

v = cqsa with s ≥ 1;

v = cbqsa with b 6∈ {0, q} and s ≥ 0;

v = c0tbqsa with t ≥ 1, b 6∈ {0, q} and s ≥ 0;

v = c0tqsa with t ≥ 1 and s ≥ 1.
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We begin with the following formulas, which can be proved from the

recurrence (2.2) in a straightforward way, and which we will use throughout

this proof. Assume that w = {0, . . . , q}∗, s ≥ 1, t ≥ 0, c ∈ {1, . . . , q}, and
a ∈ {0, . . . , q− 1}. Then

Twqsa(x) = ps
(
(a+ 1) + (p− a− 1)(p− 1)A1(s)

)
Tw(x)(3.2)

+ (p− a− 1)xsTw(q−1)(x),

Twc0ta(x) =
1

p

(
(p− a− 1)(px)t+1 + (a + 1)(p− 1)A2(t)

)
Tw(c−1)(x)(3.3)

+ (a + 1)Twc(x),

where we set A1(s) =
∑

1≤i<s(x/p)
i and A2(t) =

∑
1≤i≤t(px)

i. We note the

following special case of (3.3):

(3.4) Tca = (c+ 1)(a+ 1) + c(p− a− 1)x.

We proceed to evaluating TwTwLR
− TwL

TwR
for the base cases, thus con-

firming (3.1) for these cases. If w = ca, c 6= 0, and a 6= q, we have

TwTwLR
− TwL

TwR
= Tw − 1 = c

c+1
p−a−1
a+1

x by (3.4). If w = cqsa, where

s ≥ 1, c 6= 0, and a 6= q, we obtain by (3.2) and (3.4)

T cqsa(x) = 1 +
p− a− 1

a+ 1
(p− 1)A1(s+ 1) + (x/p)s

c

c+ 1

p− a− 1

a+ 1
x,

T qsa(x) = 1 +
p− a− 1

a+ 1
(p− 1)A1(s+ 1),

therefore

TwTwLR
− TwL

TwR
= T cqsa(x)− T qsa(x) = xs+1p−s c

c + 1

p− a− 1

a + 1
.

If w = c0ta, where t ≥ 1, c ∈ {1, . . . , q}, and a ∈ {0, . . . , q− 1}, we obtain

by (3.3)

T c0ta(x) = 1 +
p− a− 1

a + 1

c

c+ 1
ptxt+1 +

p− 1

p

c

c+ 1
A2(t),

T c0t(x) = 1 +
p− 1

p

c

c+ 1
A2(t),

therefore

TwTwLR
− TwL

TwR
= ptxt+1 p− a− 1

a+ 1

c

c+ 1
.

Now let w = cbqsa for some c 6= 0, b ∈ {1, . . . , q − 1}, s ≥ 0, and a 6= q.

The case s = 0 can be verified easily: after a short calculation we obtain

the expected result

T cba − T baT cb =
c

c+ 1

p

(b+ 1)2
p− a− 1

a+ 1
x2.
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Otherwise we get by (3.2):

(b+ 1)TwTwLR
− TwL

TwR
= (b+ 1)Tcbqsa − TbqsaTcb

= (b+ 1)
(
ps
(
(a + 1) + (p− a− 1)(p− 1)A1(s)

)
Tcb

+ (p− a− 1)xsTcb(q−1)

)

−
(
ps
(
(a+ 1) + (p− a− 1)(p− 1)A1(s)

)
Tb

+ (p− a− 1)xsTb(q−1)

)
Tcb

= (p− a− 1)xs
(
(b+ 1)Tcb(q−1) − Tb(q−1)Tcb

)
.

Using the case s = 0, we obtain

TwTwLR
− TwL

TwR
=
p− a− 1

a+ 1
(p− 1)p−sxs

(
T cb(q−1) − T b(q−1)T cb

)

=
c

c+ 1

1

(b+ 1)2
p− a− 1

a+ 1
p−s+1xs+2.

Let w = c0tbqsa, where c 6= 0, t ≥ 1, b 6∈ {0, q}, s ≥ 0, and a 6= q. If s = 0,

we obtain by (3.4) and (3.3),

(b+ 1)TwTwLR
− TwL

TwR
= (b+ 1)Tc0tba − TbaTc0tb

= (b+ 1)
(
(a+ 1)Tc0tb + (p− a− 1)xTc0t(b−1)

)

−
(
(b+ 1)(a+ 1) + b(p− a− 1)x

)
Tc0tb

= (b+ 1)(p− a− 1)x

(
1

p

(
(p− b)(px)t+1 + b(p− 1)A2(t)

)
Tc−1 + bTc

)

− b(p− a− 1)x

(
1

p

(
(p− b− 1)(px)t+1

+ (b+ 1)(p− 1)A2(t)
)
Tc−1 + (b+ 1)Tc

)

= (p− a− 1)pt+1xt+2c.

Therefore we get in this case

TwTwLR
− TwL

TwR
= pt+1xt+2 c

c+ 1

1

(b+ 1)2
p− a− 1

a+ 1
.

If s ≥ 1, we obtain, using (3.2)–(3.4),

(b+ 1)TwTwLR
− TwL

TwR
= (b+ 1)Tc0tbqsa − TbqsaTc0tb

= (b+ 1)

(
ps
(
(a+ 1) + (p− a− 1)(p− 1)A1(s)

)
Tc0tb

+ (p− a− 1)xsTc0tb(q−1)

)
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−
(
ps
(
(a+ 1) + (p− a− 1)(p− 1)A1(s)

)
Tb + (p− a− 1)xsTb(q−1)

)
Tc0tb

= (p− a− 1)xs
(
(b+ 1)Tc0tb(q−1) − Tb(q−1)Tc0tb

)

= (p− a− 1)xs
(
(b+ 1)

(
(p− 1)Tc0tb + xTc0t(b−1)

)

−
(
(b+ 1)(p− 1) + bx

)
Tc0tb

)

= (p− a− 1)xs+1
(
(b+ 1)Tc0t(b−1) − bTc0tb

)

= (p− a− 1)(b+ 1)xs+1

(
1

p

(
(p− b)(px)t+1 + b(p− 1)A2(t)

)
Tc−1 + bTc

)

− (p− a− 1)bxs+1

(
1

p

(
(p− b− 1)(px)t+1

+ (b+ 1)(p− 1)A2(t)
)
Tc−1 + (b+ 1)Tc

)

= (p− a− 1)pt+1xs+t+2c,

which yields the statement also for this case. We proceed with the case

w = c0tqsa, where c 6= 0, t, s ≥ 1, and a 6= q. In this case, we have

TwTwLR
− TwL

TwR
= Tc0tqsa − TqsaTc0t

=

(
ps
(
(a+ 1) + (p− a− 1)(p− 1)A1(s)

)
Tc0t + (p− a− 1)xsTc0t(q−1)

)

−
(
ps
(
(a + 1) + (p− a− 1)(p− 1)A1(s)

)
+ (p− a− 1)xsTq−1

)
Tc0t

= (p− a− 1)xs
(
Tc0t(q−1) − (p− 1)Tc0t

)

= (p− a− 1)xs
((

(p− 1)Tc0t + xt+1T(c−1)qt
)
− (p− 1)Tc0t

)

= (p− a− 1)ptcxs+t+1,

therefore

TwTwLR
− TwL

TwR
= pt−sxs+t+1 c

c+ 1

p− a− 1

a+ 1
.

Equation (3.1) therefore holds for the base cases. Assume that we have

already established the statement for all w ∈ W having right depth ≤ d−1,

where d ≥ 1, and assume that w̃ ∈ W has right depth equal to d. Then w̃ is

of (exactly) one of the following forms, which we have to treat one by one.

wb0, w0 ∈ W, b ∈ {1, . . . , q− 1};(3.5)

wb0t, w0 ∈ W, b ∈ {1, . . . , q}, t ≥ 2;(3.6)

wqsa, w ∈ W, s ≥ 1, a ∈ {0, . . . , q− 1};(3.7)

wa, w ∈ W, a ∈ {1, . . . , q− 1}.(3.8)
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We will use the following auxiliary formulas. If wb ∈ W , where b 6= 0 and

(wb)L 6= ε, then

(3.9) b(b+ 1)
(
T (wb)−1T (wb)L − T (wb)L−1Twb

)

=
p

p− 1

(
Tw0T (w0)LR

− T (w0)LT (w0)R

)
.

If moreover w = wν−1 · · ·wr0
r ∈ W , where r ≥ 0 is maximal, and wL 6= ε is

satisfied, we have

(3.10) xr+1
(
Tw−1TwL

− TwL−1Tw

)
=

1

p− 1

(
Tw0T(w0)LR

− T(w0)LT(w0)R

)
.

Let us now prove these formulas. We handle the case wL = ε separately.

Since (wb)L 6= ε by assumption, there exist d ∈ {1, . . . , q}, c ∈ {1, . . . , q−1}
and t ≥ 0 such that w = d0tc. We obtain by (3.4) and (3.3)

T(wb)−1T(wb)L − T(wb)L−1Twb = Td0tc(b−1)Tcb − Tc(b−1)Td0tcb

=
(
bTd0tc + (p− b)xTd0t(c−1)

)(
(c+ 1)(b+ 1) + c(p− b− 1)x

)

−
(
(c+ 1)b+ c(p− b)x

)(
(b+ 1)Td0tc + (p− b− 1)xTd0t(c−1)

)

= px
(
(c+ 1)Td0t(c−1) − cTd0tc

)

= px
(
(c+ 1)

(1
p

(
(p− c)(px)t+1 + c(p− 1)A2(t)

)
Td−1 + cTd

)

− c
(1
p

(
(p− c− 1)(px)t+1 + (c+ 1)(p− 1)A2(t)

)
Td−1 + (c+ 1)Td

))

= pt+2xt+2d,

moreover

(c + 1)Tw0T(w0)LR
− T(w0)LT(w0)R = (c+ 1)Td0tc0 − Tc0Td0tc

= (c+ 1)
(
Td0tc + (p− 1)xTd0t(c−1)

)
−
(
(c+ 1) + c(p− 1)x

)
Td0tc

= (p− 1)x
(
(c+ 1)Td0t(c−1) − cTd0tc

)

= (p− 1)x

(
(c+ 1)

(1
p

(
(p− c)(px)t+1 + c(p− 1)A2(t)

)
d+ c(d+ 1)

)

− c
(1
p

(
(p− c− 1)(px)t+1 + (c+ 1)(p− 1)A2(t)

)
d+ (c+ 1)(d+ 1)

))

= (p− 1)pt+1xt+2d.

Passing from T to T , we obtain the statement (3.9) for the case wL = ε,

(wb)L 6= ε. If wL 6= ε, we have (wb)L = wLb, moreover r is also the number

of zeros at the low digits of wL. Therefore

T(wb)−1T(wb)L − T(wb)L−1Twb
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=
(
bTw + (p− b)xr+1Tw−1

)(
(b+ 1)TwL

+ (p− b− 1)xr+1TwL−1

)

−
(
bTwL

+ (p− b)xr+1TwL−1

)(
(b+ 1)Tw + (p− b− 1)xr+1Tw−1

)

= pxr+1
(
Tw−1TwL

− TwL−1Tw
)
,

and (3.9) and (3.10) follow easily using the instance Tw0 = Tw + (p −
1)xr+1Tw−1 of the recurrence (2.2). We have to treat the cases (3.5)–(3.8).

Assume that w̃ = wb0, where w0 ∈ W and b ∈ {1, . . . , q − 1}. Since

(wb)L = w̃RL 6= ε (this holds since the right depth of w̃ is not zero), we have

w̃L = (wb)L0 and therefore

Tw̃Tw̃LR
− Tw̃L

Tw̃R
= Twb0T(wb)L − T(wb)L0Twb

=
(
Twb + (p− 1)xT(wb)−1

)
T(wb)L −

(
T(wb)L + (p− 1)xT(wb)L−1

)
Twb

= (p− 1)x
(
T(wb)−1T(wb)L − T(wb)L−1Twb

)
.

By (3.9) we have

T w̃T w̃LR
− T w̃L

T w̃R
= (p− 1)x

b

b+ 1

(
T (wb)−1T (wb)L − T (wb)L−1Twb

)

=
px

(b+ 1)2
(
Tw0T (w0)LR

− T (w0)LT (w0)R

)
.

Since the right depth of w0 is smaller than d, we can apply the induction

hypothesis and the case (3.5) is finished. Now we assume that w̃ = wb0t,

where w0 ∈ W , b ∈ {1, . . . , q}, and t ≥ 2. We first note that for a finite word

v ∈ {0, . . . , q}∗ we have the identity Tvb0t = Tvb0t−1 + (p − 1)xtTvb0t−1−1 =

Tvb0t−1 + (p− 1)xtpt−1Tv(b−1), analogously for t− 1 instead of t, therefore

Tvb0t = (1 + px)Tvb0t−1 − pxTvb0t−2 .

Moreover, we have w̃L = (wb0)L0
t−1 = w′b0t for some w′ ∈ {0, . . . , q}∗. We

may therefore calculate:

Tw̃Tw̃LR
− Tw̃L

Tw̃R
=
(
(1 + px)Twb0t−1 − pxTwb0t−2

)
Tw′b0t−1

−
(
(1 + px)Tw′b0t−1 − pxTw′b0t−2

)
Twb0t−1

= px
(
Twb0t−1Tw′b0t−2 − T(wb0t−1)LT(wb0t−1)R

)
.

If t > 2 or (wb)L 6= ε, we have w′b0t−2 = (wb0t−1)LR, therefore

T w̃T w̃LR
− T w̃L

T w̃R
= px

(
Twb0t−1T (wb0t−1)LR

− T (wb0t−1)LT (wb0t−1)R

)

and we can use the induction hypothesis. Otherwise, we have w = d0r for

some d ∈ {1, . . . , q} and r ≥ 0, and we obtain

T w̃T w̃LR
− T w̃L

T w̃R
=

1

(d+ 1)(b+ 1)2
(
Tw̃Tw̃LR

− Tw̃L
Tw̃R

)

=
px

(d+ 1)(b+ 1)2
(
Twb0Tb − T(wb0)LT(wb0)R

)
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= px
(
Twb0T ε − T (wb0)LT (wb0)R

)

= px
(
Twb0T (wb0)LR

− T (wb0)LT (wb0)R

)
,

so that we can apply the hypothesis also in this case. Assume that w̃ =

wqsa, where w = wν−1 · · ·wr0
r ∈ W and r ≥ 0 is maximal, s ≥ 1, and

a ∈ {0, . . . , q− 1}. The right depth of w̃ is at least one. Therefore wL 6= ε,

and we obtain, using (3.2) and (3.10),

Tw̃Tw̃LR
− Tw̃L

Tw̃R

=

(
ps
(
(a+ 1) + (p− a− 1)(p− 1)A1(s)

)
Tw + (p− a− 1)xsTw(q−1)

)
TwL

−
(
ps
(
(a + 1) + (p− a− 1)(p− 1)A1(s)

)
TwL

+ (p− a− 1)xsTwL(q−1)

)
Tw

= (p− a− 1)xs
(
Tw(q−1)TwL

− TwL(q−1)Tw
)

= (p− a− 1)xs
((

(p− 1)Tw + xr+1Tw−1

)
TwL

−
(
(p− 1)TwL

+ xr+1TwL−1

)
Tw

)

= (p− a− 1)xs+r+1
(
Tw−1TwL

− TwL−1Tw
)

= (p− a− 1)
1

p− 1
xr
(
Tw0T(w0)LR

− T(w0)LT(w0)R

)
,

therefore

T w̃T w̃LR
− T w̃L

T w̃R
=
p− a− 1

a+ 1

1

p− 1
p−rxr

(
Tw0T (w0)LR

− T (w0)LT (w0)R

)
.

Now one of the two cases (3.5) or (3.6) is applicable. It remains to handle

the fourth case. Assume that w̃ = wa, where w = wν−1 · · ·wr0
r ∈ W and

r ≥ 0 is maximal, and a ∈ {1, . . . , q − 1}. As in the last case, we have

wL 6= ε, therefore we can use (3.10) and obtain

Tw̃Tw̃LR
− Tw̃L

Tw̃R
=
(
(a+ 1)Tw + (p− a− 1)xr+1Tw−1

)
TwL

−
(
(a+ 1)TwL

+ (p− a− 1)xr+1TwL−1

)
Tw

= (p− a− 1)xr+1
(
Tw−1TwL

− TwL−1Tw
)

=
p− a− 1

p− 1

(
Tw0T(w0)LR

− T(w0)LT(w0)R

)
,

therefore

T w̃T w̃LR
− T w̃L

T w̃R
=
p− a− 1

a+ 1

1

p− 1

(
Tw0T(w0)LR

− T(w0)LT(w0)R

)
.

As in the previous case, this expression can be treated with one of the

cases (3.5) or (3.6). The proof is complete. �
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