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COPRIME AND PRIME LABELINGS OF GRAPHS

ADAM H. BERLINER, NATHANIEL DEAN, JONELLE HOOK, ALISON MARR,
ABA MBIRIKA, AND CAYLA D. MCBEE

Abstract. A coprime labeling of a simple graph of order n is a labeling
in which adjacent vertices are given relatively prime labels, and a graph
is prime if the labels used can be taken to be the first n positive integers.
In this paper, we consider when ladder graphs are prime and when
the corresponding labeling may be done in a cyclic manner around the
vertices of the ladder. Furthermore, we discuss coprime labelings for
complete bipartite graphs.
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1. Introduction

Let G = (V,E) be a simple graph with vertex set V and edge set E,
where n = |V | is the number of vertices of G. A coprime labeling of G is a
labeling of the vertices of G with distinct integers from the set {1, 2, . . . , k},
for some k ≥ n, in such a way that the labels of any two adjacent vertices
are relatively prime. We then define pr(G) to be the minimum value of k for
which G has a coprime labeling. The corresponding labeling of G is called
a minimal coprime labeling of G.

If pr(G) = n, then a corresponding minimal coprime labeling of G is called
a prime labeling of G and we call G prime. Though these definitions are
more common, some of the literature uses the term coprime to mean what
we refer to as prime in this paper (cf. [2]). In our setting it does not make
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sense to refer to a graph as coprime, since all graphs have a coprime labeling
(for example, use the first n prime integers as the labels).

Much work has been done on various types of labeling problems, including
coprime and prime graphs (see [6] for a detailed survey). For nearly 35 years,
Entringer’s conjecture that all trees are prime has remained unsolved. Some
progress towards the result has been made. In 1994, Fu and Huang proved
trees with 15 or fewer vertices are prime [3]. Pikhurko improved the result for
trees of up to 50 vertices [9] in 2007. In 2011, Haxell, Pikhurko, and Taraz [5]
prove Entringer’s conjecture for trees of sufficiently large order. Specifically,
it is known that paths, stars, caterpillars, complete binary trees, and spiders
are prime.

Many other classes of graphs have been studied as well, several of which
are constructed from trees. If we let Pn denote the path on n vertices, then
the Cartesian product Pn × Pm, where m ≤ n, is called a grid graph. Some
results about prime labelings of grid graphs can be found in [13, 7]. If m = 2,
then the graph is called a ladder. Several results are known about ladders.
For example, if n and k are prime, then Pn × P2, Pn+1 × P2, Pn+k × P2,
P3n ×P2, Pn+1 ×P2, and Pn+2 ×P2 are prime [8, 13, 14]. Ladders Pn ×P2,
Pn+1 ×P2, and Pn+2 ×P2 have also been shown to be prime when 2n+1 is
prime [8, 14, 15]. In [15], it is conjectured that all ladders are prime. While
we cite the papers [8, 15] here, we note that both of them contain some
errors and incomplete proofs.

In Section 2, we further consider prime labelings for ladders. Moreover,
we consider instances when a prime labeling exists where the labels occur
in numerical order around the vertices of the ladder.

In Section 3, we consider complete bipartite graphs Km,n. In the case
m = n, it is clear that Kn,n is not prime when n > 2. Thus, we focus on
minimal coprime labelings. In the more general case of m < n, for each m

we give a sufficiently large lower bound value of n for which Km,n is prime.
Specifically, we give all values of n for which Km,n is prime for m ≤ 13.

In Section 4, we conclude with some possible directions for future work.

2. Ladders

In this section, we give labelings of ladders that are mainly constructed in
a cyclic manner. As mentioned above, several classes of ladders have been
shown to be prime. We reproduce some of the results of [8] and [14], but
our constructions are arguably more elegant and complete than those given.

Theorem 2.1. If n+1 is prime, then Pn ×P2 has a prime labeling. More-

over, this prime labeling can be realized with top row labels from left to right,

1, 2, . . . , n, and bottom row labels from left to right, n+2, n+3, . . . , 2n, n+1.

Proof. Consider the graph Pn ×P2 where n+1 is prime. We claim that the
following vertex labeling gives a prime labeling:
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· · ·

· · ·
1 2 n− 1 n

n+ 2 n+ 3 2n n+ 1

Since gcd(k, k + 1) = 1, it suffices to check only the vertex labels arising
from the endpoints of the following n particular edges:

• the horizontal edge connecting vertex labels 2n and n+ 1, and
• the first n− 1 vertical edges going from left to right.

Since n+1 is prime and 2n < 2(n+1), then n+1 cannot divide 2n. Hence,
gcd(2n, n+ 1) = 1 as desired. Observe that each of the n− 1 vertical edges
under consideration have vertex labels a and (n+ 1) + a for 1 ≤ a ≤ n− 1.
It follows that gcd((n + 1) + a, a) = gcd(n + 1, a) = 1. Thus, the graph
Pn × P2 is prime whenever n+ 1 is prime. �

The remaining theorems involve consecutive cyclic prime labelings of lad-
ders. Let Pn × P2 be the ladder with vertices v1, v2, . . . , vn, u1, u2, . . . , un,
where vi is adjacent to ui for 1 ≤ i ≤ n, vi is adjacent to vi+1 for 1 ≤ i ≤ n−1,
and ui is adjacent to ui+1 for 1 ≤ i ≤ n− 1. When drawing a ladder graph,
we may assume without loss of generality that v1 denotes the top left vertex
of the graph.

Definition 2.2. A consecutive cyclic prime labeling of a ladder Pn × P2 is
a prime labeling in which the labels on the vertices wrap around the ladder
in a consecutive way. In particular, if the label 1 is placed on vertex vi, then
2 will be placed on vi+1, n − i + 1 will be placed on vn, n − i + 2 on un,
2n− i+ 1 on u1, 2n − i+ 2 on v1, and 2n will be placed on vertex vi−1. A
similar definition holds if 1 is placed on ui.

The reverse direction of the following theorem is stated and proved in
[8, 15], but we include our own proof here for completeness.

Theorem 2.3. Pn×P2 has a consecutive cyclic prime labeling with the value

1 assigned to vertex v1 if and only if 2n+ 1 is prime.

Proof. We prove the forward implication by contradiction. Let p > 1 be a
divisor of 2n + 1. The following consecutive cyclic labeling of Pn × P2 with
the value of 1 assigned to the top left vertex of the graph is not a prime
labeling. The pair of vertices labeled p and 2n − (p − 1) = 2n + 1 − p are
not relatively prime since p | 2n+ 1.

· · ·

· · ·

· · ·

· · ·
1 2 3 p

2n 2n− 1 2n− 2 2n− (p− 1)
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Conversely, consider the graph Pn × P2 where 2n+ 1 is prime. We claim
that the following vertex labeling gives a consecutive cyclic prime labeling:

· · ·

· · ·
1 2 n− 1 n

2n 2n− 1 n+ 2 n+ 1

Since gcd(k, k + 1) = 1, it suffices to check only the vertex labels arising
from the endpoints of the first n− 1 vertical edges going from left to right.
Observe that each of the n−1 vertical edges under consideration have vertex
labels a and (2n + 1)− a for 1 ≤ a ≤ n− 1. We conclude that

gcd(a, (2n + 1)− a) = gcd(a, 2n + 1) = 1.

Thus, the graph Pn × P2 has a consecutive cyclic prime labeling whenever
2n+ 1 is prime. �

When drawing a ladder, n columns are formed consisting of a vertex from
the first path, a vertex from the second path, and the edge between them.
When we place labels on the vertices, we create n column sums which are just
the sum of the label on vertex ui and vi for 1 ≤ i ≤ n. When constructing a
consecutive cyclic labeling, without loss of generality we place a value of 1
somewhere in the top row of the ladder and increase each next vertex label
by one in a clockwise direction. Thus, there will be a value k directly below
the 1 depending on where the 1 is placed in the top row. This creates column
sums of k + 1 for columns to the right of 1 (and including the column with
a 1) and column sums of 2n+ k + 1 for columns to the left of the 1.

Theorem 2.4. If a consecutive cyclic prime labeling of Pn×P2 exists, then

the column sums are congruent to p modulo 2n. Alternatively, if at least one
column sum is not congruent to p modulo 2n, then the consecutive cyclic

labeling is not a prime labeling.

Proof. Consider a ladder graph with the following consecutive cyclic label-
ing.

· · ·

· · ·

· · ·

· · ·
2n 1 2

k + 1 k k − 1

First, recall that each column sum in a consecutive cyclic labeling will be
either k + 1 or 2n + k + 1. If k + 1 is prime, then all the column sums are
congruent to a prime modulo 2n. So k + 1 must be composite (which is an
odd composite since k must be even). Then q | k+1 for some prime q. Note

that k+1 = q ·s > 2q which implies that q <
k + 1

2
. In the above consecutive
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cyclic labeling, the labels q and k+1− q are (vertically) adjacent. However,
gcd(q, k + 1 − q) = q and so the consecutive cyclic labeling is not a prime
labeling. �

The converse of Theorem 2.4 does not hold. If the column sums are prime
modulo 2n, then it does not guarantee there exists a consecutive cyclic prime
labeling, as the following example illustrates.

Example 2.5. Below is a consecutive cyclic labeling of P5 ×P2 where each
column sum is 5 (mod 10), but the labeling is not prime.

3 4 5 6 7

2 1 10 9 8

Lemma 2.6. Suppose Pn×P2 is labeled so that vertex labels 1 and k are in

the same column, where 2 ≤ k ≤ 2n. If the column sums k+1 and 2n+k+1
are prime, then the labeling is a consecutive cyclic prime labeling of Pn×P2.

Proof. Consider the graph Pn × P2 with a consecutive cyclic labeling and
prime column sums k+1 and 2n+ k+1. To show this labeling is prime we
must verify that the vertex labels arising from the endpoints of the vertical
edges are relatively prime. Letting k+1 = p results in vertical pairs of labels
(a, p− a) for 1 ≤ a ≤ 1

2
(p − 1) and (2n − b, p+ b) for 0 ≤ b ≤ n− 1

2
(p− 1).

First we claim that gcd(a, p − a)=1. Suppose gcd(a, p − a)=d for d a
positive integer. This implies d | (p − a+ a) and so d | p. Therefore, d = 1
or p, but, d 6= p since d ≤ a < p. Thus, gcd(a, p− a)=1.

Next we claim that gcd(2n − b, p + b)=1. Suppose gcd(2n − b, p + b)=d

for d a positive integer. Then d | ((2n− b) + (p+ b)) which is equivalent to
d | (2n + p). Since we assumed 2n + p is prime, d = 1 or 2n + p. However,
d 6= 2n + p since d ≤ 2n − b < 2n + p and 2n − b > p + b. Therefore,
gcd(2n − b, p+ b)=1.

Given the cyclic labeling of the graph, all horizontal edges connect labels
that are relatively prime. Thus we can conclude that if the column sums
k + 1 and 2n + k + 1 are prime, then the labeling is a consecutive cyclic
prime labeling. �

The converse of Lemma 2.6 is not true, as is shown in the following example.

Example 2.7. The labeling below is a consecutive cyclic prime labeling of
P4 × P2 with column sums 7 and 15.

4 5 6 7

3 2 1 8
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Theorem 2.8. If 2n+ p is prime where p is a prime less than 2n+1, then
Pn × P2 has a consecutive cyclic prime labeling. Moreover, this labeling can

be realized by assigning 1 to the vertex in the location 1
2
(p − 1) − 1 places

from the top right vertex.

Proof. Let 2n + p be a prime where p is prime less than 2n + 1. We claim
that the following gives a consecutive cyclic labeling of Pn × P2:

· · ·

· · ·

· · ·

· · ·
eL eR

LT LT + 1 2n− 1 2n 1 2 RT − 1 RT

LB LB − 1 p+ 1 p p− 1 p− 2 RB + 1 RB

where the four corner values are

LT =
1

2
(p+ 1) + n RT =

1

2
(p− 1)

LB =
1

2
(p− 1) + n RB =

1

2
(p− 1) + 1.

Since gcd(k, k + 1) = 1, it suffices to check only the vertex labels arising
from the endpoints of the first n− 1 vertical edges going from left to right.
For the vertical edges right of (and including) eR, the column sum is p. For
the vertical edges left of (and including) eL, the column sum is 2n+p. Since
both of these column sums are prime, Lemma 2.6 implies the ladder has a
consecutive cyclic prime labeling. �

It is of interest to know if there exists a prime number of the form 2n+ p

where n is an integer and p = 1 or p is a prime less than 2n + 1. If such a
prime exists, then by Theorem 2.3 and Theorem 2.8 we may conclude that
pr(Pn×P2) = 2n for all n and also that every ladder has a consecutive cyclic
prime labeling that we may easily construct.

Unfortunately, determining whether such a prime exists is a difficult prob-
lem related to Polignac’s conjecture. Polignac’s conjecture, first stated by
Alphonse de Polignac in 1849 [10], states that for any positive even integer
n, there are infinitely many prime gaps of size n. If n = 2, the conjecture is
equivalent to the twin prime conjecture. In looking for cyclic prime labelings
of ladder graphs, we are interested in finding pairs of primes that differ by
the even number 2n where the smaller prime is less than 2n+ 1. Although
Polignac’s conjecture guarantees the existence of pairs of primes whose dif-
ference is 2n, the result remains as yet to be proved. Also, Polignac’s con-
jecture does not address our additional constraint that the smaller prime be
less than 2n + 1. In summary, we have the following observation:

Observation 2.9. If every even integer 2n can be written in the form
2n = q − p where q is a prime and p is either 1 or a prime less than 2n+ 1,
then all ladder graphs are prime.

The labelings in the following example illustrate our results thus far.
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Example 2.10. Consider P10 × P2. Theorem 2.3 does not apply because
2n + 1 = 21 is not prime. Consequently, assigning 1 to the top left vertex
does not yield a consecutive cyclic prime labeling.

The only primes p for which 2n+p is prime and p < 2n+1 are p = 3, 11, 17.
Thus, Theorem 2.8 holds and we have the following consecutive cyclic prime
labelings:

p = 3

12

11

13

10

14

9

15

8

16

7

17

6

18

5

19

4

20

3

1

2

p = 11

16

15

17

14

18

13

19

12

20

11

1

10

2

9

3

8

4

7

5

6

p = 17

19

18

20

17

1

16

2

15

3

14

4

13

5

12

6

11

7

10

8

9 .

In each graph, we highlight the value of p where the location of the label
1 is determined by Theorem 2.8. For p = 19, we observe that 2n+ p = 39 is
not prime, yet the following labeling shows that assigning 1 to the prescribed
vertex gives a successful labeling.

p = 19

20

19

1

18

2

17

3

16

4

15

5

14

6

13

7

12

8

11

9

10

An exhaustive check shows that assigning 1 to any other vertex in the top
row fails to yield a consecutive cyclic prime labeling.

The previous example proves that the converse of Theorem 2.8 does not
hold. That is, there are primes p for which 2n + p is not prime, yet the
prescribed labeling is successful.

3. Complete bipartite graphs

In this section, we look at prime labelings and coprime labelings of com-
plete bipartite graphs. We first examine minimal coprime labelings of Kn,n

for n > 2. Then, we consider complete bipartite graphs Km,n with m < n,
which have prime labelings for sufficiently large n (depending on the value
of m).
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3.1. Minimal coprime labelings of Kn,n. It is straightforward to see
that the complete bipartite graph Kn,n has no prime labeling for n > 2.
Hence, the best that one can do is to find the minimal value pr(Kn,n) > 2n
such that 2n distinct labels chosen from the set {1, 2, . . . , pr(Kn,n)} allows
a coprime labeling of Kn,n. We use the term minimal coprime labeling to
denote the latter assignment of labels on a graph G.

Example 3.1. The minimal coprime labelings of K3,3 and K4,4 below show
that pr(K3,3) = 7 and pr(K4,4) = 9.

1 3 5

2 4 7

1 3 5 9

2 4 7 8

Using an exhaustive computer check, we give the following values for
pr(Kn,n).

n 1 2 3 4 5 6 7 8 9 10 11 12 13
pr(Kn,n) 2 4 7 9 11 15 17 21 23 27 29 32 37

This sequence A213273 is published in the OEIS [1]. By further computer
check, Alois Heinz extended the sequence to n = 23, thus adding the follow-
ing values for pr(Kn,n):

n 14 15 16 17 18 19 20 21 22 23
pr(Kn,n) 40 43 46 49 53 57 61 63 67 71

Observation 3.2. By analyzing the minimal coprime labelings constructed
for Kn,n, the following facts are readily verified for n ≤ 13:

• There exists a minimal coprime labeling with the labels 1 and 2 in
separate partite sets.

• All primes up to pr(Kn,n) are used in a minimal coprime labeling.
• There are never more than n

2
primes in a minimal coprime labeling

of Kn
2
,n
2

.

• A small set, P, of carefully chosen primes determine the minimal
coprime labeling of Kn,n by labeling one of the two partite sets of
vertices with numbers from a set of products of powers of these
primes (see Definition 3.3).

Definition 3.3. Let P = {p1, . . . , pj} be a set of primes. From P, we build

the set of the first n integers (larger than 1) of the form pk11 pk22 · · · p
kj
j such

that ki ≥ 0 for all i. Since this set is constructed by taking products of

powers of primes, we denote this set of n elements as popop(P, n).

For example, for P = {2, 3},

popop(P, 9) = {2, 3, 4, 6, 8, 9, 12, 16, 18}.

http://oeis.org/A213273
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Conjecture 3.4. For Kn,n, there exists a set of prime numbers {p1, . . . , pj}
such that this set determines the values in the label sets of the two partite

sets of vertices, giving Kn,n a minimal coprime labeling.

We believe the conjecture is true if we do the following. Consider a
carefully1 chosen set of small primes, P = {p1, . . . , pj}. Let A = popop(P, n)
and B contain the n smallest positive integers which are relatively prime to
all the elements of A. We claim that the sets A and B, when used to
label the partite sets, yield a coprime labeling of Kn,n. Moreover, we claim
pr(Kn,n) = max{x | x ∈ A ∪ B}, and hence this is a minimal coprime
labeling.

Example 3.5. Via exhaustive search inMathematica, we verified that there
is a unique minimal coprime labeling of K12,12 and pr(K12,12) = 32. If
Conjecture 3.4 is correct, then this calculation could have been done by
the following method. If we let P = {2, 7, 11, 13}, then popop(P, 12) is the
following:

A = {2, 4, 7, 8, 11, 13, 14, 16, 22, 26, 28, 32}.

Hence, the set of the n smallest positive integers all relatively prime to the
elements of A is:

B = {1, 3, 5, 9, 15, 17, 19, 23, 25, 27, 29, 31}.

These two sets are exactly the sets in which the exhaustive computer check
unveiled as the unique minimal coprime labeling of K12,12. Observe that the
largest element in A ∪B is 32, and indeed pr(K12,12) = 32.

Again using Mathematica, we observe that there exists a unique minimal
coprime labeling of Kn,n for n = 1, 2, 5, 9, 11, 12. On the other hand, for n =
3, 4, 6, 7, 8, 10, there are a variety of different minimal coprime labelings. For
example, K8,8 has 5 different coprime labelings while K10,10 has 9 different
coprime labelings. Thus it is natural to ask if there is a way to determine
the values of n for which Kn,n has a unique coprime labeling. By further
computation, Alois Heinz found the number of minimal coprime labelings
of Kn,n for n ≤ 23, published as sequence A213806 in the OEIS [4].

3.2. Prime labelings of Km,n. Although there exist no prime labelings
for Kn,n when n > 2, there are prime labelings for Km,n when m is fixed
and n is sufficiently large, depending on the value of m. In 1990, Fu and
Huang [3] proposed a necessary and sufficient condition for the graph Km,n

to be prime. Letting P (t, v) be the set of all primes x such that t < x ≤ v,
they prove the following proposition.

Proposition 3.6. Let m,n be positive integers where m < n. Then Km,n

is prime if and only if m ≤
∣

∣P
(

m+n
2

,m+ n
)
∣

∣+ 1.

1Currently, how to carefully choose a prime set is not clear. For example,
popop({2, 3}, n) allows a coprime labeling of Kn,n for n = 3, 8, 13, but fails for every
other n ≤ 13. Whereas, popop({2, 7, 11, 13}, n) allows a coprime labeling of Kn,n for
n = 3, 4, 10, 11, 12, but fails for every other n ≤ 13.

http://oeis.org/A213806
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We provide alternate proofs for specific cases of small values of m and
then in full generality. First, we must introduce some helpful notation and
definitions. Combining the notation of [3] with ours, we denote the set of
labels for each partite set of vertices in a prime labeling of Km,n as Am,n

and Bm,n. For K3,4, for example,

1 5 7

2 3 4 6

corresponds to

{

A3,4 = {1, 5, 7}, and

B3,4 = {2, 3, 4, 6}.

If we let π(x) denote the number of primes less than or equal to x, then
the nth Ramanujan prime is the least integer Rn for which π(x)− π(x

2
) ≥ n

holds for all x ≥ Rn. The first few Ramanujan primes as given in sequence
A104272 in the OEIS [12] are as follows:

n 1 2 3 4 5
Rn 2 11 17 29 41

Remark 3.7. In his attempt to give a new proof of Bertrand’s postulate in
1919, Ramanujan published a proof in which he not only proves the famous
postulate, but also generalizes it to infinitely many cases. This answered
the question, “From which x onward will there be at least n primes lying
between x

2
and x?” [11].

Theorem 3.8. Km,n is prime if n ≥ Rm−1 −m.

Proof. There are at least m− 1 primes in the interval (m+n
2

,m+ n] for n ≥
Rm−1 −m. If we denote the first m− 1 of these primes by p1, p2, . . . , pm−1,
then the sets

Am,n = {1, p1, p2, . . . , pm−1}

Bm,n = {1, . . . ,m+ n}\Am,n

give a prime labeling of Km,n for n ≥ Rm−1 −m. �

Remark 3.9. Note that Theorem 3.8 provides a sufficiently large value of
n for which Km,n is always prime. It is interesting to note, however, that
for certain smaller values of n, the graph Km,n still has a prime labeling.
These cases are summarized below for 3 ≤ m ≤ 13.

http://oeis.org/A104272
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Km,n Prime (small n-cases) Prime by Theorem 3.8
K3,n n = 4, 5, 6 n ≥ 8
K4,n n = 9 n ≥ 13
K5,n n = 14, 15, 16, 18, 19, 20 n ≥ 24
K6,n n = 25, 26, 27, 31 n ≥ 35
K7,n n = 36, 37, 38 n ≥ 40
K8,n n = 45, 46, 47, 48, 49 n ≥ 51
K9,n n = 52 n ≥ 58
K10,n n ≥ 61
K11,n n = 62, 68, 69, 70, 72, 73, 74, n ≥ 86

78, 79, 80, 81, 82
K12,n n ≥ 89
K13,n n = 90, 91, 92 n ≥ 94

We conclude this subsection by applying Theorem 3.8 to find the exact
prime labelings for all graphs Km,n when m = 3, 4, 5, or 6. Moreover, we
give prime labelings for Km,n for the values of n smaller than Rm−1−m for
which a prime labeling is possible.

Proposition 3.10. K3,n is prime if n = 4, 5, 6 or n ≥ 8.

Proof. Since R2 = 11, there are at least two primes p1, p2 in the interval
(n+3

2
, n+ 3] for n ≥ 8. Hence, the sets

A3,n = {1, p1, p2} and B3,n = {1, . . . , n+ 3}\A3,n

give a prime labeling of K3,n for n ≥ 8.
If n = 4, 5, or 6, then A3,n = {1, 5, 7} and B3,n = {2, 3, 4, 6}, {2, 3, 4, 6, 8},

and {2, 3, 4, 6, 8, 9}, respectively, give the following prime labelings of K3,4,
K3,5, and K3,6:

1 5 7

2 3 4 6

1 5 7

2 3 4 6 8

1 5 7

2 3 4 6 8 9

�

Proposition 3.11. K4,n is prime if n = 9 or n ≥ 13.

Proof. Since R3 = 17, there are at least three primes p1, p2, p3 in the interval
(n+4

2
, n+ 4] for n ≥ 13. Hence, the sets

A4,n = {1, p1, p2, p3} and B4,n = {1, . . . , n+ 4}\A4,n
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give a prime labeling of K4,n for n ≥ 13. If n = 9, then A4,9 = {1, 7, 11, 13}
and B4,9 = {2, 3, 4, 5, 6, 8, 9, 10, 12} give a prime labeling of K4,9. �

Proposition 3.12. K5,n is prime if n = 14, 15, 16, 18, 19, 20 or n ≥ 24.

Proof. Since R4 = 29, there are at least four primes p1, p2, p3, p4 in the
interval (n+5

2
, n + 5] for n ≥ 24. Hence, the sets

A5,n = {1, p1, p2, p3, p4} and B5,n = {1, . . . , n+ 5}\A5,n

give a prime labeling of K5,n for n ≥ 24.
If n = 14, 15, or 16, then A5,n = {1, 11, 13, 17, 19}. If n = 18, 19, or 20,

then A5,n = {1, 13, 17, 19, 23}. In each case, B5,n = {1, . . . , n+5}\A5,n gives
a prime labeling of K5,n.

�

Proposition 3.13. K6,n is prime if n = 25, 26, 27, 31 or n ≥ 35.

Proof. Since R5 = 41, there are at least five primes p1, p2, p3, p4, p5 in the
interval (n+6

2
, n + 6] for n ≥ 35. Hence, the sets

A6,n = {1, p1, p2, p3, p4, p5} and B6,n = {1, . . . , n+ 6}\A6,n

give a prime labeling of K6,n for n ≥ 35.
If n = 25, 26, or 27, then A6,n = {1, 17, 19, 23, 29, 31}. If n = 31, then

A6,31 = {1, 19, 23, 29, 31, 37}. In each case, B6,n = {1, . . . , n+ 6}\A6,n gives
a prime labeling of K6,n. �

Question 3.14. Is there any predictability as to the values of n smaller
than Rm−1 − m for which Km,n has a prime labeling? It is interesting to
note that when m = 10 or m = 12, there are no such values of n.

4. Future work

Throughout the paper we have mentioned some questions and conjectures
for further research. We conclude here with a few additional open questions.

Question 4.1. Is it possible to write every even integer 2n in the form
2n = q − p where q is prime and p is either 1 or a prime less than 2n+ 1?

An affirmative answer to this interesting number theory question implies
that all ladders are prime and, in fact, have a consecutive cyclic prime
labeling.

Question 4.2. Does there exist an inductive method to get a minimal
coprime labeling of the graph Kn+1,n+1 from a minimal coprime labeling of
the graph Kn,n?

We have observed that minimal coprime labelings of Kn,n are sometimes
properly contained as subgraphs of a minimal coprime labeling of Kn+1,n+1.
For example, we have the following labeling of K6,6:
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1 3 5 9 11 15

2 4 7 8 13 14

Observe that the above graph is properly contained in the following minimal
coprime labeling of K7,7:

1 3 5 9 11 15 17

2 4 7 8 13 14 16

Also we see that the sets popop({2, 7, 13}, 6) and popop({2, 7, 13}, 7) give the
bottom row labelings for K6,6 and K7,7, respectively. We observed that in
all the examples which we looked at for which we go from a minimal coprime
labeling of Kn,n to Kn+1,n+1 in which the above phenomena above arose,
the prime numbers in the popop sets coincided.

Secondly, another reason to believe that there may exist an inductive
method to get from Kn,n to Kn+1,n+1 is the observation that we can always
switch a prime number in the top row with one from the bottom row and
still have a coprime labeling if and only if there are no multiples of the
particular two prime numbers within the set of the other labels in the graph.
For example, we can get from K5,5 to K6,6 by simply switching the primes
5 and 7 in K5,5. The cost of such a switch is that the label 10 in K5,5

cannot also be a label in K6,6 since both the values 2 and 5 exist in K6,6 as
a consequence of the switch. So we replace 10 with the smallest available
prime, namely 13. Below we illustrate this transition from K5,5 (on the left)
to K6,6 (on the right):

1 3 7 9 11

2 4 5 8 10

1 3 5 9 11 15

2 4 7 8 13 14
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