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Abstract

We classify all rational functions f : P1 → P1 whose branching pattern above 0, 1,∞ satisfy a
certain regularity condition with precisely d = 5 exceptions. This work is motivated by solving second
order linear differential equations, with d = 5 true singularities, in terms of hypergeometric functions. A
similar problem was solved for d = 4 in [2].

1 Introduction

Our main goal in this paper is to tabulate all rational functions f ∈ C(x) whose branching patterns satisfy
a regularity condition defined in Section 1.2, and to prove completeness of the table. This condition comes
from solving differential equations with at most d = 5 true singularities in terms of hypergeometric functions.
The cases d = 3 resp. d = 4 were previously studied in [6] resp. [3, 2]. The functions f in our tables are
either Belyi maps or almost-Belyi maps:

Definition 1.1. A holomorphic map f from a compact Riemann surface C to the Riemann sphere
P1 = C

⋃{∞} is a Belyi map if its branched set is in {0, 1,∞}, i.e. f is unramified outside of {0, 1,∞}.

The pre-image ⊂ C of the closed interval [0, 1] ⊂ P1 under a Belyi map f gives a bi-colored oriented
graph, called dessin d’enfant. Up to equivalence, there is a 1-1 correspondence between dessins d’enfants,
3-constellations, and Belyi maps, see Section 3 for details. In our application C = P1 since our f ’s are
rational functions.

Almost-Belyi maps [31] are rational maps with only 1 or 2 simple branch points outside of {0, 1,∞}. We

denote these as Belyi(1) resp. Belyi(2) maps if they have 1 resp. 2 simple branch points outside {0, 1,∞}.
Those branch points in P1 \ {0, 1,∞} are free to move, so while Belyi-maps are classified by discrete objects

(dessins d’enfants, or 3-constellations), Belyi(1) resp. Belyi(2) maps naturally occur in 1 resp. 2 dimensional
families.

We expect our tables to be helpful in other contexts as well; Belyi maps have wide range of application in
the fields of algebra, geometry, and combinatorics. They are used to prove Davenport-Stothers-Zannier bound
[21]. Shabat polynomials are the special case of Belyi maps with only one pole at infinity. A dynamical Belyi
map f : P1 → P1, which sends {0, 1,∞} to {0, 1,∞}, is used to construct the situation of a Julia set with
“complete chaos” [30]. Another application is the classification of elliptic fibrations of K3-surfaces [4]. Some

Belyi(1) maps correspond to solutions of isomonodromic systems of Fuchsian equations with 4 (+1 apparent)
singularities, and hence give algebraic solutions of the Painlevé VI equation by Jimbo-Miwa correspondence
[20]. Such Belyi(1) maps are studied as deformations of dessins d’infants in [12]. The motivation for this
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paper is solving differential equations in terms of hypergeometric functions [3, 10, 2, 11, 5] but we expect
that our tables will be useful for other applications as well. Indeed, some entries of the tables have already
appeared in prior applications, see Section 1.2 for more.

1.1 Motivation, solving differential equations

Conjecture 1. Let L be a second order linear differential equation a2y
′′ + a1y

′ + a0y = 0 with coefficients
ai ∈ C[x]. If L is regular singular1 (i.e. Fuchsian) and has, among its solutions, a non-zero power series
solutions with integer coefficients, (y ∈ Z[[x]]− {0}), then one of these cases holds:

• y is an algebraic function, or

• y can be written as y = r0S(f)+ r1(S(f))
′, where S(f) = 2F1(a, b; c | f). Here f, r0, r1 are algebraic

functions, a, b ∈ Q and c is a positive integer2.

If y is algebraic, it can be found with Kovacic’ algorithm [19], so we are mainly interested in 2F1-type
solutions. We only treat rational f ’s in this paper, and plan to treat algebraic f ’s later by exploiting their
relation to the modular curve X0(N). For d = 3 singularities f is a Möbius transformation, and for d = 4
singularities (Heun’s case) f ’s are classified in [2, 3]. So we treat d = 5 in this paper.

Recent algorithms for finding closed form solutions (solutions expressible in terms of well studied special
functions) are given in [3, 16, 10, 11, 9, 15]. Although random differential equations are unlikely to have closed
form solutions, the conjecture says that the second order differential equations that are of most interest to
combinatorics3 should have closed form solutions. We tested this on numerous differential equations obtained
from the oeis.org (the Online Encyclopedia of Integer Sequences). All turned out to be 2F1-solvable with
parameters that can be related to a triplet (k, ℓ,m) (see the notation in Sections 1.2 and 8) in Diagram (1)
in Takeuchi’s classification [18, Section 4] of arithmetic triangle groups:

(∞, 2, 6) (∞, 2, 3) (∞, 2, 4)

✑
✑

✑✑

❍❍❍❍❍❍

✦✦✦✦✦✦✦

❛❛❛❛❛❛❛

◗
◗
◗◗

✟✟✟✟✟✟

✔
✔

✔
✔

(∞, 3, 3)
(∞, 6, 6) (∞,∞, 3) (∞,∞, 2) (∞, 4, 4)

PPPPP

✑
✑

✑✑
(∞,∞,∞)

2 2 4
2

3 2 2

3

2

The 2F1-functions for this diagram are said to be associated with elliptic curves, modular forms, and
elliptic integrals [17]. They appear in many contexts. To cover them, it suffices4 to cover: (k, ℓ,m) =
(∞, 2,m) with m ∈ {3, 4, 6}. Some parts of this paper focus on (k, ℓ,m) = (∞, 2, 3), but our website [1]
covers m = 4 and m = 6 as well.

1We focus on the regular singular case because for irregular singular equations of order 2, a complete algorithm to find all
{Airy, Bessel, Kummer, Whittaker}-type solutions was given in [16, 9]. The regular-singular assumption can be replaced by the
assumption that y in Conjecture 1 has a non-zero radius of convergence.

2This condition implies at least one logarithmic singularity. Because of the conjecture we focus on differential equations
with at least one logarithmic singularity, however, the same table can also be used for more general “parametric” cases [2].

3Equations with a convergent integer power series solution (globally nilpotent differential equations).
4Solutions related to entries of the diagram can be expressed in terms of those three entries. However, the other entries can

still be relevant if we want solutions of minimal size, see Section 5.3.3 (decompositions) in [11] for more. Entry (∞,∞,∞)
corresponds to writing solutions in terms of the elliptic integrals K and E.
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1.2 Project Outline

Definition 1.2. Let f : P1 → P1 be a rational function. Let k, ℓ,m be positive integers or ∞, see remark
1.3. The (k, ℓ,m)-exceptional points of f are:

• roots of f of order not divisible by k,

• roots of 1− f of order not divisible by ℓ,

• roots of 1
f of order not divisible by m.

We denote the set of (k, ℓ,m)-exceptional points of f as E
kℓm

(f), or simply as E(f) when k, ℓ,m are fixed.

Remark 1.3. If k = ∞ then all roots of f are (k, ℓ,m)-exceptional points (and likewise for roots of 1 − f
resp. 1

f if ℓ resp. m is ∞).

Remark 1.4. Our definition 1.2 differs slightly from that in [3] which defined exceptional points as
{roots of f of order 6= k} ∪ {roots of 1− f of order 6= ℓ } ∪ {roots of 1

f of order 6= m}
which contains our E(f).

The goals are to:

(a) construct a database [1] that, up to Möbius-equivalence, contains all rational functions with five
(∞, 2, 3)-exceptional points, and likewise for (∞, 2, 4) and (∞, 2, 6).

(b) prove completeness (Sections 3 – 6)

(c) give a fast method for the following problem: Given a field k ⊆ C and {q1, . . . , q5} ⊂ P1, find every
F ∈ k(x) such that E(F ) = {q1, . . . , q5} (Section 7)

(d) solve linear differential equations with 5 true singularities (Section 8).

Our work continues the work (for d = 4 exceptional points) in [2, 3]; the main novelties are:

1. We prove completeness by giving an efficient new algorithm for finding dessins (algorithm 4.4). Such
an algorithm was not needed for [2, 3]; the tables in [2] are small enough for manual enumeration,
while [3] gave a method specific to d = 4 that did not rely on dessins.

2. We compute almost-Belyi maps ([2, 3] only consider Belyi maps), and braid orbits of almost-dessins
to prove completeness.

3. Our Belyi(1) families turn out to be remarkably nice: they allow rational parametrizations that cover
all Belyi(1) maps by direct substitution, without any gaps or duplicates (definitions 2.2 and 5.2).

The first page on our website [1] gives the database for goal (a), while another page (follow the link on
the line “Completeness”) gives examples and all algorithms needed for goals (b), (c) and (d). For (c), one has
to select every f in the database whose E(f) match {q1, . . . , q5} up to a Möbius transformation x 7→ ax+b

cx+d .
We do this by computing five-point-invariants (functions of {q1, . . . , q5} whose values are invariant under
Möbius transformations of the input5).

(k, ℓ,m) Belyi maps Belyi(1) families Belyi(2)

/∈ Belyi(1) ∈ Belyi(1) Total /∈ Belyi(2) ∈ Belyi(2) families
indirectly directly

(∞, 2, 3) 411 9 266 686 65 3 2

(∞, 2, 4) 121 3 23 147 20 0 0

(∞, 2, 6) 54 2 5 61 12 0 0

Table 1: Summary of the online table [1].

5A four-point invariant is given by the j-invariant of y2 = (x− q1)(x− q2)(x− q3)(x− q4).
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All maps in Table 1 are listed on our website, and all have |E(f)| = 5. The three columns highlighted in

italics (Column “ 6∈ Belyi(1)”, Column “ 6∈ Belyi(2)”, and Column “Belyi(2)”) contain precisely those entries
of Table 1 that would still have 5 exceptional points if we used the definition in Remark 1.4. So although
our application uses definition 1.2, both definitions are useful for the construction of the database. The files
on our website give algorithms and tables for both definitions, using the phrase “count=5” to refer to our
definition 1.2, and the phrase “Count=5” for Remark 1.4.

All entries of the table are needed for goal (b), proving completeness. However, the only entries that are
needed for goal (c) are the entries in italics plus Column “indirectly”, as will be explained in Section 5.6.

Belyi maps and almost-Belyi maps have other applications as well. Indeed, some entries of our table
have appeared elsewhere. The almost-Belyi maps of degree ≤ 4 are constructed in [14]. In addition, 14 out

of the 68 Belyi(1) maps corresponding to (k, ℓ,m) = (∞, 2, 3) in Table 1 are constructed in [12, 13, 14].
Our main goal for this paper to prove completeness of our online table (summarized in Table 1) since

that will be useful for our application. The Belyi and Belyi(1) columns have so many entries that algorithms
are needed for this proof. Algorithms that are key to the proof will be described in this paper. Particularly
important is Algorithm 4.4 which is key to proving that our Belyi tables are complete. It computes all
“dessins” (conjugacy classes of 3-constellations) relevant for our project. Although there is another imple-
mented algorithm for the same task [8] based on group theory, it was not efficient enough for higher degrees,
so we developed a novel algorithm instead.

2 Rational functions with a prescribed branching pattern

This section will cover goal (a) from the introduction. Section 2.1 will enumerate the relevant branching
patterns. Finding function(s) for a branching pattern, as in [5, 7], is shown here by an example:

Example 2.1. Suppose we want to find a rational function f : P1 → P1 with branching pattern (1, 1, 3, 5),
(2, 2, 2, 2, 2), (1, 3, 3, 3) above 0, 1,∞. We abbreviate this as (12, 3, 5), (25), (1, 33). The degree is
n = 1 + 1 + 3 + 5 = 2 + 2 + 2 + 2 + 2 = 1 + 3 + 3 + 3 = 10. The sum of ep − 1 (where ep de-
notes the branching index) for all p above {0, 1,∞} is (1 − 1) + · · ·+ (3 − 1) = 17. However, the Hurwitz
formula for genus zero:

∑

p∈P1

(ep − 1) = 2n− 2 (1)

gives 18, so there must be 1 more ramification point p, with ep = 2, above some point t 6∈ {0, 1,∞}. So, f
is a Belyi(1) map as it has a simple branch point outside {0, 1,∞}.

We aim to find all such f up to Möbius-equivalence (Definition 3.1). We use the three degrees of freedom
in Möbius-transformations to move the order-1 pole of f to x = 1, and the roots of orders 3 and 5 to x = 0
and x = ∞. That brings f in this form:

f :=
(Ax2 +Bx+ C)x3

(x− 1)(x3 + a2x2 + a1x+ a0)3
, 1− f =

c
(

x5 + b4x
4 + b3x

3 + b2x
2 + b1x+ b0

)2

(x− 1) (x3 + a2x2 + a1x+ a0)
3 .

Equating f with 1− (1−f) produces equations for the unknowns. Our implementation eliminates unknowns
as long as it finds an equation that is linear in an unknown. Three unknowns b2, b3, b4 in two large equations
remain. Factoring the resultant produces one equation in two unknowns, i.e. an algebraic curve which turned
out to have genus 0 (remarkably, the same happened for all 68 + 20 + 12 cases in Tables 2 and 3). That
means the solutions to this equation can be written as rational functions in a new variable s, which we can
find with Maple’s parametrization. After simplification we obtain b3 = 1

3s
4 − 8

3s
3 +18s2 − 96s+18 and

b4 = s2 − 14. Substitution followed by a gcd produces the value of b2. Substituting into f , followed by two
simple transformations (x 7→ 1− x, and s 7→ s+ 3) to reduce its size, produces:

f =
64s8(x− 1)3(9x2 − 6s2x− 28sx+ s4 − 12s3 + 36s2)

x(9x3 − 6s2x2 − 36sx2 + s4x− 4s3x+ 60s2x+ 8s4 − 32s3)3
∈ Q(s)(x).
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This branches above 0, 1,∞ plus one more point, denoted t. To find it we first compute the ramification
point p above t. This p must be the only root of f ′ = 0 not in f−1({0, 1,∞}). We find p = 1

15s
2 − 2

3s− 8
5

and

t = f(p) =
3125 (s− 9)

4
s8 (3s− 2)

4 (s− 4)
4
(s3 − 9s2 + 324s− 216)

3
(s− 1)

2 . (2)

If g : P1 → P1 has the same branching pattern above 0, 1,∞, one could ask if it is Möbius-equivalent to
f for some value of s. More generally, how to prove completeness for the entire database? Before we can
answer that in Section 5 we first need a definition:

Definition 2.2. For a Belyi(1) map f = f(s, x) ∈ C(s)(x), let φf ∈ C(s) be the function that expresses (as
for example in equation (2)) the branch point t 6∈ {0, 1,∞} in terms of s. A point s0 ∈ P1 is degenerate
if f(s0, x) does not evaluate to some g ∈ C(x) with the same x-degree as f . It is called generic if
φf (s0) 6∈ {0, 1,∞}, and special if it is not degenerate nor generic. We define f ’s family as {f(s0, x) | s0 not
degenerate}, and call it gap-free if no generic s0 degenerates.

2.1 Enumerating branching patterns

Let B = (e1,1, . . . , e1,n1), (e2,1, . . . , e2,n2), (e3,1, . . . , e3,n3) be a branching pattern of degree n, which means
that the ei,j are positive integers with n =

∑ni

j=1 ei,j for each i = 1, 2, 3.
Since we only tabulate rational functions, we only consider planar (genus zero) branching patterns. Then

S ≤ 2n− 2, where S :=
∑3

i=1

∑ni

j=1(ei,j − 1) is the part of the Hurwitz formula (1) coming from points p
above {0, 1,∞}. Let δ = 2n− 2− S. If δ = 0 then we call B a Belyi branching pattern, if δ > 0 then we

call B a Belyi(δ) branching pattern (Example 2.1 was planar and Belyi(1)).

Definition 2.3. Let B and ei,j as above and k, ℓ,m be positive integers or ∞. Let (A1, A2, A3) = (k, ℓ,m).
We define E(B) := {(i, j) | Ai = ∞ or Ai |6 ei,j}.
Remark 2.4. Definition 2.3 corresponds to Definitions 1.2 in that if B is the branching pattern of a rational
function f , then |E(B) | = |E(f) |.

If B is planar Belyi(δ) of degree n, then #ei,j =
∑

ei,j −
∑

(ei,j − 1) = 3n − S = n + 2 + δ. The
number of ei,j divisible by Ai is at most n/k + n/ℓ + n/m. So if (k, ℓ,m) = (∞, 2, 3) and d = |E(B) |,
then d ≥ n+ 2 + δ − (n/∞+ n/2 + n/3) and hence

n ≤ 6(d− 2− δ). (3)

Our website [1] has a routine (similar to [3, Section 3]) to enumerate the necessary branching patterns.

3 Riemann existence theorem and (almost)-Belyi maps

Definition 3.1. Two rational functions f, g : P1 → P1 are called Möbius-equivalent if f = g ◦m for some
m ∈ Aut(P1) (= the group of Möbius transformations {ax+b

cx+d | ad− bc 6= 0}).
Definition 3.2. [30] A list [g1, . . . , gk] of permutations in Sn is called a k-constellation if the group
〈g1, . . . , gk〉 acts transitively on {1 . . . n} and g1 · · · gk = 1. Here n is the degree, and 〈g1, . . . , gk〉 is
the monodromy group of [g1, . . . , gk].

Definition 3.3. [g1, . . . , gk] and [h1, . . . , hk] are conjugated if ∃τ∈Sn∀i hi = τ−1giτ . We denote the
conjugacy class of [g1, . . . , gk] as [g1, . . . , gk]∼.

Theorem 3.4. Riemann Existence Theorem (formulation from [22], for more see [23, 24, 25]). Let
p1, . . . , pk be distinct points of P1. For any transitive representation ρ : π1(P

1 \ {p1, . . . , pk}) → Sn there
is a connected Riemann surface X and a proper holomorphic map f : X → P1 of degree n which realizes ρ
as its monodromy homomorphism. Moreover X and f are unique up to equivalence.
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Remark 3.5. If p1, . . . , pk ∈ k ∪ {∞} for a subfield k ⊆ C then f can be defined over some algebraic
extension of k (Cor. 7.10 in [23]). In Example 2.1, p1, . . . , p4 ∈ k

⋃

{∞} where k := Q(t), while f is defined
over Q(s), an algebraic extension of k (equation (2) shows t ∈ Q(s)).

If the branched set {p1, . . . , pk} is {0, 1,∞} then the pair X, f is called a Belyi map. The representation

ρ is given by a k-constellation [g1, . . . , gk]. We use this for Belyi and Belyi(1) maps in Sections 4 and 5, but

not for Belyi(2) maps where we only have 2 cases (Section 6).

p1, . . . , pk =

{

0, 1,∞ (k = 3, Belyi case),

0, 1, t,∞ (k = 4 where gt is a 2-cycle, Belyi(1) case).

We only use planar k-constellations, i.e. X = P1. Then [g1, . . . , gk]∼ determines f up to Aut(P1):

[g1, . . . , gk]∼ ⇐⇒ f up to Möbius-equivalence. (4)

In the Belyi case [g1, . . . , gk]∼ corresponds to a dessin d’enfant as well.

3.1 Dessins d’enfants

Definition 3.6. A dessin d’enfant [29, 30] is a connected and oriented graph with black and white vertices,
where any edge joins a black and a white vertex. The degree is the number of edges.

• ◦ •.
.................

..............
............

.....................................................
...........
..

..........
.....◦ .

.........
........

..........
....

......................................................
............

..............

.................
.........
.........
..........
............

.............

..............
◦. ...................

..................
.................
................

.........
.........
.........
.
..........
..
..........
...

..........
....◦.

...............
....

.................
.

................. ................

•.............
............
............
.............
................

.................. ◦. .................. ................
.............
..........
.
..........
.
.........
..

.
........
....

..........
..
...........
.

............. ................ .................. ◦. ..................
................
.............
............

.............

.............
•

•.............
............
............
.............
................

.................. ◦. .................. ................
.............
..........
.
..........
.
.........
..

.
.........
...

.........
...
..........
..

............. ................ .................. ◦. ..................
................
.............
............

.............

.............
•

. ............ ............. .............
..........

...

..........
.....

.........
.........

.........
.........
..

.........
.........
....

◦

. ............
.............
.............
.............

...............

.................

...................

.....................

1

3 2
4 5

6

7

10 11

12
18

16
17

14

138

9
15

◦ •....................
.................

................

...............

................
................. ◦. ............. ............ ............ ............. ............. .............

.
.........
.........
.

.........
........

.........
.......

...........
....

..............
..

................. ◦. ............. ............ ............ .............
.............
............. •

•

.
...............

.................

...................

.....................
◦

.
...........

...

..........
....

.........
......

.........
.......

.

..........
..........
..........
.....

..........
..........
..........
.....

.

................................

................................

◦

◦

1 2

3 4 5

6

7
8

9

Figure 1: two planar dessins d’enfants (the labels are not part of the dessins d’enfants)

There is a one-to-one correspondence [4] between:

1. 3-constellations up to conjugation,

2. Belyi maps up to equivalence,

3. dessins d’enfants up to equivalence.

1 7→ 2: The Riemann existence theorem.

2 7→ 3: The dessin d’enfant of a Belyi map f is the graph f−1([0, 1]) where: f−1({0}) = {black vertices},
f−1({1}) = {white vertices}, and f−1( (0, 1) ) = {edges}. Faces correspond 1-1 to f−1({∞}).
Example: f1 = 4(x6 − 4x5 + 5x2 + 4x+ 4)3/(27(x − 4)(5x2 + 4x + 4)2x5) and f2 = 4(x3 − 1)3/(27x3).
Plotting f−1

1 ([0, 1]) and f−1
2 ([0, 1]) we find Figure 1 up to homeomorphism, without the labels [1].

2 7→ 1: The monodromy command in Maple computes a k-constellation for any algebraic function. Applying
this (see Section 3.1 in [1]) to f1 produces:

g0 = (1 5 3)(2 4 6)(7 9 11)(8 12 10)(13 14 15)(16 18 17)
g1 = (1 4)(2 8)(3 7)(5 9)(6 12)(10 13)(11 14)(15 16)(17 18)
g∞ = (1 2 10 15 17 16 14 9)(3 11 13 12 4)(5 7)(6 8).

6



3 7→ 1: After adding a label to each edge (the labels are not part of the dessin d’enfant itself) we can
read the 3-constellation [g0, g1, g∞] from the “labelled dessin” as follows. Reading labels counter-clockwise
around each black vertex produces each cycle of g0 (some of which may be 1-cycles, the valence of a vertex
is the length of the corresponding cycle). Likewise, each white vertex corresponds to a cycle of g1. There
are two ways to find g∞, one could compute it as (g0g1)

−1, but one can also read g∞ directly from the
“labelled dessin”; each cycle of g∞ is found by following the labels inside each face. From the first “labelled
dessin” we read:
h0 = (1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)
h1 = (1 3)(2 4)(5 7)(6 10)(8 13)(9 15)(11 16)(12 18)(14 17)
h∞ = (3)(1 2 6 12 17 13 7 4)(5 9 14 16 10)(8 15)(11 18).

Algorithm 4.3 in Section 4.3 can verify that the 3-constellations [g0, g1, g∞] and [h0, h1, h∞] are conjugated.
Several algorithms in Section 4 use permutations in expanded form, which means the 1-cycles are written as
well. For example, the 3-constellation of the second “labelled dessin” is:

[(1 2 3)(4 5 6)(7 8 9), (1)(6)(8)(2 7)(3 4)(5 9), (1 7 8 5 6 3)(2 4 9)].

Remark 3.7. If D is the dessin of a Belyi map f with branching pattern B, then |E(f) |, |E(B) |, |E(D) |
denote the number of exceptional: points of f resp. branchings in B resp. cycle-lengths in D. Since these
numbers are equal, we will also use the shorter notation |E| if f , B, or D is clear from the context.

4 Belyi maps

The goal in this section is Algorithm 4.4 which can compute all dessins with |E | = 5, which is the key step
to proving that all Belyi maps f with |E | = 5 appear in our table.

4.1 Computing 3-constellations

Definition 4.1. Let g ∈ Sn. Then g′ denotes an element of Sn−1 defined as follows: for i ∈ {1 . . . n− 1}
define g′(i) as g(i) if g(i) 6= n, and g(g(i)) if g(i) = n. When g is written in disjoint cycle notation, one
obtains g′ ∈ Sn−1 by simply erasing n.
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Figure 2: Computing repeat-transitive 3-constellations (definition 4.2)
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Definition 4.2. A pair (g, h) where g, h ∈ Sn is called repeat-transitive when n = 1, or, when < g, h > is
a transitive subgroup of Sn and (g′, h′) is repeat-transitive in Sn−1.

Figure 2 shows (for N = 3) how one can compute all repeat-transitive 3-constellations of degrees
1, 2, . . . , N recursively. Start with the 3-constellation of degree 1. Then, given the set Tn−1 of
repeat-transitive 3-constellations of degree n − 1, insert one more edge in all possible ways to obtain all
repeat-transitive 3-constellations of degree n. Algorithm 4.1 below shows how to implement this. It repre-
sents 3-constellations as [g0, g1] (since g∞ can be recovered from g0g1g∞ = 1) with g0, g1 ∈ Sn−1 written
in expanded form, i.e., including 1-cycles. Inserting an edge means doing the following to both g0 and g1:

(i) insert the new number n into an existing cycle, or

(ii) add a new 1-cycle (n).

One can not choose (ii) for both g0 and g1, because the resulting pair would not be transitive (the graph
would not be connected). This leaves n2 − 1 ways in Step 2 of Algorithm 4.1 to add an edge to [g0, g1].
Indeed, |T2| = 3 = (22 − 1) · |T1| in Figure 2. In Step 2, the call Insert(g0, i, n) (with g0 ∈ Sn−1 and
i ∈ {1, . . . , n}) inserts edge #n at the ith position, as shown here:

Example 4.3. Let g0 = (1 2)(4 5)(6 8) ∈ S8. The program call Insert(g0, 6, 9) computes:
Step 1: Write g0 in expanded form (including 1-cycles) so that all edges 1–8 appear. Placeholders (asterisks)
indicate all 9 possible positions in g0 where 9 can be inserted:

g0 = (3 ∗)(7 ∗)(1 ∗ 2 ∗)(4 ∗ 5 ∗)(6 ∗ 8 ∗)(∗)

Step 2: Insert 9 in the 6th placeholder:

Insert(g0, 6, 9) := (3)(7)(1 2)(4 5 9)(6 8) (written in expanded form).

Algorithm 4.1: Compute all repeat-transitive 3-constellations of degree ≤ N .
Step 1: T1 := {[(1), (1)]}
Step 2: For n from 2 to N do:

Tn := {[Insert(g0, i, n), Insert(g1, j, n)] | i, j ∈ {1 . . . n}, (i, j) 6= (n, n), [g0, g1] ∈ Tn−1}.

From |T1| = 1 and |Tn| = (n2 − 1) · |Tn−1| one finds

|Tn| = (n− 1)!(n+ 1)!/2 = 1, 3, 24, 360, 8640, 302400, 14515200, 914457600, . . .

Remark 4.4. There are twenty-six 3-constellations of degree 3. Two of them are not repeat-transitive:

• ◦
1

• ◦3

2
• ◦

2
• ◦3

1

So the set T3 computed by Algorithm 4.1 has twenty-four 3-constellations.

The construction in Figure 2 is complete up to re-labeling (e.g., compare the two 3-constellations from
Remark 4.4 with T3 in Figure 2). So Algorithm 4.1 does find all 3-constellations up to conjugation. Dessins
with |E | = 5 have degrees ≤ 18, see inequality (3). To find them, we need to implement several improve-
ments because T18 is much too large for the computer.

4.2 Discarding unnecessary 3-constellations

Let #g0 denote the number of cycles in g0, including 1-cycles. For a 3-constellation [g0, g1, g∞] of degree n,
the genus g of the corresponding dessin d’enfant is given by Euler’s formula:

2− 2g = #vertices−#edges + #faces = #g0 +#g1 − n+#g∞.
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Our aim is rational functions, which correspond to planar (i.e. g = 0) 3-constellations. Adding edges
to a non-planar dessin d’enfant can not make it planar, so we may discard non-planar 3-constellations in
Algorithm 4.1 as soon as they occur. This reduces the growth of Tn but more improvements are needed
since it still grows much too fast.

The goal is |E | = 5, however, we can not simply discard 3-constellations with |E | > 5 as soon as they
occur, because adding an edge can lower the value of |E |. We solve this problem with weighted counts.

Definition 4.5. Notations as in Section 2.1, Definition 2.3.
If Ai|ei,j then si,j := 0, if ei,j ≡ −1 mod Ai then si,j :=

1
2 , otherwise si,j := 1 (if Ai = ∞ then si,j = 1).

The weighted-count of B is the sum of the si,j .

If we replace 1
2 in Definition 4.5 by 1, then we get |E | from Definition 2.3. Thus,

|E | ≥ weighted-count (5)

Proposition 4.6. Adding an edge does not decrease the weighted-count if the dessin d’enfant stays planar
and A3 = ∞.

Proof: Let Si be the sum of the si,j , and let S̃i be the sum after adding one edge. Then S̃1 = S1 +1 if the

number of black vertices increased, otherwise, S̃1 ≥ S1 − 1
2 . Likewise, S̃2 = S2 + 1 if the number of white

vertices increased, otherwise, S̃2 ≥ S2 − 1
2 . The number of faces is S3 if A3 = ∞, and does not decrease

when adding an edge (S̃3 ≥ S3) if the result remained planar. Now S̃1 + S̃2 + S̃3 ≥ S1 + S2 + S3 because
if no black or white vertices were added, then adding an edge increases the number of faces. �

We now switch from (∞, 2, 3) to (3, 2,∞), an easily reversible transformation (for Belyi maps it means
f 7→ 1/f). Then we may discard 3-constellations with weighted-count > 5 in Algorithm 4.1 as soon as they
occur; adding edges can not lead to |E | ≤ 5 by Proposition 4.6 and inequality (5). This drastically reduces
the growth of Tn, but a problem still remains, which we handle next.

4.3 Finding a unique representative of a conjugacy class

The 3-constellations [(1 2)(3), (1)(2 3)] and [(1)(2 3), (1 2)(3)] in Figure 2 are conjugated. We should remove
all but one constellation in each conjugacy class, not only because this gives an another drastic reduction in
the growth of Tn, but also because we need 3-constellations up to conjugacy for the correspondence from
Section 3. For τ ∈ Sn, denote gτ := τ−1gτ .

Algorithm 4.2: Sort With Base point (SWB)
Input: Transitive g0 . . . gs in Sn and a base point b ∈ {1, . . . , n}.
Output: [gτ0 . . . g

τ
s ] for some τ ∈ Sn with the property: [g0 . . . gs] is conjugated to [h0 . . . hs] if

and only if {SWB(g0 . . . gs, b) | 1 ≤ b ≤ n} = {SWB(h0 . . . hs, b) | 1 ≤ b ≤ n}.
Step 1: π1 := b.
Step 2: For k from 1 to n− 1 let πk+1 := gi(πl) where (i, l) is the first pair in {0 . . . s} × {1 . . . k}

with gi(πl) 6∈ {π1, . . . , πk}.
Step 3: Let τ ∈ Sn with τ(i) = πi and return [gτ0 . . . g

τ
s ].

Verifying that SWB(g0 . . . gs, b) = SWB(gτ0 . . . g
τ
s , τ

−1(b)) for τ ∈ Sn proves the claimed property.

Algorithm 4.3: UniqueRepresentative
Input: Transitive g0 . . . gs in Sn.
Output: A unique representative in the Sn-conjugacy class of [g0 . . . gs].
Step 1: S := {SWB(g0 . . . gs, b) | 1 ≤ b ≤ n}.
Step 2: Return the first (we use a lexicographic ordering) element of S.
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4.4 Computing dessins to prove that the Belyi table is complete

From here on, the phrase “dessin” is short for “conjugacy class of 3-constellations” represented by the output
of Algorithm 4.3. The bound 6(d− 2) comes from Equation (3).

Algorithm 4.4: Compute all planar dessins with |E | = d
Step 1: T1 := {[(1), (1)]}
Step 2: For n from 2 to 6(d− 2) do:

Tn := {[Insert(g0, i, n), Insert(g1, j, n)] | i, j ∈ {1 . . . n}, (i, j) 6= (n, n), [g0, g1] ∈ Tn−1}
Tn := {[g0, g1] ∈ Tn | [g0, g1, (g0g1)−1] is planar and has weighted-count ≤ d}
Tn := {UniqueRepresentative(g0, g1) | [g0, g1] ∈ Tn}.

Step 3: Return {[g0, g1] | n ≤ 6(d− 2) and [g0, g1] ∈ Tnwith |E | = d}.

Algorithm 4.4 produces the following dessins for d ∈ {4, 5}:

d Number of planar dessins with (3, 2,∞)-count d.
4 0, 1, 3, 5, 3, 10, 4, 6, 4, 4, 0, 6
5 0, 0, 2, 10, 18, 40, 50, 71, 76, 103, 36, 108, 40, 42, 32, 32, 0, 26

Another way to generate maps, using parenthesis systems, was given in [28]. Although we are mainly
interested in d = 5, we ran Algorithm 4.4 for d ≤ 7, for both definitions (see Section 1.2). The entries of
degree n = 6(d − 2) form sequence 2, 6, 26, 191, 1904, . . . (www.oeis.org/A112948). Beukers and Mon-
tanus [4] computed the dessins and Belyi maps for d = 6, n = 24 with a combination of machine and hand
computation, but at the time they missed one of the 191 dessins. To avoid the likelihood of a gap in a large
table, it is important to verify it with machine-only computation.

Proving Completeness for the Belyi table: To prove that our website [1] lists all rational Belyi maps with
|E | = 5, it is not enough to check that its number of functions of degree n matches row d = 5 in the above
table. That would leave open the possibility of Möbius-equivalent (Definition 3.1) duplicates while missing
other ones. So we implemented a more rigorous check [1]. It computes the dessin for each f in our table
by applying 2 7→ 1 from Section 3.1, followed by Algorithm 4.3. Completeness is then proven by comparing
these dessins with the independently-computed set of dessins from Algorithm 4.4.

Invariants offer a much faster way to prove completeness of our Belyi table, without the time-consuming
computation 2 7→ 1 from Section 3.1. Each time a pair f1 6= f2 in our Belyi table had the same branching
pattern, it turned out that their five point invariants are not equal, i.e; I5(f1) 6= I5(f2). More details about
these invariants are given in Section 7. This proves that the table has no Möbius-equivalent duplicates. To
prove completeness it now suffices to compare (for each branching pattern) the number of Belyi maps in the
table with the number of dessins from Algorithm 4.4. �

Our (∞, 2, 3)-Belyi table [1] has 255+9+99 = 363 entries representing 411+9+266 = 686 functions
FB
1 , . . . , FB

686 ∈ C(x) (If f ∈ Q(α)(x) with [Q(α) : Q] = d, then it represents d elements of C(x), one for
each of the d complex roots of the minimal polynomial of α.) Their dessins are precisely the 686 dessins
produced by Algorithm 4.4 (there are no obstruction issues as in [3, Section 6]).

5 Belyi(1) maps

We consider planar 4-constellations [g0, g1, gt, g∞] where gt is a 2-cycle. The phrase “almost-dessin” in this
section refers to: conjugacy class of such a 4-constellation, represented by the output of Algorithm 4.3.
Almost-dessins corresponds to Belyi(1) maps up to Möbius-equivalence, see (4) in Section 3.
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5.1 Finding almost-dessins

Suppose for example we want to find all (up to conjugation) planar 4-constellations [g0, g1, gt, g∞] where the
cycle structures of g1 and g∞ are (26) and (34) (gt is always a 2-cycle). Up to conjugacy we may assume
that g∞ = (1 2 3)(4 5 6)(7 8 9)(10 11 12). The number of elements of S12 of type (26) is 10395, and the
number of 2-cycles is 66. One could, for all 10395× 66 combinations of (g1, gt), compute g0 = (g1gtg∞)−1,
check if [g0, g1, gt, g∞] is transitive and planar, and if so, apply Algorithm 4.3. This works fine, but it can
easily be sped up.

Since gt is a 2-cycle and <g1, gt, g∞> should be transitive, it follows that <g1, g∞> may have at most
two orbits in {1 . . . 12}. So g1 must connect some of the g∞-orbits {1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}.
Up to conjugation, we may assume g1 connects the first two orbits with the 2-cycle (1 4) (we may also
assume that g1 contains either (2 7) or (7 10) since g1 must connect more than one pair of g∞-orbits). This
way all almost-dessins (all 4-constellations up to conjugation) with such branching patterns can be found
with little CPU time.

5.2 Braid orbits

The braid group, generated by the braids σ1, . . . , σk−1, acts on k-constellations in the following way:

σi : [g1 . . . gk] 7→ [g1 . . . gi−1, gi+1, g
−1
i+1 gi gi+1, gi+2 . . . gk].

The points pi, pi+1 are swapped by σi with a half-rotation. We will use orbits under the pure braid group
(Def. 9.11 in [23]) which consists of products of σi’s that return p1, . . . , pn to their original locations. The
diagram in Figure 3, taken from Section 1 in [26], illustrates σ2

1 . An algorithm is given in [27] for computing
braid orbits of k-constellations [g1, . . . , gk]. Combining this with Algorithm 4.3 we obtain an algorithm that
computes braid orbits of almost-dessins.

base point

•
g1

g2

gk

p1

p2

pk

base point

•

g1

g2

gk

p1

p2

pk

Figure 3: Action of σ2
1 : [g1 . . . gk] 7→ [gτ1 , g

τ
2 , g3 . . . gk] (here τ = g1g2).

Our implementation [1] automatically generates Table 2 below. First, it computes all planar Belyi(1)

branching patterns with |E | = 5 with the algorithm mentioned in Section 2.1. Next, it computes all
almost-dessins for these branching patterns as in Section 5.1. These are grouped into braid orbits labeled
N1, . . . , N68. Here N66, N67, N68 are inside Belyi

(2) families. The table shows the length (number of almost-
dessins) of each orbit and its branching pattern. Most branching patterns have one orbit, but some have
zero or two.
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n branching pattern name |O| decomp. n branching pattern name |O| decomp.

2 (2), (12), (12) N1 1 8 (12, 2, 4), (24), (2, 32) N38 9
(12), (12), (2) N2 1 (12, 32), (24), (2, 32) N39 4 4 ◦ 2

3 (1, 2), (13), (3) N3 1 (1, 22, 3), (24), (2, 32) N40 9
(3), (1, 2), (13) N4 1 (24), (24), (2, 32) — —
(1, 2), (1, 2), (1, 2) N5 4 9 (13, 6), (1, 24), (33) N41 3 3 ◦ 3

4 (1, 3), (12, 2), (1, 3) N6 6 idem N42 9
(22), (12, 2), (1, 3) N7 3 (12, 2, 5), (1, 24), (33) N43 18
(4), (22), (14) N8 1 2 ◦ 2 (12, 3, 4), (1, 24), (33) N44 15
(1, 3), (22), (12, 2) N9 3 (1, 22, 4), (1, 24), (33) N45 12 3 ◦ 3
(22), (22), (12, 2) N10 2 2 ◦ 2 (1, 2, 32), (1, 24), (33) N46 12
(12, 2), (22), (22) N11 2 2 ◦ 2 (23, 3), (1, 24), (33) N47 3 3 ◦ 3
(14), (22), (4) N12 1 2 ◦ 2 10 (13, 7), (25), (1, 33) N48 15

5 (1, 4), (1, 22), (12, 3) N13 10 (12, 2, 6), (25), (1, 33) N49 15
(2, 3), (1, 22), (12, 3) N14 7 (12, 3, 5), (25), (1, 33) N50 15
(12, 3), (1, 22), (2, 3) N15 7 (12, 42), (25), (1, 33) N51 12
(1, 22), (1, 22), (2, 3) N16 6 (1, 22, 5), (25), (1, 33) N52 15

6 (12, 4), (12, 22), (32) N17 3 3 ◦ 2 (1, 2, 3, 4), (25), (1, 33) N53 18
idem N18 6 (1, 33), (25), (1, 33) — —
(1, 2, 3), (12, 22), (32) N19 12 (23, 4), (25), (1, 33) — —
(23), (12, 22), (32) N20 3 3 ◦ 2 (22, 32), (25), (1, 33) N54 6
(1, 5), (23), (13, 3) N21 5 12 (14, 8), (26), (34) N55 3 3 ◦ 2 ◦ 2
(2, 4), (23), (13, 3) N22 2 2 ◦ 3 idem N56 4
(32), (23), (13, 3) N23 2 (13, 2, 7), (26), (34) N57 7
(12, 4), (23), (1, 2, 3) N24 9 (13, 3, 6), (26), (34) N58 4 4 ◦ 3
(1, 2, 3), (23), (1, 2, 3) N25 10 (13, 4, 5), (26), (34) N59 10
(23), (23), (1, 2, 3) N26 2 2 ◦ 3 (12, 22, 6), (26), (34) N60 9 3 ◦ 4

7 (12, 5), (1, 23), (1, 32) N27 21 (12, 2, 3, 5), (26), (34) N61 15
(1, 2, 4), (1, 23), (1, 32) N28 24 (12, 2, 42), (26), (34) N62 6 3 ◦ 2 ◦ 2
(1, 32), (1, 23), (1, 32) N29 12 (12, 32, 4), (26), (34) — —
(22, 3), (1, 23), (1, 32) N30 9 (1, 23, 5), (26), (34) — —

8 (12, 6), (24), (12, 32) N31 4 4 ◦ 2 (1, 22, 3, 4), (26), (34) N63 9 3 ◦ 4
idem N32 12 (1, 2, 33), (26), (34) N64 4 4 ◦ 3
(1, 2, 5), (24), (12, 32) N33 10 (24, 4), (26), (34) N65 3 S3 ◦ 2
(1, 3, 4), (24), (12, 32) N34 15 (23, 32), (26), (34) — —
(22, 4), (24), (12, 32) N35 6 2 ◦ 4 4 (14), (4), (1, 3) N66 1
(2, 32), (24), (12, 32) N36 4 4 ◦ 2 6 (14, 2), (2, 4), (32) N67 4
(13, 5), (24), (2, 32) N37 6 (14, 2), (23), (6) N68 2 2 ◦ 3

Table 2: Braid orbits of the almost-dessins with |E | = 5

Column |O| in the above table gives the number of almost-dessins in each braid orbit. The complete

table of almost-dessins themselves is given in [1]. The notation 3 ◦ 4 means that any Belyi(1) map f for
this orbit equals g ◦ h for some g, h of degrees 3,4. The notation S3 ◦ 2 means f = g ◦ h where g has
three 3 ◦ 2-decompositions and one 2 ◦ 3-decomposition. We do not need explicit f ∈ C(x) in order to
find any of the information listed in Table 2, including the decomposition structure of f (the almost-dessins
[g0, g1, gt, g∞] suffice). Decompositions of f correspond to subfields C(f) ⊆ E ⊆ C(x), which in turn
correspond to subgroups of G :=<g0, g1, gt, g∞> that contain Stab(1) = {g ∈ G|g(1) = 1}.
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The sections below can use Table 2 to prove that our database covers all Belyi(1) maps, as everything in
Table 2 was computed independently of these functions.

5.3 Continuation of Example 2.1

Let B be the third branching pattern under n = 10 in Table 2. Example 2.1 gave a Belyi(1) map f(s, x) for
B. The table shows that B has 15 distinct almost-dessins, in one braid orbit named N50. Let φf (s) ∈ Q(s)
be the rational function of degree 15 in Equation (2), as in Definition 2.2. Choose any t0 ∈ P− {0, 1,∞},
and let S := φ−1

f ({t0}) ⊂ P1. If α ∈ S, then f(α, x) is a Belyi(1) map for B that ramifies only above
{0, 1, t0,∞}, assuming f ’s family is gap-free as in Definition 2.2. One could compute (2 7→ 1 in Section 3.1)
the almost-dessin Dα of f(α, x) for each α ∈ S, then take D∗ := {Dα|α ∈ S}, and check that N50 = D∗.
However, it is not hard to see that this check is not necessary for this B.

Let γ be a loop in P− {0, 1,∞} with base point t0. Applying analytic continuation to φ−1
f ({t}), with t

following γ, gives a map from S to S. This gives an action of the fundamental group π1(P− {0, 1,∞}, t0)
on S. Since D∗ is an image of S, the fundamental group acts on D∗ as well. Figure 3 illustrates how this
corresponds to an action of the pure braid group.

Table 2 implies D∗ ⊆ N50 because according to Table 2, all 15 almost-dessins for B are in N50. Then
D∗ = N50 because the pure braid group acts on D∗ and N50 is an orbit.

Proposition 5.1. Let f and B be as above. If g ∈ C(x) has branching pattern B then it is Möbius-equivalent
to a member of f ’s family.

Proof: Let t0 be the branch point of g not in {0, 1,∞}. D∗ = N50 (we checked that f ’s family is gap-free
[1]). The almost-dessin of g has branching pattern B, is thus in N50 and hence equals Dα for some α ∈ S.
Then f(α, x) is Möbius-equivalent to g, see correspondence (4) in Section 3. �

5.4 A branching pattern with two orbits

Let

f1 =
3 s(x− 1)x2 + 4

4 (s(x− 1)x2 + 1)3
and f2 = −s2 ((4s− 3)x3 + 6 (s− 1)x2 + 3 (3s2 − 2s− 1)x− 4s))

4 (x3 + 2x2 + (2s+ 1)x+ s)3
.

Both are gap-free, have branching (13, 6), (1, 24), (33) above 0, 1,∞ and one more branch point t = φf1 (s)
and t = φf2(s) respectively. The degree of φf1 is 3. This, combined with argument from Section 5.3,
suffices to prove that f1 covers N41 in Table 2. However, the fact that φf2 has degree 9 is not enough to
demonstrate that f2 covers N42 because, in the notations from Section 5.3, the cardinality of {Dα|α ∈ S}
could be less than the cardinality of S.

Definition 5.2. A Belyi(1) map f ∈ C(s)(x) is called duplicate-free if {f(α, x) |α ∈ φ−1
f ({t0})} has

degs(φf ) distinct almost-dessins for any t0 6∈ {0, 1,∞}.

After verifying that f2 is duplicate-free we may conclude that it covers N42, since it is the only orbit for
this branching pattern of length 9.

Remark 5.3. If f ∈ C(s)(x) is a duplicate-free Belyi(1) map then φf ∈ C(s) is a Belyi map, and its dessin
can be computed directly from a 4-constellation [g0, g1, gt, g∞] of f .

Proof: Definition 5.2 immediately implies |φ−1
f ({t0})| ≥ degs(φf ) for any t0 6∈ {0, 1,∞}, in other

words, φf is a Belyi map. Take braid actions that correspond to looping t around 0, 1,∞. Let h0, h1, h∞

be the corresponding permutations of the almost-dessins, then [h0, h1, h∞]∼ is the dessin of φf . �

It was fortunate these dessins were always planar in our database, otherwise our Belyi(1) maps could not
have been in Q(s)(x), complicating the algorithms.
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5.5 Proving completeness of our table of Belyi(1) maps

To our surprise, Section 2 often produced Belyi(1) maps f that were not duplicate-free, where the degree of φf

was twice the number of distinct almost-dessins. For such cases, we computed automorphisms τ ∈ Aut(Q(s))
of order 2 for which τ(φf ) = φf , in order to find τ for which τ(f) is Möbius-equivalent to f . Let s̃ be a
generator of the subfield of Q(s) fixed by τ .

We write φf as element of Q(s̃) and use it to search for a f̃(s, x) for which f̃(s̃, x) is Möbius-equivalent

to f . Then φf̃ has half the degree of φf . This way, we managed to make every member of our Belyi(1)

table duplicate-free. After suitable Möbius transformations, we managed to make them gap-free as well.
The arguments of the previous two subsections now suffice to prove that our Belyi(1) table [1] is complete.
But we implemented a more direct verification as well:

Let F
(1)
1 . . . F

(1)
68 be the explicit Belyi(1) maps at [1]. For each i we check that F

(1)
i is gap-free, compute

almost-dessin for F
(1)
i and check that it is in Ni. This suffices to prove that, up to Möbius-equivalence, the

families of F
(1)
1 . . . F

(1)
68 contain all rational Belyi(1) maps with |E | = 5. We also compute the degree of

φ
F

(1)
i

and check that it equals |O| which denotes the number of elements of the braid orbit.

As for the Belyi case, we also implemented a faster approach, based on five point invariants, to prove
the completeness of the Belyi(1) tables. Here we used not one, but two algebraically independent five point
invariants I5 and Ĩ5. Section 7 gives more details about these invariants. For each f in the Belyi(1) table,
I5(f) and Ĩ5(f) are both in Q(s), and thus satisfy an algebraic relation. If two Belyi(1) maps give distinct
algebraic relations, then they can not be part of the same family. This turned out to be the case for any
pair in our table with the same branching pattern.

5.6 Belyi maps inside Belyi(1) families

The family of F
(1)
i contains, up to Möbius-equivalence, all Belyi(1) maps with almost-dessin in Ni. But it

often contains Belyi maps as well; if s0 is special (Definition 2.2) then F
(1)
i (s0, x) is a Belyi map. Depending

on whether φ
F

(1)
i

(s0) is 0, 1, or ∞, the dessin of this Belyi map is [g0g
τ
t , g1, g∞]∼ (where τ = g−1

1 ),

[g0, g1gt, g∞]∼ or [g0, g1, gtg∞]∼. All dessins for which |E| is larger in the definition from Remark 1.4

than in our definition 1.2 can be obtained this way. So one would expect that the families of F
(1)
1 . . . F

(1)
68

contain a Belyi maps for each of those dessins. However, there are a few exceptions; some dessins that can

be obtained this way from Ni do not directly appear in F
(1)
i ’s family because they correspond to degenerate

values of s. They do appear indirectly, i.e. in another, less favorable, parametrization of F
(1)
i :

Example 5.4. Let f := −27(sx4 − 2sx3 + sx2 + 1)2/(sx4 − 2sx3 + sx2 − 3)3. Let s̃ := 4
√
s and

f̃ := f(s, x/s̃). The point s̃ = 0 is degenerate for f but special for f̃ , where it evaluates to a Belyi
map g = −27(x4 +1)2/(x4 − 3)3. Although f ’s family is a proper subset of f̃ ’s family, we prefer f because
it is duplicate-free.

6 Belyi(2) maps

Definition 6.1. Let S be a subset of P1 with n elements. The n-point-polynomial PS ∈ C[x] is the product
of x − p taken over all p ∈ S − {∞}. It has degree n − 1 if ∞ ∈ S and degree n otherwise. Let k be a
subfield of C. We say S is defined over k if PS ∈ k[x].

If f ∈ k(x) then its set of (k, ℓ,m)-exceptional points is defined over k. Let

F
(2)
4 (a, b, c, d, x) = 1− (x2 + ax+ b)2

c(x+ d)3
, F

(2)
6 (a, b, c, d, x) := 1− (x3 + 3ax2 + bx+ c)2

(x2 + 2ax+ d)3
.
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Their branching patterns are B4 = (14), (22), (1, 3) and B6 = (14, 2), (23), (32). Both are two-dimensional
families up to Möbius-equivalence (two of the 4 parameters a, b, c, d can be eliminated with a linear trans-
formation on x).

Lemma 6.2. Let k be a subfield of C and f ∈ k(x) a Belyi(2) map with |E | = 5. Then f has branching
pattern B4 or B6, and there exist unique m ∈ {1/(x− p) | p ∈ k}⋃{x} and a, b, c, d ∈ k such that f equals

F
(2)
4 (a, b, c, d,m) if f has B4, and F

(2)
6 (a, b, c, d,m) if f has B6.

Proof: Our implementation mentioned in Section 2.1 shows (it is also easy to show by hand) that B4 and

B6 are the only planar Belyi(2) branching patterns with |E | = 5. If f has B6, then (14, 2) indicates that
it has a unique root p of order 2, and four roots of order 1. The part (23) of B6 indicates that numerator
of 1 − f must be a square, while (32) indicates that the denominator is a cube. If p = ∞ then f(∞) = 0
with multiplicity 2, which implies that the numerator and denominator of 1− f must have the same degree,

same leading coefficient, and the same x5-coefficient as well. Then f must equal F
(2)
6 (a, b, c, d, x) for some

a, b, c, d, uniquely determined by f , and hence in k. If p 6= ∞, the Möbius-transformation m moves p to ∞,
after which the same argument applies.

If f has B4, then let p be the unique pole of order 1. If p = ∞, then the denominator of f must be a

cube and the numerator of 1 − f a square, hence f = F
(2)
4 (a, b, c, d, x) for unique a, b, c, d ∈ k. The case

p 6= ∞ again reduces to this under m. �

As there are only two cases, it is not hard to solve the Belyi(2) part of goal (c) from the introduction:

Algorithm 6.1: FindBelyi2
Input: A field k ⊆ C and a 5-element subset S = {q1 . . . q5} ⊂ P1 defined over k.

Output includes: Every Belyi(2) f ∈ k(x) such that E(f) = S.

For each p in S
⋂

(k
⋃

{∞}) do:
Step 1. Let m be as in Lemma 6.2 and m̃ be its inverse (x if p = ∞, otherwise 1/x+ p).

Step 2. Comparing the numerator of F
(2)
4 (a, b, c, d, x) with m(S) gives 4 equations in a, b, c, d.

Step 3. Two equations are linear in a variable, solving these leaves 2 equations in 2 unknowns.
Step 4. Compute all solutions over k with a resultant.

Step 5. For each solution, append F
(2)
4 (a, b, c, d,m) to the output.

Step 6. Doing the same for F
(2)
6 (a, b, c, d, x) gives 4 equations, one of which is linear.

Step 7. With a pre-computed [11] elimination we obtain an equation of degree 12 for a.
Step 8. After computing its roots in k, two equations in two unknowns remain.

Step 9. Compute solutions as in Step 4 and for each, append F
(2)
6 (a, b, c, d,m) to the output.

The program finds all Belyi(2) maps for S in k(x) but it also finds certain Belyi or Belyi(1) maps: F
(1)
66

is a special case of F
(2)
4 while F

(1)
67 and F

(1)
68 are special cases of F

(2)
6 . So we can remove these three from

our Belyi(1) table without interfering with goal (c). To cover goal (c) for Belyi and Belyi(1) maps we need
one more ingredient, which will be the topic of the next section.

7 Five point invariants

Given k and S, our goal is to quickly find, if it exists, f ∈ k(x) such that E(f) = S. After running Algorithm

FindBelyi2 we may assume that f is Belyi or Belyi(1). Such f must be Möbius-equivalent to a member of
our Belyi or Belyi(1) table because they were proved to be complete.

It is not efficient to search for a Möbius-equivalence between S and the exceptional points of each of
the many entries of the Belyi table. For the Belyi(1) table, one first needs to find the correct value of the
parameter s before a Möbius-equivalence could occur.
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Let k5 be the set of 5-element subsets S ⊂ P1 that are defined over k. A five-point-invariant is a function
k5 → k that is invariant under Möbius-transformations. We implemented two such functions. The first, called
I5, maps S to

∑

q∈S j(S−{q}) where j(T ) refers to the j-invariant of a set T with 4 points. More precisely,

if T = {q1, q2, q3, q4} then j(T ) is the j-invariant of the elliptic curve y2 = (x− q1)(x− q2)(x− q3)(x− q4),
where a factor x− qi is omitted if qi = ∞. The second invariant Ĩ5 is similar, except that it uses the sum
of the squares of the j-invariants.

If f has 5 exceptional points S = {q1, . . . , q5}, then I5(f) denotes I5(S). We attach I5(f) to each Belyi

map f in our database. To each Belyi(1) map f ∈ Q(s)(x), we attach I5(f) and Ĩ5(f), which are elements
of Q(s). For a Belyi map f , the invariant I5(f) is either a rational or an algebraic number (we insert its

minimal polynomial over Q into the table). We do not use five-point invariants for Belyi(2) maps because
there were only two cases.

These invariants give an efficient solution to goal (c), they rapidly eliminate nearly all entries that do not
lead to a solution.

Algorithm 7.1: FindF (goal (c))
Input: A field k ⊆ C and a 5-element subset S = {q1 . . . q5} ⊂ P1 defined over k.
Output: Every element of f ∈ k(x) such that E(f) = S.

Step 1. A :=FindBelyi2(S) ⊂ k(x), i5 := I5(S) ∈ k, ĩ5 := Ĩ5(S) ∈ k.
Step 2. For each f in the Belyi table whose I5 matches i5, adjoin f(m) to A for every (if any)

Möbius-transformation m that sends S to E(f).

Step 3. For each f in the Belyi(1) table, compute the gcd of the numerators of I5(f)− i5
and Ĩ5(f)− ĩ5. If this gcd is not 1, then compute all its roots in k. For each
non-degenerate root s0, evaluate f at s = s0 and then proceed as in Step 2.

Step 4. Return A.

For each f in our Belyi table, if α = I5(f), then f turned out to be in Q(α)(x). But if for example
α = RootOf(x2 − x− 1) while the input of FindF is defined over say k = Q(

√
5), then we must replace α

by its corresponding element(s) of k before one can use f (use α 7→ i5 to map f to an element of k(x)).
Computing m requires some care too, for details see our implementation [1]. In Step 3 it is important

that every member of our Belyi(1) table is duplicate-free, this ensures that if a Belyi(1) map in k(x) has 5
exceptional points, then the corresponding value of s is unique and thus in k

⋃{∞}. The algorithm does

not consider s = ∞ since it is degenerate for every member of our Belyi(1) table.

8 goal (d)

The Gauss Hypergeometric Function 2F1(a, b; c |x) satisfies the so-called Gauss Hypergeometric Equation

x(1− x)y′′ + (c− (a+ b+ 1)x)y′ − aby = 0. (6)

It has singularities at 0, 1,∞ with exponents {0, 1 − c}, {0, c− a − b}, {a, b} respectively. The exponent
differences are (e0, e1, e∞) = (1− c, c− a− b, b− a) up to sign. The numbers (k, ℓ,m) from Definition 1.2
correspond to a GHE (equation (6)) with the following exponent differences:

(e0, e1, e∞) = (1/k, 1/ℓ, 1/m). (7)
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Finding a 2F1-type solution of a second order differential equation L is equivalent to finding a combina-
tion of transformations (i),(ii),(iii) that sends the GHE (6) to L:

(i) Change of variables: y(x) 7→ y(f)
(ii) Gauge transformation: y 7→ r0y + r1y

′

(iii) Exponential product: y 7→ exp(
∫

r dx) · y (in Conjecture 1, exp(
∫

r dx) will be algebraic).

Let L be as in Conjecture 1, with coefficients ai ∈ k(x) for some field k ⊆ C, and with 5 true singularities
S = {q1 . . . q5}, at least one of them logarithmic. Our tasks are (1): Use algorithm FindF to find f ∈ k(x)
(if it exists) such that E(f) = S and (2): Find a combination of transformations (i),(ii),(iii) that sends the
GHE (6) with (e0, e1, e∞) = (0, 1

2 ,
1
3 ) to L.

8.1 Example

Let L be:

y′′ +

(

8 x4 − x2 + 2 x− 3
)

x (x+ 1) (4 x+ 3) (x2 − 2 x+ 3)
y′ − 4 x2

(x2 − 2 x+ 3)
2
(x+ 1)

2
(4 x+ 3)

y = 0

1. Find the true (= non-removable) singularities [11]. In this example, all singularities except x = ∞.
The 5-point polynomial is P = x(x + 1)(x+ 3/4)(x2 − 2x+ 3).

2. FindF finds the following functions f such that E(f) are given by P :

Flist := [ −x8

4(x2−2x+3)(4x+3)(x+1)2
,
−4(x+1)2(x2

−2x+3)x4

(4 x+3)2
,
(x+1)4(x2

−2 x+3)2

4(4 x+3)x4 ,
−64(x2

−2 x+3)(x+1)2x12

(4 x+3)(8 x4+36x+27)3
,

64(x+1)6(x2
−2x+3)3x4

(4 x+3)(8 x4−4x−3)3
, 1 + 3

(x2
−10 x−3)2

(5x−3)3(x+1)
].

3. H : y′′ − (−3/2 x+1)
x(x−1) y′ + 5

144
1

x(x−1)y = 0 is the GHE (6) with (e0, e1, e∞) = (0, 1
2 ,

1
3 ). Among its

solutions is y(x) = 2F1

(

1
12 ,

5
12 ; 1 |x

)

. We need to find transformations that send H to L. For each

f ∈ Flist, apply change of variables x 7→ f to H , and then find transformations (ii)+(iii) [11].

4. Transformations (ii)+(iii) only exist for the third element in Flist. Applying transformation (i),

x 7→ f =
(x+1)4(x2

−2x+3)2

4(4 x+3)x4 , to H produces Hf : y′′+ (10 x4
−x2

−6x−9)
x(4x+3)(x2−2 x+3)(x+1)y

′+5 (x+1)2

x2(4x+3)2 y = 0.

5. y(f) is a solution of Hf . Computing transformations (ii)+(iii) gives a solution of L:

Y =
( x+1

x )1/3(x2
−2x+3)1/6

(4x+3)1/12
· 2F1

(

1
12 ,

5
12 ; 1 |

(x+1)4(x2
−2x+3)2

4(4x+3)x4

)

. To obtain another solution, replace

y(x) by another solution of H .

Our implementation [1] performs the above steps for (e0, e1, e∞) = (0, 1
2 ,

1
m ) with m ∈ {3, 4, 6}, and

contains various improvements: It decomposes f to obtain a smaller solution if possible, and compares
exponent-differences to reduce the number of cases, see [11] for details.

A Appendix

We tabulate all Belyi(1) maps O1, . . . , O20 with |E
∞24

| = 5, and all Belyi(1) maps P1, . . . , P12 with
|E

∞26
| = 5. See [1] for explicit expressions in Q(s)(x) for each of these maps.

As one can see, there is only one orbit for each branching pattern, except for (23), (23), (12, 4) for which
there is none. This means that there do not exist g0, g1, gt, g∞ ∈ S6 for which each of g0, g1 is a product of
3 disjoint 2-cycles, gt is a 2-cycle, g∞ is a 4-cycle, g0g1gtg∞ = 1, for which <g0, g1, gt, g∞> is transitive.
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n branching pattern name |O| decomp. n branching pattern name |O| decomp.

2 (2), (12), (12) O1 1 2 (2), (12), (12) P1 1
(12), (12), (2) O2 1 (12), (12), (2) P2 1

3 (3), (1, 2), (13) O3 1 3 (3), (1, 2), (13) P3 1
(1, 2), (1, 2), (1, 2) O4 4 (1, 2), (1, 2), (1, 2) P4 4
(13), (1, 2), (3) O5 1 (13), (1, 2), (3) P5 1

4 (12, 2), (12, 2), (4) O6 4 4 (4), (22), (14) P6 1 2 ◦ 2
(4), (22), (14) O7 1 2 ◦ 2 (1, 3), (22), (12, 2) P7 3
(1, 3), (22), (12, 2) O8 3 (22), (22), (12, 2) P8 2 2 ◦ 2
(22), (22), (12, 2) O9 2 2 ◦ 2 (12, 2), (22), (1, 3) P9 3
(12, 2), (22), (1, 3) O10 3 (12, 2), (22), (22) P10 2 2 ◦ 2
(12, 2), (22), (22) O11 2 2 ◦ 2 (14), (22), (4) P11 1 2 ◦ 2

5 (12, 3), (1, 22), (1, 4) O12 10 6 (14, 2), (23), (6) P12 2 2 ◦ 3
(1, 22), (1, 22), (1, 4) O13 8

6 (12, 4), (23), (12, 4) O14 6
(1, 2, 3), (23), (12, 4) O15 9
(23), (23), (12, 4) — —
(13, 3), (23), (2, 4) O16 2 2 ◦ 3
(12, 22), (23), (2, 4) O17 4 2 ◦ 3

8 (14, 4), (24), (42) O18 2 2 ◦ 2 ◦ 2
(13, 2, 3), (24), (42) O19 6 2 ◦ 4
(12, 23), (24), (42) O20 4 2 ◦ 2 ◦ 2

Table 3: Belyi(1) with |E
∞24

| = 5 resp. |E
∞26

| = 5
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