On the Number of Singular Vector Tuples of Hyper-Cubical Tensors

By Shalosh B. EKHAD and Doron ZEILBERGER

A week ago, Bernd Sturmfels [St] gave a fascinating Colloquium talk, here at Rutgers, where, among many other interesting facts, he mentioned the following theorem of Shmuel Friedland and Giorgio Ottaviani ([FO]).

Theorem ([F0], Theorem 1). The number of simple singular vector tuples of a generic $m_{1} \times \cdots \times m_{d}$ (d-dimensional) tensor equals the coefficient of $\prod_{i=1}^{d} t_{i}^{m_{i}-1}$ in the polynomial

$$
\prod_{i=1}^{d} \frac{\hat{t}_{i}^{m_{i}}-t_{i}^{m_{i}}}{\hat{t_{i}}-t_{i}} \quad, \quad \hat{t_{i}}=\left(\sum_{j=1}^{d} t_{j}\right)-t_{i} .
$$

Let's call this number $c\left(m_{1}, \ldots, m_{d}\right)$.
We first observe that the generating function of this d-dimensional multi-sequence is a nice rational function.

Proposition 1. Let $e_{i}\left(x_{1}, \ldots, x_{d}\right)$ be the elementary symmetric function of the indeterminates x_{1}, \ldots, x_{d}, of degree i. We have:

$$
\sum_{m_{1}=0}^{\infty} \ldots \sum_{m_{d}=0}^{\infty} c\left(m_{1}, \ldots, m_{d}\right) x_{1}^{m_{1}} \ldots x_{d}^{m_{d}}=\prod_{i=1}^{d} x_{i}\left(\prod_{i=1}^{d}\left(1-x_{i}\right)\right)^{-1}\left(1-\sum_{i=2}^{d}(i-1) e_{i}\left(x_{1}, \ldots, x_{d}\right)\right)^{-1}
$$

Proof: Since

$$
\frac{{\hat{t_{i}}}^{m_{i}}-t_{i}^{m_{i}}}{\hat{t_{i}}-t_{i}}=\sum_{k_{i}=0}^{m_{i}-1} \hat{t}_{i}^{k_{i}} t_{i}^{m_{i}-1-k_{i}},
$$

$c\left(m_{1}, \ldots, m_{k}\right)$ is the coefficient of $\prod_{i=1}^{d} t_{i}^{m_{i}-1}$ in

$$
\sum_{k_{1}=0}^{m_{1}-1} \ldots \sum_{k_{d}=0}^{m_{d}-1} \prod_{i=1}^{d} \hat{t}_{i}^{k_{i}} t_{i}^{m_{i}-1-k_{i}}
$$

Hence

$$
c\left(m_{1}, \ldots, m_{d}\right)=\sum_{k_{1}=0}^{m_{1}-1} \ldots \sum_{k_{d}=0}^{m_{d}-1} \text { ConstantTermOf } \prod_{i=1}^{d} \hat{t}_{i}^{k_{i}} t_{i}^{-k_{i}} .
$$

Let
$f\left(k_{1}, \ldots, k_{d}\right):=$ ConstantTermOf $\prod_{i=1}^{d}{\hat{t_{i}}}^{k_{i}} t_{i}^{-k_{i}}=\operatorname{CoeffOf} \prod_{i=1}^{d} t_{i}^{k_{i}}$ in $\prod_{i=1}^{d}\left(\sum_{j=1}^{i-1} t_{j}+\sum_{j=i+1}^{d} t_{j}\right)^{k_{i}}$

By the celebrated MacMahon Master Theorem ([M], Section III, Chapter II, p. 93ff) (with the $d \times d$ matrix that is all 1's except 0 in the diagonal), we have

$$
\sum_{k_{1}=0}^{\infty} \ldots \sum_{k_{d}=0}^{\infty} f\left(k_{1}, \ldots, k_{d}\right) x_{1}^{k_{1}} \ldots x_{d}^{k_{d}}=\left(1-\sum_{i=2}^{d}(i-1) e_{i}\left(x_{1}, \ldots, x_{d}\right)\right)^{-1}
$$

Since

$$
c\left(m_{1}, \ldots, m_{d}\right)=\sum_{k_{1}=0}^{m_{1}-1} \ldots \sum_{k_{d}=0}^{m_{d}-1} f\left(k_{1}, \ldots, k_{d}\right)
$$

the proposition follows by straightforward generatingfunctionology.
The fact that the generating function of $c\left(m_{1}, \ldots, m_{d}\right)$ is a rational function is equivalent to it satisfying a certain partial linear recurrence with constant coefficients, easily deduced from the generating function. Combined with the fact that both $c\left(m_{1}, \ldots, m_{d}\right)$ and $f\left(k_{1}, \ldots, k_{d}\right)$ are symmetric, enabled us to efficiently compute many values. It also follows (for example using Wilf-Zeilberger algorithmic proof theory, efficiently implemented in [AZ]) that the diagonal sequences

$$
C_{d}(n):=c(n, \ldots, n) \quad\left[\begin{array}{lll}
n & \text { repeated } & d \\
\text { times }
\end{array}\right]
$$

are holonomic, alias P-recursive, that means that for each d, the sequence $C_{d}(n)$ satisfies some homogeneous linear recurrence with polynomial coefficients. While one can use the method of [AZ], it is more efficient, since we know a priori that such a recurrence exists, to generate sufficiently many terms and then guess the recurrence. Using this method, we got the following proposition.

Proposition 2. The sequence $C_{3}(n)=c(n, n, n)$ satisfies the following fifth-order linear recurrence equation with polynomial coefficients.

$$
\begin{aligned}
& 2(n+2)\left(245 n^{4}+3094 n^{3}+14447 n^{2}+29474 n+22100\right)(n+1)^{2} C_{3}(n) \\
& -(n+2)\left(21805 n^{6}+330981 n^{5}+2012733 n^{4}+6230951 n^{3}+10263446 n^{2}+8425060 n+2639760\right) C_{3}(n+1) \\
& +\left(-13230 n^{7}-249641 n^{6}-1998705 n^{5}-8785333 n^{4}-22847777 n^{3}-35069178 n^{2}-29331496 n-10279296\right) \cdot \\
& C_{3}(n+2) \\
& +\left(21560 n^{7}+413637 n^{6}+3343917 n^{5}+14735333 n^{4}+38132651 n^{3}+57777574 n^{2}+47273504 n+16026528\right) . \\
& C_{3}(n+3) \\
& -(n+4)\left(4410 n^{6}+70147 n^{5}+452903 n^{4}+1516515 n^{3}+2769127 n^{2}+2601986 n+975888\right) C_{3}(n+4) \\
& +(n+5)(n+4)(n+3)\left(245 n^{4}+2114 n^{3}+6635 n^{2}+8882 n+4224\right) C_{3}(n+5)=0 \quad,
\end{aligned}
$$

subject to the initial conditions

$$
C_{3}(1)=1 \quad, \quad C_{3}(2)=6 \quad, \quad C_{3}(3)=37 \quad, \quad C_{3}(4)=240 \quad, \quad C_{3}(5)=1621 .
$$

Using the methods of [WZ] and [Z], we found the following asymptotic formula.

Proposition 3.

$$
\begin{gathered}
C_{3}(n) \sim \frac{2}{\sqrt{3} \pi} 8^{n} \cdot n^{-1} \\
\left(1-\frac{13}{3} n^{-1}+\frac{1477}{27} n^{-2}-\frac{93707}{81} n^{-3}+\frac{8343061}{243} n^{-4}-\frac{2866730137}{2187} n^{-5}+\frac{1204239422533}{19683} n^{-6}+O\left(n^{-7}\right)\right)
\end{gathered}
$$

We observe that the "connective constant", 8 , is sub-dominant. With any other initial conditions it would have been 9 . This is a very rare phenomenon in combinatorics.

The sequence $C_{3}(n)$ is sequence $A 271905$ in the On-Line Encyclopedia of Integer Sequences [Sl]. For the record, here are the first few terms:
$1,6,37,240,1621,11256,79717,572928,4164841,30553116,225817021,1679454816,12556853401$, 94313192616, 711189994357, 5381592930816, 40848410792017, 310909645663332, 2372280474687277, $18141232682656320,139010366280363601,1067160872528170536,8206301850166625797,63203453697218605440$.

We tried to find a recurrence for $C_{4}(n)$, but, since 160 terms did not suffice, we gave up. Nevertheless, using numerics, it if extremely likely that

$$
C_{4}(n) \sim \alpha 81^{n} \cdot n^{-\frac{3}{2}},
$$

for some constant α, but we are unable to conjecture its value. For the record, here are the first few terms:

1, 24, 997, 51264, 2940841, 180296088, 11559133741, 765337680384,51921457661905, 3590122671128664, 252070718210663749, 17922684123178825536, 1287832671004683373753,
93368940577497932331288, 6821632357294515590873917, 501741975445243527381995520,
$37121266623211130111114816929,2760712710223967190110979892824,206267049696409355312012281872181$.
The first few terms of $C_{5}(n)$ are: 1, 120, 44121, 23096640, 14346274601, 9859397817600, 7244702262723241, 5582882474985676800.

The first few terms of $C_{6}(n)$ are: 1, 720, 2882071, 18754813440, 153480509680141, 1435747717722810960.
Using reliable numeric estimates we are confident in making the following conjecture.

Conjecture:

$$
C_{d}(n) \sim \alpha_{d} \cdot\left((d-1)^{d}\right)^{n} \cdot n^{-(d-1) / 2}
$$

for a constant α_{d}.
One of us (DZ) is pledging $\$ 100$ dollars to the OEIS Foundation in honor of the first prover, and an additional $\$ 25$ for an explicit expression for α_{d} in terms of d and π.

Readers are welcome to explore further using the Maple package SVT.txt available from http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/svt.html, where there are many more terms of the sequences $C_{d}(n)$ for $3 \leq d \leq 6$.

References

[AZ] Moa Apagodu and Doron Zeilberger, Multi-Variable Zeilberger and Almkvist-Zeilberger Algorithms and the Sharpening of Wilf-Zeilberger Theory, Adv. Appl. Math. 37 (2006), 139-152.
http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/multiZ.html
[FO] Shmuel Friedland and Giorgio Ottaviani, The number of singular vector tuples and uniqueness of best rank-one approximation of tensors, Journal Found. Comput. Math. 14 (2014), 1209-1242.
http://arxiv.org/abs/1210.8316.
[M] Major Percy A. MacMahon, Combinatory Analysis, Originally published by Cambridge University Press, 1917, 1918, reprinted by Chelsea, N.Y., 1984.
[Sl] Neil J.A. Sloane, "The On-Line Encyclopedia of Integer Sequences", http://www.oeis.org.
[St] Bernd Sturmfels, Eigenvectors of Tensors, Colloquium talk, Rutgers University, April 22, 2016.
[WZ] Jet Wimp and Doron Zeilberger, Resurrecting the asymptotics of linear recurrences, J. Math. Anal. Appl. 111 (1985), 162-177.
http://www.math.rutgers.edu/~zeilberg/mamarimY/WimpZeilberger1985.pdf.
[Z] Doron Zeilberger, AsyRec: A Maple package for Computing the Asymptotics of Solutions of Linear Recurrence Equations with Polynomial Coefficients, The Personal Journal of Shalosh B. Ekhad and Doron Zeilberger, April 4, 2008.
http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/asy.html .

Doron Zeilberger, Department of Mathematics, Rutgers University (New Brunswick), Hill CenterBusch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA. zeilberg at math dot rutgers dot edu ; http://www.math.rutgers.edu/~zeilberg/ .

Shalosh B. Ekhad, c/o D. Zeilberger, Department of Mathematics, Rutgers University (New Brunswick), Hill Center-Busch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA.

Exclusively published in The Personal Journal of Shalosh B. Ekhad and Doron Zeilberger (http://www.math.rutgers.edu/~zeilberg/pj.html) and arxiv.org .

First Written: April 29, 2016 ; This version: April 30, 2016.

