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On the Number of Singular Vector Tuples of Hyper-Cubical Tensors

By Shalosh B. EKHAD and Doron ZEILBERGER

A week ago, Bernd Sturmfels [St] gave a fascinating Colloquium talk, here at Rutgers, where,

among many other interesting facts, he mentioned the following theorem of Shmuel Friedland and

Giorgio Ottaviani ([FO]).

Theorem ([F0], Theorem 1). The number of simple singular vector tuples of a generic

m1 × · · · ×md (d-dimensional) tensor equals the coefficient of
∏d

i=1 t
mi−1
i in the polynomial

d
∏

i=1

t̂i
mi − tmi

i

t̂i − ti
, t̂i =





d
∑

j=1

tj



− ti .

Let’s call this number c(m1, . . . ,md).

We first observe that the generating function of this d-dimensional multi-sequence is a nice rational

function.

Proposition 1. Let ei(x1, . . . , xd) be the elementary symmetric function of the indeterminates

x1, . . . , xd, of degree i. We have:

∞
∑

m1=0

. . .

∞
∑

md=0

c(m1, . . . ,md)x
m1

1 . . . xmd

d =

d
∏

i=1

xi

(

d
∏

i=1

(1− xi)

)−1(

1−
d
∑

i=2

(i− 1)ei(x1, . . . , xd)

)−1

.

Proof: Since
t̂i
mi − tmi

i

t̂i − ti
=

mi−1
∑

ki=0

t̂i
ki

tmi−1−ki

i ,

c(m1, . . . ,mk) is the coefficient of
∏d

i=1 t
mi−1
i in

m1−1
∑

k1=0

. . .

md−1
∑

kd=0

d
∏

i=1

t̂i
ki

tmi−1−ki

i .

Hence

c(m1, . . . ,md) =

m1−1
∑

k1=0

. . .

md−1
∑

kd=0

ConstantTermOf

d
∏

i=1

t̂i
ki

t−ki

i .

Let

f(k1, . . . , kd) := ConstantTermOf

d
∏

i=1

t̂i
ki

t−ki

i = CoeffOf

d
∏

i=1

ti
ki in

d
∏

i=1





i−1
∑

j=1

tj +
d
∑
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tj





ki

.
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By the celebrated MacMahon Master Theorem ([M], Section III, Chapter II, p. 93ff) (with

the d× d matrix that is all 1’s except 0 in the diagonal), we have

∞
∑

k1=0

. . .

∞
∑

kd=0

f(k1, . . . , kd)x
k1

1 . . . xkd

d =

(

1−
d
∑

i=2

(i− 1)ei(x1, . . . , xd)

)−1

.

Since

c(m1, . . . ,md) =

m1−1
∑

k1=0

. . .

md−1
∑

kd=0

f(k1, . . . , kd) ,

the proposition follows by straightforward generatingfunctionology.

The fact that the generating function of c(m1, . . . ,md) is a rational function is equivalent to it

satisfying a certain partial linear recurrence with constant coefficients, easily deduced from the gen-

erating function. Combined with the fact that both c(m1, . . . ,md) and f(k1, . . . , kd) are symmetric,

enabled us to efficiently compute many values. It also follows (for example using Wilf-Zeilberger

algorithmic proof theory, efficiently implemented in [AZ]) that the diagonal sequences

Cd(n) := c(n, . . . , n) [n repeated d times ] ,

are holonomic, alias P-recursive, that means that for each d, the sequence Cd(n) satisfies some

homogeneous linear recurrence with polynomial coefficients. While one can use the method of [AZ],

it is more efficient, since we know a priori that such a recurrence exists, to generate sufficiently

many terms and then guess the recurrence. Using this method, we got the following proposition.

Proposition 2. The sequence C3(n) = c(n, n, n) satisfies the following fifth-order linear recurrence

equation with polynomial coefficients.

2 (n+ 2)
(

245n4 + 3094n3 + 14447n2 + 29474n + 22100
)

(n+ 1)
2
C3 (n)

− (n+ 2)
(

21805n6 + 330981n5 + 2012733n4 + 6230951n3 + 10263446n2 + 8425060n + 2639760
)

C3 (n+ 1)

+
(

−13230n7 − 249641n6 − 1998705n5 − 8785333n4 − 22847777n3 − 35069178n2 − 29331496n − 10279296
)

·

C3 (n+ 2)

+
(

21560n7 + 413637n6 + 3343917n5 + 14735333n4 + 38132651n3 + 57777574n2 + 47273504n + 16026528
)

·

C3 (n+ 3)

− (n+ 4)
(

4410n6 + 70147n5 + 452903n4 + 1516515n3 + 2769127n2 + 2601986n + 975888
)

C3 (n+ 4)

+ (n+ 5) (n+ 4) (n+ 3)
(

245n4 + 2114n3 + 6635n2 + 8882n + 4224
)

C3 (n+ 5) = 0 ,

subject to the initial conditions

C3(1) = 1 , C3(2) = 6 , C3(3) = 37 , C3(4) = 240 , C3(5) = 1621 .
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Using the methods of [WZ] and [Z], we found the following asymptotic formula.

Proposition 3.

C3(n) ∼
2

√
3π

8n · n−1·
(

1−
13

3
n−1 +

1477

27
n−2 −

93707

81
n−3 +

8343061

243
n−4 −

2866730137

2187
n−5 +

1204239422533

19683
n−6 +O(n−7)

)

.

We observe that the “connective constant”, 8, is sub-dominant. With any other initial conditions

it would have been 9. This is a very rare phenomenon in combinatorics.

The sequence C3(n) is sequence A271905 in the On-Line Encyclopedia of Integer Sequences [Sl].

For the record, here are the first few terms:

1, 6, 37, 240, 1621, 11256, 79717, 572928, 4164841, 30553116, 225817021, 1679454816, 12556853401,

94313192616, 711189994357, 5381592930816, 40848410792017, 310909645663332, 2372280474687277,

18141232682656320, 139010366280363601, 1067160872528170536, 8206301850166625797, 63203453697218605440.

We tried to find a recurrence for C4(n), but, since 160 terms did not suffice, we gave up. Never-

theless, using numerics, it if extremely likely that

C4(n) ∼ α 81n · n−
3

2 ,

for some constant α, but we are unable to conjecture its value. For the record, here are the first

few terms:

1, 24, 997, 51264, 2940841, 180296088, 11559133741, 765337680384,51921457661905, 3590122671128664,

252070718210663749, 17922684123178825536, 1287832671004683373753,

93368940577497932331288, 6821632357294515590873917, 501741975445243527381995520,

37121266623211130111114816929, 2760712710223967190110979892824, 206267049696409355312012281872181.

The first few terms of C5(n) are: 1, 120, 44121, 23096640, 14346274601, 9859397817600, 7244702262723241,

5582882474985676800.

The first few terms of C6(n) are: 1, 720, 2882071, 18754813440, 153480509680141, 1435747717722810960.

Using reliable numeric estimates we are confident in making the following conjecture.

Conjecture:

Cd(n) ∼ αd · ((d− 1)d)n · n−(d−1)/2 ,

for a constant αd.

One of us (DZ) is pledging $100 dollars to the OEIS Foundation in honor of the first prover, and

an additional $25 for an explicit expression for αd in terms of d and π.

Readers are welcome to explore further using the Maple package SVT.txt available from

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/svt.html, where there are many

more terms of the sequences Cd(n) for 3 ≤ d ≤ 6.
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