On the subword complexity of the fixed point of $a \rightarrow aab, b \rightarrow b$, and generalizations

Jean-Paul Allouche*

CNRS, IMJ-PRG, UPMC, 4 Pl. Jussieu, F-75252 Paris Cedex 05, France jean-paul.allouche@imj-prg.fr

Jeffrey Shallit[†]

School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada shallit@cs.uwaterloo.ca

May 10, 2016

Abstract

We find an explicit closed form for the subword complexity of the infinite fixed point of the morphism sending $a \rightarrow aab$ and $b \rightarrow b$. This morphism is then generalized in three different ways, and we find similar explicit expressions for the subword complexity of the generalizations.

1 Introduction

In this paper we start by considering a certain morphism h over $\{a, b\}$, namely, the one where h(a) = aab and h(b) = b. This morphism was previously studied by the authors and J. Betrema [2] and Firicel [6].

We can iterate h (or any endomorphism) as follows: set $h^0(a)$ and $h^n(a) = h(h^{n-1}(a))$ for $n \ge 1$. Note that for the particuar morphism h defined above, we have $|h^n(a)| = 2^{n+1} - 1$ for $n \ge 0$, a fact that is easily proved by induction on n.

The infinite fixed point of h, which we denote by $h^{\omega}(a)$ is $\lim_{n\to\infty} h^n(a)$. It satisfies $h(h^{\omega}(a)) = h^{\omega}(a)$. We also define $\mathbf{z} = h^{\omega}(a) = aabaabbaabaabbb \cdots$.

Let **a** be an infinite word, where $\mathbf{a} = a_0 a_1 a_2 \cdots$. We define $\mathbf{a}[j] = a_j$. Let [i..j] for integers $i \leq j-1$ denote the sequence $i, i+1, \ldots, j$. By a *factor* of an infinite word we mean

^{*}Author partially supported by the ANR project "FAN" (Fractals et Numération), ANR-12-IS01-0002.

[†]Author partially supported by NSERC.

a sub-block of the form $a_i a_{i+1} \cdots a_j$ for $0 \le i \le j+1 < \infty$, which we write as $\mathbf{a}[i..j]$. If i = j + 1 then the resulting subword is empty. Sometimes we need to distinguish between a factor (which is the word itself) and an occurrence of that factor in \mathbf{a} (which is specified by a starting position and length). The *subword complexity* of an infinite word \mathbf{a} is the function $\rho = \rho_{\mathbf{a}}$ that maps a natural number n to the number of distinct factors of \mathbf{a} of length n.

In this paper we prove the following exact formula for $\rho_{\mathbf{z}}(n)$:

Theorem 1. For $n \ge 0$ we have $\rho_{\mathbf{z}}(n) = \sum_{0 \le i \le n} \min(2^i, n - i + 1)$.

Previously, upper and lower bounds were given by Firicel [6].

The first few values of $\rho_{\mathbf{z}}(n)$ are given in Table 1. It is sequence <u>A006697</u> in Sloane's *Encyclopedia of Integer Sequences* [10].

n																			
$\rho_{\mathbf{z}}(n)$	1	2	4	6	9	13	17	22	28	35	43	51	60	70	81	93	106	120	

Table 1: Subword complexity of z

Our method is based on the following factorization theorem for \mathbf{z} , which appears in [2]. Let $k \geq 2$ be an integer, and define $\nu_k(n)$ to be the exponent of the largest power of k dividing n.

Theorem 2.

$$\mathbf{z} = \prod_{i \ge 1} a \, b^{\nu_2(i)} = \prod_{i \ge 1} a \, a \, b^{\nu_2(i)+1}.$$

Remark 3. It is interesting to note that function $n \to \sum_{0 \le i \le n} \min(2^i, n - i + 1)$ also counts the maximum number of distinct factors (of all lengths) that a binary string of length n can have [8, 9, 7]. We do not know any bijective proof of this fact, which we leave as an open problem for the reader.

We then generalize the morphism h in three different ways, and compute the subword complexity of each generalization.

2 The subword complexity of z

By a b-run, we mean a maximal occurrence of a block of consecutive b's within a word. Here by "maximal" we mean that the block has no b's to either the left or right. For example, the word *baabbbaabb* has three b-runs, of length 1, 3, and 2, respectively.

Given a factor w of z, we call a *b*-run occurrence in w interior to w if it does not correspond to either a prefix or suffix of w. For example, in *baabbbaabb* there is exactly one interior *b*-run, which is of length 3.

Given an occurrence of a length-*n* factor *w* of **z**, we define its *cover* to be the shortest factor of the form $\prod_{j \leq i \leq k} a a b^{\nu_2(i)+1}$ for which *w* appears as a factor. The *cover interval* is defined to be the set $\{j, j + 1, \ldots, k\}$. We call the integer *j* (resp., *k*) the *left* (resp., *right*) *edge* of the cover. For example, the underlined factor below has cover *aabbaabaabbb* with left edge 2 and right edge 4:

 $aabaab\underline{baabaab}bbaabaabbaabaabbb \cdots$.

Lemma 4. Let $n \ge 1$. If a factor of \mathbf{z} is of length $\ge 2^{n+1} + n - 2$, then it must contain a *b*-run of length at least *n*.

Proof. We consider the longest possible factor w of \mathbf{z} having all b-runs of length < n. Such a factor clearly occurs either (a) before the first b-run of length n in \mathbf{z} , or (b) between two occurrences of a b-run of length $\geq n$ in \mathbf{z} .

In case (a), the first *b*-run of length *n* occurs as a suffix of $h^n(a)$, which is of length $2^{n+1} - 1$. So by removing the last letter we get a factor of length $2^{n+1} - 2$ having no *b*-run of length *n*.

In case (b), w has a cover with left edge ℓ and right edge r, both of which are divisible by 2^n . All other integers in the cover interval are not divisible by 2^n , for if they were, wwould have a *b*-run of length $\geq n$. So $r - \ell = 2^n$. The longest such w must then be of the form $w = b^{n-1}h^n(a)b^{-1}$, and the length of this factor is $2^{n+1} + n - 3$. (If x = wa is a word, and a is a single letter, then by xa^{-1} we mean the word w.)

Definition 5. Define the function f from \mathbb{N} to \mathbb{N} as follows:

$$f(i) = j$$
 for $2^{j+1} + j - 2 \le i \le 2^{j+2} + j - 2$.

The first few values of the function f are given in Table 2.

n																		
f(n)	0	0	0	1	1	1	1	1	2	2	2	2	2	2	2	2	2	3

Table 2: Values of the function f

Corollary 6. For $n \ge 0$ we have

- (a) every factor of \mathbf{z} of length n contains a b-run of length at least f(n);
- (b) at least one factor of \mathbf{z} of length n has longest b-run of length exactly f(n);
- (c) the shortest factor of \mathbf{z} having two occurrences of a b-run of length n is of length $2^{n+1} + n 1$.

Proof. For (c), the shortest factor clearly will start and end with *b*-runs of length *n*; otherwise we could remove symbols from the start or end to get a shorter string with the same property. So the cover interval begins and ends with integers divisible by 2^{n-1} . The difference between these integers is therefore at least 2^{n-1} . So the cover interval is $nr^{n-1}(1)$. The string corresponding to this cover interval is $b^n h^n(a)$, which of length $2^{n+1} + n - 1$.

Lemma 7. For every factor w of z, the longest b-run in w has at most one interior occurrence in w.

Proof. Let b^n be the longest *b*-run of *w*, and suppose *w* has at least two interior occurrences of b^n . Choose two such occurrences that are separated by the smallest number of symbols. By Theorem 2 these occurrences must correspond to $b^{\nu_2(i)+1}$ where $i \in \{2^{n-1}m, 2^{n-1}(m+2)\}$ for some odd number *m*. Then in between these two *b*-runs there is a *b*-run corresponding to $i = 2^{n-1}(m+1)$, which (since m+1 is even) is of length at least n+1, contradicting the assumption that b^n was the longest *b*-run in *w*.

Corollary 8. A longest b-run in a factor w can have at most three occurrences. When it does have three, the occurrences must be a prefix, suffix, and a single interior occurrence. In this case the b-run must be of the form b^n for some $n \ge 1$ and the factor must be $b^n h^{n+1}(a)b^{-1}$, of length $2^{n+2} + n - 2$.

Lemma 9. If a factor w of z of length n has a b-run of length > f(n), then this run occurs only once in w. Furthermore, there is exactly one such factor w corresponding to the choice of the starting position of this b-run.

Proof. First, suppose there were two occurrences of such a run of length $\geq f(n) + 1$ in w. Then from Corollary 6 (c), this means that w is of length at least $2^{f(n)+2} + f(n)$. So $n \geq 2^{f(n)+2} + f(n)$. But from the definition of f we have $n \leq 2^{f(n)+2} + f(n) - 2$. This is a contradiction.

Next, suppose we fix the starting position of a *b*-run of length > f(n) in *w*. This *b*-run is either (a) a prefix or suffix of *w*, or (b) is interior to *w*.

(a) If this b-run is a prefix (resp., suffix) of w, it corresponds to a left (resp., right) edge, divisible by $2^{f(n)}$, of a cover interval. This fixes the next (resp., previous) $2^{f(n)} - 1$ elements of the cover interval, and so the next (resp., previous) $|h^{f(n)+1}(a)|$ symbols of \mathbf{z} (and hence w). Thus, including the prefix (resp., suffix), the total number of symbols determined is of length $f(n) + 1 + 2^{f(n)+2} - 1 = 2^{f(n)+2} + f(n)$. But from the definition of f we have $n \leq 2^{f(n)+2} + f(n) - 2$. So all the symbols of w are determined, and there can only be one such factor.

(b) If this *b*-run is interior to w then, it corresponds to an element of the cover interval that is exactly divisible by $2^{f(n)}$. Then, as in the previous case, the $2^{f(n)+2} - 1$ symbols both preceding and following this *b*-run are determined. Again, this means all the symbols of w are determined, and there can be only one such factor.

Corollary 10. There are exactly n - t + 1 factors of \mathbf{z} of length n having longest b-run of length t, for each t with $f(n) < t \le n$.

Proof. If t > f(n), then from Lemma 9 we know there is exactly one *b*-run of length *t* in every factor of length *n*. Furthermore, there is a unique such factor having a *b*-run of length *t* at every possible position, and there are n - t + 1 possible positions.

The preceding corollary counts all length-n factors having longest b-run of length > f(n). It remains to count those factors having longest b-run of length equal to f(n).

Definition 11. Let the function g be defined as follows:

$$g(n) = \begin{cases} 2^{t} - 1, & \text{if } 2^{t} + t - 3 \le n \le 2^{t} + t - 1; \\ 2^{t+1} + t - 2 - n, & \text{if } 2^{t} + t - 1 \le n \le 2^{t+1} + t - 3. \end{cases}$$

The first few values of the function g are given in Table 3.

n																				
g(n)	1	1	3	3	3	2	1	7	7	7	6	5	4	3	2	1	15	15	15	14

Table 3: Values of the function g

Lemma 12. Let $n \ge 1$. The word \mathbf{z} has exactly g(n) distinct length-n factors with longest b-run of length m = f(n).

Proof. Let w be a factor of length n of \mathbf{z} . If the longest b-run of w is of length m = f(n), then from Corollary 8 we know that w itself is a factor of $b^m h^{m+1}(a)b^{-1} = b^m h^m(a)h^m(a)$. Now $b^m h^m(a)h^m(a)$ is of length $2^{m+2} + m - 2$, so there are at most $2^{m+2} + m - 1 - n$ positions at which such a factor could begin. If $n = 2^{m+1} + m - 2$, then it is easy to check that the factors of length n starting at the last two possible positions are the same as the first two; they are both $b^m h^m(a)b^{-1}$ and $b^{m-1}h^m(a)$. If $n = 2^{m+1} + m - 1$, then the factor of length n starting at the last possible position is the same as the first; they are both $b^m h^m(a)$. Otherwise, in these cases and when $n \leq 2^{m+2} + m - 2$, all the factors are distinct (as can be verified by identifying the position of the first occurrence of b^m). This gives the result.

We are now ready to prove Theorem 1.

Proof. Totalling the factors described in Corollary 10 and Lemma 12, we see that

$$\rho_{\mathbf{z}}(n) = g(n) + \sum_{f(n) < t \le n} (n - t + 1).$$

We now claim that the right-hand-side equals $\sum_{0 \le i \le n} \min(2^i, n - i + 1)$. To see this, note that for $n = 2^j + j - 3$ and $n = 2^j + j - 2$ we have $g(f(n)) = 2^j - 1$, while for $2^j + j - 1 \le n < 2^{j+1} + j - 2$ we have $g(f(n)) + g(f(n) + 1) = 2^{j+1} - 1$.

Corollary 13. The first difference of the subword complexity of \mathbf{z} is

$$\prod_{i\geq 0} [2^i .. 2^{i+1}] = (1, 2, 2, 3, 4, 4, 5, 6, 7, 8, 8, 9, \ldots).$$

This is sequence <u>A103354</u> in Sloane's On-Line Encyclopedia of Integer Sequences [10].

We can also recover a result of Firicel [5, 6]:

Corollary 14. There are $\frac{n^2}{2} - n \log_2 n + O(n)$ distinct factors of length n in \mathbf{z}_2 .

Remark 15. This estimate was used by Firicel to prove that \mathbf{z} is not k-automatic for any $k \geq 2$. (The proof in [2] proved this only for k = 2.)

Remark 16. Recall that the (principal branch of the) Lambert function W is defined for $x \ge -1/e$ by y = W(x) if and only if $x = ye^y$. Then, for $i \in [0, n]$, we have $2^i \le n - i + 1$ if and only if $i \le n + 1 - W((\log 2)2^{n+1})/(\log 2)$. Thus, defining the integer m by $m := \lfloor n + 1 - W((\log 2)2^{n+1})/(\log 2) \rfloor$, we get

$$\rho_{\mathbf{z}_2}(n) = (2(m+1)-1) + \frac{(n-m)(n-m+1)}{2}.$$

This confirms M. F. Hasler's conjecture about sequence <u>A006697</u> in Sloane's On-Line Encyclopedia of Integer Sequences [10].

We also can confirm the conjecture of V. Jovovic from September 19 2005 that \mathbf{z} is the partial summation of Sloane's sequence <u>A103354</u>, and is also equal to <u>A094913(n) + 1</u>.

3 The first generalization

The first and most obvious generalization of the morphism h is to h_q for $q \ge 2$, where $a \to a^q b$ and $b \to b$. Then $h = h_2$. Let the fixed point of h_q be $\mathbf{z}_q = z_q(0)z_q(1)z_q(2)\cdots$. Then $z_q(n) = a$ if and only if n has a representation using the digits $0, 1, \ldots, q-1$ in the system of Cameron and Wood [3] using the system of weights $(q^i - 1)/(q - 1)$.

Theorem 17. For $q \ge 2$ the subword complexity of \mathbf{z}_q is $\sum_{0 \le i \le n} \min(q^i, n - i + 1)$.

Proof. Exactly the same as for q = 2.

Remark 18. This result was conjectured in a 1997 email discussion between the second author and Lambros Lambrou.

Corollary 19. The first difference of the subword complexity of \mathbf{z}_q is

$$\prod_{i\geq 0} [q^i ...q^{i+1}] = (1, 2, ..., q-1, q, q, q+1, ..., q^2 - 1, q^2, q^2, q^2 + 1, ...).$$

4 The second generalization

The classical q-ary numeration system represents every non-negative integer, in a unique way, as sums of the form $\sum_{i\geq 0} a_i q^i$, where $a_i \in \{0, 1, \ldots, q-1\}$ and only finitely many of the a_i are nonzero. In this section, we consider a variation of this numeration system, where q^i is replaced by $q^i - 1$ and the digit set is restricted to $\{0, 1\}$. Of course, in the resulting system, not every non-negative integer has a representation, so we can consider the characteristic word $\mathbf{x}_q = x_q(0)x_q(1)x_q(2)\cdots$ where $x_q(i)$ is 1 if *i* has a representation and 0 otherwise.

Note that, if q is a prime power, the infinite word \mathbf{x}_q is related to the Carlitz formal power series

$$\Pi := \prod_{j \ge 1} \left(1 - \frac{X^{q^j} - X}{X^{q^{j+1}} - X} \right) \in \mathbb{F}_q[[X^{-1}]].$$

(see [1] and the references therein).

First, we show how to represent the characteristic sequence \mathbf{x}_q as the image of a fixed point of a morphism:

Theorem 20. Let $q \ge 2$, and let $\mathbf{x}_q = x_q(0)x_q(1)x_q(2)\cdots$ be the characteristic word of those integers having a representation of the form $\sum_{i\ge 1}\epsilon_i(q^i-1)$, where $\epsilon_i \in \{0,1\}$. Then \mathbf{x}_q is the coding, under the map $\tau(a) = 1$ and $\tau(b) = \tau(c) = 0$, of the fixed point of the morphism

$$a \to ab^{q-2}ac^{q(q-2)}b$$
$$b \to b$$
$$c \to c^q.$$

Remark 21. This theorem was obtained in an 1995 email discussion between the first author and G. Rote.

Remark 22. The expressions for q > 3 in the previous theorem correspond to a transition matrix with dominant eigenvalue q. The subword complexity of this sequence is not qautomatic, as proved in [1]. Hence it is not ultimately periodic. Using a theorem of F. Durand [4], this implies that the sequence cannot be k-automatic for any k that is multiplicatively independent of q. Hence this sequence cannot be k-automatic for any k.

Next, we compute the exact value of the first difference of the complexity function.

Theorem 23. Let $q \ge 3$, and let $d_q(n) = \rho_{\mathbf{x}_q}(n+1) - \rho_{\mathbf{x}_q}(n)$ for $n \ge 0$ be the first difference of the complexity function for \mathbf{x}_q . Then $d_q(n) \in \{1, 2\}$, and

$$(d_q(n))_{n \ge 0} = \prod_{i \ge 1} 1^{a_q(i)} 2^{b_q(i)}$$

where $a_q(i) = (q-3)q^{i-1} + 2$ and $b_q(i) = q^i - 1$ for $i \ge 1$.

Previously, Firicel [5, 6] showed that the complexity function for $q \ge 3$ is $\Theta(n)$.

Proofs of these two theorems will appear in the final version of this paper.

5 The third generalization

We can also generalize our construction in a third way. Again, we use $q^i - 1$ as the basis for a numeration system, but now we allow the digit set to be $\{0, 1, \ldots, q-1\}$. For $q \ge 2$, let the infinite word $\mathbf{y}_q = y_q(0)y_q(1)y_q(2)\cdots$ be the characteristic sequence of those integers representable in the form $\sum_{i\ge 1} a_i(q^i-1)$ with $a_i \in \{0, 1, \ldots, q-1\}$.

Theorem 24. The infinite word \mathbf{y}_q is the fixed point of the morphism $1 \to (10^{q-2})^q 0, 0 \to 0$.

Theorem 25. The first difference of the subword complexity of y_q is the sequence given by

$$\prod_{i \ge 0} ([q^i ... q^{i+1}] \amalg (q-1)),$$

where by $w \amalg n$ for $w = a_1 a_2 \cdots a_j$ we mean $a_1^n a_2^n \cdots a_j^n$.

Proofs of these two theorems will appear in the final version of this paper.

References

- J.-P. Allouche. Sur la transcendance de la série formelle Π. Séminaire de Théorie des Nombres de Bordeaux 2 (1990), 103–117.
- [2] J.-P. Allouche, J. Betrema, and J. O. Shallit. Sur des points fixes de morphismes d'un monoïde libre. RAIRO Inform. Théor. App. 23 (1989), 235–249.
- [3] H. A. Cameron and D. Wood. Pm numbers, ambiguity, and regularity. RAIRO Inform. Théor. App. 27 (1993), 261–275.
- [4] F. Durand. Cobham's theorem for substitutions. J. European Math. Soc. 13 (2011), 1799–1814.
- [5] A. Firicel. Quelques contributions à l'étude des séries formelles à coefficients dans un corps fini. Thèse de Doctorat, Université Claude Bernard-Lyon 1. Available at https://tel.archives-ouvertes.fr/tel-00825191, 2010.
- [6] A. Firicel. Subword complexity and Laurent series. INTEGERS: Elect. J. of Combin. Number Theory 11B (2011), #A7 (electronic).
- [7] A. Flaxman, A. W. Harrow, and G. B. Sorkin. Strings with maximally many distinct subsequences and substrings. *Electronic J. Combinatorics* 11(1) (2004), #R8 (electronic).
- [8] A. Iványi. On the d-complexity of words. Ann. Univ. Sci. Budapest. Sect. Comput. 8 (1987), 69–90.

- [9] J. Shallit. On the maximum number of distinct factors of a binary string. *Graphs and Combinatorics* **9** (1993), 197–200.
- [10] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. Available at http://oeis.org, 2016.