On the subword complexity of the fixed point of $a \rightarrow a a b, b \rightarrow b$, and generalizations

Jean-Paul Allouche*
CNRS, IMJ-PRG, UPMC, 4 Pl. Jussieu, F-75252 Paris Cedex 05, France
jean-paul.allouche@imj-prg.fr
Jeffrey Shallit ${ }^{\dagger}$
School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada
shallit@cs.uwaterloo.ca

May 10, 2016

Abstract

We find an explicit closed form for the subword complexity of the infinite fixed point of the morphism sending $a \rightarrow a a b$ and $b \rightarrow b$. This morphism is then generalized in three different ways, and we find similar explicit expressions for the subword complexity of the generalizations.

1 Introduction

In this paper we start by considering a certain morphism h over $\{a, b\}$, namely, the one where $h(a)=a a b$ and $h(b)=b$. This morphism was previously studied by the authors and J. Betrema [2] and Firicel [6].

We can iterate h (or any endomorphism) as follows: set $h^{0}(a)$ and $h^{n}(a)=h\left(h^{n-1}(a)\right)$ for $n \geq 1$. Note that for the particuar morphism h defined above, we have $\left|h^{n}(a)\right|=2^{n+1}-1$ for $n \geq 0$, a fact that is easily proved by induction on n.

The infinite fixed point of h, which we denote by $h^{\omega}(a)$ is $\lim _{n \rightarrow \infty} h^{n}(a)$. It satisfies $h\left(h^{\omega}(a)\right)=h^{\omega}(a)$. We also define $\mathbf{z}=h^{\omega}(a)=a a b a a b b a a b a a b b b \cdots$.

Let \mathbf{a} be an infinite word, where $\mathbf{a}=a_{0} a_{1} a_{2} \cdots$. We define $\mathbf{a}[j]=a_{j}$. Let $[i . . j]$ for integers $i \leq j-1$ denote the sequence $i, i+1, \ldots, j$. By a factor of an infinite word we mean

[^0]a sub-block of the form $a_{i} a_{i+1} \cdots a_{j}$ for $0 \leq i \leq j+1<\infty$, which we write as $\mathbf{a}[i . . j]$. If $i=j+1$ then the resulting subword is empty. Sometimes we need to distinguish between a factor (which is the word itself) and an occurrence of that factor in a (which is specified by a starting position and length). The subword complexity of an infinite word \mathbf{a} is the function $\rho=\rho_{\mathrm{a}}$ that maps a natural number n to the number of distinct factors of a of length n.

In this paper we prove the following exact formula for $\rho_{\mathbf{z}}(n)$:
Theorem 1. For $n \geq 0$ we have $\rho_{\mathbf{z}}(n)=\sum_{0 \leq i \leq n} \min \left(2^{i}, n-i+1\right)$.
Previously, upper and lower bounds were given by Firicel [6].
The first few values of $\rho_{\mathbf{z}}(n)$ are given in Table 1. It is sequence A006697 in Sloane's Encyclopedia of Integer Sequences [10].

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
$\rho_{\mathbf{z}}(n)$	1	2	4	6	9	13	17	22	28	35	43	51	60	70	81	93	106	120

Table 1: Subword complexity of \mathbf{z}
Our method is based on the following factorization theorem for \mathbf{z}, which appears in [2]. Let $k \geq 2$ be an integer, and define $\nu_{k}(n)$ to be the exponent of the largest power of k dividing n.

Theorem 2.

$$
\mathbf{z}=\prod_{i \geq 1} a b^{\nu_{2}(i)}=\prod_{i \geq 1} a a b^{\nu_{2}(i)+1}
$$

Remark 3. It is interesting to note that function $n \rightarrow \sum_{0 \leq i \leq n} \min \left(2^{i}, n-i+1\right)$ also counts the maximum number of distinct factors (of all lengths) that a binary string of length n can have $[8,9,7]$. We do not know any bijective proof of this fact, which we leave as an open problem for the reader.

We then generalize the morphism h in three different ways, and compute the subword complexity of each generalization.

2 The subword complexity of z

By a b-run, we mean a maximal occurrence of a block of consecutive b 's within a word. Here by "maximal" we mean that the block has no b 's to either the left or right. For example, the word baabbbaabb has three b-runs, of length 1,3 , and 2 , respectively.

Given a factor w of \mathbf{z}, we call a b-run occurrence in w interior to w if does not correspond to either a prefix or suffix of w. For example, in baabbbaabb there is exactly one interior b-run, which is of length 3 .

Given an occurrence of a length- n factor w of \mathbf{z}, we define its cover to be the shortest factor of the form $\prod_{j \leq i \leq k} a a b^{\nu_{2}(i)+1}$ for which w appears as a factor. The cover interval is defined to be the set $\{j, j+1, \ldots, k\}$. We call the integer j (resp., k) the left (resp., right) edge of the cover. For example, the underlined factor below has cover aabbaabaabbb with left edge 2 and right edge 4:

> aabaabbaabaabbbaabaabbaabaabbb •.. .

Lemma 4. Let $n \geq 1$. If a factor of \mathbf{z} is of length $\geq 2^{n+1}+n-2$, then it must contain a b-run of length at least n.

Proof. We consider the longest possible factor w of \mathbf{z} having all b-runs of length $<n$. Such a factor clearly occurs either (a) before the first b-run of length n in \mathbf{z}, or (b) between two occurrences of a b-run of length $\geq n$ in \mathbf{z}.

In case (a), the first b-run of length n occurs as a suffix of $h^{n}(a)$, which is of length $2^{n+1}-1$. So by removing the last letter we get a factor of length $2^{n+1}-2$ having no b-run of length n.

In case (b), w has a cover with left edge ℓ and right edge r, both of which are divisible by 2^{n}. All other integers in the cover interval are not divisible by 2^{n}, for if they were, w would have a b-run of length $\geq n$. So $r-\ell=2^{n}$. The longest such w must then be of the form $w=b^{n-1} h^{n}(a) b^{-1}$, and the length of this factor is $2^{n+1}+n-3$. (If $x=w a$ is a word, and a is a single letter, then by $x a^{-1}$ we mean the word w.)

Definition 5. Define the function f from \mathbb{N} to \mathbb{N} as follows:

$$
f(i)=j \text { for } 2^{j+1}+j-2 \leq i \leq 2^{j+2}+j-2 .
$$

The first few values of the function f are given in Table 2.

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
$f(n)$	0	0	0	1	1	1	1	1	2	2	2	2	2	2	2	2	2	3

Table 2: Values of the function f
Corollary 6. For $n \geq 0$ we have
(a) every factor of \mathbf{z} of length n contains $a b$-run of length at least $f(n)$;
(b) at least one factor of \mathbf{z} of length n has longest b-run of length exactly $f(n)$;
(c) the shortest factor of \mathbf{z} having two occurrences of $a b$-run of length n is of length $2^{n+1}+n-1$.

Proof. For (c), the shortest factor clearly will start and end with b-runs of length n; otherwise we could remove symbols from the start or end to get a shorter string with the same property. So the cover interval begins and ends with integers divisible by 2^{n-1}. The difference between these integers is therefore at least 2^{n-1}. So the cover interval is $n r^{n-1}(1)$. The string corresponding to this cover interval is $b^{n} h^{n}(a)$, which of length $2^{n+1}+n-1$.

Lemma 7. For every factor w of \mathbf{z}, the longest b-run in w has at most one interior occurrence in w.

Proof. Let b^{n} be the longest b-run of w, and suppose w has at least two interior occurrences of b^{n}. Choose two such occurrences that are separated by the smallest number of symbols. By Theorem 2 these occurrences must correspond to $b^{\nu_{2}(i)+1}$ where $i \in\left\{2^{n-1} m, 2^{n-1}(m+2)\right\}$ for some odd number m. Then in between these two b-runs there is a b-run corresponding to $i=2^{n-1}(m+1)$, which (since $m+1$ is even) is of length at least $n+1$, contradicting the assumption that b^{n} was the longest b-run in w.

Corollary 8. A longest b-run in a factor w can have at most three occurrences. When it does have three, the occurrences must be a prefix, suffix, and a single interior occurrence. In this case the b-run must be of the form b^{n} for some $n \geq 1$ and the factor must be $b^{n} h^{n+1}(a) b^{-1}$, of length $2^{n+2}+n-2$.

Lemma 9. If a factor w of \mathbf{z} of length n has a b-run of length $>f(n)$, then this run occurs only once in w. Furthermore, there is exactly one such factor w corresponding to the choice of the starting position of this b-run.

Proof. First, suppose there were two occurrences of such a run of length $\geq f(n)+1$ in w. Then from Corollary 6 (c), this means that w is of length at least $2^{f(n)+2}+f(n)$. So $n \geq 2^{f(n)+2}+f(n)$. But from the definition of f we have $n \leq 2^{f(n)+2}+f(n)-2$. This is a contradiction.

Next, suppose we fix the starting position of a b-run of length $>f(n)$ in w. This b-run is either (a) a prefix or suffix of w, or (b) is interior to w.
(a) If this b-run is a prefix (resp., suffix) of w, it corresponds to a left (resp., right) edge, divisible by $2^{f(n)}$, of a cover interval. This fixes the next (resp., previous) $2^{f(n)}-1$ elements of the cover interval, and so the next (resp., previous) $\left|h^{f(n)+1}(a)\right|$ symbols of \mathbf{z} (and hence $w)$. Thus, including the prefix (resp., suffix), the total number of symbols determined is of length $f(n)+1+2^{f(n)+2}-1=2^{f(n)+2}+f(n)$. But from the definition of f we have $n \leq 2^{f(n)+2}+f(n)-2$. So all the symbols of w are determined, and there can only be one such factor.
(b) If this b-run is interior to w then, it corresponds to an element of the cover interval that is exactly divisible by $2^{f(n)}$. Then, as in the previous case, the $2^{f(n)+2}-1$ symbols both preceding and following this b-run are determined. Again, this means all the symbols of w are determined, and there can be only one such factor.

Corollary 10. There are exactly $n-t+1$ factors of \mathbf{z} of length n having longest b-run of length t, for each t with $f(n)<t \leq n$.

Proof. If $t>f(n)$, then from Lemma 9 we know there is exactly one b-run of length t in every factor of length n. Furthermore, there is a unique such factor having a b-run of length t at every possible position, and there are $n-t+1$ possible positions.

The preceding corollary counts all length- n factors having longest b-run of length $>f(n)$. It remains to count those factors having longest b-run of length equal to $f(n)$.

Definition 11. Let the function g be defined as follows:

$$
g(n)= \begin{cases}2^{t}-1, & \text { if } 2^{t}+t-3 \leq n \leq 2^{t}+t-1 \\ 2^{t+1}+t-2-n, & \text { if } 2^{t}+t-1 \leq n \leq 2^{t+1}+t-3\end{cases}
$$

The first few values of the function g are given in Table 3 .

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
$g(n)$	1	1	3	3	3	2	1	7	7	7	6	5	4	3	2	1	15	15	15	14

Table 3: Values of the function g

Lemma 12. Let $n \geq 1$. The word \mathbf{z} has exactly $g(n)$ distinct length- n factors with longest b-run of length $m=f(n)$.

Proof. Let w be a factor of length n of \mathbf{z}. If the longest b-run of w is of length $m=f(n)$, then from Corollary 8 we know that w itself is a factor of $b^{m} h^{m+1}(a) b^{-1}=b^{m} h^{m}(a) h^{m}(a)$. Now $b^{m} h^{m}(a) h^{m}(a)$ is of length $2^{m+2}+m-2$, so there are at most $2^{m+2}+m-1-n$ positions at which such a factor could begin. If $n=2^{m+1}+m-2$, then it is easy to check that the factors of length n starting at the last two possible positions are the same as the first two; they are both $b^{m} h^{m}(a) b^{-1}$ and $b^{m-1} h^{m}(a)$. If $n=2^{m+1}+m-1$, then the factor of length n starting at the last possible position is the same as the first; they are both $b^{m} h^{m}(a)$. Otherwise, in these cases and when $n \leq 2^{m+2}+m-2$, all the factors are distinct (as can be verified by identifying the position of the first occurrence of b^{m}). This gives the result.

We are now ready to prove Theorem 1 .
Proof. Totalling the factors described in Corollary 10 and Lemma 12, we see that

$$
\rho_{\mathbf{z}}(n)=g(n)+\sum_{f(n)<t \leq n}(n-t+1) .
$$

We now claim that the right-hand-side equals $\sum_{0 \leq i \leq n} \min \left(2^{i}, n-i+1\right)$. To see this, note that for $n=2^{j}+j-3$ and $n=2^{j}+j-2$ we have $g(f(n))=2^{j}-1$, while for $2^{j}+j-1 \leq$ $n<2^{j+1}+j-2$ we have $g(f(n))+g(f(n)+1)=2^{j+1}-1$.

Corollary 13. The first difference of the subword complexity of \mathbf{z} is

$$
\prod_{i \geq 0}\left[2^{i} . .2^{i+1}\right]=(1,2,2,3,4,4,5,6,7,8,8,9, \ldots)
$$

This is sequence $\underline{\text { A103354 }}$ in Sloane's On-Line Encyclopedia of Integer Sequences [10].
We can also recover a result of Firicel [5, 6]:
Corollary 14. There are $\frac{n^{2}}{2}-n \log _{2} n+O(n)$ distinct factors of length n in \mathbf{z}_{2}.
Remark 15. This estimate was used by Firicel to prove that \mathbf{z} is not k-automatic for any $k \geq 2$. (The proof in [2] proved this only for $k=2$.)
Remark 16. Recall that the (principal branch of the) Lambert function W is defined for $x \geq-1 / e$ by $y=W(x)$ if and only if $x=y e^{y}$. Then, for $i \in[0, n]$, we have $2^{i} \leq n-i+1$ if and only if $i \leq n+1-W\left((\log 2) 2^{n+1}\right) /(\log 2)$. Thus, defining the integer m by $m:=$ $\left\lfloor n+1-W\left((\log 2) 2^{n+1}\right) /(\log 2)\right\rfloor$, we get

$$
\rho_{\mathbf{z}_{2}}(n)=(2(m+1)-1)+\frac{(n-m)(n-m+1)}{2} .
$$

This confirms M. F. Hasler's conjecture about sequence A006697 in Sloane's On-Line Encyclopedia of Integer Sequences [10].

We also can confirm the conjecture of V. Jovovic from September 192005 that z is the partial summation of Sloane's sequence A103354, and is also equal to $\underline{A 094913}(n)+1$.

3 The first generalization

The first and most obvious generalization of the morphism h is to h_{q} for $q \geq 2$, where $a \rightarrow a^{q} b$ and $b \rightarrow b$. Then $h=h_{2}$. Let the fixed point of h_{q} be $\mathbf{z}_{q}=z_{q}(0) z_{q}(1) z_{q}(2) \cdots$. Then $z_{q}(n)=a$ if and only if n has a representation using the digits $0,1, \ldots, q-1$ in the system of Cameron and Wood [3] using the system of weights $\left(q^{i}-1\right) /(q-1)$.

Theorem 17. For $q \geq 2$ the subword complexity of \mathbf{z}_{q} is $\sum_{0 \leq i \leq n} \min \left(q^{i}, n-i+1\right)$.
Proof. Exactly the same as for $q=2$.
Remark 18. This result was conjectured in a 1997 email discussion between the second author and Lambros Lambrou.

Corollary 19. The first difference of the subword complexity of \mathbf{z}_{q} is

$$
\prod_{i \geq 0}\left[q^{i} . . q^{i+1}\right]=\left(1,2, \ldots, q-1, q, q, q+1, \ldots, q^{2}-1, q^{2}, q^{2}, q^{2}+1, \ldots\right)
$$

4 The second generalization

The classical q-ary numeration system represents every non-negative integer, in a unique way, as sums of the form $\sum_{i \geq 0} a_{i} q^{i}$, where $a_{i} \in\{0,1, \ldots, q-1\}$ and only finitely many of the a_{i} are nonzero. In this section, we consider a variation of this numeration system, where q^{i} is replaced by $q^{i}-1$ and the digit set is restricted to $\{0,1\}$. Of course, in the resulting system, not every non-negative integer has a representation, so we can consider the characteristic word $\mathbf{x}_{q}=x_{q}(0) x_{q}(1) x_{q}(2) \cdots$ where $x_{q}(i)$ is 1 if i has a representation and 0 otherwise.

Note that, if q is a prime power, the infinite word \mathbf{x}_{q} is related to the Carlitz formal power series

$$
\Pi:=\prod_{j \geq 1}\left(1-\frac{X^{q^{j}}-X}{X^{q^{j+1}}-X}\right) \in \mathbb{F}_{q}\left[\left[X^{-1}\right]\right] .
$$

(see [1] and the references therein).
First, we show how to represent the characteristic sequence \mathbf{x}_{q} as the image of a fixed point of a morphism:

Theorem 20. Let $q \geq 2$, and let $\mathbf{x}_{q}=x_{q}(0) x_{q}(1) x_{q}(2) \cdots$ be the characteristic word of those integers having a representation of the form $\sum_{i \geq 1} \epsilon_{i}\left(q^{i}-1\right)$, where $\epsilon_{i} \in\{0,1\}$. Then \mathbf{x}_{q} is the coding, under the map $\tau(a)=1$ and $\tau(b)=\tau(c)=0$, of the fixed point of the morphism

$$
\begin{aligned}
& a \rightarrow a b^{q-2} a c^{q(q-2)} b \\
& b \rightarrow b \\
& c \rightarrow c^{q} .
\end{aligned}
$$

Remark 21. This theorem was obtained in an 1995 email discussion between the first author and G. Rote.
Remark 22. The expressions for $q>3$ in the previous theorem correspond to a transition matrix with dominant eigenvalue q. The subword complexity of this sequence is not q automatic, as proved in [1]. Hence it is not ultimately periodic. Using a theorem of F. Durand [4], this implies that the sequence cannot be k-automatic for any k that is multiplicatively independent of q. Hence this sequence cannot be k-automatic for any k.

Next, we compute the exact value of the first difference of the complexity function.
Theorem 23. Let $q \geq 3$, and let $d_{q}(n)=\rho_{\mathbf{x}_{q}}(n+1)-\rho_{\mathbf{x}_{q}}(n)$ for $n \geq 0$ be the first difference of the complexity function for \mathbf{x}_{q}. Then $d_{q}(n) \in\{1,2\}$, and

$$
\left(d_{q}(n)\right)_{n \geq 0}=\prod_{i \geq 1} 1^{a_{q}(i)} 2^{b_{q}(i)}
$$

where $a_{q}(i)=(q-3) q^{i-1}+2$ and $b_{q}(i)=q^{i}-1$ for $i \geq 1$.
Previously, Firicel [5, 6] showed that the complexity function for $q \geq 3$ is $\Theta(n)$. Proofs of these two theorems will appear in the final version of this paper.

5 The third generalization

We can also generalize our construction in a third way. Again, we use $q^{i}-1$ as the basis for a numeration system, but now we allow the digit set to be $\{0,1, \ldots, q-1\}$. For $q \geq 2$, let the infinite word $\mathbf{y}_{q}=y_{q}(0) y_{q}(1) y_{q}(2) \cdots$ be the characteristic sequence of those integers representable in the form $\sum_{i \geq 1} a_{i}\left(q^{i}-1\right)$ with $a_{i} \in\{0,1, \ldots, q-1\}$.
Theorem 24. The infinite word \mathbf{y}_{q} is the fixed point of the morphism $1 \rightarrow\left(10^{q-2}\right)^{q} 0,0 \rightarrow 0$.
Theorem 25. The first difference of the subword complexity of \mathbf{y}_{q} is the sequence given by

$$
\prod_{i \geq 0}\left(\left[q^{i} . . q^{i+1}\right] \amalg(q-1)\right),
$$

where by $w \amalg n$ for $w=a_{1} a_{2} \cdots a_{j}$ we mean $a_{1}^{n} a_{2}^{n} \cdots a_{j}^{n}$.
Proofs of these two theorems will appear in the final version of this paper.

References

[1] J.-P. Allouche. Sur la transcendance de la série formelle П. Séminaire de Théorie des Nombres de Bordeaux 2 (1990), 103-117.
[2] J.-P. Allouche, J. Betrema, and J. O. Shallit. Sur des points fixes de morphismes d'un monoïde libre. RAIRO Inform. Théor. App. 23 (1989), 235-249.
[3] H. A. Cameron and D. Wood. Pm numbers, ambiguity, and regularity. RAIRO Inform. Théor. App. 27 (1993), 261-275.
[4] F. Durand. Cobham's theorem for substitutions. J. European Math. Soc. 13 (2011), 1799-1814.
[5] A. Firicel. Quelques contributions à l'étude des séries formelles à coefficients dans un corps fini. Thèse de Doctorat, Université Claude Bernard-Lyon 1. Available at https://tel.archives-ouvertes.fr/tel-00825191, 2010.
[6] A. Firicel. Subword complexity and Laurent series. INTEGERS: Elect. J. of Combin. Number Theory 11B (2011), \#A7 (electronic).
[7] A. Flaxman, A. W. Harrow, and G. B. Sorkin. Strings with maximally many distinct subsequences and substrings. Electronic J. Combinatorics 11(1) (2004), \#R8 (electronic).
[8] A. Iványi. On the d-complexity of words. Ann. Univ. Sci. Budapest. Sect. Comput. 8 (1987), 69-90.
[9] J. Shallit. On the maximum number of distinct factors of a binary string. Graphs and Combinatorics 9 (1993), 197-200.
[10] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. Available at http://oeis.org, 2016.

[^0]: *Author partially supported by the ANR project "FAN" (Fractals et Numération), ANR-12-IS01-0002.
 ${ }^{\dagger}$ Author partially supported by NSERC.

