THE GROWTH OF DIGITAL SUMS OF POWERS OF TWO

DAVID G RADCLIFFE

In this note, we give an elementary proof that $s(2^n) > \log_4 n$ for all n, where s(n) denotes the sum of the digits of n written in base 10. In particular, $\lim_{n\to\infty} s(2^n) = \infty$.

The reader will notice that this lower bound is very weak. The number of digits of 2^n is $\lfloor n \log_{10} 2 \rfloor + 1$, so it is natural to conjecture that

$$\lim_{n \to \infty} \frac{s(2^n)}{n} = \frac{9}{2} \log_{10} 2.$$

However, this conjecture remains open[2].

In 1970, H. G. Senge and E. G. Straus proved that the number of integers whose sum of digits is less than a fixed bound with respect to the bases a and b is finite if and only if $\log_b a$ is rational[1]. As the sum of the digits of a^n in base a is 1, this result implies that

$$\lim_{n \to \infty} s(a^n) = \infty$$

for all positive integers a except powers of 10. This work was extended by C. L. Stewart, who gave an effectively computable lower bound for $s(a^n)$ [3]. However, this lower bound is asymptotically weaker than our bound, and Stewart's proof relies on deep results in transcendental number theory.

We begin with two simple lemmas.

Lemma 1. Every positive integer N can be expressed in the form

$$N = \sum_{i=1}^{m} d_i \cdot 10^{e_i}$$

where d_i and e_i are integers so that $1 \leq d_i \leq 9$ and

$$0 \le e_1 < e_2 < \dots < e_m.$$

Furthermore,

$$s(N) = \sum_{i=1}^{m} d_i \ge m.$$

Proof. The proof is by strong induction on N. The case N < 10 is trivial. Suppose that $N \ge 10$. By the division algorithm, there exist integers $n \ge 1$

Date: May 11, 2016.

and $0 \le r \le 9$ so that N = 10n + r. By the induction hypothesis, we can express n in the form

$$n = \sum_{i=1}^{m} d_i \cdot 10^{e_i}.$$

If r = 0, then

$$N = \sum_{i=1}^{m} d_i \cdot 10^{e_i + 1}$$

and if r > 0 then

$$N = r \cdot 10^0 + \sum_{i=1}^m d_i \cdot 10^{e_i + 1}.$$

In either case, N has an expression of the required form.

Lemma 2. Let $2^n = A + B \cdot 10^k$ where A, B, k, n are positive integers and $A < 10^k$. Then $A \ge 2^k$.

Proof. Since $2^n > 10^k > 2^k$, it follows that n > k, so 2^k divides 2^n . But 2^k also divides 10^k , therefore 2^k divides A. But A > 0, so $A \ge 2^k$. \Box

We use these lemmas to establish a lower bound on $s(2^n)$. Write

$$2^n = \sum_{i=1}^m d_i \cdot 10^{e_i}$$

so that the conditions of Lemma 1 hold, and let k be an integer between 2 and m. Then $2^n = A + B \cdot 10^{e_k}$ where

$$A = \sum_{i=1}^{k-1} d_i \cdot 10^{e_i}$$

and

$$B = \sum_{i=k}^{m} d_i \cdot 10^{e_i - e_k}.$$

Since $A < 10^{e_k}$, Lemma 2 implies that $A \ge 2^{e_k}$. Therefore,

$$2^{e_k} \le A < 10^{e_{k-1}+1}$$

which implies that

$$e_k \le \lfloor (\log_2 10)(e_{k-1}+1) \rfloor$$

We prove that $e_k < 4^{k-1}$ for all k. It is clear that $e_1 = 0$, else 2^n would be divisible by 10. From the inequality above, we have $e_2 \leq 3$, $e_3 \leq 13$,

 $e_4 \leq 46, e_5 \leq 156$, and $e_6 \leq 521$. If $k \geq 7$ then $e_{k-1} \geq 5$, so

$$e_k < (\log_2 10)e_{k-1} + (\log_2 10)$$

$$< \frac{10}{3}e_{k-1} + \frac{10}{3}$$

$$\leq \frac{10}{3}e_{k-1} + \frac{2}{3}e_{k-1}$$

$$= 4e_{k-1}.$$

Therefore, $e_k < 4^{k-1}$ for all k, by induction.

We are now able to prove the main result. Note that

$$2^n < 10^{e_m + 1} \le 10^{4^{m-1}}$$

since 10^{e_m} is the leading power of 10 in the decimal expansion of 2^n .

Taking logarithms gives

$$\begin{split} & 4^{m-1} > n \log_{10} 2 \\ & 4^{m-1} > n/4 \\ & 4^m > n \\ & m > \log_4 n \end{split}$$

hence

$$s(2^n) > \log_4 n.$$

In particular,

$$\lim_{n \to \infty} s(2^n) = \infty.$$

References

- H. G. Senge and E. G. Straus. PV-numbers and sets of multiplicity. *Period. Math. Hungar.*, 3:93–100, 1973. Collection of articles dedicated to the memory of Alfréd Rényi, II.
- [2] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. A001370.
- [3] C. L. Stewart. On the representation of an integer in two different bases. J. Reine Angew. Math., 319:63–72, 1980.