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WILF CLASSIFICATION OF TRIPLES OF 4-LETTER PATTERNS

DAVID CALLAN, TOUFIK MANSOUR, AND MARK SHATTUCK

Abstract. We determine all 242 Wilf classes of triples of 4-letter patterns by showing that there
are 32 non-singleton Wilf classes. There are 317 symmetry classes of triples of 4-letter patterns
and after computer calculation of initial terms, the problem reduces to showing that counting
sequences that appear to be the same (agree in the first 16 terms) are in fact identical. The
insertion encoding algorithm (INSENC) accounts for many of these and some others have been
previously counted; in this paper, we find the generating function for each of the remaining 36
triples and it turns out to be algebraic in every case. Our methods are both combinatorial and
analytic, including decompositions by left-right maxima and by initial letters. Sometimes this
leads to an algebraic equation for the generating function, sometimes to a functional equation
or a multi-index recurrence that succumbs to the kernel method. A particularly nice so-called
cell decomposition is used in one case and a bijection is used for another.

Keywords: pattern avoidance, Wilf-equivalence, kernel method, insertion encoding algorithm

1. Introduction

In recent decades pattern avoidance has received a lot of attention. It has a prehistory in the work
of MacMahon [12] and Knuth [8] but the paper that really sparked the current interest is by Simion
and Schmidt [15]. They thoroughly analyzed 3-letter patterns, including a bijection between 123-
and 132-avoiding permutations, thereby explaining the first (nontrivial) instance of what is, in
modern terminology, a Wilf class. Since then the problem has been addressed on several other
discrete structures, such as compositions, k-ary words, and set partitions; see, e.g., the texts [6,13]
and references contained therein.

Permutations avoiding a single 4-letter pattern have been well studied (see, e.g., [17,18,20]). There
are 56 symmetry classes of pairs of 4-letter patterns, for all but 8 of which the avoiders have been
enumerated [1]. Le [11] established that these 56 symmetry classes form 38 distinct Wilf classes.
Vatter [19] showed that of these 38, 12 can be enumerated with regular insertion encodings (the
INSENC algorithm). Some of these generating functions were computed by hand by Kremer and
Shiu [9].

Much less is known about larger sets/longer patterns. Here, we consider the 317 symmetry classes
of triples of 4-letter patterns and determine their Wilf classes. First, we used the software of
Kuszmaul [10] to compute the initial terms {|Sn(T )|}16n=1 for each symmetry class of 3 patterns in
S4, see Table 2. There are 242 distinct 16-term sequences among the 317, giving a lower bound of
242 on the number of Wilf classes. We will show that whenever such sequences agree in the first
16 terms, they are identical, and so 242 is also an upper bound. To do so, we find the generating
function for every triple whose 16-term counting sequence is repeated in Table 2. Thirty-eight of
them can be found by INSENC and some others have already been counted; these are referenced
in Table 1 at the end of this introduction. Here we count the rest, amounting to 36 triples with 15
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distinct counting sequences. Table 1 is a compendium of the results. Summarizing, there are 242
Wilf classes of triples of 4-letter patterns, of which 210 are singleton (trivial) and 32 contain more
than one symmetry class (nontrivial). Enumeration of the trivial Wilf classes will be treated in a
forthcoming paper.

Theorem 1 (Main Theorem). There are exactly 242 Wilf classes (32 nontrivial Wilf classes)
of triples of 4-letter patterns in permutations, see Tables 1 and 2.

Table 1: Nontrivial Wilf classes of three 4-letter patterns with numbering taken
from Table 2.

Start of Table

No. T
∑

n≥0 |Sn(T )|xn Reference

6 {1432,2134,3412}, {1234,1432,3412} 1−6x+16x2−22x3+21x4−8x5+2x6

(1−x)7
INSENC

50 {2143,3412,2341}, {2143,2341,4231}
{3412,1432,1243}

1−6x+13x2−11x3+5x4

(1−x)2(1−2x)(1−3x+x2)
Thm. 3, 4, 5

55 {1342,3124,4213}, {1234,2143,4123} INSENC
{1324,2143,2341}

1−6x+12x2−8x3+3x4−x5

(1−x)(1−3x+x2)2 Thm. 8

56 {1342,2143,4123}, {1432,3412,4123} 1−5x+8x2−5x3+3x4

(1−x)2(1−4x+3x2−x3)
INSENC

78 {1324,1342,4312}, {1234,2413,3412} 1−8x+26x2−42x3+36x4−14x5

(1−x)3(1−2x)3
INSENC

94 {1432,2134,4132}, {1234,1432,4132} 1−8x+25x2−37x3+27x4−9x5

(1−3x+x2)(1−x)2(1−2x)2
INSENC

108 {1432,3124,4123}, {1324,1432,4123} 1−7x+17x2−15x3+4x4−2x5

(1−2x)(1−3x+x2)2
INSENC

112 {1243,1432,2134}, {1432,3142,4123} 1−4x+4x2−3x3+x4

(1−x+x2)(1−4x+2x2)
INSENC

126 {2431,4213,1324}, {3142,4123,1234} 1−7x+18x2−20x3+11x4−2x5

(1−x)2(1−3x+x2)2
INSENC

127 {1342,2413,4312}, {1243,2341,2413} 1−8x+24x2−33x3+22x4−7x5

(1−x)3(1−3x)(1−3x+x2)
INSENC

129 {1432,2413,3124}, {1432,2143,3124} (1−x)2(1−3x+x2)
1−6x+12x2−11x3+3x4−x5 INSENC

157 {1324,1342,4213}, {1432,3124,4132} (1−x)(1−6x+11x2−4x3)

(1−2x)(1−3x+x2)2
INSENC

166 {3412,3142,1243}, {3412,3142,1324} 1−9x+30x2−44x3+27x4−7x5

(1−3x)(1−x)(1−3x+x2)2
Thm. 10, 12

170 {3142,4231,4321}, {1234,1243,2413} (1−3x+x2)2

(1−x)(1−2x)(1−4x+2x2)
INSENC

171 {3124,1342,4123}, {1342,1324,4123} 1−4x+5x2−x3+(1−4x+3x2−x3)
√

1−4x

(1−x)(1−3x+x2)(1−2x+
√

1−4x)
Thm. 13, 17

173 {1342,1423,4213}, {1423,2341,2431} 1−5x+8x2−7x3+2x4

1−6x+12x2−13x3+6x4−x5 INSENC

174 {1432,3412,3421}, {1342,3412,4312} INSENC

{2134,2341,2413}, {1342,3142,4312} 1−6x+10x2−3x3+x4

(1−3x+x2)(1−4x+2x2)
Thm. 18, INSENC

{2143,2314,2341}, {2143,2314,2431} Thm. 20, 21

177 {2143,2341,2413}, {2143,2341,3241} 1−4x+3x2−x3

1−5x+6x2−3x3 Thm. 22, 23

191 {1342,2134,2413}, {1324,1432,3124} Thm. 24, INSENC
{1423,2134,2413}, {3142,4132,4321}

(1−x)(1−2x)(1−3x)

1−7x+16x2−14x3+3x4 INSENC

196 {1342,3142,4213}, {1324,1432,2134} INSENC
{2143,2431,3241}, {1342,3142,4123}

1−5x+7x2−4x3

1−6x+11x2−9x3+2x4 Thm. 25, 27

201 {3142,1324,1243}, {1342,1423,2314} 1−3x+x2

1−x
C(x)3 Thm. 28, 31

203 {3142,1432,1324}, {3124,1423,1234} 1−x

2−2x−(1−x−x2)C(x)
Thm. 32, 35

215 {1243,2134,2143}, {1234,1243,2143}
{1423,2314,2413}, {1423,1432,4123}

1−4x+2x2

(1−x)(1−4x+x2)
INSENC

218 {1342,2314,2413}, {3142,1324,1423}
{3124,1423,1243}

(1−2x)(1+
√

1−4x)

x2+(2−4x+x2)
√

1−4x
Thm. 36, 37, 40
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Continuation of Table 1

No. T
∑

n≥0 |Sn(T )|xn Reference

221 {2413,3142,1324}, {2143,3142,1324}
{2143,1324,1423}, {3142,4132,1243}
{3142,4123,1423}, {4132,1432,1243} 1 + 1−2x

2(1−x)

(

1√
1−4x

− 1
)

[4]

{4132,1342,1324}
229 {2413,3142, 2341}, {2143,1342,1423}

{2134,1342,1423}
1−2x+2x2−

√
1−8x+20x2−24x3+16x4−4x5

2x(1−x+x2)
Thm. 41, 44, 47

233 {2143,1324,1243}, {2134,1324,1243}
{2134,1243,1234}, {3142,4132,1432}
{3142,4132,1342}, {3142,4132,1423}
{3142,1342,1324}, {3124,1342,1324}

2(1−4x)

2−9x+4x2−x
√
1−4x

[5]

{3124,1324,1423}, {4132,1432,1324}
{4132,4123,1423}, {1342,4123,1423}

234 {2143,2413,2314}, {3142,1342,1243} (1−x)2−
√

(1−x)4−4x(1−2x)(1−x)

2x(1−x)
Thm. 48, 49

235 {1423,1432,2143}, {3142,1432,1423} FT (x) = 1− x+ xFT (x)
{1234,1243,2314} +x(1− 2x)F 2

T
(x) + x2F 3

T
(x)

Thm. 53, 54, 57

236 {1423,3124,4123}, {1342,1432,4132}
{1324,1423,1432}, {1243,1324,1423} 1−5x+(1+x)

√
1−4x

1−5x+(1−x)
√

1−4x
[3]

{1234,1243,1423}
238 {1423,2413,3142}, {2134,2143,2413}

{1342,1423,1234}, {1342,1423,1324} 3−2x−
√

1−4x−
√

2−16x+4x2+(2+4x)
√
1−4x

2(1−
√

1−4x)
Thm. 58, 59, 62, 63, 64

{1342,1423,1243}
239 {2413,3412,3142}, {4312,3412,4132}

{3412,3142,1342}, {3142,1432,1342}
{3142,1342,1423}, {3124,1324,1243}

2

1+x+
√

1−6x+5x2
[14]

{1432,1423,1243}, {1324,1423,1234}
{4123,1423,1243}

End of Table

2. Preliminaries and Notation

We say a permutation is standard if its support set is an initial segment of the positive integers,
and for a permutation π whose support is any set of positive integers, St(π) denotes the standard
permutation obtained by replacing the smallest entry of π by 1, next smallest by 2, and so on. As
usual, a standard permutation π avoids a standard permutation τ if there is no subsequence ρ of
π for which St(ρ) = τ . In this context, τ is a pattern, and for a list T of patterns, Sn(T ) denotes
the set of permutations of [n] = {1, 2, . . . , n} that avoid all the patterns in T .

A permutation has an obvious representation as a matrix diagram,

•

•

•

matrix diagram of the permutation 312

and it will often be convenient to use such diagrams where shaded areas always indicate regions
that contain no entries (blank regions may generally contain entries but in a few cases, as noted
and clear from the context, they don’t).
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The eight symmetries of a square, generated by rotation and reflection, partition patterns and sets
of patterns into symmetry classes on each of which the counting sequence for avoiders is obviously
constant. Thus if π avoids τ then, for example, π−1 avoids τ−1 since inversion corresponds to
flipping the matrix diagram across a diagonal. It sometimes happens (and remarkably often) that
different symmetry classes have the same counting sequence, and all symmetry classes with a given
counting sequence form a Wilf class. Thus Wilf classes correspond to counting sequences.

Throughout, C(x) = 1−
√
1−4x
2x denotes the generating function for the Catalan numbers Cn :=

1
n+1

(
2n
n

)
=
(
2n
n

)
−
(

2n
n−1

)
. As is well known [2], C(x) is the generating function for (|Sn(π)|)n≥0

where π is any one of the six 3-letter patterns. Occasionally, we need the generating function for
avoiders of a 3-letter and a 4-letter pattern; see [2] for a comprehensive list.

A permutation π expressed as π = i1π
(1)i2π

(2) · · · imπ(m) where i1 < i2 < · · · < im and ij >

max(π(j)) for 1 ≤ j ≤ m is said to have m left-right maxima (at i1, i2, . . . , im). Given nonempty
sets of numbers S and T , we will write S < T to mean max(S) < min(T ) (with the inequality
vacuously holding if S or T is empty). In this context, we will often denote singleton sets simply
by the element in question. Also, for a number k, S − k means the set {s− k : s ∈ S}. An ascent
in π is a pair of adjacent increasing entries πj < πj+1, thus 413625 has 3 ascents, 13, 36, and 25.

Our approach is ultimately recursive. In each case, we examine the structure of an avoider, usu-
ally by splitting the class of avoiders under consideration into subclasses according to a judicious
choice of parameters which may involve, for example, left-right maxima, initial letters, ascents, and
whether resulting subpermutations are empty or not. The choice is made so that each member of
a subclass can be decomposed into independent parts. The generating function for the subclass (a
summand of the full generating function) is then the product of the generating functions for the
parts, and we speak of the “contribution” of the various parts to the generating function for that
subclass. For Case 238, we use a cell decomposition, described in that subsection. From the struc-
ture, we are able to find an equation for the generating function FT (x) :=

∑
n≥0 |Sn(T )|xn, where

T is the triple under consideration. This equation is often algebraic and, if linear or quadratic, as
it is in all but one case, easy to solve explicitly (the exception is the cubic equation for the second
triple in Case 235). It is also often a functional equation requiring the kernel method (see, e.g., [7]
for an exposition). Exceptionally, for one of the triples in Case 50, we use a bijection. In every
case, the generating function turns out to be algebraic.

Furthermore, in several cases, especially those where recurrences are made use of, we have in fact
counted members of the avoidance class in question according to the distribution of one or more
statistics, specific to the class, and have assumed particular values of the parameters to obtain
the avoidance result. In some of these cases, to aid in solving the recurrence, certain auxiliary
arrays related to the statistic are introduced. This leads to systems of linear functional equations
to which we apply the kernel method, adapted for a system. See, for example, the proofs below
of the second symmetry class in Case 171 and of the first class in Case 235. Also, in cases where
the kernel method is used, it is usually possible (if desired) to solve the functional equation in
its full generality yielding a polynomial generalization of the avoidance result. In other instances,
one may extend the result by counting members of the class in question having a fixed number of
left-right maxima. We refer the reader to the discussion following the proof of the first class in
Case 50 below.

We now proceed to find all the required generating functions in the 15 cases of repeated counting
sequence.
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3. Proofs

3.1. Case 50. The three representative triples T are:

{2143, 2341, 3412} (Theorem 3)

{2143, 2341, 4231} (Theorem 4)

{2143, 2341, 3421} (Theorem 5)

In order to deal with this case, we define the following two generating functions for each triple T :
HT (x) is the generating function for T -avoiders with first letter n− 1 and JT (x) is the generating
function for T -avoiders with second letter n.

Lemma 2. For each triple T in Case 50, HT = JT .

Proof. For each pattern in case 50, its matrix diagram is invariant under the involution “flip in the
diagonal line y = −x”. Consequently, the set of T -avoiders is invariant under this flip. But the
flip interchanges the permutations whose first letter is n− 1 and the permutations whose second
letter is n. �

Theorem 3. Let T = {2143, 2341, 3412}. Then

FT (x) =
1− 6x+ 13x2 − 11x3 + 5x4

(1− x)2(1 − 2x)(1− 3x+ x2)
.

Proof. Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(x) = 1 and G1(x) = xFT (x). For Gm(x) with m ≥ 2, we first need an equation for JT (x).
Consider a permutation π = inπ′ ∈ Sn(T ) counted by JT . Clearly, the contribution for the case

i = n−1 is given by x2

1−x . If i = 1 6= n−1, the contribution is x2(FT (x)−1). Otherwise, n ≥ 4 and

1 < i < n−1 and π can be written as inβ′(n−1)β′′ with at least one of β′, β′′ nonempty. Consider
three cases: (1) β′ is empty, (2) β′′ is empty, (3) neither of β′, β′′ is empty. In each of cases 1
and 2, the map “delete n− 1 and standardize” is a bijection to the one-size-smaller permutations
counted by JT that do not start with a 1. Hence, in each of these cases, the contribution is
x
(
JT (x)−x2FT (x)

)
. In case 3, π\{n−1} must have the form n−2 n n−3 n−4 . . . 2 1 with n−4

positions available for n− 1, namely, immediately before 1, 2, . . . , n− 4. Hence the contribution in
this case is x5/(1− x)2.

Adding all the contributions, and solving for JT (x), yields

(1) JT (x) = x2FT (x) +
x3(1− x+ x2)

(1− x)2(1− 2x)
.

Now let m ≥ 2 and let us write an equation for Gm(x). Let π = i1π
(1)i2π

(2) · · · imπ(m) ∈ Sn(T )
with exactly m left-right maxima. By considering the cases where π(1) is not empty or where π(1)

is empty and π(2) either has a letter smaller than i1 or it doesn’t (see the next figure), we obtain
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6= ∅

xm−2
(

HT (x)−
x2

1−x

)

6= ∅

xm−2
(

JT (x)− x2F (x)
)

xGm−1(x)

(2) Gm(x) = xm−2

(
HT (x) −

x2

1− x

)
+ xm−2

(
JT (x)− x2FT (x)

)
+ xGm−1(x)

for m ≥ 2. By summing (2) over m ≥ 2 and using the expressions for G0(x) and G1(x), we obtain

(3) FT (x) = 1 +
1

(1− x)2
(
HT (x) − x2/(1− x) + JT (x) + x(1 − 2x)FT (x)

)
.

Eliminating JT = HT from (1) and (3) gives the desired expression for FT . �

It is possible to generalize the preceding result as follows. Define the generating function G(x, q) =
GT (x, q) =

∑
m≥0Gm(x)qm, where T = {2143, 2341, 3412}. Multiplying both sides of (2) by qm,

and summing over m ≥ 2, implies

G(x, q) − 1− xqFT (x) =
q2

1− xq

(
2JT (x)− x2FT (x)−

x2

1− x

)
+ xq(G(x, q) − 1).

Solving for G(x, q) then yields

G(x, q) = 1 +
q

(1− xq)2

(
xFT (x) +

2x3q(1− x+ x2)

(1 − x)2(1− 2x)
− x2q

1− x

)

= 1 +
xq(1 − 6x+ 13x2 − 11x3 + 5x4 − xq(1 − 8x+ 20x2 − 19x3 + 10x4 − 2x5))

(1− x)2(1− xq)2(1− 2x)(1− 3x+ x2)
.

Taking q = 1 in the last formula, and simplifying, recovers Theorem 3:

GT (x, 1) = FT (x) =
1− 6x+ 13x2 − 11x3 + 5x4

(1 − x)2(1− 2x)(1− 3x+ x2)
.

Extracting the coefficient of qm from G(x, q) implies the generating function Gm(x) for the number
of T -avoiders having exactly m left-right maxima is given by

Gm(x) =
xm(1− 8x+ 20x2 − 19x3 + 10x4 − 2x5) +mxm+1(2 − 7x+ 8x2 − 5x3 + 2x4)

(1− x)2(1− 2x)(1 − 3x+ x2)
, m ≥ 1.

Note that taking m = 1 in the last equation gives back the obvious formula G1(x) = xFT (x).

Remark: A comparable formula for GT (x, q) may be obtained for other T in this paper where
left-right maxima are made use of in counting the avoiders in question.

We now turn our attention to the case when T = {2143, 2341, 4231}.
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Theorem 4. Let T = {2143, 2341, 4231}. Then

FT (x) =
1− 6x+ 13x2 − 11x3 + 5x4

(1− x)2(1 − 2x)(1− 3x+ x2)
.

Proof. The proof follows along the lines of Theorem 3. Let Gm(x) be the generating function for
T -avoiders with m left-right maxima. Clearly, G0(x) = 1 and G1(x) = xK, where

K =
∑

n≥0

|Sn(231, 2143)|xn =
1− 2x

1− 3x+ x2

(see [16, Seq. A001519]).

To write an equation for HT (x), we consider π = (n − 1)π′nπ′′ ∈ Sn(T ). If π′π′′ is empty, then
the contribution is x2. Otherwise, we consider the following two cases:

• the letter n − 2 belongs to π′, which implies that π = (n − 1)β′(n − 2)β′′nπ′′. If β′′π′′ is
empty, we get a contribution of x3K by deleting the letters n− 1, n− 2, n from π. If β′′π′′

is nonempty, then β′ < β′′π′′ and we get a contribution of x
1−x

(
HT (x)− x2

)
.

• the letter n−2 belongs to π′′, which implies π = (n−1)π′nβ′(n−2)β′′. If β′′ is not empty,
then π′nβ′ = 12 · · · jn(j+1)(j+2) · · · i′ where β′′ is a permutation of i′+1, . . . , n−3, so we

have a contribution of x3

(1−x)2 (K − 1). If β′′ is empty, then π′ is an increasing subsequence,

say π′ = j1j2 · · · jd with j1 < j2 < · · · < jd. If d = 0, then the contribution is x3K,
otherwise π can be written as π = (n− 1)j1j2 · · · jdnβ′(n− 2) with d ≥ 1. Since π avoids
2341 and 4231, we have π = (n − 1)12 · · · (d − 1)jdnβ

(1)β(2)(n − 2), where jdβ
(1)β(2) is a

permutation of d, d + 1, . . . , n − 3 and β(1) < jd < β(2). By considering whether β(1) is

empty or not, we get xd+3K + xd+3

1−x (K − 1). By summing over d ≥ 1, it follows that the

contribution in this case is given by x4

1−xK + x4

(1−x)2 (K − 1).

Thus, HT (x) = x2 + x3K + x
1−x(HT (x) − x2) + x3

(1−x)2 (K − 1) + x3K + x4

1−xK + x4

(1−x)2 (K − 1),

which implies

HT (x) =
(1− 3x+ 3x2 + x3)x2

(1− 2x)(1 − 3x+ x2)
.

Now, we are ready to write an equation for Gm(x), where m ≥ 2. Using the same decomposition
as in the proof of Theorem 3, we obtain

Gm(x) = xm−2(HT (x) − x2K) + xm−2(JT (x)− x2K) + xGm−1(x)

= 2xm−2HT (x)− 2xmK + xGm−1(x).

Summing over m ≥ 2, we find
∑

m≥2 Gm(x) = (2HT (x) − x2(1 + x)K)/(1 − x)2. Using the

expressions for G0(x) and G1(x), it is seen that FT (x) =
∑

m≥0Gm(x) simplifies to the desired
expression. �

Theorem 5. There is a bijection between the set of {2143, 2341, 3412}-avoiders and the set of

{2143, 2341, 3421}-avoiders.

Proof. Let An and Bn denote the subsets of Sn whose members avoid the patterns in the sets
{2143, 2341, 3412} and {2143, 2341, 3421}, respectively. We will define a bijection f from An to
Bn as follows. If n ≤ 3, we may clearly take f to be the identity, so assume n ≥ 4. Given
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π = π1π2 · · ·πn ∈ An, let a = π1 denote the first letter of π. If a = 1 so that π has the form 1π′,
define f recursively by f(π) = 1⊕ f(π′− 1). (Here, ⊕ is the direct sum, thus 132⊕ 123 = 132456.)
Henceforth, assume a > 1. We consider cases according to descending values of the position j of n
in π.

If j = n so that π has the form π′n, define f , again recursively, by f(π) = f(π′)n.

If 3 ≤ j ≤ n− 1, then π has the form aβ′nβ′′ with β′ and β′′ nonempty. We claim (i) a = n− 1,
(ii) β′ avoids 231, and (iii) β′′ is decreasing. To establish the claims, we need a preliminary result.

Lemma 6. If π ∈ An has ≥ 3 left-right maxima and 1 is not its first letter, then n is its last letter.

Proof. Suppose i1 = a, i2, . . . , im = n are the left-right maxima of π with m ≥ 3, so that all other
entries of π lie in the rectangles R2, R3, . . . , Rm and S1, S2 shown in the figure.

i1

i2

i3

im

S1 S2

R2

R3

Rm
. . .

An entry x ∈ S2 implies i1i2i3x is a forbidden 2341. Hence S2 = ∅ and so 1 ∈ S1. Now x ∈ Rm

implies i11imx is a forbidden 2143. Hence, Rm = ∅ and im = n is the last letter in π. �

Corollary 7. If π ∈ An and 1 is not its first letter and n is not its last letter, then π has at most

two left-right maxima. �

Now, if claim (i) fails, a ≤ n− 2. Since n is not the last letter of π, Corollary 7 implies that a and
n are the only two left-right maxima of π. Consequently, n − 1 occurs after n and, since j ≥ 3,
there is a letter x < a before n. But then axn(n− 1) is a forbidden 2143.

If (ii) fails and cdb is a 231 in β′, take any x ∈ β′′. If x > c, then cbnx is a forbidden 2143, while
if x < c, then cdnx is a forbidden 2341.

If (iii) fails, there are letters x < y in β′′. But then (n− 1)nxy is a forbidden 3412.

It follows from (ii) that the initial segment aβ′n of π avoids 3421, since 3421 contains the pattern
231. Define f(π) = aβ′nr(β′′), where r(β) denotes the reverse of a permutation β. It is clear that
f(π) also avoids 3421 and so is in Bn.

If j = 2 so that π begins an · · · , we introduce the condition

(4) a+ 1 6= πn and the successor and predecessor of a+ 1 in π are both < a,

and consider two cases.

• Condition (4) holds. Here, 2 ≤ a ≤ n − 2 and π must have the form aα′β′(a + 1)β′′α′′

with β′ = (a − 1)(a − 2) · · · (b + 1) and β′′ = b(b − 1) · · · 1 for some b ∈ [a − 2], where
α′ starts with n and is decreasing, and α′′ is increasing, possibly empty. Conversely, one
may verify that a permutation with a decomposition of this form belongs to An. Define
f(π) = aα′r(β′′)(a+ 1)r(β′)α′′.
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• Condition (4) fails. Here, π must have the form aα′βα′′ with β = (a−1)(a−2) · · · 1 (hence,
nonempty), where α′ starts with n and is decreasing, and α′′ is increasing, possibly empty.
Define f(π) = aα′r(β)α′′.

Finally, if j = 1 so that π = nπ′, define f recursively by f(π) = nf(π′).

The mapping f preserves left-right maxima and their positions. The reader may check that f is
reversible and is a bijection from An to Bn. �

3.2. Case 55.

Theorem 8. Let T = {1324, 2143, 2341}. Then

FT (x) =
1− 6x+ 12x2 − 8x3 + 3x4 − x5

(1 − x)(1 − 3x+ x2)2
.

Proof. Let aT (n; i1, i2, . . . , is) be the number of permutations i1i2 · · · isπ ∈ Sn(T ). The initial
conditions aT (n;n) = aT (n;n− 1) = aT (n− 1) and aT (n; 1) = |Sn−1(213, 2341)| easily follow from
the definitions. It is well known that |Sn−1(213, 2341)| = F2n−3 (Fn is the nth Fibonacci number
defined by Fn = Fn−1 + Fn−2, with F0 = 0 and F1 = 1).

Now let 2 ≤ i ≤ n− 2 and let us focus on the second letter of π. Clearly, aT (n; i, n) = aT (n− 1; i),
and also aT (n; i, j) = 0 for all j = i+2, i+3, . . . , n−1. Note that any permutation π = i(i+1)π′ ∈
Sn(T ) can be written as π = i(i + 1)π′′(i + 2)(i + 3) · · ·n, so aT (n; i, i + 1) = |Si−1(132, 2341)|
and it is also known that |Si−1(132, 2341)| = F2i−3. A permutation π = ijπ′ ∈ Sn(T ) with
n− 2 ≥ i > j ≥ 1 satisfies π = ijπ′(j+2) · · · (i− 1)(i+1)(i+2) · · ·n, where π′ is a permutation of
1, 2, . . . , j − 1, j + 1 that avoids 132 and 2341, and so aT (n; i, j) = |Sj(132, 2341)| = F2j−1. Hence

aT (n; i) = F1 + F3 + F5 + · · ·+ F2i−3 + F2i−3 + aT (n− 1; i),

which, by the fact that F1 + F3 + F5 + · · ·+ F2i−3 = F2i−2, implies for 2 ≤ i ≤ n− 2 that

aT (n; i)− aT (n− 1; i) = F2i−1.

By summing both sides of the last equation over i = 2, 3, . . . , n−2 and using the initial conditions,
we obtain for n ≥ 3,

aT (n)− aT (n− 1) = 2aT (n− 1)− aT (n− 2) + F2n−3 − F2n−5 +

n−2∑

i=2

F2i−1

= 2aT (n− 1)− aT (n− 2) + F2n−3 − F2n−5 + F2n−4 − 1

= 2aT (n− 1)− aT (n− 2) + 2F2n−4 − 1.

It is routine to solve this difference equation for the generating function FT (x) using
∑

n≥0

F2n−1x
n =

1− 2x

1− 3x+ x2
.

�

3.3. Case 166. The two representative triples T are:

{1243,3142,3412} (Theorem 10)

{1324,3142,3412} (Theorem 12)
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3.3.1. T = {1243,3142,3412}. Let bn(i) = |ST (n; i, n)| and bn(i, j) = |ST (n; i, n, j)| so that bn(i)
and bn(i, j) count T -avoiders for which the second letter is n by first letter, i, and third letter, j.
We first obtain a recurrence for bn(i, j).

Note that when the second letter is n, the conditions i = 1 and j ∈ [2, n − 2] force the last
entry to be n − 1 or 2 for else a forbidden pattern will be present. Deleting this entry gives
contributions of bn−1(1, j), bn−1(1, j − 1) to bn(1, j) according as the last entry is n − 1 or 2.
Clearly, bn(1, n − 1) = bn−1(1). Hence, for i = 1, we have the following table of recursive values
for bn(1, j):

j ∈ [2, n− 2] n− 1

bn(1, j) bn−1(1, j) + bn−1(1, j − 1) bn−1(1)

Similarly, the conditions 2 ≤ i ≤ n − 2 and j ∈ [i + 1, n − 2] force the last entry to be n − 1 or
1 and deleting it gives contributions of bn−1(i, j), bn−1(i − 1, j − 1) according as the last entry is
n− 1 or 1. Hence, for 2 ≤ i ≤ n− 2, we have the table (the straightforward verification of entries
other than j ∈ [i+ 1, n− 2] is left to the reader):

j ∈ [1, i− 2] i− 1 ∈ [i+ 1, n− 2] n− 1

bn(i, j) 0 bn−1(i − 1) bn−1(i, j) + bn−1(i− 1, j − 1) bn−1(i)

Lastly, for i = n − 1, bn(n − 1) = 1 because π = (n − 1)nπ′ ∈ Sn(T ) implies π = (n − 1)n(n −
2)(n− 3) · · · 1.
The table for i = 1 yields bn(1) =

∑n−1
j=2 bn(1, j) =

∑n−2
j=2

(
bn−1(1, j) + bn−1(1, j − 1)

)
+ bn(1, n−

1) = 3bn−1(1) − bn−2(1) for n ≥ 4. Together with the initial conditions b2 = b3 = 1, this
recurrence implies that bn(1) = F2n−5 for n ≥ 2, where Fn is the nth Fibonacci number (defined
by Fn = Fn−1 + Fn−2 for all n, with F0 = 0 and F1 = 1).

Lemma 9. Let bn =
∑n−1

i=1 |ST (n; i, n)|. Then the generating function for the sequence bn is given

by

B(x) =
∑

n≥2

bnx
n =

x2(1− 5x+ 7x2 − x3)

(1 − 3x+ x2)(1− 3x)(1 − x)
.

Proof. Clearly, bn =
∑n−1

i=1 bn(i). Using the preceding results, we have

bn = 2bn−1 +
n−3∑

i=2

n−2∑

j=i+1

bn(i, j) +
n−2∑

j=2

bn(1, j)

= 2bn−1 +

n−4∑

i=1

n−3∑

j=i+1

bn−1(i, j) +

n−3∑

i=2

n−2∑

j=i+1

bn−1(i, j) +

n−2∑

j=2

bn(1, j)

= 2bn−1 + bn−1 − 2bn−2 + bn−1 − bn−2 + F2n−7 − F2n−7

= 4bn−1 − 3bn−2 + F2n−8,

with b1 = 0, b2 = 1 and b3 = 2. Hence, by using the fact that
∑

n≥4 F2n−8x
n = x5

1−3x+x2 , we

obtain B(x) = x2(1−5x+7x2−x3)
(1−3x+x2)(1−3x)(1−x) . �
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Theorem 10. We have

FT (x) =
1− 9x+ 30x2 − 44x3 + 27x4 − 7x5

(1− 3x)(1 − x)(1 − 3x+ x2)2
.

Proof. Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(x) = 1 and G1(x) = xFT (x). Now let us write an equation for Gm(x) with m = 2. Let
π = iπ′nπ′′ ∈ Sn(T ) with two left-right maxima. If π = i(i− 1) · · · i′nπ′′, then the contribution is
B(x)/(1−x) (see Lemma 9). Otherwise, π = iπ′nπ′′ where π′ is a permutation on {i′, i′+1, . . . , i−1}
that avoids T and has at least one ascent. Since π avoids 1243, π′′ = (i′ − 1) · · · 21. Thus, the

contribution is given by x2

1−x

(
FT (x) − 1/(1− x)

)
. Hence,

G2(x) =
1

1− x
B(x) +

x2

1− x

(
FT (x)−

1

1− x

)
.

Now let us write an equation forGm(x) withm ≥ 3. Let π = i1π
(1) · · · imπ(m) ∈ Sn(T ) with exactly

m left-right maxima, i1, i2, . . . , im. Since π avoids 1243, we have that π(2), . . . , π(m) are all < i2. If
π(1) has an ascent, then π(1) > π(2) > · · · > π(m) and π(1) avoids T and π(2) · · ·π(m) = (i′− 1) · · · 1
with i′ the minimal letter of π(1). Thus, the contribution is given by xm

(1−x)m−1

(
FT (x)− 1/(1−x)

)
.

From now, we can assume that π(1) = (i − 1) · · · (i′ + 1)i′. Let s ∈ {2, 3, . . . ,m} be the minimal
number such that π(s) contains a letter from the set [i′ − 1]. We have the following cases:

• s = 2: Here π′(2)π(3) · · ·π(m) = (i′ − 1) · · · 21, where π′(2) is the subsequence of all letter
of π(2) that are smaller than i′. Hence, by the definition of B(x) (see Lemma 9), we

get a contribution of xm−2

(1−x)m−1

(
B(x)− x2K(x)

)
, where K(x) =

∑
n≥0 |Sn(132, 3412)|xn =

1−2x
1−3x+x2 (see [16, Seq. A001519]).

• s = 3, 4, . . . ,m− 1: Here π(2) > π(3) > · · · > π(s−1) > i1 > π(s) > π(s+1) > · · · > π(m) and
π(s) · · ·π(m) = (i′ − 1) · · · 21 and π(3) · · ·π(s−1) = (i′1 − 1) · · · (i1 + 2)(i1 + 1), where i′1 is
the minimal letter of π(2). Moreover, π(2) avoids 132 and 3412. Thus, the contribution is

given by xm+1

(1−x)mK(x).

• s = m. Here i′ = 1 and π(2) > π(3) > · · · > π(m) > i1 and π(3) · · ·π(s−1) = (i′1− 1) · · · (i1+
2)(i1 + 1) and π(2) avoids 132 and 3412, where i′1 is the minimal letter of π(2). Thus, the

contribution is given by xm

(1−x)mK(x).

By the preceding cases, we obtain for m ≥ 3,

Gm(x) =
xm

(1− x)m−1

(
FT (x)−

1

1− x

)
+

xm−2

(1 − x)m−1

(
B(x) − x2K(x)

)

+ (m− 3)
xm+1

(1 − x)m
K(x) +

xm

(1 − x)m
K(x).
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Since FT (x) =
∑

m≥0 Gm(x), we have

FT (x) = 1 + xFT (x) +
1

1− x
B(x) +

∑

m≥2

xm

(1− x)m−1

(
FT (x)−

1

1− x

)

+
∑

m≥3

xm−2

(1 − x)m−1
(B(x) − x2K(x)) +

∑

m≥4

(m− 3)
xm+1

(1 − x)m
K(x)

+
∑

m≥3

xm

(1 − x)m
K(x).

After several algebraic operations, and solving for FT (x), we complete the proof. �

3.3.2. T = {1324,3142,3412}. Let bn(i, j) = |ST (n; i, n, j)|. Then, in analogy with the previous
subsection,

bn(i, j) = F2n−2j−3, 2 ≤ i+ 1 < j ≤ n− 2,

with bn(i + 1, i) = bn(i, i+ 1) = bn(i, n− 1) = bn−1(i) and bn(n− 2, n− 1) = 1.

Lemma 11. Let bn(i) = |ST (n; i, n)|, bn =
∑n−1

i=1 bn(i), and B(x) =
∑

n≥2 bnx
n. Then

B(x) =
x2(1− 5x+ 7x2 − x3)

(1 − 3x+ x2)(1− 3x)(1 − x)
.

Proof. From the preceding results, we have

bn = 3bn−1 − 1 +
n−4∑

j=1

F2j−1(n− 3− j),

with b2 = 1. Thus,

bn − bn−1 = 3bn−1 − 3bn−2 + F1 + F3 + · · ·+ F2n−9,

which, by the fact that F1 + F3 + · · ·+ F2n−11 = F2n−8, implies

bn = 4bn−1 − 3bn−2 + F2n−8,

with b2 = 1 and b3 = 2. This is the same recurrence as in Lemma 9. �

Theorem 12. We have

FT (x) =
1− 9x+ 30x2 − 44x3 + 27x4 − 7x5

(1− 3x)(1 − x)(1 − 3x+ x2)2
.

Proof. Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(x) = 1 and G1(x) = xFT (x). By using similar arguments as in the proof of Theorem 10, we
obtain that (see Lemma 11) G2(x) = K(x)B(x).

Now let us write an equation for Gm(x) with m ≥ 3. Let π = i1π
(1) · · · imπ(m) ∈ Sn(T ) with

exactly m left-right maxima. Since π avoids 1324, we have that i1 > π(1) > · · · > π(m−1). Let
s ∈ {2, 3, . . . ,m−1} (maybe s does not exist) be the minimal number such that π(s) 6= ∅. We have
the following cases:

• s = 2, 3, . . . ,m − 1: Here π(2) = π(3) = · · · = π(s−1) = ∅ and there is no letter in π(m)

between is−1 and is. Thus, the contribution is given by xs

1−xGm+1−s(x).
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• s does not exist. Here π(2) = π(3) = · · · = π(m−1) = ∅. So there two cases, either π(m)

contains a letter from the set {i1 + 1, . . . , im−1 − 1} or not. If yes, then π(m) can be
written as π(m) = π′(im−1 − 1) · · · (im−2 + 2)(im−2 + 1) · · · (i1 − 1) · · · 21 with π′ and π(1)

avoiding 132 and 3412. Thus, the contribution is given by xm

1−x (1/(1 − x)m−2 − 1)K(x)2.

Otherwise, π(m) does not contain any letter from the set {i1 + 1, . . . , im−1 − 1}, which
yields a contribution of xm−2G2(x).

Combining the previous cases, we obtain

Gm(x) = xm−2G2(x) +
xm

1− x
(1/(1− x)m−2 − 1)K(x)2 +

m−1∑

s=2

xs

1− x
Gm+1−s(x).

Since FT (x) =
∑

m≥0 Gm(x), we have

FT (x) = 1 + xFT (x) +
1

1− x
K(x)B(x) +

∑

m≥3

xm

1− x
(1/(1− x)m−2 − 1)K(x)2

+
x2

(1− x)2
(FT (x) − 1− xFT (x)).

Solving for FT (x) and using Lemma 11, we complete the proof. �

3.4. Case 171. The two representative triples T are:

{1423,2314,2341} (Theorem 13)

{1324,1342,4123} (Theorem 17)

3.4.1. T = {1423,2314,2341}.

Theorem 13. Let T = {1423, 2314, 2341}. Then

FT (x) =
1− 4x+ 5x2 − x3 + (1− 4x+ 3x2 − x3)

√
1− 4x

(1 − x)(1 − 3x+ x2)(1− 2x+
√
1− 4x)

.

Proof. Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(x) = 1 and G1(x) = xFT (x). Next, we consider m ≥ 3. If π = i1π

(1) · · · imπ(m) avoids T then

π(1) < π(2) < · · · < π(m−2) < π(m−1)imπ(m)

and π(1) avoids 231 and 1423 (due to the presence of im), π(j) = (ij+1 − 1) · · · (ij + 2)(ij + 1) for
j = 2, 3, . . . ,m− 2, and

im−1π
(m−1)imπ(m) = im−1(im−1 − 1) · · · ℓ im(im − 1) · · · (im−1 + 1) ℓ (ℓ− 1) · · · (im−2 + 1) .

These results are explained in the next figure, where entries are decreasing as indicated by arrows
to avoid 1423, and other shaded regions are empty to avoid the indicated pattern.
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. .
.

i1

im−1

im

π(1) 23
•
14

234
•
1

There are m left-right maxima and m regions containing arrows (to be filled with an arbitrary
number of “balls”), and the generating function K :=

∑
n≥0 |Sn(231, 1423)|xn for {231, 1423}-

avoiders is 1−2x
1−3x+x2 [16, Seq. A001519]. Hence, for m ≥ 3,

Gm(x) =
xm

(1− x)m
K.

Now we find an explicit formula for G2(x). In order to do that we define the following notation.
Let gk(x) denote the generating function for T -avoiders in Sn with two left-right maxima and
leftmost letter n − 1 − k, 0 ≤ k ≤ n − 2. Let g′k(x) to be the generating function for T -avoiders
with two left-right maxima (n− 1− k)n in the two leftmost positions.

First, we find an equation for gk(x). Let π = (n− 1−k)π′nπ′′ ∈ Sn(T ) with two left-right maxima
and leftmost letter n − 1 − k. If π′ is empty, then the contribution is g′k(x). Otherwise, since π′

avoids 2314, π′ has the form β′d β′′ where β′ < β′′ < d. If β′ is empty, then the contribution is
x
∑

j≥0 gk+j(x), upon considering deletion of n− 1− k. If β′ is not empty, then π has the form

(n− 1− k)β′d(d− 1) · · · d′n(n− 1) · · · (n− k)(n− 2− k) · · · (d+ 1)(d′ − 1) · · · (d′′ + 1),

for some d′, where d′′ is the largest letter of β′. The contributions are xk+2 for {n − k − 1, n −
k, . . . , n}, x for d, 1/(1 − x)3 for the 3 decreasing sequences, and K − 1 for β′, hence xk+3(K−1)

(1−x)3

altogether. By combining all the contributions, we obtain

gk(x) = g′k(x) + x
∑

j≥0

gk+j(x) +
xk+3(K − 1)

(1− x)3

for k ≥ 1, with initial condition g0(x) = x(FT (x) − 1) (delete n − 1, which can play no role in a
forbidden pattern).

Define the generating function G(x, u) =
∑

k≥0 gk(x)u
k. Note that G(x, 1) = G2(x) since G2(x) =∑

k≥0 gk(x). The preceding recurrence for gk(x) can now be written as

G(x, u) = G′(x, u) + x(FT (x)− 1)− x2FT (x) +
xu

1− u

(
G(x, 1)−G(x, u)

)
+

x4u(K − 1)

(1− x)3(1 − xu)
,

(5)

where G′(x, u) =
∑

k≥0 g
′
k(x)u

k.

Next, let us write an equation for g′k(x). So suppose π = (n− 1− k)nπ′ ∈ Sn(T ) has two left-right
maxima. Clearly, g′0(x) = x2FT (x) (delete the first two letters, n− 1 and n). For k ≥ 1, π can be
written as π = (n− 1− k)nβ′(n− 1)β′′. If β′ is empty, then the contribution is given by xg′k−1(x).
Otherwise, similar to the gk case, β′ has the form γ′dγ′′ where γ′ < γ′′ < d, and by considering
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whether γ′ is empty or not, we obtain the contribution x2
∑

j≥0 gk−1+j(x)+
xk+3(K−1)

(1−x)3 . Combining

all the previous cases yields

g′k(x) = xg′k−1(x) + x2
∑

j≥0

gk−1+j(x) +
xk+3(K − 1)

(1 − x)3

for k ≥ 1, with g′0(x) = x2FT (x). Multiply by uk and sum over k ≥ 0 to obtain

G′(x, u) = xuG′(x, u) + x2FT (x) +
x2u

1− u

(
G(x, 1)− uG(x, u)

)
+

x4u

(1− x)3(1− xu)
(K − 1).(6)

Solving (6) for G′(x, u), and substituting into (5), yields

1− u+ xu2

1− u
G(x, u) =

x((1 − x)3 + xu(2− xu)(x2 − (1− x)3))

(1− x)3(1 − xu)

− x(1 − xu+ x2u)FT (x)−
x4u(2− xu)K

(1− x)3(1 − xu)
− xu(1 + x− xu)

1− u
G(x, 1) .

To solve the preceding functional equation, we apply the kernel method and take u = C(x), which
cancels out the G(x, u) term. A calculation, using the identity xC(x)2 = C(x) − 1 to simplify the
result (best done by computer), now yields

G(x, 1) =
x(−1 + (2− x)C(x))

1 + xC(x)
FT (x)−

x
(
1− 5x+ 9x2 − 4x3 + x4 − x2C(x)

)

(1 − x)2 (1− 3x+ x2)
(
1 + x(1 − C(x))

) .

Hence, since FT (x) =
∑

m≥0 Gm(x) and G2(x) = G(x, 1), we obtain

FT (x) = 1 + xFT (x) +G(x, 1) +
x3K

(1− x)2(1− 2x)
,

which leads to

FT (x) =
1− 4x+ 5x2 − x3 + (1− 4x+ 3x2 − x3)

√
1− 4x

(1 − x)(1 − 3x+ x2)(1− 2x+
√
1− 4x)

,

as required. �

3.4.2. T = {1324,1342,4123}. For this case, we define a(n; i1, i2, . . . , ik) for n ≥ k to be the
number of T -avoiding permutations of length n whose first k letters are i1, i2, . . . , ik. Let a(n) =∑n

i=1 a(n; i) for n ≥ 1 and Ti,j be the subset of permutations enumerated by a(n; i, j). It is
convenient to consider separately the cases when either the second or third letter equals n. To
this end, let e(n; i) = a(n; i, n) for 1 ≤ i ≤ n − 2 (with e(n;n − 1) defined to be zero) and
f(n; i, j) = a(n; i, j, n) for 4 ≤ i ≤ n − 1 and 1 ≤ j ≤ i − 3. The arrays a(n; i, j), e(n; i) and
f(n; i, j) are determined recursively as follows.

Lemma 14. We have

(7) a(n; i, i− 2) = a(n− 2; i− 2) + e(n− 1; i− 2) +

i−3∑

j=1

a(n− 1; i− 1, j), 3 ≤ i ≤ n,

(8) a(n; i, j) = f(n; i, j) +

j−1∑

ℓ=1

a(n− 1; i− 1, ℓ), 4 ≤ i ≤ n− 1 and 1 ≤ j ≤ i− 3,
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(9) a(n;n, j) =

j∑

ℓ=1

a(n− 1;n− 1, ℓ), 1 ≤ j ≤ n− 3,

(10) e(n; i) = e(n− 1; i) +
i∑

j=1

a(n− 1;n− 1, j), 1 ≤ i ≤ n− 3,

and

(11) f(n; i, j) = f(n− 1; i, j) +

j−1∑

ℓ=1

a(n− 2;n− 2, ℓ), 4 ≤ i ≤ n− 2 and 1 ≤ j ≤ i− 3,

with e(n;n − 2) = Cn−2 for n ≥ 3 and f(n;n − 1, j) = a(n − 1;n − 1, j) for 1 ≤ j ≤ n − 4.
Furthermore, we have a(n; i, j) = 0 if n ≥ 4 and 1 ≤ i < j − 1 < n− 1, a(n; i, i+ 1) = a(n− 1; i)
if 1 ≤ i ≤ n− 1, and a(n; i, i− 1) = a(n− 1; i− 1) if 2 ≤ i ≤ n.

Proof. The formulas for a(n; i, i + 1) and a(n; i, i − 1), and for a(n; i, j) when i < j − 1 < n − 1,
follow from the definitions. In the remaining cases, let x denote the third letter of a T -avoiding
permutation. For (7), note that members of Ti,i−2 when i < n must have x = i − 1, x = n
or x < i − 2, lest there be an occurrence of 1324 or 1342. This is seen to give a(n − 2; i − 2),

e(n− 1; i− 2) and
∑i−3

j=1 a(n− 1; i− 1, j) possibilities, respectively, which implies (7). Observe that

(7) also holds when i = n since e(n−1;n−2) = 0, by definition. For (8), note that members of Ti,j
where i < n and j ≤ i−3 must have x = n or x < j (as x = j+1 is not permitted due to 4123 and
j + 2 ≤ x ≤ n− 1 is not due to 1324, 1342). In the second case, the letter j becomes extraneous
and thus may be deleted since i, x imposes a stricter requirement on later letters than does j, x
(with x < j making j redundant with respect to 1324, 1342). Relation (8) then follows from the
definitions. For (9), note that members of Tn,j where j ≤ n− 3 must have x = n− 1 or x < j in
order to avoid 4123, which accounts for the ℓ = j term and the remaining terms, respectively, in
the sum on the right-hand side.

For (10), note that members of Ti,n where i ≤ n − 3 must have x = n − 1, x < i or x = i + 1.
The letter n may be deleted in the first case, while the i may be deleted in the latter two (as
n, x imposes a stricter requirement on subsequent letters than i, x). Thus, there are e(n − 1; i),∑i−1

j=1 a(n − 1;n − 1, j) and a(n − 1;n − 1, i) possibilities, respectively, which implies (10). That

e(n;n−2) = Cn−2 follows from the fact that members of Tn−2,n are synonymous with 123-avoiding
permutations of length n− 2 which are well known to be enumerated by Cn−2 (note that n− 2 is
redundant due to n). Finally, to show (11), note that permutations counted by f(n; i, j) must have
fourth letter y equal n− 1 or less than j. If y = n− 1, then the letter n may be deleted and thus
there are f(n− 1; i, j) possibilities, by definition. If y < j, then n, y imposes a stricter requirement
on the remaining letters with respect to 4123 than does i, y or i, j, with the i and j also redundant
with respect to 1324 or 1342 due to y. Thus, both i and j may be deleted in this case, yielding∑j−1

ℓ=1 a(n−2;n−2, ℓ) possibilities, which implies (11). That f(n;n−1, j) = a(n−1;n−1, j) holds
for 1 ≤ j ≤ n− 4 since the letter n may be deleted in this case, which completes the proof. �

In order to solve the recurrences of the prior lemma, we introduce the following functions: an(u) =∑n
i=1 a(n; i)u

i for n ≥ 1, bn,i(v) =
∑i−2

j=1 a(n; i, j)v
j for 3 ≤ i ≤ n, bn(u, v) =

∑n−1
i=1 bn,i(v)u

i for
n ≥ 3,

cn,i(v) = a(n− 1; i) + a(n− 1; i− 1) + bn,i(v), 1 ≤ i ≤ n− 1,
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cn(u, v) =
∑n−1

i=1 cn,i(v)u
i for n ≥ 2, en(u) =

∑n−2
i=1 e(n; i)ui for n ≥ 3, fn,i(v) =

∑i−3
j=1 f(n; i, j)v

j

for 4 ≤ i ≤ n− 1, and fn(u, v) =
∑n−1

i=4 fn,i(v)u
i for n ≥ 5.

By the definitions, we have

(12) an(u) = cn(u, 1) + en(u) + Cn−1u
n, n ≥ 1.

Assume bn,1(v) = bn,2(v) = 0. By (7) and (8), we have for 3 ≤ i ≤ n− 1,

bn,i(v) = (a(n− 2; i− 2) + bn−1,i−1(1) + e(n− 1; i− 2))vi−2 + fn,i(v)

+
i−3∑

j=1

vj
j−1∑

ℓ=1

a(n− 1; i− 1, ℓ)

= (a(n− 2; i− 2) + e(n− 1; i− 2))vi−2 + fn,i(v) +
v

1− v
(bn−1,i−1(v) − vi−2bn−1,i−1(1)).

Multiplying both sides of the last equation by ui, and summing over 3 ≤ i ≤ n− 1, yields

bn(u, v) = u2(an−2(uv) + en−1(uv)− Cn−3(uv)
n−2) + fn(u, v)

+
u

1− v
(vbn−1(u, v)− bn−1(uv, 1)), n ≥ 3.(13)

By (7) and (9), we get

bn,n(v) = (a(n− 2;n− 2) + bn−1,n−1(1))v
n−2 +

1

1− v
(bn−1,n−1(v)− vn−2bn−1,n−1(1))

= Cn−3v
n−2 +

1

1− v
(bn−1,n−1(v) − vn−1bn−1,n−1(1)), n ≥ 3.(14)

By the definitions, we have

cn(u, v) = an−1(u) + u(an−1(u)− a(n− 1;n− 1)un−1) + bn(u, v)

= (u+ 1)an−1(u)− Cn−2u
n + bn(u, v), n ≥ 2.(15)

Multiplying both sides of (10) by ui, and summing over 1 ≤ i ≤ n− 3, gives

en(u) = e(n;n− 2)un−2 + en−1(u) +
n−3∑

j=1

a(n− 1;n− 1, j)

(
uj − un−2

1− u

)

= Cn−2u
n−2 + en−1(u) +

1

1− u
(bn−1,n−1(u)− un−2bn−1,n−1(1)), n ≥ 3.(16)

By (11), we have

fn,i(v) = fn−1,i(v) +
1

1− v

i−3∑

ℓ=1

a(n− 2;n− 2, ℓ)(vℓ+1 − vi−2), 4 ≤ i ≤ n− 2,

with

fn,n−1(v) =

n−4∑

j=1

f(n;n− 1, j)vj =

n−4∑

j=1

a(n− 1;n− 1, j)vj = bn−1,n−1(v)− Cn−3v
n−3, n ≥ 5.
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We then get

fn(u, v)− fn,n−1(v)u
n−1 = fn−1(u, v) +

1

1− v

n−4∑

ℓ=1

a(n− 2;n− 2, ℓ)vℓ+1
n−2∑

i=ℓ+3

ui

− 1

1− v

n−4∑

ℓ=1

a(n− 2;n− 2, ℓ)

n−2∑

i=ℓ+3

uivi−2

= fn−1(u, v) +
uv

(1− u)(1− v)
(u2bn−2,n−2(uv)− un−2bn−2,n−2(v))

− u

v(1 − uv)(1− v)
(u2v2bn−2,n−2(uv)− (uv)n−2bn−2,n−2(1)), n ≥ 5.(17)

Let C(x) =
∑

n≥0 Cnx
n. Define the generating functions a(x;u) =

∑
n≥1 an(u)x

n, b(x;u, v) =∑
n≥3 bn(u, v)x

n, c(x;u, v) =
∑

n≥2 cn(u, v)x
n, d(x; v) =

∑
n≥3 bn,n(v)x

n, e(x;u) =
∑

n≥3 en(u)x
n,

and f(x;u, v) =
∑

n≥5 fn(u, v)x
n. By (15) at v = 1, we have

(18) c(x;u, 1) = x(u + 1)a(x;u) + b(x;u, 1)− x2u2C(xu).

Rewriting recurrences (12)–(14), (16), and (17) in terms of generating functions, and applying (18)
to the relation obtained from (12), yields the following system of functional equations.

Lemma 15. We have

(19) (1− x(u + 1))a(x;u) = xu(1− xu)C(xu) + b(x;u, 1) + e(x;u),

(
1− xuv

1− v

)
b(x;u, v) = f(x;u, v) + xu2e(x;uv)− x3u3vC(xuv) − xu

1− v
b(x;uv, 1)

+ x2u2a(x;uv),(20)

(21)

(
1− x

1− v

)
d(x; v) = x3vC(xv) − x

1− v
d(xv; 1),

(22) (1− x)e(x;u) = x2(C(xu) − 1) +
x

u(1− u)
(ud(x;u)− d(xu; 1)) ,

and

(1− x)f(x;u, v) = xd(xu; v)− x3u2(C(xuv) − 1) +
x2uv

(1− u)(1− v)
(u2d(x;uv)− d(xu; v))

− x2u

v(1 − uv)(1− v)
(u2v2d(x;uv)− d(xuv; 1)).(23)

Note that the last three equations in the prior lemma are independent of the first two.

Lemma 16. We have

(24) d(x; v) =
x2v(1− (1 − x)C(xv))

1− x− v
,

(25) e(x;u) =
x2u(1− (1− x)C(xu))

(1− x)(1 − x− u)
,
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and

(26) f(x; 1/(1− x), 1 − x) =
1− 6x+ 9x2 − 2x3 − (1− 3x)(1 − x)

√
1− 4x

2x(1− x)2
.

Proof. Replacing x with x/v in (21) gives

(27)

(
1− x

v(1 − v)

)
d(x/v; v) =

x3

v2
C(x)− x

v(1 − v)
d(x; 1).

Applying the kernel method to (27), and taking v = 1+
√
1−4x
2 = 1

C(x) , yields

d(x; 1) = x2

(
1− 1

C(x)

)
C2(x) = x(C(x) − 1)− x2C(x) = (x − x2)C(x) − x

and thus

d(x; v) =
x3v(1− v)C(xv)

1− x− v
− x

1− x− v
(xv(1 − xv)C(xv) − xv)

=
x2v(1− (1 − x)C(xv))

1− x− v
.

Formula (25) now follows from (24) and (22). By taking u → 1/v in (23), we obtain

(1− x)f(x; 1/v, v)

= xd(x/v; v) − x3/v2(C(x) − 1) +
x2

(1 − 1/v)(1− v)
(d(x; 1)/v2 − d(x/v; v))

− x2

v2(1− v)
lim

u→1/v

u2v2d(x;uv)− d(xuv; 1)

1− uv

= xd(x/v; v) − x3/v2(C(x) − 1) +
x2

(1 − 1/v)(1− v)
(d(x; 1)/v2 − d(x/v; v))

+
x2(2d(x; 1) + d

dwd(x;w) |w=1 −x d
dxd(x; 1))

v2(1− v)
.

Substituting v = 1− x in the last expression, and using (24), yields (26). �

We can now determine the generating function FT (x).

Theorem 17. Let T = {1324, 1342, 4123}. Then

FT (x) =
1− 3x+ x2 − x3 − (1− x)3

√
1− 4x

2x(1− 4x+ 4x2 − x3)
.

Proof. In the notation above, we seek to determine 1 + a(x; 1). By (20) with u = 1/(1 − x) and
v = 1− x and by (19) with u = 1, we have

f(x; 1/(1− x), 1 − x) = − x

(1− x)2
e(x; 1) +

x3

(1− x)2
C(x) +

1

1− x
b(x; 1, 1)− x2

(1− x)2
a(x; 1),

a(x; 1) =
x(1 − x)

1− 2x
C(x) +

1

1− 2x
b(x; 1, 1) +

1

1− 2x
e(x; 1).
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Substituting the expressions for e(x; 1) and f(x; 1/(1 − x), x) from the prior lemma, and then
solving the system that results for a(x; 1) and b(x; 1, 1), we obtain

a(x; 1) =
1− 5x+ 9x2 − 9x3 + 2x4 − (1− x)3

√
1− 4x

2x(1 − 4x+ 4x2 − x3)
,

b(x; 1, 1) =
1− 8x+ 22x2 − 23x3 + 5x4 − (1− 6x+ 12x2 − 7x3 + x4)

√
1− 4x

2x(1 − 3x+ x2)
.

Hence,

1 + a(x; 1) =
1− 3x+ x2 − x3 − (1− x)3

√
1− 4x

2x(1− 4x+ 4x2 − x3)
,

as desired. �

3.5. Case 174. The three representative triples T are:

{2134,2341,2413} (Theorem 18)

{2143,2314,2341} (Theorem 20)

{2143,2314,2431} (Theorem 21)

Theorem 18. Let T = {2134, 2341, 2413}. Then

FT (x) =
1− 6x+ 10x2 − 3x3 + x4

(1 − 3x+ x2)(1− 4x+ 2x2)
.

Proof. Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(x) = 1 and G1(x) = xFT (x). Now let us write an equation for Gm(x) with m ≥ 2.

For m = 2, let π = iπ′nπ′′ ∈ Sn(T ) with two left-right maxima, i and n, and consider cases on i.
If i = n− 1, then π → π′(n− 1)π′′ is a bijection to nonempty T -avoiders of length n− 1, giving a
contribution of x(FT (x)−1). If 2 ≤ i ≤ n−2 and π′′ has the form (n−1)(n−2) · · · (i+1)π′′′, then
π → π′iπ′′′ is a bijection to T -avoiders of length i, giving a contribution of x2/(1−x)(FT (x)−1−x).

Lemma 19. If π = iπ′nπ′′ ∈ Sn(T ) has two left-right maxima, i ≤ n − 2 and π′′ does not have

the form (n− 1)(n− 2) · · · (i + 1)π′′′, then π′ = ∅ and i = 1.

Proof. Note first that all letters of [i+1, n− 1] must occur prior to any letters of [i− 1] within π′′

in order to avoid 2413. By hypothesis, there exist a, b ∈ π′′ such that i < a < b with a occurring
before b. If x ∈ π′, then ixab is a 2134. Hence, π′ = ∅. If i > 1, then 1 occurs (i) before a or (ii)
after b. If (i), i1ab is a 2134; if (ii), iab1 is a 2341, both forbidden. Hence, i = 1. �

By the lemma, the only remaining case is π = 1nπ′′ with n ≥ 3 (since n = 2 falls under the case
i = n − 1). Here, π → π′′ is a bijection to T -avoiders of length n − 2, giving a contribution of
x2(FT (x) − 1). Summing all contributions, we find

G2(x) =
x

1− x
(FT (x)− 1) + x2

(
FT (x)−

1

1− x

)
.

For m ≥ 3, let π = i1π
(1) · · · imπ(m) ∈ Sn(T ) with m left-right maxima. Then π(1) = π(2) = · · · =

π(m−2) = ∅ for else a 2134 is present; also π(m−1) > im−3 (with i0 = 0) and π(m) > im−2 or a
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2341 is present. Consequently, if there is no letter between im−3 and im−2, then π has the form
12 · · · (m− 2)π′ where π′ is a permutation of m− 1,m− 2, . . . , n with two left-right maxima that
avoids T , giving a contribution of xm−2G2(x). On the other hand, if there is a letter between im−3

and im−2, the reader may verify that π must have the form

π = 12 · · · (m− 3)im−2im−1(im−1 − 1) · · · (im−2 + 1)π′im(im − 1) · · · (im−1 + 1) ,

where π′ is a nonempty permutation of im−3 + 1, . . . , im−2 − 1 that avoids 213 and 2341. Here,
the contribution is xm

(1−x)2 (K − 1), where K =
∑

n≥0 |Sn(213, 2341)|xn = 1−2x
1−3x+x2 (see [16, Seq.

A001519]). Hence, for m ≥ 3,

Gm(x) = xm−2G2(x) +
xm

(1− x)2
(K − 1) .

Since FT (x) =
∑

m≥0 Gm(x), we have

FT (x) = 1 + xFT (x)−
x

(1− x)2
(
(x2 − x− 1)FT (x) + x+ 1

)
+

(K − 1)x3

(1− x)3
,

with solution the stated FT (x). �

Theorem 20. Let T = {2143, 2314, 2341}. Then

FT (x) =
1− 6x+ 10x2 − 3x3 + x4

(1 − 3x+ x2)(1− 4x+ 2x2)
.

Proof. Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(x) = 1 and G1(x) = xFT (x). Now let us write an equation for Gm(x) with m ≥ 3. Suppose
π = i1π

(1) · · · imπ(m) ∈ Sn(T ) with m ≥ 3 left-right maxima i1, i2, . . . , im. Then, because π avoids
2314 and 2341,

π(1) < i1 < π(2) < i2 < · · · < π(m−2) < im−2 < im−1π
(m−1)imπ(m).

If π(1) = · · · = π(j−1) = ∅ and π(j) 6= ∅ with j = 1, 2, . . . ,m− 2, then we have that π(j+1) = · · · =
π(m) = ∅ (π avoids 2143). So the contribution for each j = 1, 2, . . . ,m − 2 is xm(K − 1), where
K =

∑
n≥0 |Sn(231, 2143)|xn = 1−2x

1−3x+x2 (see [16, Seq. A001519]). If π(1) = · · · = π(m−2) = ∅,
then the contribution is given by xm−2G2(x). Thus,

Gm(x) = (m− 2)xm(K − 1) + xm−2G2(x), m ≥ 3.

It remains to find a formula for G2(x). So suppose π = iπ′nπ′′ and consider whether π′ is empty
or not. If π′ = ∅, then π → iπ′′ is a bijection to nonempty T avoiders, giving a contribution of
x
(
FT (x) − 1

)
. If π′ 6= ∅, say x ∈ π′, then i = n − 1 because i < n − 1 implies ixn(n − 1) is a

2143. So π has first letter n− 1 (contributes x(FT (x)− 1) ) and second letter 6= n (hence, subtract
x2FT (x) ) for a net contribution of x

(
FT (x)− 1− xFT (x)

)
. Thus,

G2(x) = x
(
FT (x) − 1

)
+ x
(
FT (x)− 1− xFT (x)

)
.

Since FT (x) =
∑

m≥0 Gm(x), we have

FT (x) = 1 + xFT (x) +
x

1− x

(
2FT (x)− 2− xFT (x)

)
+

x3(K − 1)

(1− x)2
,

with solution the stated FT (x). �
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Theorem 21. Let T = {2143, 2314, 2431}. Then

FT (x) =
1− 6x+ 10x2 − 3x3 + x4

(1 − 3x+ x2)(1− 4x+ 2x2)
.

Proof. Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(x) = 1 and G1(x) = xFT (x). Now let us write an equation for Gm(x) with m ≥ 2. Suppose
π = i1π

(1) · · · imπ(m) ∈ Sn(T ) with m ≥ 2 left-right maxima i1, i2, . . . , im. Then, because π avoids
2314,

π(1) < i1 < π(2) < i2 < · · · < π(m−2) < im−2 < π(m−1) < im−1.

If π(1), . . . , π(m) are all empty, the contribution is xm. Now suppose the π’s are not all empty and
j is minimal such that π(j) 6= ∅.
First, suppose j ∈ [m − 1]. Then π(1) = · · · = π(j−1) = ∅ by supposition and π(j+1) = · · · =
π(m−1) = ∅ (to avoid 2143). Furthermore, πm > ij−1 (to avoid 2431) and πm < ij (to avoid 2143).

Hence, π = 12 · · · (j − 1)ijπ
(j)(ij + 1)(ij + 2) · · ·nπ(m). So “delete 12 · · · (j − 1) and (ij + 1)(ij +

2) · · · (n−1) and standardize” is a bijection to T -avoiders with second largest letter in first position
and largest letter not in second position, giving a contribution of xm−1(FT (x)− 1− xFT (x)) as in
Theorem 20, for each j ∈ [m− 1].

Next, suppose j = m so that π = i1i2 · · · imπ(m) with π(m) 6= ∅. Then, because π avoids 2431, π
has the form i1i2 · · · im β(1)β(2) · · ·β(m) with β(1) < i1 < β(2) < i2 < · · · < β(m) < im. Let ℓ be the
minimal index such that β(ℓ) is not empty, and say x ∈ β(ℓ). Then β(j) = ∅ for j ≥ ℓ + 2 because
if y ∈ β(j) with j ≥ ℓ + 2, then ij−2ij−1xy is a 2314. Furthermore, β(ℓ+1) is increasing, because

z > y in β(ℓ+1) implies iℓxzy is a 2143.

If β(ℓ+1) = ∅, we get a contribution of xm(FT (x)− 1) for each ℓ ∈ [m].

If β(ℓ+1) 6= ∅, then β(ℓ) must avoid 231. So “delete the initial m letters (= the left-right maxima)
and standardize” is a bijection to pairs (γ(ℓ), γ(ℓ+1)) with γ(ℓ) a nonempty {231, 2143}-avoider and
γ(ℓ+1) an initial segment of the positive integers. Thus we get, for each ℓ ∈ [m−1], a contribution of
xm x

1−x (K−1), where K =
∑

n≥0 |Sn(231, 2143)|xn = 1−2x
1−3x+x2 (see [16, Seq. A001519]). Summing

all contributions, we have for m ≥ 2,

Gm(x) = xm +(m− 1)xm−1
(
FT (x)− 1− xFT (x)

)
+mxm(FT (x)− 1)+ (m− 1)

(
xm+1

1− x
(K − 1)

)
.

Since F := FT (x) =
∑

m≥0 Gm(x), we find

F = 1 + xF +
x

(1− x)2
(F − 1− xF ) +

(2− x)x2

(1− x)2
(F − 1) +

x2

1− x
+

x3

(1 − x)3
(K − 1),

with solution the stated FT (x). �

3.6. Case 177. The two representative triples T are:

{2143,2341,2413} (Theorem 22)

{2143,2341,3241} (Theorem 23)

Theorem 22. Let T = {2143, 2341, 2413}. Then

FT (x) =
1− 4x+ 3x2 − x3

1− 5x+ 6x2 − 3x3
.
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Proof. Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(x) = 1 and G1(x) = xFT (x). Now let us write an equation for Gm(x) with m ≥ 2. So suppose
π = i1π

(1)i2π
(2) · · · imπ(m) ∈ Sn(T ) with m ≥ 2 left-right maxima. We consider the following three

cases:

• π(1) 6= ∅. Here, the only letters occurring after i2 that are > i1 are i3, . . . , im (to avoid
2143) and no letter occurring after i3 is < i1 (to avoid 2341). So π has the form i1π

(1)(i1+
1)γ(2)(i1 + 2) · · ·n with γ(2) < i1. Thus, (i1 + 2) · · ·n contributes xm−2 and deleting these
letters is a bijection to T -avoiders of length r for some r ≥ 2 with first letter r − 1 and
second letter 6= r, contributing x(FT − 1)− x2FT .

• π(1) = ∅ and π(2) has a letter a < i1. Here, no non-left-right max letter occurring after i3 (if
present) is > i1 (2143) and, again, no letter occurring after i3 is < i1 (2341). Also, in π2, all
letters > i1 occur before all letters < i1 (2413). So π has the form i1i2γ

(2)γ(1)(i2 +1) · · ·n
with γ(1) < i1 < γ(2) < i2 and, furthermore, γ(2) is decreasing because b < c in γ(2) implies
i1bca is a 2341. So π = i1i2(i2 − 1) · · · (i1 + 1)γ(1)(i2 + 1) · · ·n with γ(1) a T -avoider of

length ∈ [n−m], giving a contribution of xm

1−x(FT (x) − 1).

• π(1) = ∅ and π(2) > i1. This condition implies i1 = 1 (obvious if m = 2 and because i1i2i31
would be a 2341 if m ≥ 3), giving a contribution of xGm−1(x).

Summing the contributions, we have for m ≥ 2,

Gm(x) = xm−1(FT (x) − 1− xFT (x)) +
xm

1− x
(FT (x)− 1) + xGm−1(x).

Since FT (x) =
∑

m≥0 Gm(x), we find that

FT (x) = 1 + xFT (x) +
x

1− x
(FT (x) − 1− xFT (x)) +

x2

(1− x)2
(FT (x)− 1) + x(FT (x)− 1),

which, by solving for FT (x), completes the proof. �

Theorem 23. Let T = {2143, 2341, 3241}. Then

FT (x) =
1− 4x+ 3x2 − x3

1− 5x+ 6x2 − 3x3
.

Proof. Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(x) = 1 and G1(x) = xFT (x). Now let us write an equation for Gm(x) with m ≥ 2. So suppose
π = i1π

(1)i2π
(2) · · · imπ(m) ∈ Sn(T ) with m ≥ 2 left-right maxima. We consider the following three

cases:

• π(1) 6= ∅. Since T contains 2143 and 2341, π has the form i1π
(1)(i1 + 1)γ(2)(i1 + 2) · · ·n

with γ(2) < i1, as in Theorem 22. Furthermore, π(1) < γ(2) for else i1, i1+1 are the 3 and 4
of a 3241. Hence, if π(1) is increasing, then π(1) = 12 · · · i for some i ≥ 1 and π → St(γ(2))

is a bijection to T -avoiders, giving a contribution of xm+1

1−x FT (x). On the other hand, if

π(1) is not increasing, then γ(2) = ∅ because b > a in π(1) and c ∈ γ(2) implies bai2c is
a 2143. So, π → π(1) is a bijection to non-identity T -avoiders, giving a contribution of
xm(FT (x)− 1

1−x ).

• π(1) = ∅ and π(2) has a letter smaller than i1. Here π has the form i1i2π
(2)(i2 + 1) · · ·n

(to avoid 2143, 2341) with i1 6= 1, and π → i1π
(2) is a bijection to T -avoiders of length ≥ 2

with first letter 6= 1, giving a contribution of xm−1(FT (x) − 1− xFT (x)).
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• π(1) = ∅ and π(2) > i1. As in Theorem 22, i1 = 1 and the contribution is xGm−1(x).

Summing the contributions, we have for m ≥ 2,

Gm(x) =
xm+1

1− x
FT (x) + xm

(
FT (x)−

1

1− x

)
+ xm−1

(
FT (x) − 1− xFT (x)

)
+ xGm−1(x).

Since FT (x) =
∑

m≥0 Gm(x), we find that

FT (x) = 1 + xFT (x) +
x3

(1 − x)2
FT (x) +

x2

1− x

(
FT (x)−

1

1− x

)

+
x

1− x

(
FT (x)− 1− xFT (x)

)
+ x(FT (x) − 1),

which, by solving for FT (x), completes the proof. �

3.7. Case 191.

Theorem 24. Let T = {1342, 2134, 2413}. Then

FT (x) =
(1− x)(1 − 2x)(1 − 3x)

1− 7x+ 16x2 − 14x3 + 3x4
.

Proof. Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(x) = 1 and G1(x) = xFT (x). Now let us write an equation for Gm(x) with m ≥ 2.

For m = 2, let π = iπ′nπ′′ ∈ Sn(T ) with two left-right maxima. The entries after n and > i all
precede entries < i or else i, n are the “2,4”of a 2413. Hence, π = iπ′nβ′β′′ with β′ > i > β′′.

If π′ = ∅ so that π = inβ′β′′, then β′ avoids 231 or i would start a 1342. So β′ avoids 2134 and 231
(which subsumes 2413), and β′′ avoids T . The generating function K(x) for {231, 2134}-avoiders
is K(x) = 1 + x(1−3x+3x2)

(1−x)(1−2x)2 [16, Seq. A005183]. Thus the contribution is x2K(x)FT (x).

If π′ 6= ∅, then β′ is decreasing (or i max(π′) would start a 2134) and St(π′nβ′′) is a T -avoider that
does not start with its max. Thus, by deleting i, we have a contribution of x

1−x

(
FT (x)−1−xFT (x)

)
.

Hence,

G2(x) = x2K(x)FT (x) +
x

1− x

(
FT (x)− 1− xFT (x)

)
.

Now, suppose m ≥ 3 and π avoids T with m left-right maxima i1 < i2 < · · · < im. Then π has the
form shown in the figure below with shaded regions empty to avoid a pattern involving the gray
bullet as indicated, and entries in β′ preceding entries in β′′ to avoid 2413, and similarly for γ′, γ′′.

i1

im−2

im−1

im

β′

β′′

γ′

γ′′
2
•
134

2
•
134

134
•
2

. . .

. .
.
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We consider 4 cases according as β′, β′′ are empty or not.

If β′, β′′ are both empty, then γ′ avoids 231 (else im−1 is the “1” of a 1342) and γ′′ avoids T , giving
a contribution of xmK(x)FT (x).

If β′ 6= ∅, β′′ = ∅, then β′ avoids 213 due to im (2134) and avoids 231 due to im−2 (1342). The
generating function L(x) for {213, 231}-avoiders is L(x) = 1−x

1−2x [15]. Also, γ′ is decreasing (2134),

and γ′′ avoids T . By deleting the left-right maxima and γ′, the contribution is xm

1−x (L(x)−1)FT (x).

If β′ = ∅, β′′ 6= ∅, then γ′ is decreasing once again and St(β′′ im γ′′) avoids T and does not start

with its max. Deleting i1, . . . , im−1 and γ′, the contribution is xm−1

1−x

(
FT (x)− 1− xFT (x)

)
.

If β′, β′′ are both nonempty, then β′ avoids 213 and 231, γ′ is decreasing, and St(β′′ im γ′′) avoids T

and does not start with its max. Again deleting i1, . . . , im−1 and γ′, the contribution is xm−1

1−x (L(x)−
1)
(
FT (x)− 1− xFT (x)

)
.

Hence, for m ≥ 3,

Gm(x) = xmK(x)FT (x) +
xm

1− x
(L(x)− 1)FT (x) +

xm−1

1− x
L(x)

(
FT (x) − 1− xFT (x)

)
.

Since FT (x) =
∑

m≥0 Gm(x), we obtain

FT (x) = 1 + xFT (x) + x2K(x)FT (x) +
x

1− x

(
FT (x) − 1− xFT (x)

)

+
x3

1− x
K(x)FT (x) +

x3

(1− x)2
(L(x)− 1)FT (x) +

x2

(1 − x)2
L(x)

(
FT (x)− 1− xFT (x)

)
.

By solving for FT (x), we complete the proof. �

3.8. Case 196. The two representative triples T are:

{2143,2431,3241} (Theorem 25)

{2413,2431,3214} (Theorem 27)

Theorem 25. Let T = {2143, 2431, 3241}. Then

FT (x) =
1− 5x+ 7x2 − 4x3

1− 6x+ 11x2 − 9x3 + 2x4
.

Proof. Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(x) = 1 and G1(x) = xFT (x). For m ≥ 2, we need a simple lemma. Let Sn,m denote the set

of all permutations π = i1π
(1)i2π

(2) · · · imπ(m) ∈ Sn with m left-right maxima i1, i2, . . . , im and
Rn,m the subset that satisfy the condition (*) π(1) = ∅ and π(j) < ij−1 for all j = 2, 3, . . . ,m. Let
Sn,m(T ) and Rn,m(T ) have the obvious meaning.

Lemma 26. For m ≥ 2, the map φ : i1π
(1)i2π

(2) · · · imπ(m) → i1π
(2)i2π

(3) · · · im−1π
(m) is a

bijection from Rn,m to Sn−1,m−1. Furthermore, the restriction of φ to Rn,m(T ) is a bijection to

Sn−1,m−1(T ). �

Now suppose π ∈ Sn,m(T ) with m ≥ 2 and consider cases according as condition (*) holds or not.

If (*) holds, so that π ∈ Rn,m(T ), then the contribution is xGm−1(x), by the lemma. If (*) does

not hold, then there exists an index s ∈ [m] such that π(s) contains a letter between is−1 and is.
This imposes restrictions on π as illustrated:
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324
•
1

214
•
3

2
•
143

i1

is−1

is

is+1

im

. .
.

. .
.

β1

βs

π(s+1)

π(m)

,

where dark bullets indicate mandatory entries, shaded regions are empty to avoid the pattern
involving a light bullet as indicated, blank regions are empty, and the β’s and π’s are in the
displayed order to avoid 2431.

Thus, the contribution is xm
∑m

s=1 Lm,s;s(x), where Lm,s;d(x) is the generating function for such
avoiders π (as illustrated) with β1 = · · · = βs−d = ∅, 1 ≤ d ≤ s, when the left-right maxima
are understood to make no contribution, i.e., are weighted with 1 rather than x. Note the latter
condition on the β’s is vacuous—no restriction—when d = s. We need to introduce d because we
can get a recurrence for Lm,s;d in terms of Lm,s;d−1 that will yield Lm,s;s. To do so, let 2 ≤ d ≤ s
and consider whether βs−d+1 is empty or not. If βs−d+1 = ∅, clearly the contribution is Lm,s;d−1(x).
If βs−d+1 6= ∅ then, to avoid 2143, βi is increasing (could be empty) for s − d + 2 ≤ i ≤ s − 1
while βs is increasing and nonempty. Moreover, also to avoid 2143 (but utilizing different letters),
π(j) = ∅ for all j = s + 1, s + 2, . . . ,m. There are d − 1 β’s required to be increasing and so the
contribution is (FT (x)− 1) x

(1−x)d−1 .

Adding the two contributions, we have

(28) Lm,s;d(x) = Lm,s;d−1(x) + (FT (x) − 1)
x

(1− x)d−1
.

To complete the recurrence, we need an expression for Lm,s;1(x). Here, β1, . . . , βs−1 are all empty.
Set r = m− s, Mr = Lm,s;1(x) and relabel β’s and π’s so that the boxes not required to be empty

for Mr contain β0 6= ∅, π(1), . . . , π(r). Now consider variable r. Clearly, M0 = FT (x) − 1 and we
obtain a recurrence for Mr, r ≥ 1, conditioning on the first nonempty π(j). If all π’s are empty, the
contribution is FT (x) − 1. Otherwise, let j ∈ [r] be minimal with π(j) 6= ∅. Then β0 is increasing
(b > a in β0 would make ba the 21 of a 2143) and the contribution is x

1−xMr−j (because π(j) can

play the role of β0). So Mr = FT (x) − 1 + x
1−x

∑r
j=1 Mr−j for r ≥ 1, with M0 = FT (x) − 1.

This recurrence has solution Mr = FT (x)−1
(1−x)r . So Lm,s;1(x) = FT (x)−1

(1−x)m−s , the initial condition for

recurrence (28), with solution

Lm,s;d(x) =
(
FT (x) − 1

)( 1

(1− x)d−1
+

1

(1 − x)m−s
− 1

)
.
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Hence,

Gm(x) = xGm−1(x) + xm
m∑

s=1

Lm,s;s(x)

= xGm−1(x) + xm
m∑

s=1

(
FT (x) − 1

)( 1

(1− x)s−1
+

1

(1− x)m−s
− 1

)
,

which implies

Gm(x) = xGm−1(x) + xm

(
FT (x)− 1

)(
2(1− x)1−m −mx− 2(1− x)

)

x
.

By summing over all m ≥ 2 and using the initial condition G0(x) = 1 and G1(x) = xFT (x), we
obtain

FT (x) − 1− xFT (x) = x
(
FT (x)− 1

)
+

(2x2 − 3x+ 2)(FT (x)− 1)x2

(1− 2x)(1 − x)2
,

with solution the desired FT . �

Theorem 27. Let T = {2413, 2431, 3214}. Then

FT (x) =
1− 5x+ 7x2 − 4x3

1− 6x+ 11x2 − 9x3 + 2x4
.

Proof. Let an = |Sn(T )| and let an(i1, i2, . . . , is) denote the number of permutations i1i2 · · · isπ ∈
Sn(T ). We will obtain expressions for an(i, j) and an(i) and deduce a recurrence for an. Clearly,
an(1) = an(n) = an−1. For 2 ≤ i ≤ n− 1, we have the following expressions for an(i, j):

an(i, j) =





an−1(i − 1) if j = 1 ,

aj−1 if 2 ≤ j < i ,

an−1(i) if j = i+ 1 ,

0 if j ≥ i+ 2 .

For the first item, “delete 1 and standardize” is a bijection from T -avoiders that begin i1 to
one-size-smaller T -avoiders that begin i − 1. For the second item, n occurs before 1 (3214) and
so π = ijπ′nπ′′1π′′′. Also, π′ > j (3214), π′′ < j (2431), π′′′ < j (2413), and π′ is increasing

(2431). These results imply that π = ij(j +1) · · · î · · ·nβ (where î indicates that i is missing) with
β ∈ Sj−1(T ). The easy proofs of the last two items are left to the reader.

Since an =
∑n

i=1 an(i) = an(1) +
∑n−1

i=2

∑n
j=1 an(i, j) + an(n), the preceding results yield

an =

n−3∑

i=1

(n− 2− i)ai + 2

n−1∑

i=1

an−1(i) + 2(an−1 − an−2)

for n ≥ 3, which implies

an = 4an−1 − 2an−2 +

n−3∑

i=1

(n− 2− i)ai ,

with a0 = a1 = 1 and a2 = 2. Since FT (x) =
∑

n≥0 anx
n, the recurrence for an translates to

FT (x)− 1− x− 2x2 = 4x
(
FT (x)− 1− x

)
− 2x2

(
FT (x)− 1

)
+

x3

(1 − x)2
(
FT (x) − 1

)
,

with solution the desired FT . �
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3.9. Case 201. The two representative triples T are:

{1243,1324,3142} (Theorem 28)

{1342,1423,2314} (Theorem 31)

3.9.1. T = {1243,1324,3142}.
Theorem 28. Let T = {1243, 1324, 3142}. Then

FT (x) =
1− 3x+ x2

1− x
C3(x).

Proof. Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(x) = 1 and G1(x) = xFT (x). Now suppose m ≥ 2 and π = i1π

(1) · · · imπ(m) avoids T . Then
{i2, i3, . . . , im = n} are consecutive integers (a gap would give a 1324 or a 1243). We consider two
cases.

• i1 = n − m + 1, its maximum possible value. Here, π(1) > π(2) > · · · > π(m) (to avoid
3142). Also, for j ∈ [m− 1], π(j) avoids 132 (or ij+1 is the “4” of a 1324), and π(m) avoids
T . Hence, the contribution is xmC(x)m−1FT (x).

• i1 < n−m+ 1. Here, i1 and i2 are not consecutive and π has the form

π(1) π(m)

· · ·

3
•
142

13
•
24i1

i2
i3

im

,

where the top shaded rectangle is empty (1324) and hence π(m) contains i1+1; the rectangle
below it is empty (3142); π(1) is decreasing (or im(i1 + 1) would terminate a 1243) and
i1π

(1) has no gaps (else there exist a < b < i1 with a ∈ π(1) and b ∈ π(m) and then i1aimb
is a 3142). Also, i1π

(m) avoids T and does not start with its maximal letter. Hence, the

contribution is xm−1

1−x (FT (x)− 1− xFT (x)).

Combining the preceding cases gives Gm(x) for m ≥ 2, and by summing over all m ≥ 0, we obtain

FT (x) = 1 +
∑

m≥1

xmC(x)m−1FT (x) +
∑

m≥2

xm−1

1− x

(
FT (x) − 1− xFT (x)

)
,

which implies

FT (x) = 1 + xC(x)FT (x) +
x

(1 − x)2
(
FT (x) − 1− xFT (x)

)
,

with solution FT (x) =
1−3x+x2

(1−x)
(
1−2x+(x2−x)C(x)

) , equivalent to the stated expression. �
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3.9.2. T = {1342,1423,2314}. To enumerate the members of Sn(T ), we consider the relative
positions of the letters n and n− 1 within a permutation. More precisely, given 1 ≤ i, j ≤ n with
i 6= j, let a(n; i, j) denote the number of permutations π = π1π2 · · ·πn ∈ Sn(T ) such that πi = n
and πj = n− 1. If n ≥ 2 and 1 ≤ i ≤ n, then let a(n; i) =

∑n
j=1 a(n; i, j), with a(1; 1) = 1. The

array a(n; i, j) is determined by the following recurrence relations.

Lemma 29. If n ≥ 3, then

(29) a(n; i, i− 1) = a(n− 1; i− 1, i− 2) +
i−2∑

j=2

a(n− 1; i− 1, j), 3 ≤ i ≤ n,

and

(30) a(n; i, j) = a(n− 1; i, j) + a(n− 1; i− 1, j − 1) +
n−1∑

k=j+1

a(n− 1; j − 1, k), 2 ≤ i ≤ j − 2.

Furthermore, we have a(n; i, 1) = a(n − 1; i − 1) for 2 ≤ i ≤ n, a(n; 1, j) = a(n − 1; j − 1) for

2 ≤ j ≤ n, a(n; i, j) = a(n − 1; i − 1, j) for 2 ≤ j ≤ i − 2, and a(n; i, i + 1) = a(n − 1; i) for

1 ≤ i ≤ n− 1.

Proof. Throughout, let π = π1π2 · · ·πn ∈ Sn(T ) be of the form enumerated in the case under
consideration. The formulas for a(n; i, 1) and a(n; 1, j) follow from the fact that an initial letter n−1
or n within a member of Sn(T ) may be safely deleted. To determine a(n; i, j) where 2 ≤ j ≤ i− 2,
first note that within π ∈ Sn(T ) in this case, the letter n − 2 cannot go to the left of n − 1
(for if it did, then there would be an occurrence of 2314 of the form (n − 2)(n − 1)xn for some
x < n − 2). Furthermore, the letter n − 2 cannot go to the right of n, for otherwise there would
be an occurrence of 1342 of the form x(n − 1)n(n − 2) for some x < n − 2 (since j ≥ 2 implies
n − 1 is not the first letter). Thus, n − 2 must go between n − 1 and n in this case. Note also
that min{πj+1, πj+2, . . . , πi−1} > max{π1, π2, . . . , πj−1} so as to avoid an occurrence of 2314 (of
the form x(n − 1)yn). Thus, j ≥ 2 implies the section πj+1πj+2 · · ·πi−1 is decreasing in order to
avoid 1423, whence πj+1 = n − 2. It follows that the letter n − 2 may be deleted, which implies
a(n; i, j) = a(n− 1; i− 1, j) if 1 < j < i− 1. Next, observe that a(n; i, i+1) = a(n− 1; i) since the
letter n − 1 is extraneous in this case and may be deleted (as none of the patterns in T contain
“4” directly followed by “3”).

We now show (29). Note that the letter n−2 in this case must occur to the left of n−1, for otherwise
there would be a 1342. If π1 = n− 2, there are a(n− 1; i− 1, i− 2) possibilities as the letter n− 2
may be deleted since it cannot play the role of a “2” within a 2314. So suppose πj = n−2 for some
2 ≤ j ≤ i− 2. Then we must have min{πj+1, πj+2, . . . , πi−2} > max{π1, π2, . . . , πj−1} in order to
avoid 2314, with min{π1, π2, . . . , πj−1} > max{πi+1, πi+2, . . . , πn} to avoid 1342. Since all of the

same restrictions on π are seen to apply if we delete n, it follows that there are
∑i−2

j=2 a(n−1; i−1, j)
possibilities if n− 2 does not start a permutation. Combining this case with the previous implies
formula (29).

Finally, to show (30), it is convenient to write π ∈ Sn(T ) enumerated by a(n; i, j) when 1 < i < j−1
as π = w(1)w(2) · · ·w(r), where w(i) for i < r denotes the sequence of letters of π between the i-th
and the (i + 1)-st left-right minimum, including the former but excluding the latter (with w(r)

comprising all letters to the right of and including the rightmost left-right minimum). Observe
that n must be the final letter of some w(ℓ). For if not, then j > i + 1 implies that there would
be an occurrence of 1423 of the form xny(n − 1), where x is a left-right minimum and y is not.
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Then n− 2 must be the first letter of π or go to the right of n, for otherwise, π would contain an
occurrence of 2314 of the form x(n − 2)y(n− 1), where x is the first letter and y is the successor
of n (and hence a left-right minimum). If n− 2 is the first letter, then it is seen to be extraneous
(since n−1 occurs to the right of n within π) and thus may be deleted, yielding a(n−1; i−1, j−1)
possibilities. If n − 2 occurs to the right of n, then it must also occur to the right of n − 1 in
order to avoid 1423. If πj+1 = n − 2, then it is seen that n − 2 may be deleted as there can be
no possible occurrence of a pattern in T involving both n− 2 and n− 1 in this case, whence there
are a(n− 1; i, j) possibilities. On the other hand, if πk = n− 2 for some k > j + 1, then the letter
n− 1, like n, must be the last letter of some w(ℓ) in order to avoid 1423.

We claim that the letter n may be deleted in this case. First note that i > 1 implies n belongs to
the leftmost w(ℓ) such that w(ℓ) is not of length one (for otherwise, there would be an occurrence
of 2314, with n playing the role of the “4”). If s denotes the index of this w(ℓ), then w(s) must be
of length two, for if not and w(s) contained a third letter, then π would contain 2314, as witnessed
by the subsequence xyz(n − 1), where x and z are the first letters of w(s) and w(s+1) and y is
the second letter of w(s). It follows that the letters to the left of n within π form a decreasing
sequence. By similar reasoning, the letters between n and n− 1 are decreasing since πk = n− 2 for
some k > j+1. Since min{π1, π2, . . . , πi−1} > max{πi+1, πi+2, . . . , πj−1} in order to avoid 1423, it
follows that the letters to the left of n− 1 excluding n form a decreasing sequence. From this, it is

seen that the letter n may be deleted, which gives
∑n−1

k=j+1 a(n−1; j−1, k) additional possibilities.

Combining this with the previous cases implies (30) and completes the proof. �

Define the functions bn,i(v) =
∑n

j=i+2 a(n; i, j)v
j for 1 ≤ i ≤ n− 2 and cn,i(v) =

∑i−1
j=2 a(n; i, j)v

j

for 3 ≤ i ≤ n. Then recurrences (30) and (29) imply

(31) bn,i(v) = bn−1,i(v) + vbn−1,i−1(v) +
n∑

j=i+2

bn−1,j−1(1)v
j , 2 ≤ i ≤ n− 2,

and

(32) cn,i(v) = cn−1,i−1(v) + cn−1,i−1(1)v
i−1 + a(n− 1; i− 1, i− 2)vi−1, 3 ≤ i ≤ n.

Let an(u) =
∑n

i=1 a(n; i)u
i for n ≥ 1, bn(u, v) =

∑n−2
i=2 bn,i(v)u

i for n ≥ 4, cn(u, v) =
∑n

i=3 cn,i(v)u
i

for n ≥ 3, and dn(u) =
∑n

i=2 a(n; i, i− 1)ui for n ≥ 2. Let a(n) = an(1) for n ≥ 1, with a(0) = 1.

By Lemma 29, we have

n−1∑

i=2

a(n; i, i+ 1)ui =

n−1∑

i=2

a(n− 1; i)ui = an−1(u)− a(n− 2)u, n ≥ 2,

and
n∑

i=2

a(n; i, 1)ui =

n∑

i=2

a(n− 1; i− 1)ui = uan−1(u), n ≥ 2.

Thus, by the definitions, we have

(33) an(u) = u(a(n− 1)− a(n− 2)) + (1 + u)an−1(u) + bn(u, 1) + cn(u, 1), n ≥ 2,

with a1(u) = u, upon considering separately the cases of a(n; i, j) when i = 1, j = 1 or both
i, j > 1.
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Note that by the definitions,

bn,1(v) =
n∑

j=3

a(n; 1, j)vj =
n∑

j=3

a(n− 1; j − 1)vj = v(an−1(v)− a(n− 2)v), n ≥ 3.

Multiplying both sides of (31) by ui, and summing over 2 ≤ i ≤ n− 2, then yields

bn(u, v) = bn−1(u, v) + uv(bn−1(u, v) + ubn−1,1(v)) +

n∑

j=3

bn−1,j−1(1)v
j

j−2∑

i=2

ui

= (1 + uv)bn−1(u, v) + u2v2(an−2(v) − a(n− 3)v)

+
v

1− u
(u2bn−1(v, 1)− bn−1(uv, 1)), n ≥ 4.(34)

Multiplying both sides of (32) by ui, and summing over 3 ≤ i ≤ n, gives

(35) cn(u, v) = u(cn−1(u, v) + cn−1(uv, 1) + dn−1(uv)), n ≥ 3.

Finally, using recurrence (29) and noting a(n; 2, 1) = a(n− 2), we get

dn(u) = a(n− 2)u2 + udn−1(u) +
n∑

i=3

cn−1,i−1(1)u
i

= a(n− 2)u2 + udn−1(u) + ucn−1(u, 1), n ≥ 2.(36)

Define the generating functions a(x;u) =
∑

n≥1 an(u)x
n, b(x;u, v) =

∑
n≥4 bn(u, v)x

n, c(x;u, v) =∑
n≥3 cn(u, v)x

n and d(x;u) =
∑

n≥2 dn(u)x
n. Rewriting recurrence (33)–(36) in terms of gener-

ating functions yields the following system of functional equations.

Lemma 30. We have

(37) (1 − x− xu)a(x;u) = xu(1− x)(1 + a(x; 1)) + b(x;u, 1) + c(x;u, 1),

(38) (1− x− xuv)b(x;u, v) = (xuv)2(a(x; v)− xva(x; 1)− xv) +
xv

1− u
(u2b(x; v, 1)− b(x;uv, 1)),

(39) (1− xu)c(x;u, v) = xu(c(x;uv, 1) + d(x;uv)),

and

(40) (1− xu)d(x;u) = x2u2(1 + a(x; 1)) + xuc(x;u, 1).

We can now determine the generating function FT (x).

Theorem 31. Let T = {1342, 1423, 2314}. Then

FT (x) =
1− 3x+ x2

1− x
C3(x).
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Proof. In our present notation, we seek 1 + a(x; 1). By taking u = v = 1 in (37), (39) and (40),
and then solving the resulting system for b(x; 1, 1), c(x; 1, 1) and d(x; 1), we obtain

b(x; 1, 1) =
(1− x)(1 − 5x+ 6x2 − x3)a(x; 1)− x(1 − 4x+ 5x2 − x3)

1− 3x+ x2
,

c(x; 1, 1) =
x3(1 + a(x; 1))

1− 3x+ x2
,

d(x; 1) =
x2(1− 2x)(1 + a(x; 1))

1− 3x+ x2
.

Hence, equation (38) with v = 1 can be written as
(
1 +

xu2

1− u

)
b(x;u, 1) = (xu)2((1 − x)a(x; 1) − x)

+
xu2

1− u

(1− x)(1 − 5x+ 6x2 − x3)a(x; 1)− x(1 − 4x+ 5x2 − x3)

1− 3x+ x2
.

Applying the kernel method to this last equation, it is seen that taking u = C(x) cancels out the
left-hand side. This gives, after several algebraic operations, the formula

1 + a(x; 1) =
2(1− 3x+ x2)

(1− x)(1 − 3x) + (1− x)2
√
1− 4x

=
1− 3x+ x2

1− x
C3(x),

as desired. �

Remark: From the formula for a(x; 1), one can now determine b(x; 1, 1), as well as c(x;u, 1) and
d(x;u, 1), by (39) and (40). This in turn allows one to find b(x;u, 1), by (38) at v = 1. By (37),
one then obtains a formula for 1 + a(x;u) which generalizes FT (x) (reducing to it when u = 1).

3.10. Case 203. The two representative triples T are:

{1324,1432,3142} (Theorem 32)

{1234,1342,2314} (Theorem 35)

3.10.1. T = {1324,1432,3142}.

Theorem 32. Let T = {1324, 1432, 3142}. Then

FT (x) =
1− x

2− 2x− (1 − x− x2)C(x)
.

Proof. Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(x) = 1 and G1(x) = xFT (x). Now let us write an equation for Gm(x) with m ≥ 2. Suppose
π = i1π

(1)i2π
(2) · · · imπ(m) is a permutation that avoids T with m ≥ 2 left-right maxima. Then

π(j) avoids 132 for all j = 1, 2, . . . ,m− 1 or else im is the 4 of a 1324. All the letters greater than
i1 in π(m) are increasing (to avoid 1432) and all the letters less than i1 in π(m) are < all letters
in other π’s (to avoid 3142), and i1 > π(1) > π(2) > · · · > π(m−1) (see figure, where the shaded
regions are empty to avoid the indicated pattern with the gray bullets).
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i1

im−1

im

. . .

. .
.

13
•
24

3
•
14

•
2

3
•
14

•
2

π(1)

π(m−1)

Also, at most one of the m− 1 rectangles covered by the arrow can be occupied: ab in π(m) with
b in a higher such rectangle than a makes ab the 24 of a 1324, and b in a lower rectangle than a
makes ab the 32 of a 1432. So we distinguish two cases:

• all of these rectangles except possibly the top one are empty, i.e., there is no letter in π(m)

between i1 and im−1. In this case π(m) can be decomposed as β(1)(im−1 + 1)β(2)(im−1 +
2) · · ·β(im−im−1−1)(im − 1)β(im−im−1) such that π(m−1) > β(1) > · · · > β(im−im−1), β(j)

avoids 132 for j = 1, 2, . . . , im − im−1 − 1 and β(im−im−1) avoids T . Since β(j) avoids 132,
each β(j)(im−1 + j) contributes xC(x) and since there are zero or more of them, their

contribution is 1
1−xC(x) . So, this case contributes xmC(x)m−1FT (x)

1−xC(x) .

• There is a letter in π(m) between ip and ip+1 for some p ∈ [m − 2]. Then π(p+1) = · · · =
π(m−1) = ∅ (3142) and π(m) can be decomposed as

β(1)(ip + 1)β(2)(ip + 2) · · ·β(ip+1−ip−1)(ip+1 − 1)β(ip+1−ip)

such that π(p) > β(1) > · · · > β(ip+1−ip) where all except the last β(j) avoid 132 and
β(ip+1−ip) avoids T . This time there is at least one β(j)(ip + j) and so we have an overall

contribution of xm+1C(x)p+1FT (x)
1−xC(x) .

Since C(x) = 1
1−xC(x) , we find that

Gm(x) = xmC(x)mFT (x) +
m−2∑

p=1

xm+1C(x)p+2FT (x),

for m ≥ 2, with G1(x) = xFT (x) and G0(x) = 1.

From FT (x) =
∑

m≥0 Gm(x), we deduce

FT (x) = 1 + xFT (x) + x2C(x)3FT (x) −
x2C(x)FT (x)

1− x
+ x2C(x)2FT (x),

with solution

FT (x) =
1− x

2− 2x− (1 − x− x2)C(x)
.

�
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3.10.2. T = {1234,1342,2314}. A permutation π = π1π2 · · ·πn is said to have an ascent at index
i if πi < πi+1, where 1 ≤ i ≤ n − 1. The letter πi+1 is called an ascent top. In order to count
the members of Sn(T ), we categorize them by the nature of their leftmost ascent (i.e., smallest i
such that πi < πi+1). If n ≥ 2 and 1 ≤ i ≤ n − 1, let a(n; i) denote the number of T -avoiding
permutations of length n whose leftmost ascent occurs at index i, with a(n;n) = 1 for n ≥ 1 (this
accounts for the permutation n(n−1) · · · 1, which is understood to have an ascent at index n). Let
a(n) =

∑n
i=1 a(n; i) for n ≥ 1, with a(0) = 1.

We now consider various restrictions on the ascent top corresponding to the leftmost ascent which
will prove helpful in determining a recurrence for a(n; i). Let An,i denote the subset of permutations
of Sn(T ) enumerated by a(n; i). If 1 ≤ i ≤ n− 1, let b(n; i) be the number of members of An,i in
which the leftmost ascent top equals n. If 1 ≤ i ≤ n− 2, let c(n; i) be the number of members of
An,i not starting with n in which the leftmost ascent top equals n− 1. Finally, for 1 ≤ i ≤ n− 2,
let d(n; i) be the number of members of An,i not starting with n in which the leftmost ascent top
is less than n − 1. For example, we have b(4; 2) = 3, the enumerated permutations being 2143,
3142 and 3241, c(4; 1) = 2, the permutations being 1324 and 2341 (note that 1342 and 2314 are
excluded), and d(5; 3) = 2, the permutations being 42135 and 43125. Note that by the definitions,
we have

(41) a(n; i) = a(n− 1; i− 1) + b(n; i) + c(n; i) + d(n; i), 1 ≤ i ≤ n− 1,

upon considering whether or not a member of An,i starts with n. The arrays b(n; i), c(n; i) and
d(n; i) are determined recursively as follows.

Lemma 33. We have

(42) b(n; i) =

n−1∑

j=i

a(n− 1; j), 1 ≤ i ≤ n− 1,

(43) c(n; i) =

n−i−1∑

j=1

a(j − 1), 1 ≤ i ≤ n− 2,

and

(44) d(n; i) = c(n− 1; i) + c(n− 1; i− 1) + d(n− 1; i) + d(n− 1; i− 1), 1 ≤ i ≤ n− 2.

Proof. Let Bn,i, Cn,i and Dn,i denote the subsets of Sn(T ) enumerated by b(n; i), c(n; i) and
d(n; i), respectively. For (42), observe that members of Bn,i can be obtained by inserting n directly

after the i-th letter of a member of ∪n−1
j=i An−1,j , with such an insertion seen not to introduce an

occurrence of any of the patterns in T (since the “4” does not correspond to the first ascent within
these patterns). This insertion operation is seen to be a bijection and hence (42) follows. To show
(43), note that members π ∈ Cn,i must be of the form

π = αj(n− 1)βnγ,

where α = j+ i− 1, j+ i− 2, . . . , j +1 for some j ∈ [n− i− 1], β = n− 2, n− 3, . . . , j+ i, and γ is
a T -avoider (on the letters in [j − 1]). The section α if nonempty consists of a decreasing string of
consecutive numbers ending in j+1 in order to avoid 2314, with all letters in [j+ i, n− 2] required
to be to the left of n and all letters in [j − 1] required to be to the right, in order to avoid 1342 or
2314, respectively. That β is decreasing is required in order to avoid 1234. Furthermore, one may
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verify that all permutations π of the stated form above avoid the patterns in T . Considering all

possible j, we get
∑n−i−1

j=1 a(j − 1) possibilities for π, which gives (43).

Finally, to show (44), first note that one can express σ ∈ Dn,i as

σ = σ(1)jkσ(2)σ(3)σ(4),

where σ(1) is a decreasing sequence of length i − 1 in [j + 1, n − 1], 1 ≤ j < k < n − 1, σ(2)

is contained within [j + 1, k − 1], σ(3) is a sequence in [k + 1, n] that contains n, and σ(4) is a
permutation of [j − 1]. Observe that σ(3) must decrease in order to avoid 1234 and hence starts
with n. If n− 1 belongs to σ(3), then removing n is seen to define a bijection with Cn−1,i∪Dn−1,i.

If n− 1 belongs to σ(1), then removing n− 1, and replacing n with n− 1, defines a bijection with
Cn−1,i−1 ∪Dn−1,i−1. Combining the two previous cases implies (44) and completes the proof. �

Let an(u) =
∑n

i=1 a(n; i)u
i for n ≥ 1, bn(u) =

∑n−1
i=1 b(n; i)ui for n ≥ 2, cn(u) =

∑n−2
i=1 c(n; i)ui

for n ≥ 3, and dn(u) =
∑n−2

i=1 d(n; i)ui for n ≥ 3. For convenience, we take a0(u) = 1.

Then recurrences (41) and (42) imply

(45) an(u) = uan−1(u) + bn(u) + cn(u) + dn(u), n ≥ 1,

and

bn(u) =

n−1∑

i=1

ui
n−1∑

j=i

a(n− 1; j) =

n−1∑

j=1

a(n− 1; j)

j∑

i=1

ui

=
u

1− u
(an−1(1)− an−1(u)), n ≥ 2.(46)

Multiplying both sides of (43) by ui, and summing over 1 ≤ i ≤ n− 2, yields

cn(u) =

n−2∑

j=1

a(j − 1)

n−j−1∑

i=1

ui

=
u

1− u

n−2∑

j=1

a(j − 1)− 1

1− u

n−2∑

j=1

a(j − 1)un−j, n ≥ 3.(47)

Finally, recurrence (44) gives

(48) dn(u) = (1 + u)(cn−1(u) + dn−1(u)), n ≥ 3.

Let a(x;u) =
∑

n≥0 an(u)x
n. It is determined by the following functional equation.

Lemma 34. We have

(49)

(
1 +

xu2

1− u

)
a(x;u) = 1 + xu

(
1

1− u
+

x2

(1− x)(1 − xu)(1 − x− xu)

)
a(x; 1).
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Proof. Let b(x;u) =
∑

n≥2 bn(u)x
n, c(x;u) =

∑
n≥3 cn(u)x

n, and d(x;u) =
∑

n≥3 dn(u)x
n.

Rewriting recurrences (45)–(48) in terms of generating functions yields the following:

a(x;u) = 1 + xua(x;u) + b(x;u) + c(x;u) + d(x;u),

b(x;u) =
xu

1− u
(a(x; 1)− a(x;u)),

c(x;u) =
x3u

(1− x)(1 − xu)
a(x; 1),

d(x;u) = x(1 + u)(c(x;u) + d(x;u)).

Noting

c(x;u) + d(x;u) = c(x;u) +
x(1 + u)

1− x(1 + u)
c(x;u) =

c(x;u)

1− x(1 + u)
,

and using the expressions for b(x;u) and c(x;u) in the equation for a(x;u), gives (49). �

We can now determine the generating function for the sequence a(n).

Theorem 35. Let T = {1234, 1342, 2314}. Then

FT (x) =
1− x

2− 2x− (1 − x− x2)C(x)
.

Proof. In the present notation, we must find a(x; 1). Applying the kernel method to (49), and
setting u = C(x), gives

a(x; 1) = − (1− x)(1 − u)(1− xu)(1 − x− xu)

xu(1− x)(1 − xu)(1− x− xu) + x3u(1− u)

=
xu(1− x− xu)(1 − x)

x(1 − x)2 − x2(1− x)u + x3u(1− u)

=
(1 − x)(1 − xu)

x+ (1− x)2 − 2x(1− x)u
,

where we have used the fact xu2 = u−1 several times. Multiplying the numerator and denominator
of the last expression by u gives

a(x; 1) =
(1 − x)(u − xu2)

(1− x+ x2)u− 2(1− x)(u − 1)
=

1− x

2− 2x− (1− x− x2)u
,

as desired. �

3.11. Case 218. The three representative triples T are:

{1342,2314,2413} (Theorem 36)

{1324,1423,3142} (Theorem 37)

{1243,1342,2314} (Theorem 40)
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3.11.1. T = {1342,2314,2413}.

Theorem 36. Let T = {1342, 2314, 2413}. Then

FT (x) =
(1− 2x)(1 +

√
1− 4x)

x2 + (2− 4x+ x2)
√
1− 4x

.

Proof. Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(x) = 1 and G1(x) = xFT (x). Now let us write an equation for Gm(x) with m ≥ 2.

For m = 2, suppose π = iπ′nπ′′ ∈ Sn(T ) has two left-right maxima. In π′′ all letters > i occur
before all letters < i for else π′′ contains letters a, b with a < i < b and inab is a 2413. Thus,
π = iπ′nβ′β′′ with β′ > i > β′′:

π′

β′

β′′

i

n

If β′ is decreasing, then π = iπ′n(n− 1) · · · (i + 1)β′′ and π′iβ′′ ∈ Si(T ), giving a contribution of
x

1−x (FT (x)− 1).

If β′ is not decreasing, then π′ > β′′ (or an ascent ab in β′ would be the 34 of a 1342); π′ avoids
231 (or n is the 4 of a 2314); β′ avoids 231 (or i is the 1 of a 1342), and β′′ avoids T . Since
β′ is not decreasing, its contribution is C(x) − 1

1−x , and the overall contribution of this case is

x2C(x)
(
C(x)− 1

1−x

)
FT (x). Thus,

G2(x) =
x

1− x
(FT (x) − 1) + x2C(x)

(
C(x) − 1

1− x

)
FT (x) .

Now, let m ≥ 3 and suppose π = i1π
(1)i2π

(2) · · · imπ(m) is a permutation that avoids T with m
left-right maxima. Let α (resp. β) denote the list of letters in π(m) that are greater than (resp.
less than) i1. All letters of α occur before all letters of β in π(m) (or i1im−1 are the 23 of a 2314)
and so π(m) = αβ; π(1) > β (or a ∈ π(1), b ∈ β with a < b makes ai2imb a 1342); π(j) > ij−1 for
j = 2, . . . ,m− 1 (or ij−1ijim are the 234 of a 2314); α > im−1 (or i1im−1im are the 134 of a 1342).
Thus, π has the form pictured.

π(1)

π(2)

π(m−1)

. .
.

α

β

i1

i2

im−1

im
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Also, πj avoids 231, j = 1, 2, . . . ,m− 1 (or im is the 4 of a 2314); α avoids 231 (or im−1 is the 1
of a 1342); β avoids T . Hence,

Gm(x) = xmCm(x)FT (x) .

From FT (x) =
∑

m≥0 Gm(x), we obtain

FT (x) = 1 + xFT (x) +
x

1− x
(FT (x)− 1) + x2C(x)

(
C(x) − 1

1− x

)
FT (x) +

∑

m≥3

xmCm(x)FT (x) .

Solving for FT (x) yields

FT (x) =
(1 − 2x)(1− xC(x))

(1 − 2x)(1− x)− x(1 − 2x)(1 − x)C(x) − x2(1− 2x)C2(x)− x4C3(x)
,

which is equivalent to the desired expression. �

3.11.2. T = {1324,1423,3142}.

Theorem 37. Let T = {1324, 1423, 3142}. Then

FT (x) =
(1 − 2x)(1 +

√
1− 4x)

x2 + (2− 4x+ x2)
√
1− 4x

.

Proof. Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(x) = 1 and G1(x) = xFT (x). Now suppose π = i1π

(1)i2π
(2) · · · imπ(m) ∈ Sn(T ) has m ≥ 2

left-right maxima. Then i1 > π(j) for all j = 1, 2, . . . ,m− 1 to avoid 1324, and the letters > i1 in
π(m) are decreasing to avoid 1423. We consider two cases for π(m):

• Each letter of π(m) is either greater than im−1 or smaller than i1. In this case, π(m) =
β(1)(n − 1) · · ·β(n−1−im−1)(im−1 + 1)β(n−im−1), where π(1) > · · · > π(m−1) > β(1) >
· · · > β(n−im−1) and π(j) avoids 132 for j = 1, 2, . . . ,m − 1, β(j) avoids 132 for j =
1, 2, . . . , n− 1− im−1 and β(n−im−1) avoids T . There are zero or more factors of the form
βj(n− j), each contributing xC(x). Hence, the contribution is

xmC(x)m−1FT (x)

1− xC(x)
= xmC(x)mFT (x) .

• π(m) has a letter between i1 and im−1 (this case only arises for m ≥ 3). Let s ∈ [m− 2 ] be
the smallest index such that π(m) has a letter between is and is+1. Then π(s+1) = · · · =
π(m−1) = ∅ to avoid 3142, and π has the form
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π(1)

π(s)

γ

β1

βr

. .
.

. . .

. . .

. . .

i1

is

is+1

im

,

where blank regions are empty and there is one β for each of the r := is+1 − is − 1 letters
in [is +1, is+1− 1], the π’s and β’s all avoid 132 (due to 1324), γ avoids T , and the arrows
indicate decreasing entries. The π’s contribute C(x)s; each β and its associated letter
between is and is+1 contributes xC(x) and there are one or more β’s, so they contribute
xC(x)

1−xC(x) ; each of the m − 1 − s arrows contributes 1
1−x ; γ contributes FT (x). Thus, for

given s ∈ [m− 2], the contribution is

xmC(x)sFT (x)

(1− x)m−1−s

xC(x)

1− xC(x)
=

xm+1C(x)s+2FT (x)

(1− x)m−1−s
.

Hence, from FT (x) =
∑

m≥0Gm(x), we have

FT (x) = 1 + xFT (x) +
∑

m≥2

(
xmC(x)mFT (x) + xm+1C(x)2FT (x)

m−2∑

s=1

C(x)s

(1− x)m−1−s

)
,

with solution

FT (x) =
(1 − 2x)(1− xC(x))

(1− 2x)(1 − x)− x(1 − 2x)(1− x)C(x) − x2(1− 2x)C(x)2 − x4C(x)3
,

which simplifies to the desired expression. �

3.11.3. T = {1243,1342,2314}. We will employ an approach similar to that used for the second
case in class 203 above and make use of the same notation. As before, we have

(50) a(n; i) = a(n− 1; i− 1) + b(n; i) + c(n; i) + d(n; i), 1 ≤ i ≤ n− 1,

with a(n;n) = 1 for n ≥ 1. The arrays b(n; i), c(n; i) and d(n; i) are determined recursively as
follows and a similar proof applies.
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Lemma 38. We have

b(n; i) =
n−1∑

j=i

a(n− 1; j), 1 ≤ i ≤ n− 1,(51)

c(n; i) = a(n− i− 2) +

n−i−2∑

j=1

2n−i−j−2a(j − 1), 1 ≤ i ≤ n− 2,(52)

d(n; i) = c(n− 1; i) + c(n− 1; i− 1) + d(n− 1; i) + d(n− 1; i− 1), 1 ≤ i ≤ n− 2.(53)

Note that the recurrences in Lemma 38 are the same as those in Lemma 33 except for a fac-
tor of 2n−i−j−2 appearing in the formula for c(n; i). This accounts for the fact that within
the decomposition of a T -avoiding permutation π = αj(n − 1)βnγ enumerated by c(n; i), where
α = j + i − 1, j + i − 2, . . . , j + 1 for some i, the section β is now a permutation of [j + i, n− 2]
that avoids the patterns 132 and 231 (instead of just being a decreasing sequence as it was pre-
viously). Thus, there are 2n−i−j−2 possibilities for β whenever it is nonempty. Note that a
comparison of the recurrences shows that there are strictly more permutations of length n that
avoid {1243, 1342, 2314} than there are that avoid {1234, 1342, 2314} for n ≥ 5.

If a(x;u) =
∑

n≥0 an(u)x
n as before, then one gets the following functional equation whose proof

we omit.

Lemma 39. We have

(54)

(
1 +

xu2

1− u

)
a(x;u) = 1 + xu

(
1

1− u
+

x2(1 − x)

(1 − 2x)(1− xu)(1 − x− xu)

)
a(x; 1).

We can now determine the generating function FT (x).

Theorem 40. Let T = {1243, 1342, 2314}. Then

FT (x) =
(1− 2x)(1 +

√
1− 4x)

x2 + (2− 4x+ x2)
√
1− 4x

.

Proof. Setting u = C(x) in (54), and using the fact xu2 = u− 1, gives

a(x; 1) = − (1− 2x)(1 − u)(1− xu)(1− x− xu)

xu(1− 2x)(1 − xu)(1− x− xu) + x3u(1− x)(1 − u)

=
x(1 − 2x)(1 − xu)

x(1− 2x)(1 − x− xu) + x2(1− x)(1 − u+ xu)

=
(1− 2x)(1 +

√
1− 4x)

(1− 2x)(1− 2x+
√
1− 4x) + (1− x)(3x− 1 + (1 − x)

√
1− 4x)

=
(1− 2x)(1 +

√
1− 4x)

x2 + (2− 4x+ x2)
√
1− 4x

,

as desired. �

3.12. Case 229. The three representative triples T are:

{2341,2413,3142} (Theorem 41)

{1342,1423,2143} (Theorem 44)

{1342,1423,2134} (Theorem 47)
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3.12.1. T = {2341,2413,3142}.

Theorem 41. Let T = {2341, 2413, 3142}. Then

FT (x) =
1− 2x+ 2x2 −

√
1− 8x+ 20x2 − 24x3 + 16x4 − 4x5

2x(1− x+ x2)
.

Proof. Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(x) = 1 and G1(x) = xFT (x). Now suppose m ≥ 2 and π = i1π

(1) · · · imπ(m) avoids T .
Clearly, there is no letter smaller than i1 in π(3) · · ·π(m) (such a letter would be the “1” of a 2341).
Moreover, to avoid 2413 and 3142, π(1)i2π

(2) has the form β′i2β′′β′′′ with β′′ > i1 > β′ > β′′′:

β′

β′′

β′′′

i1

i2

.

If β′′′ = ∅, then we have a contribution of xFT (x)Gm−1(x). Otherwise, π has the form

β′′′

π(3)

π(m)

. .
.

234
•
1

241
•
3i1

i2

i3

im

,

where dark bullets indicate mandatory entries, shaded regions are empty (gray bullets would form
part of a forbidden pattern as indicated), β′ is decreasing (b < c in β′ implies bci2a is a 2341 for a
in β′′′), and β′′ is decreasing (b < c in β′′ implies i1bca is a 2341).

Thus, we have a contribution of x2

(1−x)2 (FT (x) − 1)Gm−2(x). Hence, for m ≥ 2,

Gm(x) = xFT (x)Gm−1(x) +
x2

(1− x)2
(FT (x)− 1)Gm−2(x) .

By summing over m ≥ 2, we obtain

FT (x)− 1− xFT (x) = xFT (x)(FT (x) − 1) +
x2

(1− x)2
(FT (x) − 1)FT (x) .

Solving this quadratic for FT (x) completes the proof. �
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3.12.2. T = {1342,1423,2143}. Here, and in the subsequent subsection, let a(n; i1, i2, . . . , ik)
denote the number of T -avoiding permutations of length n starting with i1, i2, . . . , ik. Let a(n) =∑n

i=1 a(n; i) for n ≥ 1 be the total number of T -avoiders, with a(0) = 1, and Ti,j be the set of
permutations enumerated by a(n; i, j). Clearly, a(n;n) = a(n;n− 1) = a(n− 1) for all n ≥ 2. We
have the following recurrence for the array a(n; i, j).

Lemma 42. If n ≥ 3, then

(55) a(n; i, j) = a(n− j + i+ 1; i+ 1, i) +

i−1∑

ℓ=1

a(n− j + i+ 1; i, ℓ), i+ 2 ≤ j ≤ n,

(56) a(n; i, i− 1) = a(n− 1; i; i− 1) +
i−2∑

ℓ=1

a(n− 1; i− 1, ℓ), 2 ≤ i ≤ n− 1,

and

(57) a(n; i, j) = a(n− 1; i− 1, j) +

i−j∑

r=2

a(n− r; j + 1, j) +

i−j∑

r=1

j−1∑

ℓ=1

a(n− r; j, ℓ)

for 3 ≤ i ≤ n− 1 and 1 ≤ j ≤ i− 2, with a(n; i, i+ 1) = a(n− 1; i) for 1 ≤ i ≤ n− 1.

Proof. Let x denote the third letter of a member of Ti,j . Clearly, we have |Ti,i+1| = a(n− 1; i), as
the letter i+ 1 may be deleted. To show (56), first note members of Ti,i−1 must have x = i+ 1 or
x < i− 1. In the first case, the letter i+ 1 may be deleted, implying a(n− 1; i, i− 1) possibilities,

while in the latter, the letter i may be, which gives
∑i−2

ℓ=1 a(n − 1; i − 1, ℓ) possibilities. We now
show (55). Note first that one cannot have x > j or x < i within members of Ti,j if j ≥ i+ 3, lest
there be an occurrence of 1342 or 1423 (as witnessed by ijx(j−1) or ij(j−2)(j−1), respectively).
So we must have x ∈ [i+1, j − 1] and thus x = j − 1 in order to avoid 1423. By similar reasoning,
the fourth letter must be x−1 if x ≥ i+3. Repeating this argument shows that the block of letters
j, j− 1, . . . , i+2 must occur. The next letter z must be i+1 or less than i (so as to avoid 1342). If
z = i+1, then all members of [i+3, j], along with i, are seen to be irrelevant concerning avoidance
of T and hence may be deleted, while if z < i, then all members of [i+ 2, j] may be deleted (note
that i, z imposes the same requirement on subsequent letters as does i, i+2 and i+2, z, together).

It follows that there are a(n− j + i+ 1; i+ 1, i) +
∑i−1

ℓ=1 a(n− j + i+ 1; i, ℓ) members of Ti,j when
j ≥ i+ 2.

For (57), we consider the following cases for x: (i) x = j + 1, (ii) x < j, (iii) j + 1 < x < i,

and (iv) x = i + 1. There are clearly a(n − 1; i − 1, j) possibilities in (i) and
∑j−1

ℓ=1 a(n − 1; j, ℓ)
possibilities in (ii). Reasoning as in the previous paragraph shows in case (iii) that the block of
letters x, x− 1, . . . , j + 2 must occur directly following j. The next letter z may either equal j + 1
or be less than j. Thus, all members of [j + 3, x], along with i, may be deleted in either case.
Furthermore, the letter j may also be deleted if z = j + 1 (since j + 2, j + 1 is more restrictive
than i, j), while the letter j + 2 may be deleted if z < j (since j + 2 is redundant in light of j, z).

Considering all possible x, and letting r = x − j, one gets
∑i−j−1

r=2 a(n − r; j + 1, j) possibilities

if z = j + 1, and
∑i−j−1

r=2

∑j−1
ℓ=1 a(n − r; j, ℓ) possibilities if z < j. If x = i + 1, then the block

x, x− 2, x− 3, . . . , j + 2 must occur with the next letter z as in case (iii) above. This implies that

there are a(n − i + j; j + 1, j) +
∑j−1

ℓ=1 a(n − i + j; j, ℓ) possibilities in (iv). Combining all of the
previous cases gives (57) and completes the proof. �
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In order to solve the recurrence in Lemma 42, we introduce the following auxiliary functions:

bn,i(v) =
∑i−1

j=1 a(n; i, j)v
j for 2 ≤ i ≤ n − 1, cn,i(v) =

∑n
j=i+1 a(n; i, j)v

j for 1 ≤ i ≤ n −
1, bn(u, v) =

∑n−2
i=2 bn,i(v)u

i for n ≥ 4, cn(u, v) =
∑n−2

i=1 cn,i(v)u
i for n ≥ 3, and dn(u) =∑n−1

i=2 a(n; i, i − 1)ui for n ≥ 3. Let an(u, v) =
∑n

i=1

∑n
j=1,j 6=i a(n; i, j)u

ivj for n ≥ 2, with

a1(u, v) = u. Note that by the definitions, we have

(58) an(u, v) = un−1(1+u)an−1(v, 1)− (uv)n−1(1− v)an−2(1, 1)+ bn(u, v)+ cn(u, v), n ≥ 2.

By (56) and (57), we have for 2 ≤ i ≤ n− 2,

bn,i(v) = bn−1,i−1(v) + a(n− 1; i, i− 1)vi−1 +

i−1∑

j=1

bn−1,j(1)v
j +

i−2∑

j=1

vj
i−j∑

r=2

a(n− r; j + 1, j)

+

i−2∑

j=1

vj
i−j∑

r=2

bn−r,j(1).

Multiplying both sides of the last recurrence by ui, and summing over 2 ≤ i ≤ n− 2, yields

bn(u, v) = ubn−1(u, v) +
1

v
dn−1(uv) +

n−3∑

j=1

bn−1,j(1)

(
uj+1 − un−1

1− u

)
vj

+

n−4∑

j=1

vj
n−j−1∑

r=2

a(n− r; j + 1, j)

(
uj+r − un−1

1− u

)
+

n−4∑

j=1

vj
n−j−2∑

r=2

bn−r,j(1)

(
uj+r − un−1

1− u

)

= ubn−1(u, v) +
1

v
dn−1(uv) +

u

1− u
bn−1(uv, 1)−

un−1

1− u
bn−1(v, 1)

+
1

uv(1− u)

n−2∑

r=2

(dn−r(uv)u
r + a(n− r − 2)unvn−r)

− un−1

v(1− u)

n−2∑

r=2

(dn−r(v) + a(n− r − 2)vn−r) +
1

1− u

n−3∑

r=2

bn−r(uv, 1)u
r

− un−1

1− u

n−3∑

r=2

bn−r(v, 1)

= ubn−1(u, v) +
1

v
dn−1(uv) +

1

1− u

n−1∑

r=3

br(u, v)u
n−r − un−1

1− u

n−1∑

r=3

br(v, 1)

+
1

uv(1− u)

n−2∑

r=2

dr(uv)u
n−r − un−1

v(1 − u)

n−2∑

r=2

dr(v), n ≥ 4.(59)

By (55), we have

cn,i(v) = a(n− 1; i)vi+1 +

n−i∑

j=2

a(n− j + 1; i+ 1, i)vi+j +

n−i∑

j=2

bn−j+1,i(1)v
i+j , 1 ≤ i ≤ n− 2,
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and thus

cn(u, v) = v

n−2∑

i=1

a(n− 1; i)(uv)i +

n−1∑

j=2

vj
n−j∑

i=1

a(n− j + 1; i+ 1, i)(uv)i +

n−1∑

j=2

vj
n−j∑

i=1

bn−j+1,i(1)(uv)
i

= v(an−1(uv, 1)− a(n− 2)(uv)n−1) +
1

u

n−1∑

j=2

vj−1(dn−j+1(uv) + a(n− j − 1)(uv)n−j+1)

+

n−1∑

j=2

vj(bn−j+1(uv, 1) + (a(n− j)− a(n− j − 1))(uv)n−j)

= v(an−1(uv, 1)− a(n− 2)(uv)n−1) +
1

u

n−1∑

j=2

dj(uv)v
n−j +

n−1∑

j=2

bj(uv, 1)v
n−j+1

+ vn
n−2∑

j=1

a(j)uj , n ≥ 3.(60)

Multiplying both sides of (56) by ui, and summing over 2 ≤ i ≤ n− 1, gives

(61) dn(u) = un−1a(n− 2) + ubn−1(u) + dn−1(u), n ≥ 3.

Define generating functions a(x;u, v) =
∑

n≥1 an(u, v)x
n, b(x;u, v) =

∑
n≥4 bn(u, v)x

n, c(x;u, v) =∑
n≥3 cn(u, v)x

n, and d(x;u) =
∑

n≥3 dn(u)x
n. Rewriting recurrences (58)–(61) in terms of gen-

erating functions yields the following system of functional equations.

Lemma 43. We have

a(x;u, v) = xu(1− xv + xv2) + b(x;u, v) + c(x;u, v) + x(1 + u)a(xu; v, 1)

− x2uv(1− v)a(xuv; 1, 1),(62)

(1− xu)b(x;u, v) =
x

(1− u)(1− xu)
(ub(x;uv, 1)− b(xu; v, 1)) +

x(1 − u+ xu2)

v(1− u)(1 − xu)
d(x;uv)

− x2u

v(1− u)(1− xu)
d(xu; v),(63)

c(x;u, v) = −x2uv2 + xva(x;uv, 1) +

(
x2v2

1− xv
− x2uv2

)
a(xuv; 1, 1) +

xv2

1− xv
b(x;uv, 1)

+
xv

u(1− xv)
d(x;uv),(64)

(65) (1− x)d(x;u) = x2ua(xu; 1, 1) + xub(x;u, 1).

We can now determine the generating function FT (x).

Theorem 44. Let T = {1342, 1423, 2143}. Then

FT (x) =
1− 2x+ 2x2 −

√
1− 8x+ 20x2 − 24x3 + 16x4 − 4x5

2x(1− x+ x2)
.
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Proof. In the notation above, we seek to determine 1 + a(x; 1, 1). Setting u = v = 1 in (62), (64)
and (65), and solving the resulting system for b(x; 1, 1), c(x; 1, 1) and d(x; 1), yields

b(x; 1, 1) =
(1 − 5x+ 7x2 − 5x3 + x4)a(x; 1, 1)− x(1− x)3

1− x+ x2
,

c(x; 1, 1) =
x(2 − 2x+ x2)((1 − x)a(x; 1, 1)− x)

1− x+ x2
,

d(x; 1) =
x(1 − x)2((1 − x)a(x; 1, 1)− x)

1− x+ x2
.

Substituting the expression for d(x;u) from (65) into (63) at v = 1, we find
(
1− x− x

(1− u)(1− x)
− x2(1 − u+ xu)

(1 − u)(1− x)(u − x)

)
b(x/u;u, 1)

=
x3(1− u+ xu)

u(1− u)(1− x)(u − x)
a(x; 1, 1)− x

u(1− u)(1− x)
b(x; 1, 1)− x2

u(1− u)(1− x)
d(x; 1).

Applying the kernel method to the preceding equation, and setting

u = u0 =
1− 2x+

√
1− 8x+ 20x2 − 24x3 + 16x4 − 4x5

2(1− x)2
,

we obtain

b(x; 1, 1) =
x2(1− u0 + xu0)

u0 − x
a(x; 1, 1)− xd(x; 1).

Substituting out the expressions above for b(x; 1, 1) and d(x; 1), and then solving the equation that
results for a(x; 1, 1), yields

a(x; 1, 1) =
x(1 − x)2(u0 − x)

(1 − 4x+ 4x2 − 2x3)u0 − x(1− x)3
.

Substituting the expression for u0 into the last equation gives the desired formula for 1+ a(x; 1, 1)
and completes the proof. �

Remark: Once a(x; 1, 1) is known, it is possible to find b(x;u, 1), and thus d(x;u), a(x;u, 1) and
c(x;u, 1). This in turn allows one to solve the system (62)–(65) for all u and v, and thus obtain a
generating function formula for the joint distribution of the statistics recording the first two letters.

3.12.3. T = {1342,1423,2134}. Clearly, a(n;n) = a(n− 1) for all n ≥ 1. We have the following
recurrence for the array a(n; i, j) where i < n.

Lemma 45. If n ≥ 3, then

(66) a(n; i, n) = a(n− 1; i, n− 1) +

i−1∑

j=1

a(n− 1; i, j), 1 ≤ i ≤ n− 2,

(67) a(n; i, i− 1) = a(n− 1; i− 1, n− 1) +

i−2∑

j=1

a(n− 1; i− 1, j), 2 ≤ i ≤ n− 1,
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and

a(n; i, j) = a(n− 1, i− 1, j) + a(n− 1; j, n− 1) +

j−1∑

ℓ=1

a(n− 1; j, ℓ)

+

i−j−1∑

ℓ=2

a(n− ℓ; j + 1, j), 1 ≤ j ≤ i− 2 and 3 ≤ i ≤ n− 1.(68)

Furthermore, we have a(n; i, i+1) = a(n−1; i) for 1 ≤ i ≤ n−1 and a(n; i, j) = a(n−j+i+1; i+1, i)
for i+ 2 ≤ j ≤ n− 1.

Proof. Throughout, let x denote the third letter of a member of Ti,j . To show (66), first note that
for members of Ti,n, we must have x = n−1 or x < i. There are a(n−1; i, n−1) possibilities in the
first case as the letter n is extraneous concerning avoidance of T , whence it may be deleted, and∑i−1

j=1 a(n− 1; i, j) possibilities in the latter case as again n may be deleted (note that the presence

of i, j imposes a stronger restriction on the order of subsequent letters than does i, n). To show
(67), first note that members of Ti,i−1 for 2 ≤ i ≤ n− 1 must have x = n or x < i− 1. There are

a(n− 1; i− 1, n− 1) possibilities in the former case and
∑i−2

j=1 a(n− 1; i− 1, j) possibilities in the
latter since the letter i may be deleted in either case as the restriction it imposes is redundant.

Next, we show (68). For this, we consider the following cases: (i) x = j + 1, (ii) x = n, (iii) x < j,
and (iv) j + 1 < x < i. The first three cases are readily seen to be enumerated by the first three
terms, respectively, on the right-hand side of (68). For case (iv), let y denote the fourth letter of
π ∈ Ti,j . First note that one cannot have y > x, for otherwise π would contain 1342 as witnessed
by the subsequence jxy(x − 1). It is also not possible to have y < j, for otherwise π would again
contain 1342, this time with the subsequence jxn(j+1), since all letters to the right of y and larger
than j would have to occur in decreasing order (due to the presence of j, y). So we must have
j < y < x and thus y = x − 1 in order to avoid 1423. By similar reasoning, the next letter must
be x− 2 if x > j +2. Repeating this argument shows that the block x, x− 1, . . . , j +1 must occur
directly following j, with each of these letters, except the last two, seen to be extraneous concerning
the avoidance or containment of patterns in T . Note further that the presence of j+2, j+1 imposes
a stricter requirement on subsequent letters than does i, j when i ≥ j + 3, whence the i and j are
also extraneous. Deleting all members of [j + 3, x] from π, along with i and j, implies that there
are a(n− ℓ; j + 1, j) possibilities where ℓ = x− j. Summing over all possible values of ℓ gives the
last term on the right-hand side of (68).

There are clearly a(n − 1; i) members of Ti,j if j = i + 1, as the letter i + 1 may be deleted. If
j ≥ i+2, then similar reasoning as before shows that the block j, j − 1, . . . , i+1 must occur when
j < n, and thus all members of [i+3, j], along with i, may be deleted. This implies that there are
a(n− j + i+ 1; i+ 1, i) members of Ti,j in this case, which completes the proof. �

In order to solve the recurrence in Lemma 45, we introduce the following functions: bn,i(v) =∑i−1
j=1 a(n; i, j)v

j for 2 ≤ i ≤ n − 1, cn,i(v) =
∑n−1

j=i+1 a(n; i, j)v
j for 1 ≤ i ≤ n − 2, bn(u, v) =∑n−1

i=2 bn,i(v)u
i for n ≥ 3, cn(u, v) =

∑n−2
i=1 cn,i(v)u

i for n ≥ 3, and dn(u) =
∑n−1

i=1 a(n; i, n)ui for
n ≥ 2. Let an(u, v) =

∑n
i=1

∑n
j=1,j 6=i a(n; i, j)u

ivj for n ≥ 2, with a1(u, v) = u. Note that by the
definitions, we have

(69) an(u, v) = unan−1(v, 1) + bn(u, v) + cn(u, v) + vndn(u), n ≥ 2.
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In order to determine a formula for bn(u, v), first note that (67) and (68) imply

bn,i(v) = bn−1,i−1(v) +
i−1∑

j=1

a(n− 1; j, n− 1)vj +
i−1∑

j=1

bn−1,j(1)v
j

+

i−3∑

j=1

vj
i−j−1∑

ℓ=2

a(n− ℓ; j, n− ℓ), 2 ≤ i ≤ n− 1,

where we have used the fact a(m; j + 1, j) = a(m; j,m) in the last sum. Multiplying both sides of
the last recurrence by ui, and summing over 2 ≤ i ≤ n− 1, gives

bn(u, v) = ubn−1(u, v) +
n−2∑

j=1

a(n− 1; j, n− 1)

(
uj+1 − un

1− u

)
vj +

n−2∑

j=1

bn−1,j(1)

(
uj+1 − un

1− u

)
vj

+

n−4∑

j=1

vj
n−j−1∑

ℓ=2

a(n− ℓ; j, n− ℓ)

(
uj+ℓ+1 − un

1− u

)

= ubn−1(u, v) +
u

1− u
(dn−1(uv)− un−1dn−1(v)) +

u

1− u
(bn−1(uv, 1)− un−1bn−1(v, 1))

+
u

1− u

n−2∑

ℓ=2

dℓ(uv)u
n−ℓ − un

1− u

n−2∑

ℓ=2

dℓ(v), n ≥ 3,(70)

where we have replaced the index ℓ by n− ℓ in the last sum.

By Lemma 45, we have

cn,i(v) = a(n− 1; i)vi+1 +

n−1∑

j=i+2

a(n− j + i + 1; i+ 1, i)vj , 1 ≤ i ≤ n− 2,

and thus

cn(u, v) =
n−2∑

i=1

a(n− 1; i)uivi+1 +
n−3∑

i=1

ui
n−i−1∑

j=2

a(n− j + 1; i+ 1, i)vi+j

= v(an−1(uv, 1)− (uv)n−1a(n− 2)) +

n−2∑

j=2

vj
n−j−1∑

i=1

a(n− j + 1; i, n− j + 1)(uv)i

= v(an−1(uv, 1)− (uv)n−1a(n− 2)) +

n−2∑

j=2

vj(dn−j+1(uv)− (uv)n−ja(n− j − 1))

= v(an−1(uv, 1)− (uv)n−1a(n− 2)) +

n−1∑

j=3

vn−j+1(dj(uv)− (uv)j−1a(j − 2)), n ≥ 3.(71)

Multiplying both sides of (66) by ui, and summing over 1 ≤ i ≤ n− 2 implies

(72) dn(u) = un−1a(n− 2) + bn−1(u, 1) + dn−1(u), n ≥ 2.

Define generating functions a(x;u, v) =
∑

n≥1 an(u, v)x
n, b(x;u, v) =

∑
n≥3 bn(u, v)x

n, c(x;u, v) =∑
n≥3 cn(u, v)x

n, and d(x;u) =
∑

n≥2 dn(u)x
n. Rewriting recurrences (69)–(72) in terms of gen-

erating functions yields the following system of functional equations.
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Lemma 46. We have

(73) a(x;u, v) = xu + xua(xu; v, 1) + b(x;u, v) + c(x;u, v) + d(xv;u),

(1− xu)b(x;u, v) =
xu

1− u
(b(x;uv, 1)− b(xu; v, 1)) +

xu(1 − xu+ xu2)

(1 − u)(1− xu)
d(x;uv)

− xu

(1− u)(1− xu)
d(xu; v),(74)

(75) c(x;u, v) = xva(x;uv, 1)− x2uv2

1− xv
(a(xuv; 1, 1) + 1) +

xv2

1− xv
d(x;uv),

(76) (1− x)d(x;u) = x2u(a(xu; 1, 1) + 1) + xb(x;u, 1).

We can now determine the generating function FT (x).

Theorem 47. Let T = {1342, 1423, 2134}. Then

FT (x) =
1− 2x+ 2x2 −

√
1− 8x+ 20x2 − 24x3 + 16x4 − 4x5

2x(1− x+ x2)
.

Proof. In the notation above, we seek to determine 1 + a(x; 1, 1). By (76), we have d(x;u) =
x2u
1−x (a(xu; 1, 1) + 1) + x

1−xb(x;u, 1). Thus, equation (74) with v = 1 gives
(
1− x− x

1− u
− x2(1− x+ xu)

(1− u)(1− x)(u − x)

)
b(x/u;u, 1)

= −
(

x

1− u
+

x2

(1 − u)(1− x)2

)
b(x; 1, 1)

+

(
x3(1− x+ xu)

(1− u)(1− x)(u − x)
− x3

(1 − u)(1− x)2

)
(a(x; 1, 1) + 1).

Applying the kernel method to this last equation, and setting

u = u0 =
1− 2x+

√
1− 8x+ 20x2 − 24x3 + 16x4 − 4x5

2(1− x)2
,

we obtain

b(x; 1, 1) =
x2(1− u0)(a(x; 1, 1) + 1)

u0 − x
.

Note that c(x; 1, 1) = x((1−2x)a(x;1,1)−x+d(x;1))
1−x by (75), and

a(x; 1, 1) = x+ xa(x; 1, 1) + b(x; 1, 1) + c(x; 1, 1) + d(x; 1)

by (73). Substituting out c(x; 1, 1), and then d(x; 1) and b(x; 1, 1), in the preceding equation and
solving the equation that results for a(x; 1, 1) yields

a(x; 1, 1) =
x3 + x(1 − x)2u0

x(2x2 − 2x+ 1)− (1 − x)3u0
.

Substituting the expression for u0 into the last equation gives the desired formula for 1+ a(x; 1, 1)
and completes the proof. �
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3.13. Case 234. The two representative triples T are:

{2143,2314,2413} (Theorem 48)

{1243,1342,3142} (Theorem 49)

Theorem 48. Let T = {2143, 2314, 2413}. Then

FT (x) =
(1 − x)2 −

√
(1− x)4 − 4x(1− 2x)(1 − x)

2x(1− x)
.

Proof. Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(x) = 1 and G1(x) = xFT (x). Now suppose π = i1π

(1) · · · imπ(m) is a permutation that avoids
T with m ≥ 2 left-right maxima. Then π(m) has the form βmβm−1 · · ·β1 with β1 < i1 < β2 < i2 <
· · · < βm < im because c < d in π(m) with c < ij < d implies ijimcd is a 2413.

If π(1) = · · · = π(m−1) = ∅, the contribution is (xFT (x))
m. Otherwise, let k be minimal such that

π(k) 6= ∅. Then π has the form

π(k) βk

βk−1

β1

. . .

,

23
•
14

214
•
3

i1

ik−2

ik−1

ik

ik+1

ik+2

im

where dark bullets indicate mandatory entries and some shaded regions are empty because the
gray bullet would form part of the indicated pattern; π(k)imβk avoids T and does not start with
its largest entry, and βk−1, . . . , β1 all avoid T . Thus, the contribution for fixed k ∈ [m] is given by
xm−1(FT (x)− 1− xFT (x))FT (x)

k−1.

Hence, for m ≥ 2,

Gm(x) = (xFT (x))
m + xm−1(FT (x)− 1− xFT (x))

m−1∑

k=0

FT (x)
k.

Summing over m ≥ 0, we obtain

FT (x) = 1 +
xFT (x)

1− xFT (x)
+

(
FT (x)− 1− xFT (x)

) (
x

1−x − xFT (x)
1−xFT (x)

)

1− FT (x)
,

which has the desired solution. �

Theorem 49. Let T = {1243, 1342, 3142}. Then

FT (x) =
(1 − x)2 −

√
(1− x)4 − 4x(1− 2x)(1 − x)

2x(1− x)
.
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Proof. Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(x) = 1 and G1(x) = xFT (x). For m = 2, suppose π = iπ′nπ′′ is a permutation in Sn(T )
with two left-right maxima. Let β denote the subsequence of letters less than i in π′′. Then
β < π′ (a ∈ π′ and b ∈ β with a < b implies ianb is a 3142) and so π is as in the figure.

α

β

π′
i

n

If α = ∅, then π′ and β avoid T and the contribution is x2FT (x)
2. If α 6= ∅ so that i+1 ∈ α, then

π′ is decreasing (or n(i+ 1) would be the 43 of a 1243), and St(iπ′′) is a T -avoider that does not
start with its maximal element. Hence, the contribution is x

1−x

(
FT (x)− 1− xFT (x)

)
. Thus,

G2(x) = x2FT (x)
2 +

x

1− x

(
FT (x)− 1− xFT (x)

)
.

For m ≥ 3, π has the form

. . .

π(1)
π(2)

π(3)

π(m)

i1

i2

i3

im

134
•
2

124
•
3

,

where some shaded regions are empty to avoid the indicated pattern and the π’s are in their relative
positions to avoid 3142. Hence, Gm(x) = G2(x)(xFT (x))

m−2.

Summing over m ≥ 0, we obtain

FT (x) = 1 + xFT (x) +
x2FT (x) +

x
1−x (FT (x)− 1− xFT (x))

1− xFT (x)
,

which has the desired solution. �

3.14. Case 235. The three representative triples T are:

{1423,1432,2143} (Theorem 53)

{1423,1432,3142} (Theorem 54)

{1234,1243,2314} (Theorem 57)
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3.14.1. T = {1423,1432,2143}. Let a(n; i1, i2, . . . , ik), a(n) and Ti,j be as in the second case of
class 171 above. Note here that a(n;n) = a(n;n − 1) = a(n − 1) for n ≥ 2. It is convenient
to consider separately the case of a permutation starting i, j, j + 2, where j ≤ i − 3. Define
f(n; i, j) = a(n; i, j, j + 2) for 4 ≤ i ≤ n and 1 ≤ j ≤ i− 3. The arrays a(n; i, j) and f(n; i, j) are
determined recursively as follows.

Lemma 50. We have

(77) a(n; i, i+ 2) = a(n− 1; i, i+ 2) + a(n− 1; i+ 1, i) +

i−1∑

j=1

a(n− 1; i, j), 1 ≤ i ≤ n− 2,

(78) a(n; i, i− 1) = a(n− 1; i, i− 1) +

i−2∑

j=1

a(n− 1; i− 1, j), 2 ≤ i ≤ n− 1,

(79) a(n; i, i−2) = a(n−1; i, i−2)+a(n−1; i−1, i−2)+

i−3∑

j=1

a(n−1; i−2, j), 3 ≤ i ≤ n−1,

(80) a(n; i, j) = a(n− 1; i− 1, j) + f(n; i, j) +

j−1∑

ℓ=1

a(n− 1; j, ℓ), 1 ≤ j ≤ i− 3,

and

(81) f(n; i, j) = f(n− 1; i− 1, j) + a(n− 2; j + 1, j) +

j−1∑

ℓ=1

a(n− 2; j, ℓ), 1 ≤ j ≤ i− 4,

with f(n; i, i− 3) = a(n− 1; i− 1, i− 3) for 4 ≤ i ≤ n, a(n; i, i+ 1) = a(n− 1; i) for 1 ≤ i ≤ n− 1,
and a(n; i, j) = 0 for 1 ≤ i ≤ j − 3 ≤ n− 3.

Proof. The formulas for f(n; i, i− 3) and a(n; i, i+1), and for a(n; i, j) when i ≤ j− 3, follow from
the definitions. In the cases that remain, let x denote the third letter of a T -avoiding permutation.
For (77), first note that members of Ti,i+2 where i < n− 2 must have x = i+3, x = i+1 or x < i,
lest there be an occurrence of 1423 or 1432. The letter i+ 2 can be deleted in the first case, while
the letter i can in the second, giving a(n− 1; i, i+2) and a(n− 1; i+1, i) possibilities, respectively.
If x < i, then i, x imposes a stricter requirement on subsequent letters than does i + 2, x, whence

i + 2 may be deleted in this case. This gives
∑i−1

j=1 a(n − 1; i, j) possibilities, which implies (77)

when i < n− 2. Equation (77) is also seen to hold when i = n− 2 since there is no x = i+ 3 case
with a(n−1; i, i+2) = 0 accordingly. For (78), note that members of Ti,i−1 where i < n must have

x = i+ 1 or x < i− 2 so as to avoid 2143. This yields a(n− 1; i, i− 1) and
∑i−2

j=1 a(n− 1; i− 1, j)

possibilities, respectively, which implies (78). For (79), note that members of Ti,i−2 where i < n
must have x = i + 1, x = i − 1 or x < i − 2, yielding a(n − 1; i, i − 2), a(n − 1; i − 1, i − 2) and∑i−3

j=1 a(n− 1; i− 2, j) possibilities, respectively.

To show (80), first observe that members of Ti,j where j ≤ i − 3 must have x = j + 1, x = j + 2
or x < j, lest there be an occurrence of 1423 or 1432. If x = j + 1, then there are a(n− 1; i− 1, j)
possibilities since the letter j + 1 is extraneous and may be deleted. If x = j + 2, then there are
f(n; i, j) possibilities, by definition. If x < j, then the letter i may be deleted, which gives the
last term on the right-hand side of (80). Finally, to show (81), let y denote the fourth letter of a
permutation enumerated by f(n; i, j) where j < i− 3. Then we must have y = j + 3, y = j + 1 or
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y < j. If y = j + 3, then y may be deleted, yielding f(n − 1; i − 1, j) possibilities, by definition.
If y = j + 1, then j + 2, j + 1 is seen to impose a stricter requirement on subsequent letters than
does i, j with regard to 2143, with j + 1 also making j redundant concerning 1423 or 1432. Thus,
both i and j may be deleted in this case, giving a(n − 2; j + 1, j) possibilities. Finally, if y < j,

then both the i and j+2 may be deleted and thus there are
∑j−1

ℓ=1 a(n− 2; j, ℓ) possibilities, which
implies (81) and completes the proof. �

To aid in solving the recurrences of the prior lemma, we define the following auxiliary functions:

b(n; i) =
∑i−1

j=1 a(n; i, j), c(n; i) = a(n; i, i − 2), d(n; i) = a(n; i, i − 1) and e(n; i) = a(n; i, i + 2).
Assume functions are defined on the natural range for i, given n, and are zero otherwise. For

example, c(n; i) is defined for 3 ≤ i ≤ n, with c(n; 1) = c(n; 2) = 0. Let f(n; i) =
∑i−3

j=1 f(n; i, j)
for 4 ≤ i ≤ n.

The recurrences in the previous lemma may be recast as follows.

Lemma 51. We have

(82) a(n; i) = a(n− 1; i) + b(n; i) + e(n; i), 1 ≤ i ≤ n− 1,

b(n; i) = c(n; i) + d(n; i) + b(n− 1; i− 1)− d(n− 1; i− 1) + f(n; i)

+

i−3∑

j=1

b(n− 1; j), 2 ≤ i ≤ n− 1,(83)

(84) c(n; i) = b(n− 1; i− 2) + c(n− 1; i) + d(n− 1; i− 1), 3 ≤ i ≤ n− 1,

(85) d(n; i) = b(n− 1; i− 1) + d(n− 1; i), 2 ≤ i ≤ n− 1,

(86) e(n; i) = b(n− 1; i) + d(n− 1; i+ 1) + e(n− 1; i), 1 ≤ i ≤ n− 2,

and

(87) f(n; i) = c(n− 1; i− 1)+ f(n− 1; i− 1)+

i−4∑

j=1

b(n− 2; j)+

i−4∑

j=1

d(n− 2; j+1), 4 ≤ i ≤ n.

Proof. For (82), note that by the definitions, we have

a(n; i) =

n∑

i=1,i6=j

a(n; i, j) =

i−1∑

j=1

a(n; i, j) + a(n; i, i+ 1) + a(n; i, i+ 2)

= b(n; i) + a(n− 1; i) + e(n; i).
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For (83), note that by summing (80) over j and the definitions, we have

b(n; i) = a(n; i, i− 2) + a(n; i, i− 1) +

i−3∑

j=1

a(n; i, j)

= a(n; i, i− 2) + a(n; i, i− 1) +
i−3∑

j=1

a(n− 1; i− 1, j) +
i−3∑

j=1

f(n; i, j) +
i−3∑

j=1

b(n− 1; j)

= c(n; i) + d(n; i) + (b(n− 1; i− 1)− d(n− 1; i− 1)) + f(n; i) +

i−3∑

j=1

b(n− 1; j).

Next, observe that formulas (84), (85) and (86) follow directly from the definitions and recurrences
(79), (78) and (77), respectively. Finally, formula (87) follows from summing (81) over 1 ≤ j ≤ i−4
and noting f(n; i, i− 3) = c(n− 1; i− 1). �

Define an(u) =
∑n

i=1 a(n; i)u
i for n ≥ 1, bn(u) =

∑n−1
i=2 b(n; i)ui for n ≥ 3, cn(u) =

∑n−1
i=3 c(n; i)ui

for n ≥ 4, dn(u) =
∑n−1

i=2 d(n; i)ui for n ≥ 3, en(u) =
∑n−2

i=1 e(n; i)ui for n ≥ 3, and fn(u) =∑n
i=4 f(n; i)u

i for n ≥ 4. Assume all functions take the value zero if n is such that the sum in
question is empty. Note that a1(u) = u, with b3(u) = d3(u) = u2.

Multiplying both sides of (82) by ui, and summing over 1 ≤ i ≤ n− 1, yields

(88) an(u) = a(n− 1)un + an−1(u) + bn(u) + en(u), n ≥ 2.

Note that, by the definitions,

f(n;n) =

n−3∑

j=1

f(n;n, j) =

n−3∑

j=1

a(n− 1; j, j + 2) =

n−3∑

j=1

e(n− 1; j) = en−1(1), n ≥ 4,

and

b(n;n− 1) = a(n;n− 1)− a(n;n− 1, n) = a(n− 1)− a(n− 2), n ≥ 2.

By recurrence (83), we then have

bn(u) = cn(u) + dn(u) + u(bn−1(u)− dn−1(u)) + fn(u)− f(n;n)un +

n−3∑

j=1

b(n− 1; j)

n−1∑

i=j+3

ui

= cn(u) + dn(u) + u(bn−1(u)− dn−1(u)) + fn(u)− en−1(1)u
n

+
u3

1− u
(bn−1(u)− (a(n− 2)− a(n− 3))un−2)− un

1− u
(bn−1(1)− (a(n− 2)− a(n− 3)))

= cn(u) + dn(u) + u(bn−1(u)− dn−1(u)) + fn(u)− en−1(1)u
n

+
u

1− u
(u2bn−1(u)− un−1bn−1(1)) + (a(n− 2)− a(n− 3))un, n ≥ 3.(89)

From recurrence (84), we get

cn(u) = u2(bn−1(u)− b(n− 1;n− 2)un−2) + cn−1(u) + c(n− 1;n− 1)un−1 + udn−1(u)

= u2bn−1(u)− una(n− 2) + un−1(1 + u)a(n− 3) + cn−1(u) + udn−1(u), n ≥ 4.(90)

By (85) and (86), we have

(91) dn(u) = a(n− 3)un−1 + ubn−1(u) + dn−1(u), n ≥ 3,
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and

(92) en(u) = a(n− 3)un−2 + bn−1(u) +
1

u
dn−1(u) + en−1(u), n ≥ 3.

Finally, multiplying both sides of (87) by ui, and summing over 4 ≤ i ≤ n, yields

fn(u) = u(c(n− 1;u) + a(n− 3)un−1) + ufn−1(u)

+

n−3∑

j=1

b(n− 2; j)

n∑

i=j+4

ui +

n−4∑

j=1

d(n− 2; j + 1)

n∑

i=j+4

ui

= a(n− 3)un + ucn−1(u) + ufn−1(u)

+
u3

1− u
(ubn−2(u) + dn−2(u)− un−2(bn−2(1) + dn−2(1))), n ≥ 4.(93)

Define the generating functions a(x;u) =
∑

n≥1 an(u)x
n, b(x;u) =

∑
n≥3 bn(u)x

n, c(x;u) =∑
n≥4 cn(u)x

n, d(x;u) =
∑

n≥3 dn(u)x
n, e(x;u) =

∑
n≥3 en(u)x

n and f(x;u) =
∑

n≥4 fn(u)x
n.

Recall that a(n) = an(1) for n ≥ 1, with a(0) = 1. Rewriting recurrences (88)–(93) in terms of
generating functions yields the following system of functional equations.

Lemma 52. We have

(94) (1 − x)a(x;u) = xu(1 + a(xu; 1)) + b(x;u) + e(x;u),

(1 − xu)b(x;u) = −x3u3 + c(x;u) + (1− xu)d(x;u) − xue(xu; 1) + f(x;u)

+ x2u2(1− xu)a(xu; 1) +
xu

1− u
(u2b(x;u)− b(xu; 1)),(95)

(96) (1− x)c(x;u) = x3u3 − x2u2(1 − x− xu)a(xu; 1) + xu2b(x;u) + xud(x;u),

(97) (1− x)d(x;u) = x3u2(1 + a(xu; 1)) + xub(x;u),

(98) (1− x)e(x;u) = x3u(1 + a(xu; 1)) + xb(x;u) +
x

u
d(x;u),

and

(1 − xu)f(x;u) = x3u3a(xu; 1) + xuc(x;u)

+
x2u3

1− u
(ub(x;u) + d(x;u)− b(xu; 1)− d(xu; 1)).(99)

We now determine the generating function FT (x).

Theorem 53. Let T = {1423, 1432, 2143}. Then y = FT (x) satisfies the equation

y = 1− x+ xy + x(1 − 2x)y2 + x2y3.
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Proof. By solving (94), (97) and (98) with u = 1 for b(x; 1), d(x; 1) and e(x; 1), we obtain

b(x; 1) =
1− 4x+ 5x2 − 3x3

1− x+ x2
a(x; 1)− x(1 − 2x+ 2x2)

1− x+ x2
,

d(x; 1) =
x(1 − x)3

1− x+ x2
a(x; 1)− x2(1 − x)2

1− x+ x2
,

e(x; 1) =
x(1 − x)2

1− x+ x2
a(x; 1)− x2(1− x)

1− x+ x2
.

Define K(x;u) = u2(1 − u) − xu(2 − u2) + x2(1 + 2u − 2u2) − x3. Substituting the expressions
for b(x; 1), d(x; 1) and e(x; 1) into (95)–(99), and then solving for b(x/u;u), c(x/u;u), d(x/u;u),
e(x/u;u) and f(x/u;u), yields

K(x;u)b(x/u;u) = x(−u2 + 2xu(u+ 1)− x2(u2 + 3u+ 1) + x3(2u+ 1))a(x; 1)

+ x2u(2x2 − xu− x+ u),

K(x;u)e(x/u;u) = x2(1 − x)(x − u)a(x; 1) + x3(1− x).

Multiplying both sides of (94) byK(x;u), and then substituting the expressions ofK(x;u)b(x/u;u)
and K(x;u)e(x/u;u), gives

(1− x/u)K(x;u)a(x/u;u) = x(x − u)(u2 + x(1 − u− u2) + x2(2u− 1))a(x; 1)

+ x(1 − u)(u2 − xu(2 + u) + x2(2 + 3u)− 2x3).

To solve this last equation, we let u = u0 = u0(x) such that K(x;u0(x)) = 0. Then

FT (x) = 1 + a(x; 1) =
(1− x)(x2 − xu0 + u2

0)

(u0 − x)(x(1 − x)− x(1 − 2x)u0 + (1− x)u2
0)
.

Using the fact that u3
0 = u2

0(1− u0)− xu0(2− u2
0) + x2(1 + 2u0 − 2u2

0), we obtain

1− x− (1− x)FT (x) + x(1 − 2x)F 2
T (x) + x2F 3

T (x)

=
(1− x)2K(x;u0)V (x;u0)

(x− u0)3(x(1 − x)− x(1 − 2x)u0 + (1− x)u2
0)

3
= 0,

where

V (x;u) = −x5(2x4 + 7x2(1− x)− 5x+ 2) + x2(x+ 1)(4x4 − 7x3 + 8x2 − 5x+ 1)(u− x)

− (7x6 + 2x5(1− x2)− x4 − 37x3(1− x) + 24x2(1− x2)− 8x+ 1)(u− x)2.

Hence, the generating function FT (x) satisfies

FT (x) = 1− x+ xFT (x) + x(1 − 2x)F 2
T (x) + x2F 3

T (x),

as desired. �

3.14.2. T = {1423,1432,3142}.
Theorem 54. Let T = {1423, 1432, 3142}. Then y = FT (x) satisfies the equation

y = 1− x+ xy + x(1 − 2x)y2 + x2y3.

Proof. Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(x) = 1 and G1(x) = xFT (x). Now suppose π = i1π

(1)i2π
(2) · · · imπ(m) ∈ Sn(T ) with m ≥ 2

left-right maxima. Since π avoids 1423 and 1432, we have that either i2 = i1 + 1 or i2 = i1 + 2.
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• The case i2 = i1 + 1. Since π avoids 3142, we see that there is no element between
the minimal element of π(1) and i1 in π(2)π(3) · · ·π(m). Thus, the contribution in this
case is xFT (x)Gm−1(x), where xFT (x) accounts for the section i1π

(1) and Gm−1(x) for
i2π

(2) · · · imπ(m).
• The case i2 = i1 + 2. Let j be the index with i1 + 1 ∈ π(j). Then π has the form

π(1)

α

β

1423, 1432

3
•
142

i1

i2 = i1+2

ij

ij+1

i1+1

im

with π(1) > α > β to avoid 3142, where i1π
(1)αβ spans an interval of integers, also to

avoid 3142, and the other shaded regions are empty to avoid the indicated patterns.
Thus, for given j, we have a bijection between such permutations and triples

(π(1), α, ijβij+1π
(j+1) · · · imπ(m)), where π(1) and α avoid T , and ijβij+1π

(j+1) · · · imπ(m)

avoids T with exactly m− (j − 1) left-right maxima. Hence, the contribution in this case
is given by xjF 2

T (x)Gm−j+1(x), where j = 2, 3, . . . ,m.

By adding all the contributions, we get

Gm(x) = xFT (x)Gm−1 +
m∑

j=2

xjF 2
T (x)Gm−j+1(x), m ≥ 2,

which implies

Gm(x) − xGm−1(x) = xFT (x)Gm−1 − x2FT (x)Gm−2(x) + x2F 2
T (x)Gm−1(x)

with G0(x) = 1 and G1(x) = xFT (x). By summing this recurrence over all m ≥ 2, we have

FT (x) − 1− xFT (x) − x(FT (x)− 1) = xFT (x)(FT (x) − 1)− x2F 2
T (x) + x2F 2

T (x)(FT (x) − 1),

which leads to

FT (x) = 1− x+ xFT (x) + x(1 − 2x)F 2
T (x) + x2F 3

T (x),

as required. �

3.14.3. T = {1234,1243,2314}. To enumerate the members of Sn(T ), we categorize them by
their first letter and the position of the leftmost ascent. More precisely, given 1 ≤ j ≤ i ≤ n, let
a(n; i, j) be the number of T -avoiding permutations of length n starting with the letter i whose
leftmost ascent is at index j. For example, we have a(4; 3, 2) = 3, the enumerated permutations
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being 3124, 3142 and 3241. If 1 ≤ i ≤ n, then let a(n; i) =
∑i

j=1 a(n; i, j) and let a(n) =∑n
i=1 a(n; i) for n ≥ 1, with a(0) = 1. The array a(n; i, j) satisfies the following recurrence

relations.

Lemma 55. If n ≥ 3, then

(100) a(n; i, j) =

n−i∑

ℓ=1

i∑

k=j

a(n− ℓ; i, k), 1 ≤ j ≤ i ≤ n− 2.

If 2 ≤ j ≤ n− 1, then a(n;n− 1, j) =
∑n−2

i=j−1 a(n− 1; i, j − 1), with a(n;n− 1, 1) = a(n− 2) for

n ≥ 2. If 2 ≤ j ≤ n, then a(n;n, j) =
∑n−1

i=j−1 a(n− 1; i, j − 1), with a(n;n, 1) = δn,1 for n ≥ 1.

Proof. Let An,i,j denote the subset of Sn(T ) enumerated by a(n; i, j). First note that removing

the initial letter n from members of An,n,j for 2 ≤ j ≤ n defines a bijection with ∪n−1
i=j−1An−1,i,j−1

(where An,n,n is understood to be the singleton set consisting of the decreasing permutation n(n−
1) · · · 1). This implies the formula for a(n;n, j) for j > 1, with the condition a(n;n, 1) = δn,1
following from the definitions. Similarly, removing n − 1 from members of An,n−1,j when j > 1
implies the formula for a(n;n− 1, j) in this case. That a(n;n− 1, 1) = a(n − 2) follows from the
fact that one may safely delete both n−1 and n from members of Sn(T ) starting with these letters.

To show (100), we first consider the possible values of πj+1 within π = π1π2 · · ·πn ∈ An,i,j where
i < n − 1. Note that if πj+1 < n − 1, then π would contain either 1234 or 1243, as witnessed
by the subsequences πjπj+1(n− 1)n or πjπj+1n(n− 1), which is impossible. Thus, we must have
πj+1 = n− 1 or n. If πj+1 = n− 1, consider further the sequence of letters πj+1πj+2 · · ·πr, where
r is such that πr = n. If r > j+2, then each letter πs for j+2 ≤ s ≤ r− 1 must satisfy πs > i, for
otherwise π would contain 2314 (with the subsequence i(n− 1)xn for some x < i). Furthermore,
if r > j + 2 and πj+2 < n − 2, then iπj+2 would be the first two letters in an occurrence of
1234 or 1243, which is impossible. Thus, we must have πj+2 = n − 2. Similarly, by an inductive
argument, we get πj+1πj+2 · · ·πr−1πr = (n− 1)(n− 2) · · · (n− r+ j+1)n. Note that each of these
ℓ letters, where ℓ = r − j, is seen to be extraneous concerning avoidance of T and thus may be
deleted. The remaining letters comprise a member of An−ℓ,i,k for some k ∈ [j, i] and hence there are∑i

k=j a(n− ℓ; i, k) possibilities for these letters. Since each letter of the section πj+1 · · ·πr belongs

to [i+ 1, n], its length ℓ can range from 1 to n− i, with the contents of the section determined by
its length. Allowing ℓ to vary implies formula (100) and completes the proof. �

Let an,i(v) =
∑i

j=1 a(n; i, j)v
j for 1 ≤ i ≤ n and an(u, v) =

∑n
i=1 an,i(v)u

i for n ≥ 1. Multiplying

both sides of (100) by vj , and summing over 1 ≤ j ≤ i, gives

an,i(v) =

i∑

j=1

vj
n−i∑

ℓ=1

i∑

k=j

a(n− ℓ; i, k) =

n−i∑

ℓ=1

i∑

k=1

a(n− ℓ; i, k)

(
v − vk+1

1− v

)

=
v

1− v

n−i∑

ℓ=1

(an−ℓ,i(1)− an−ℓ,i(v)), 1 ≤ i ≤ n− 2,
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with

an,n−1(v) − a(n− 2)v =

n−1∑

j=2

vj
n−2∑

i=j−1

a(n− 1; i, j − 1) =

n−2∑

i=1

i+1∑

j=2

a(n− 1; i, j − 1)vj

= v

n−2∑

i=1

an−1,i(v) = v(an−1(1, v)− an−1,n−1(v))

= v(an−1(1, v)− van−2(1, v)), n ≥ 2,

and

an,n(v) =

n−1∑

i=1

i+1∑

j=2

a(n− 1; i, j − 1)vj = v

n−1∑

i=1

an−1,i(v) = van−1(1, v), n ≥ 1.

The preceding equations then imply

an(u, v) =
v

1− v

n−2∑

i=1

ui
n−i∑

ℓ=1

(an−ℓ,i(1)− an−ℓ,i(v)) + un−1an,n−1(v) + unan,n(v)

=
v

1− v

n−1∑

ℓ=1

n−ℓ∑

i=1

(an−ℓ,i(1)− an−ℓ,i(v))u
i − un−1v

1− v
(an−1,n−1(1)− an−1,n−1(v))

+ un−1an,n−1(v) + unan,n(v)

=
v

1− v

n−1∑

ℓ=1

(aℓ(u, 1)− aℓ(u, v))−
un−1v

1− v
(a(n− 2)− van−2(1, v))

+ un−1v(an−1(1, v)− van−2(1, v)) + un−1va(n− 2) + unvan−1(1, v)

=
v

1− v

n−1∑

ℓ=1

(aℓ(u, 1)− aℓ(u, v)) + un−1v(1 + u)an−1(1, v)

− un−1v2

1− v
(a(n− 2)− van−2(1, v)), n ≥ 2,(101)

with a0(u, v) = 1 and a1(u, v) = uv.

Let a(x;u, v) =
∑

n≥1 an(u, v)x
n. Multiplying both sides of (101) by xn, and summing over n ≥ 2,

yields the following functional equation.

Lemma 56. We have

a(x;u, v) = xuv(1− xv) +
xv

(1− x)(1 − v)
(a(x;u, 1)− a(x;u, v)) + xv(1 + u)a(xu; 1, v)

− x2uv2

1− v
(a(xu; 1, 1)− va(xu; 1, v)).(102)

We now determine the generating function FT (x).

Theorem 57. Let T = {1234, 1243, 2314}. Then y = FT (x) satisfies the equation

y = 1− x+ xy + x(1 − 2x)y2 + x2y3.
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Proof. In the current notation, we need to determine 1 + a(x; 1, 1). Letting u = 1 in (102), and
rearranging, gives
(103)(

(1− v)(1 − 2xv)− x2v3 +
xv

1− x

)
a(x; 1, v) = xv(1 − v)(1 − xv) +

(
xv

1− x
− x2v2

)
a(x; 1, 1).

Setting v = v0 in (103) such that

1− x− (1− 2x2)v0 + 2x(1− x)v20 = x2(1− x)v30 ,

and solving for a(x; 1, 1), implies

1 + a(x; 1, 1) =
x+ (1− x)v0 − x(1− x)v20

1− x(1 − x)v0
.

Let f(v) = 1− x− (1− 2x2)v + 2x(1− x)v2 − x2(1 − x)v3 and h(v) = f(v)g(v), where

g(v) = (1− x)(1 + x3 − x(2 − 3x+ 2x2)v − 2x3(1− x)v2 + x3(1− x)v3).

Then y = 1 + a(x; 1, 1) is a solution of the equation

1− x− (1− x)y + x(1 − 2x)y2 + x2y3 = 0

if and only if h(v) = 0 at v = v0, which is the case since f(v0) = 0, by definition. This implies
FT (x) is a solution of the equation stated above, as desired. �

3.15. Case 238. The five representative triples T are:

{1423,2413,3142} (Theorem 58)

{2134,2143,2413} (Theorem 59)

{1234,1342,1423} (Theorem 62)

{1324,1342,1423} (Theorem 63)

{1243,1342,1423} (Theorem 64)

3.15.1. T = {1423,2413,3142}.
Theorem 58. Let T = {1423, 2413, 3142}. Then

FT (x) =
3− 2x−

√
1− 4x−

√
2− 16x+ 4x2 + (2 + 4x)

√
1− 4x

2(1−
√
1− 4x)

.

Proof. We say that a permutation π has (m, k) left-right maxima, 1 ≤ k ≤ m, if it has m left-right
maxima i1, i2, . . . , im of which the last k are consecutive, that is,

i1 < i2 < · · · < im−k < im−k+1 = n−k+1 < im−k+2 = n−k+2 < · · · < im−1 = n−k+1 < im = n,

where n is maximal letter of π. Let Gm,k(x) be the generating function for T -avoiders with (m, k)
left-right maxima. Define G0,0(x) = 1. To find an equation for Gm,k(x), 1 ≤ k ≤ m, let π =

i1π
(1) · · · imπ(m) be a permutation that avoids T with (m, k) left-right maxima. If k = m, then it is

easy to see that π(1) > π(2) > · · · > π(m), where each π(j) avoids T . Thus, Gm,m(x) = (xFT (x))
m.

So suppose 1 ≤ k ≤ m− 1. Since π avoids 1423, all the letters in I = {im−k +1, . . . , n− k} appear
in decreasing order in π . Since π avoids 2413, only left-right maxima can appear between letters
that belong to I. If I = ∅, then the contribution is given by Gm,k+1(x). Otherwise, there exists
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a largest s ∈ [n − k + 1, n] such that π(s) contains at least one letter from I. By the preceding
observations,

π(n−k+1) · · ·π(s) = (n− k)(n− k − 1) · · · (im−k + 1)π′(s),

where im−k > π′(s). We can now safely delete the left-right maxima n− k+2, n− k+3, . . . , s and
all elements of I. The deleted left-right maxima contribute xs−(n−k)−1, the deleted im−k + 1 ∈ I
(necessarily present) contributes x, and the other elements of I, which amount to distributing an
arbitrary number of balls (possibly none) among the s−(n−k) boxes π(n−k+1), . . . , π(s), contribute
1/(1−x)s−(n−k). After the deletion, we have a T -avoider with m−(s−n+k−1) left-right maxima
of which the last n−s+2 are guaranteed consecutive, and so it contributes Gm+1−s+n−k,n+2−s(x).
Hence, the contribution for given s equals

xs−(n−k)

(1− x)s−(n−k)
Gm+1−s+n−k,n+2−s(x) .

By summing over all s = n− k + 1, . . . , n, we see that the contribution for the case I 6= ∅ is given
by

k∑

j=1

xj

(1− x)j
Gm+1−j,k+2−j(x) .

Combining all the contributions, we obtain for 1 ≤ k < m,

Gm,k(x) = Gm,k+1(x) +
x

1− x

k−1∑

j=0

xj

(1− x)j
Gm−j,k+1−j(x) ,

with Gm,m(x) = (xFT (x))
m.

In order to determine an equation for FT (x), we define G(t, u) = 1+
∑

m≥1

∑m
k=1 Gm,k(x)u

k−1tm.

By multiplying the above recurrence by tmuk−1 and summing over k = 1, 2, . . . ,m− 1 and m ≥ 1,
we find

G(t, u) = 1 +
xFT (x)

1− tuxFT (x)
+

G(t, u)−G(t, 0)

u
+

x(G(t, u)−G(t, 0))

u(1− x− xut)
.

Note that G(1, 0) = 1 +
∑

m≥0 Gm,1(x) = FT (x). Hence,

G(1, u) = 1 +
xFT (x)

1− uxFT (x)
+

G(1, u)− FT (x)

u
+

x(G(1, u)− FT (x))

u(1− x− xu)
.

To solve this functional equation, we apply the kernel method and take u = C(x), which is seen
to cancel out G(1, u). Thus,

0 = 1 +
xFT (x)

1− xC(x)FT (x)
− FT (x)

C(x)
− xFT (x))

C(x)(1 − x− xC(x))
,

which, using the identity C(x) = 1 + xC2(x), is equivalent to

FT (x) = 1 +
xFT (x)

1− xC(x)FT (x)
.

Solving this last equation completes the proof. �
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3.15.2. T = {2134,2143,2413}.

Theorem 59. Let T = {2134, 2143, 2413}. Then

FT (x) =
3− 2x−

√
1− 4x−

√
2− 16x+ 4x2 + (2 + 4x)

√
1− 4x

2(1−
√
1− 4x)

.

Proof. Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(x) = 1 and G1(x) = xFT (x). Now let us write an equation for Gm(x). If π is a permutation
that avoids T with m left-right maxima, then, to avoid 2134, π has the form

π = i1i2 · · · im−1π
′imπ′′

with i1 < i2 < · · · < im = n (n is the maximal letter of π), im−1 > π′, and im > π′′.

If π′ is empty, then since π avoids 2413 we see that π′′ can be decomposed as π′′
mπ′′

m−1 · · ·π′′
1 , where

π′′
j > ij−1 > π′′

j−1, j = 2, . . . ,m, and π′′
j avoids T .

If π′ is not empty, then with i0 = 0, there is a maximal integer s such that is−1 < π′. Since π
avoids 2413, we see that π′ = π′

m−1 · · ·π′
s+1π

′
s and π′′ = π′′

s · · ·π′′
1 , where

π′
m−1 > im−2 > π′

m−2 > · · · > is+1 > π′
s+1 > is > π′

sπ
′′
s > is−1 > π′′

s−1 > · · · > i1 > π′′
1 .

This means that π has the following diagrammatic shape.

b

b

b

b

b

b

b

b

π′
m−1

π′
s+1

π′
s π′′

s

π′′
s−1

π′′
1

i1

is−2

is−1

is

is+1

im−2

im−1

im = n

. .
.

. .
. . . .

. . .

Decomposition of T -avoider, case π′ 6= ∅

Furthermore, π′
j avoids 213 for j = m−1,m−2, . . . , s+1 for else n is the 4 of a 3124; π′

snπ
′′
s avoids

T and, since π′
s is not empty, it does not start with its largest letter; π′′

j avoids T for j = s−1, . . . , 1.

Hence, the contribution in the case π′ is empty is xmFm
t (x); otherwise, the contribution for given

s, 1 ≤ s ≤ m, is

xm−1Cm−1−s(x)(FT (x) − 1− xFT (x))F
s−1
T (x) .
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Combining all the contributions, we obtain

FT (x) = 1 +
∑

j≥1

(xjF j
T (x)) + (FT (x)− 1− xFT (x))

∑

m≥2

m−1∑

s=1

xm−1Cm−1−s(x)F s−1
T (x)

= 1 +
∑

j≥1

(xjF j
T (x)) + (FT (x)− 1− xFT (x))

∑

m≥2

xm−1C
m−1(x)− Fm−1

T (x)

C(x) − FT (x)
,

and, using C(x) = 1 + xC2(x), we find that

FT (x) = 1− x2C2(x)FT (x) + xC(x)F 2
T (x),

which yields the stated generating function. �

For the remaining three cases, we consider (right-left) cell decompositions. So suppose

π = π(m)imπ(m−1)im−1 · · ·π(1)i1 ∈ Sn

has m ≥ 2 right-left maxima n = im > im−1 > · · · > i1 ≥ 1. The right-left maxima determine a
cell decomposition of the matrix diagram of π as illustrated in the figure below for m = 4. There
are

(
m+1
2

)
cells Cij , i, j ≥ 1, i + j ≤ m + 1, indexed by (x, y) coordinates, for example, C21 and

C32 are shown.

C21

C32

i4

i3

i2

i1

Cell decomposition

Cells with i = 1 or j = 1 are boundary cells, the others are interior. A cell is occupied if it contains
at least one letter of π, otherwise it is empty. Let αij denote the subpermutation of entries in Cij .

We now consider R = {1342, 1423}, a subset of the pattern set in the remaining three cases. The
reader may check the following characterization of R-avoiders in terms of the cell decomposition.
A permutation π is an R-avoider if and only if

(1) For each occupied cell C, all cells that lie both strictly east and strictly north of C are
empty.

(2) For each pair of occupied cells C,D with D directly north of C (same column), all entries
in C lie to the right of all entries in D.

(3) For each pair of occupied cells C,D with D directly east of C (same row), all entries in C
are larger than all entries in D.

(4) αij avoids R for all i, j.

Condition (1) imposes restrictions on occupied cells as follows. A major cell for π is an interior cell
C that is occupied and such that all cells directly north or directly east of C are empty. The set
of major cells (possibly empty) determines a (rotated) Dyck path of semilength m− 1 with valley
vertices at the major cells as illustrated in the figure below. (If there are no major cells, the Dyck
path covers the boundary cells and has no valleys.)
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b

b

b

b

b

b

b

b

b

b

b

b

b

rotate

(rotated) Dyck path

= major cell

Dyck path

= valley vertex

If π avoidsR, then condition (1) implies that all cells not on the Dyck path are empty, and condition
(4) implies St(αij) is an R-avoider for all i, j. Conversely, if n = im > im−1 > · · · > i1 ≥ 1 are
given and we have a Dyck path in the associated cell diagram, and an R-avoider πC is specified for
each cell C on the Dyck path, with the additional proviso πC 6= ∅ for valley cells, then conditions
(2) and (3) imply that an R-avoider with this Dyck path is uniquely determined.

It follows that an R-avoider π avoids the pattern τk where τ ∈ Sk−1 if and only if all the subper-
mutations αij avoid R and τ . We use this observation in the next two results. As an immediate
consequence, we have

Proposition 60. Let τ and τ ′ be two patterns in Sk−1. If F{1342,1423,τ}(x) = F{1342,1423,τ ′}(x),
then F{1342,1423,τk}(x) = F{1342,1423,τ ′k}(x). �

We can now find a recurrence for avoiders of the pattern set R ∪ {12 · · ·k}.
Proposition 61. Let Tk = {1342, 1423, 12 · · ·k}. Then

FTk
(x) =

1 + (x− 2)FTk−1
(x) +

√(
1 + xFTk−1

(x)
)2 − 4xF 2

Tk−1
(x)

2
(
1− FTk−1

(x)
) .

Proof. For brevity, set Fk = FTk
(x). So, for m right-left maxima and an associated Dyck path of

semilength m− 1, the contribution to Fk is xm for the right-left maxima, Fk−1 − 1 for each valley
vertex, and Fk−1 for every other vertex. Let ℓ denote the number of peaks in the Dyck path, so
that ℓ − 1 is the number of valleys. Recall that the Narayana number Nm,ℓ =

1
m

(
m
ℓ

)(
m
ℓ−1

)
counts

Dyck paths of semilength m with ℓ peaks. Hence, summing over m,

Fk = 1+ xFk−1 +
∑

m≥2

xm
m−1∑

ℓ=1

Nm−1,ℓ (Fk−1 − 1)ℓ−1F 2m−ℓ
k−1

= 1+ xFk−1 +
xF 2

k−1

Fk−1 − 1

∑

m≥1

m∑

ℓ=1

Nm,ℓ

(
xF 2

k−1

)m
(
1− 1

Fk−1

)ℓ

= 1+ xFk−1 +
xF 2

k−1

Fk−1 − 1
N
(
xF 2

k−1, 1− 1/Fk−1

)
,
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where N(x, y) :=
∑

m≥1

∑m
ℓ=1 Nm,ℓx

myℓ is the generating function the Narayana numbers. It is
known that

N(x, y) =
1− x(1 + y)−

√
(1 − x(1 + y))2 − 4yx2

2x
and the theorem follows. �

3.15.3. T = {1234,1342,1423}.
Theorem 62. Let T = {1234, 1342, 1423}. Then

FT (x) =
3− 2x−

√
1− 4x−

√
2− 16x+ 4x2 + (2 + 4x)

√
1− 4x

2(1−
√
1− 4x)

.

Proof. Since F{1342,1423,123}(x) = F{123}(x) = C(x), we get by Prop. 61 that

FT (x) = 1 + xC(x) +
xC2(x)

C(x) − 1
N
(
xC2(x), 1 − 1/C(x)

)
,

which, after some algebraic manipulation, agrees with the desired expression. �

3.15.4. T = {1324,1342,1423}.
Theorem 63. Let T = {1324, 1342, 1423}. Then

FT (x) =
3− 2x−

√
1− 4x−

√
2− 16x+ 4x2 + (2 + 4x)

√
1− 4x

2(1−
√
1− 4x)

.

Proof. Since F{1342,1423,132}(x) = F{132}(x) = C(x) and F{1342,1423,123}(x) = F{123}(x) = C(x),
we get by Prop. 60 with τ = 132 and τ ′ = 123 that F{1342,1423,1324}(x) = F{1342,1423,1234}(x).
Apply Theorem 62. �

3.15.5. T = {1243,1342,1423}.
Theorem 64. Let T = {1243, 1342, 1423}. Then

FT (x) =
3− 2x−

√
1− 4x−

√
2− 16x+ 4x2 + (2 + 4x)

√
1− 4x

2(1−
√
1− 4x)

.

Proof. A permutation π ∈ ST (n) with m ≥ 2 right-left maxima avoids R and so the cell decom-
position of π has an associated Dyck path that covers all occupied cells. To also avoid 1243, all
the Dyck path cells except the cells incident with a right-left maximum, that is, cells Cij with
i + j = m + 1, must avoid 12 for else some two right-left maxima would form the 43 of a 1243.
Other cells need only avoid 1243. The cells Cij with i + j = m + 1 consist of the extremities
C1m and Cm1 together with all the low valleys in the Dyck path (a low valley is one incident with
ground level, the line joining the path’s endpoints). Suppose the Dyck path has ℓ low valleys and
h high valleys. The contribution of the right-left maxima is xm. Since F{12}(x) = 1/(1 − x), the

contributions of the 2m− 1 Dyck path cells are as follows. The two extremities contribute F 2
T (x),

the ℓ low valleys contribute (FT (x)− 1)ℓ, the h high valleys contribute
(

1
1−x − 1

)h
=
(

x
1−x

)h
, and

the remaining cells contribute
(

1
1−x

)2m−3−ℓ−h
.
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Let Mm,ℓ,h denote the number of Dyck paths of semilength m containing ℓ low valleys and h high
valleys, with generating function M(x, y, z) =

∑
m,ℓ,h≥0Mm,ℓ,hx

myℓzh. Then, by the first return
decomposition of the Dyck paths, we obtain

M(x, 1, z) = 1 + xM(x, 1, z) + xzM(x, 1, z)(M(x, 1, z)− 1)

and

M(x, y, z) = 1 + xM(x, 1, z) + xyM(x, 1, z)(M(x, y, z)− 1) .

Thus,

M(x, y, z) =
y − 2z − 1 + x(1− y)(1− z) + (1− y)

√
1− 2x(1 + z) + x2(1− z)2

(1− x)y + (xy − 2)z − y
√
1− 2x(1 + z) + x2(1− z)2

.

Hence, summing over m and over all Dyck paths gives

FT (x) = 1 + xFT (x) +
∑

m≥2

∑

ℓ,h≥0

Mm−1,ℓ,hx
m+hF 2

T (x)
(
FT (x) − 1

)ℓ 1

(1− x)2m−3−ℓ
.

After several algebraic steps and solving for FT (x), one obtains the desired formula. �

The preceding theorem can be extended to the case Tk = {1342, 1423, τk(k − 1)} with k ≥ 4 as
follows.

Theorem 65. Let k ≥ 4 and τ ∈ Sk−2. Let Tk = {1342, 1423, τk(k−1)} and T ′
k = {1342, 1423, τ}.

Then

FTk
(x) =

(2 − x)(1 − t)− x2F 2
T ′

k
(x)(1 + (x − 2)FT ′

k
(x)) +

√
2x(a− bt)

2(1− xF 2
T ′

k

(x) + x2F 3
T ′

k

(x)− t)
,

where

t =
√
(1− xF 2

T ′

k

(x))2 − x2F 3
T ′

k

(x)(2 − 2xF 2
T ′

k

(x) + x2F 3
T ′

k

(x)),

a = (x− 4)(1 + x4F 6
T ′

k
(x)) + 2xF 2

T ′

k
(x)(1 + (1− x)F 2

T ′

k
(x) + x2F 3

T ′

k
(x)) + x3F 4

T ′

k
(x),

b = (4− x)(1 + x2F 3
T ′

k
(x)) + x(2− x)F 2

T ′

k
(x).

Proof. The proof follows the same lines as in the preceding theorem except that FT (x) is replaced
by FTk

(x) and F{12}(x) is replaced by FT ′

k
(x). The details are left to the reader. �
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Appendix

Table 2: Sequences {|Sn(T )|}16n=5, where T is one of the triples in a symmetry
class, arranged in lex (increasing) order of counting sequence.

Table 2

No. T {|Sn(T )|}16n=5

1 {4321,3412,1234} 69,162,240,199,73,0,0,0,0,0,0,0

2 {4321,3142,1234} 69,164,252,221,85,0,0,0,0,0,0,0

3 {2143,4312,1234} 69,181,375,651,1009,1449,1971,2575,3261,4029,4879,5811

4 {4231,2143,1234} 69,190,446,927,1745,3036,4960,7701,11467,16490,23026,31355

5 {2143,3412,1234} 69,194,470,1009,1969,3562,6062,9813,15237,22842,33230,47105

6 {2134,3412,1432}
{3412,1432,1234} 69,198,498,1121,2305,4402,7910,13509,22101,34854,53250,79137

7 {3421,4312,1234} 70,177,333,538,792,1095,1447,1848,2298,2797,3345,3942

8 {2431,4213,1234} 70,192,441,929,1870,3670,7097,13600,25907,49142,92911,175190

9 {2134,4312,1243} 70,195,458,942,1752,3016,4886,7539,11178,16033,22362,30452

10 {4213,1432,1234} 70,199,502,1232,2962,6970,16138,36982,84083,189918,426722,954884

11 {4231,1432,1234} 70,200,481,1004,1886,3270,5325,8246,12254,17596,24545,33400

12 {2341,4312,1324} 70,203,517,1187,2504,4921,9107,16009,26922,43567,68177,103591

13 {3214,1432,1234} 70,204,560,1617,4796,14249,41939,122658,358991,1053628,3095381,9089525

14 {4231,2134,1243} 70,205,536,1264,2722,5424,10122,17871,30102,48703,76108,115394

15 {2134,3412,1243} 70,207,541,1272,2747,5552,10672,19783,35804,63965,113903,203810

16 {2314,1432,4123} 70,210,589,1592,4218,11069,28932,75528,197165,514920,1345484,3517427

17 {2341,2143,4123} 70,212,597,1610,4248,11107,28966,75552,197251,515476,1348060,3527067

18 {2341,1432,4123} 70,212,611,1712,4712,12815,34576,92764,247819,659840,1752170,4642567

19 {2431,4312,1234} 71,200,465,929,1667,2766,4325,6455,9279,12932,17561,23325

20 {4312,1432,1234} 71,204,479,951,1687,2764,4269,6299,8961,12372,16659,21959

21 {4312,3142,1234} 71,208,526,1174,2370,4416,7714,12783,20277,31004,45946,66280

22 {2134,4312,1432} 71,209,533,1205,2473,4696,8372,14169,22959,35855,54251,79865

23 {2431,4132,1234} 71,209,545,1348,3270,7908,19201,46918,115407,285642,711031,1779289

24 {4231,3412,1234} 71,212,554,1289,2725,5326,9758,16941,28107,44864,69266,103889

25 {3412,4132,1234} 71,213,561,1317,2809,5536,10220,17865,29823,47867,74271,111897

26 {2134,4312,1342} 71,213,564,1340,2909,5860,11090,19911,34179,56447,90144,139782

27 {2314,4312,1432} 71,213,569,1389,3175,6927,14632,30238,61596,124335,249598,499492

28 {4231,3142,1234} 71,217,599,1514,3550,7801,16193,31956,60282,109214,190816,322679

29 {2143,4312,1324} 71,218,610,1585,3895,9186,21022,47061,103663,225618,486626,1042305
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Continuation of Table 2

No. T {|Sn(T )|}16n=5

30 {4231,3412,1324} 71,218,614,1619,4065,9840,23168,53393,120995,270518,598218,1310943

31 {2314,4312,1342} 71,219,626,1698,4452,11428,28966,72907,182915,458590,1150877,2894324

32 {2134,1432,4123} 71,219,635,1776,4853,13068,34862,92438,244118,642947,1690256,4437947

33 {2134,3412,4132} 71,220,630,1697,4365,10842,26216,62071,144519,331928,753834,1695933

34 {2143,4132,1234} 71,220,646,1835,5095,13924,37627,100859,268756,713023,1885543,4974068

35 {2143,3412,1324} 71,222,648,1797,4807,12548,32236,82009,207529,524060,1323540,3348087

36 {3412,3124,1432} 71,222,652,1838,5053,13682,36697,97814,259585,686709,1812257,4773804

37 {3142,1432,1234} 71,229,726,2299,7296,23180,73648,233935,742924,2359143,7491146,23786672

38 {4321,1423,1234} 72,198,367,359,147,0,0,0,0,0,0,0

39 {4321,4123,1234} 72,205,396,400,185,0,0,0,0,0,0,0

40 {2341,4312,1234} 72,216,555,1252,2549,4787,8428,14079,22518,34722,51897,75510

41 {4312,1342,1234} 72,220,590,1409,3055,6118,11474,20373,34542,56304,88714,135713

42 {2341,4132,1234} 72,221,605,1517,3574,8065,17671,37953,80424,168885,352481,732581

43 {2314,4213,1432} 72,228,670,1864,5000,13099,33789,86239,218432,550107,1379348,3446817

44 {4213,1342,1234} 72,228,678,1929,5307,14203,37133,95179,239942,596587,1466529,3571386

45 {4213,2134,1432} 72,229,683,1954,5452,14974,40671,109509,292743,777810,2055833,5409187

46 {2341,4132,1324} 72,229,686,1972,5514,15131,40986,110013,293376,778678,2059646,5434009

47 {2413,4132,1234} 72,230,689,1970,5460,14833,39790,105890,280367,739878,1948186,5121973

48 {4312,3124,1342} 72,230,692,2004,5683,15948,44523,123924,344113,953353,2635064,7266192

49 {2341,1324,4123} 72,230,701,2113,6475,20468,66969,226027,782276,2760094,9880455,35758457

50 {2143,3412,4123}
{3412,1432,1324}
{3412,1432,1243} 72,232,707,2066,5858,16257,44428,120076,321919,857942,2276454,6020541

51 {4213,3124,1432} 72,232,712,2116,6155,17629,49893,139851,388899,1074280,2950885,8066698

52 {1432,4123,1234} 72,232,717,2157,6370,18557,53490,152868,433781,1223511,3433182,9590277

53 {2134,4132,1243} 72,233,719,2146,6260,17968,50967,143278,399960,1110203,3067479,8442903

54 {3124,1432,1234} 72,233,739,2343,7458,23801,76016,242777,775265,2475513,7904587,25240597

55 {4213,3124,1342}
{2143,1324,4123}
{2143,4123,1234} 72,236,745,2286,6866,20285,59156,170712,488401,1387226,3916062,10996581

56 {2143,1342,4123}
{3412,1432,4123} 72,237,761,2415,7626,24034,75689,238298,750179,2361533,7433917,23401274

57 {2143,1432,1234} 72,246,845,2901,9955,34165,117254,402409,1381046,4739681,16266344,55825262

58 {4321,1243,1234} 73,202,382,396,144,0,0,0,0,0,0,0

59 {4321,1324,1234} 73,215,484,669,334,0,0,0,0,0,0,0

60 {4312,4132,1234} 73,222,563,1226,2376,4213,6972,10923,16371,23656,33153,45272

61 {4312,1243,1234} 73,223,587,1356,2820,5395,9653,16355,26487,41299,62347,91538

62 {4231,4312,1234} 73,228,616,1460,3110,6082,11102,19155,31539,49924,76416,113626

63 {4312,1324,1234} 73,229,629,1521,3304,6578,12201,21353,35607,57007,88153,132293

64 {4312,3412,1234} 73,229,634,1562,3481,7132,13622,24531,42033,69031,109306,167680

65 {4213,4132,1234} 73,231,650,1668,3987,9030,19628,41333,84915,171087,339408,665004

66 {4231,4132,1234} 73,232,654,1639,3705,7678,14798,26841,46257,76324,121318,186699

67 {4312,1324,1243} 73,233,677,1819,4606,11171,26274,60471,137059,307245,683171,1509595

68 {4312,1342,1243} 73,234,691,1910,5019,12690,31147,74694,175843,407810,934179,2117958

69 {3412,1324,1234} 73,236,700,1919,4927,12006,28090,63705,141109,307088,659576,1402947

70 {4312,3124,1243} 73,236,705,1970,5224,13307,32866,79251,187523,437030,1005935,2291536

71 {4231,1243,1234} 73,237,702,1881,4577,10216,21158,41097,75561,132523,223134,362589

72 {3412,1324,1243} 73,237,711,1988,5253,13301,32673,78669,187230,443398,1050209,2497187

73 {4231,1324,1234} 73,238,714,1962,4957,11604,25390,52361,102533,191868,344970,598682

74 {3412,1243,1234} 73,238,718,2013,5301,13266,31886,74269,168841,376750,828726,1802901

75 {4231,1324,1243} 73,238,721,2044,5492,14178,35610,87938,215295,525787,1286294,3160692

76 {3412,1324,4123} 73,238,721,2046,5501,14158,35172,84895,200133,462714,1052727,2363200
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77 {3412,3124,1243} 73,238,722,2054,5541,14323,35788,87043,207201,484772,1118334,2550164

78 {4312,1342,1324}
{3412,3142,1234} 73,238,724,2075,5667,14892,37942,94273,229453,548954,1294440,3014775

79 {2134,4132,1234} 73,238,724,2078,5706,15161,39319,100168,251846,627046,1549898,3810125

80 {4312,1324,4123} 73,238,726,2101,5857,15926,42626,112997,297861,782666,2052958,5379953

81 {2431,4312,1324} 73,239,734,2131,5900,15697,40389,101047,246915,591507,1393504,3236723

82 {4312,3142,1243} 73,239,734,2133,5924,15859,41202,104433,259312,632815,1521646,3612653

83 {4312,3412,1243} 73,239,734,2134,5934,15918,41470,105470,262910,644350,1556478,3713022

84 {4231,1324,4123} 73,239,736,2158,6102,16813,45493,121567,322108,848654,2227722,5834253

85 {2314,4132,1432} 73,239,738,2178,6220,17351,47595,128985,346492,924788,2456502,6502017

86 {3412,4132,1324} 73,239,740,2194,6298,17653,48621,132199,356040,952154,2533014,6712221

87 {4312,3124,1432} 73,239,740,2199,6348,17947,49954,137372,374164,1011303,2716439,7259970

88 {4312,3412,1324} 73,240,744,2192,6192,16896,44800,115968,294144,733184,1800192,4362240

89 {3142,4132,1234} 73,240,746,2217,6371,17864,49202,133759,360175,963044,2561604,6787167

90 {3412,4132,1243} 73,240,748,2240,6525,18653,52640,147210,408957,1130398,3112172,8540753

91 {4213,1342,1243} 73,240,754,2309,6987,21036,63202,189723,569311,1708100,5124492,15373695

92 {2314,3124,1432} 73,240,759,2365,7369,23069,72495,228186,718341,2260566,7111650,22370236

93 {4312,3142,1324} 73,241,754,2252,6471,18003,48736,128878,333949,850061,2130078,5263536

94 {2134,4132,1432}
{4132,1432,1234} 73,241,756,2276,6640,18915,52911,145951,398242,1077434,2895486,7740081

95 {2314,4132,1342} 73,241,757,2288,6724,19365,54959,154303,429733,1189430,3276306,8990037

96 {2134,4132,1342} 73,241,759,2305,6806,19652,55725,155688,429719,1174344,3183298,8571979

97 {2341,4312,4123} 73,241,766,2399,7514,23648,74706,236352,747770,2364773,7475960,23631523

98 {2134,3124,1432} 73,241,768,2415,7587,23905,75507,238759,755088,2387570,7548085,23860518

99 {4231,3142,1324} 73,242,762,2290,6610,18434,49922,131842,340738,864258,2156546,5304322

100 {4312,1342,4123} 73,242,772,2409,7439,22872,70204,215345,660375,2024866,6208416,19035179

101 {3124,4132,1342} 73,243,777,2408,7288,21661,63471,183877,527761,1503086,4252938,11966373

102 {2413,3142,1234} 73,243,785,2504,7968,25389,81033,258873,827263,2643616,8447300,26990489

103 {2314,1342,4123} 73,243,785,2511,8073,26312,87257,294603,1011602,3526519,12456315,44495535

104 {2134,4132,1423} 73,244,782,2415,7232,21122,60455,170228,473014,1300271,3543000,9584730

105 {4213,2134,1342} 73,244,787,2468,7570,22809,67727,198664,576775,1659914,4741254,13454541

106 {2143,3412,1423} 73,244,790,2505,7839,24320,74998,230243,704359,2148620,6538740,19859175

107 {4213,3412,1342} 73,244,794,2553,8179,26192,83906,268883,861815,2762484,8855204,28385839

108 {3124,1432,4123}
{1432,1324,4123} 73,245,795,2508,7732,23393,69687,204939,596215,1718714,4915914,13966077

109 {2143,3412,1243} 73,245,797,2530,7878,24153,73109,218929,649609,1912298,5590446,16243437

110 {2134,3142,1432} 73,245,804,2617,8511,27709,90283,294231,958826,3124175,10178664,33160777

111 {2143,3142,1234} 73,247,821,2704,8868,29030,94960,310531,1015359,3319829,10854379,35488838

112 {2134,1432,1243}
{3142,1432,4123} 73,250,853,2911,9938,33931,115849,395534,1350437,4610679,15741842,53746011

113 {2134,1432,1234} 73,250,861,2967,10220,35203,121263,417710,1438865,4956391,17073052,58810751

114 {4312,1423,1234} 74,237,668,1667,3750,7743,14898,27033,46698,77369,123672,191639

115 {4231,1423,1234} 74,245,744,2068,5296,12608,28150,59412,119341,229477,424478,758491

116 {4312,4123,1243} 74,246,763,2227,6191,16567,43026,109110,271384,664236,1603813,3827381

117 {3124,4132,1234} 74,247,769,2247,6238,16649,43132,109257,272073,668704,1626916,3926643

118 {3412,1423,1234} 74,248,780,2309,6483,17407,45028,112921,275964,660030,1550320,3586449

119 {4312,1432,1324} 74,248,784,2355,6785,18897,51177,135358,350788,893038,2237998,5530485

120 {4132,1423,1234} 74,248,787,2389,7013,20079,56417,156250,427914,1161571,3130892,8391305

121 {3412,4123,1243} 74,249,792,2394,6941,19479,53323,143275,379721,996456,2596798,6735913

122 {4213,1432,1324} 74,249,797,2451,7318,21380,61449,174378,489827,1364499,3774779,10381722

123 {4132,1342,1234} 74,249,798,2459,7351,21457,61434,173120,481461,1324409,3610321,9768290

124 {2341,4132,4123} 74,249,804,2540,7977,25106,79327,251328,797094,2527977,8014590,25401277
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125 {2341,4123,1243} 74,249,804,2551,8139,26500,88531,303112,1059129,3759584,13505901,48965424

126 {2431,4213,1324}
{3142,4123,1234} 74,251,817,2570,7872,23621,69746,203317,586561,1677746,4764474,13447701

127 {2413,4312,1342}
{3142,4123,1243} 74,253,840,2728,8719,27541,86221,268047,828661,2550116,7818174,23893803

128 {2341,3142,4123} 74,253,843,2772,9080,29759,97686,321033,1055596,3471365,11415280,37535830

129 {2413,3124,1432}
{2143,3124,1432} 74,253,845,2791,9188,30246,99639,328422,1082797,3570197,11771589,38812310

130 {3412,3124,1342} 74,254,856,2867,9614,32368,109432,371221,1262278,4298922,14655296,49991239

131 {2134,1342,4123} 74,254,858,2889,9775,33371,115135,401538,1414821,5032193,18049762,65227297

132 {3142,1324,4123} 74,255,857,2815,9063,28677,89389,275034,836689,2520128,7524372,22291317

133 {2143,3124,1423} 74,255,863,2891,9638,32068,106627,354480,1178459,3917863,13025489,43305654

134 {2134,4123,1243} 74,255,866,2927,9923,33898,116940,407638,1435430,5102259,18290193,66060912

135 {1432,4123,1243} 74,256,876,2987,10182,34726,118492,404441,1380670,4713644,16093028,54944551

136 {4213,1342,4123} 74,256,880,3025,10406,35805,123197,423881,1458425,5017929,17264954,59402739

137 {3124,1432,1342} 74,257,881,2995,10132,34182,115143,387538,1303745,4384933,14746009,49585430

138 {2134,3142,1243} 74,257,883,3015,10258,34826,118075,399978,1354163,4582981,15506825,52460374

139 {2143,3124,1342} 74,257,883,3019,10306,35174,120063,409878,1399367,4777721,16312213,55693546

140 {3124,1432,1243} 74,257,886,3050,10505,36206,124833,430474,1484526,5119597,17655746,60888801

141 {2143,1423,1234} 74,259,905,3163,11058,38664,135193,472724,1652965,5779907,20210571,70670238

142 {1432,1342,4123} 74,260,913,3206,11258,39533,138822,487480,1711809,6011098,21108254,74122629

143 {4312,4123,1234} 75,248,735,1952,4697,10378,21320,41163,75363,131808,221561,359742

144 {4231,4123,1234} 75,253,774,2130,5314,12169,25895,51756,98034,177282,307933,516327

145 {4312,1423,1243} 75,255,813,2443,6985,19175,50917,131555,332257,823263,2007005,4825051

146 {4132,1243,1234} 75,256,826,2535,7474,21370,59718,164082,445266,1197326,3198035,8499466

147 {4132,1324,1234} 75,258,842,2614,7787,22466,63273,175044,477897,1291997,3467411,9254394

148 {2134,4132,1324} 75,258,845,2649,8019,23630,68216,193861,544312,1514024,4180488,11476203

149 {3412,4123,1234} 75,259,849,2638,7817,22275,61539,166007,439844,1150070,2978785,7665397

150 {4312,4132,1324} 75,259,852,2669,7997,23043,64190,173677,458255,1183139,2997544,7470237

151 {4312,1324,1423} 75,259,853,2684,8120,23782,67845,189493,520359,1409742,3778514,10042552

152 {4231,2341,4123} 75,259,862,2808,9090,29489,96076,314011,1027749,3364559,11012071,36033146

153 {4231,1324,1423} 75,260,864,2756,8485,25365,74021,211814,596506,1658102,4560087,12431775

154 {4312,1342,1423} 75,260,869,2817,8920,27745,85113,258256,776717,2319093,6882432,20321017

155 {3124,4132,1243} 75,261,876,2839,8923,27329,81923,241257,700150,2007431,5698047,16039035

156 {4132,1324,4123} 75,261,876,2840,8934,27399,82259,242599,704816,2021818,5737262,16130049

157 {4213,1342,1324}
{3124,4132,1432} 75,261,877,2852,9020,27877,84533,252331,743389,2166062,6252642,17905365

158 {3412,1324,1423} 75,261,879,2879,9232,29148,90995,281730,866917,2655218,8103324,24660429

159 {3412,1423,1243} 75,262,889,2938,9500,30183,94559,292940,899443,2742038,8312058,25083465

160 {4312,1432,1342} 75,262,890,2949,9575,30590,96486,301269,933171,2872102,8794946,26822901

161 {4312,4132,1342} 75,262,891,2964,9700,31374,100639,320949,1019396,3228687,10206180,32219494

162 {3412,1342,4123} 75,262,893,2992,9925,32747,107743,353949,1161732,3810960,12497234,40973185

163 {3412,3124,1423} 75,262,894,3011,10120,34213,116864,404013,1413582,5000943,17866417,64375380

164 {2341,4123,1423} 75,262,895,3022,10188,34524,118030,407754,1423886,5023900,17895739,64296859

165 {4312,3124,1423} 75,262,896,3033,10261,34906,119771,415012,1452361,5130997,18286959,65698315

166 {3412,3142,1324}
{3412,3142,1243} 75,263,901,3024,9980,32489,104585,333549,1055497,3318014,10371474,32261565

167 {3142,3124,1432} 75,263,904,3066,10324,34652,116179,389443,1305592,4377595,14679474,49227937

168 {3124,1432,1423} 75,264,914,3127,10621,35932,121324,409301,1380417,4655382,15700590,52954137

169 {3142,1423,1234} 75,264,918,3176,10978,37964,131362,454692,1574092,5449596,18867020,65319484

170 {3142,1324,1234}
{3142,1243,1234} 75,265,925,3201,11017,37793,129393,442497,1512225,5165953,17643457,60250113
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171 {3124,1342,4123}
{1342,1324,4123} 75,265,926,3216,11152,38741,135126,473872,1672151,5939232,21234409,76406414

172 {2143,4132,1324} 75,265,927,3229,11253,39355,138362,489440,1742576,6244395,22516585,81673947

173 {4213,1342,1423}
{4132,1342,4123} 75,265,929,3249,11362,39746,139060,486549,1702349,5956172,20839367,72912441

174 {4312,3412,1432}
{4312,3412,1342}
{4312,3142,1432}
{4312,3142,1342}
{3412,4132,1432}
{3412,4132,1342} 75,266,935,3263,11326,39155,134955,464094,1593231,5462447,18709694,64035275

175 {2413,1342,4123} 75,266,939,3311,11676,41183,145273,512466,1807791,6377231,22496580,79359907

176 {3412,4132,1423} 75,266,939,3315,11737,41732,149104,535469,1932998,7013680,25574106,93689214

177 {3412,3142,1432}
{3412,1432,1423} 75,267,948,3363,11928,42306,150051,532203,1887627,6695070,23746197,84223446

178 {3124,4132,1423} 75,267,948,3367,11988,42842,153783,554624,2009904,7318260,26768537,98339812

179 {2134,1432,1423} 75,267,950,3384,12065,43034,153524,547744,1954328,6973114,24880601,88776363

180 {2431,4132,1324} 75,267,951,3407,12309,44867,164891,610347,2273020,8508804,31991549,120734511

181 {2143,1324,1234} 75,268,958,3425,12245,43778,156514,559565,2000543,7152292,25570698,91419729

182 {3412,3124,4132} 75,268,961,3467,12591,46012,169088,624478,2316582,8627816,32247951,120920851

183 {4132,4123,1234} 76,263,843,2501,6941,18245,45928,111721,264482,612707,1394929,3131269

184 {4213,4132,1324} 76,270,927,3074,9886,30985,95064,286558,851203,2497550,7252494,20874861

185 {2341,4123,1234} 76,270,929,3118,10354,34472,116097,397167,1380884,4872188,17405889,62819962

186 {4132,4123,1243} 76,270,930,3114,10196,32820,104283,328048,1023854,3175395,9797833,30104416

187 {3124,4132,1324} 76,271,938,3146,10252,32583,101368,309697,931708,2766374,8121630,23612985

188 {2341,3412,4123} 76,273,964,3356,11587,39866,137055,471326,1621698,5581897,19216642,66160957

189 {2143,2134,1432} 76,273,971,3439,12172,43098,152649,540730,1915445,6785029,24034177,85134498

190 {2413,3124,1342} 76,274,977,3449,12086,42141,146469,508098,1760610,6096937,21106816,73058238

191 {2134,3142,1423}
{3142,3124,1243}
{3142,1342,1234}
{3124,1432,1324} 76,274,978,3463,12201,42869,150415,527426,1848905,6480722,22715293,79617891

192 {4132,1423,1243} 76,274,979,3479,12351,43951,157081,564409,2039465,7410650,27070098,99369477

193 {2413,4132,1324} 76,275,989,3539,12631,45066,161021,576887,2074166,7488003,27150233,98878251

194 {3124,4123,1243} 76,275,989,3541,12660,45316,162694,586506,2124192,7730537,28267633,103834509

195 {1324,4123,1243} 76,275,989,3544,12696,45578,164194,593966,2158090,7875503,28862235,106203597

196 {4213,3142,1342}
{2134,1432,1324}
{3412,1342,1423}
{3142,1342,4123} 76,275,991,3563,12800,45976,165141,593184,2130737,7653715,27492557,98754742

197 {4312,3142,1423} 76,275,991,3566,12848,46426,168390,613252,2242584,8233836,30347562,112259358

198 {1342,4123,1234} 76,275,991,3566,12850,46458,168686,615340,2255101,8301270,30684958,113860149

199 {1342,4123,1243} 76,275,993,3593,13068,47838,176277,653538,2436158,9124352,34315674,129523198

200 {2143,3124,1243} 76,276,1001,3626,13126,47501,171876,621876,2250001,8140626,29453126,106562501

201 {3142,1324,1243}
{3124,1342,1423} 76,276,1002,3641,13261,48451,177651,653753,2414426,8947576,33266626,124062001

202 {1432,1423,1234} 76,277,1012,3702,13553,49642,181885,666542,2442922,8954133,32821408,120310377

203 {3142,1432,1324}
{3124,1423,1234} 76,277,1015,3743,13893,51874,194693,733983,2777748,10547615,40169157,153377405

204 {3124,1342,1243} 76,277,1016,3756,13994,52491,197987,750185,2853359,10888249,41666366,159841363

205 {1432,1324,1234} 76,278,1019,3734,13678,50100,183514,672230,2462490,9020556,33043996,121046420

206 {1432,1243,1234} 76,278,1021,3756,13827,50916,187512,690593,2543444,9367525,34500756,127067006
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207 {2134,1423,1243} 76,278,1026,3818,14308,53932,204273,776859,2964716,11348261,43552751,167535302

208 {3124,1342,1234} 76,278,1029,3859,14642,56067,216174,837832,3260369,12728853,49828647,195502526

209 {3142,1432,1243} 76,279,1043,3979,15464,61035,243956,985332,4015149,16486978,68152082,283379950

210 {4132,1324,1243} 77,283,1032,3740,13522,48930,177564,646908,2367121,8699706,32108614,118975273

211 {1324,4123,1234} 77,284,1041,3789,13730,49679,179906,653083,2378702,8696754,31921462,117624497

212 {3142,4132,1324} 77,285,1053,3875,14212,52021,190301,696532,2553047,9377034,34525630,127466481

213 {4132,1324,1423} 77,285,1054,3889,14330,52800,194748,719602,2664989,9894443,36831886,137465657

214 {3412,4123,1423} 77,285,1055,3905,14476,53812,200709,751206,2820944,10625962,40138957,152012381

215 {2143,2134,1243}
{2143,1243,1234}
{3142,3124,1342}
{1432,4123,1423} 77,286,1066,3977,14841,55386,206702,771421,2878981,10744502,40099026,149651601

216 {2143,3412,3142} 77,286,1066,3978,14858,55556,208012,780045,2930085,11025510,41560770,156938430

217 {4132,1342,1243} 77,286,1067,3992,14976,56338,212517,803758,3047409,11580777,44103581,168294630

218 {3142,3124,1423}
{3142,1324,1423}
{3124,1423,1243} 77,286,1067,3993,14992,56488,213600,810449,3084733,11774727,45061101,172844990

219 {3412,3142,1423} 77,286,1068,4006,15093,57104,216875,826448,3158726,12104591,46494761,178964400

220 {2413,4132,1342} 77,286,1069,4018,15182,57636,219701,840422,3224664,12405795,47838633,184854955

221 {2413,3142,1324}
{2143,3142,1324}
{2143,1324,1423}
{3142,4132,1243}
{3142,4123,1423}
{4132,1432,1243}
{4132,1342,1324} 77,287,1079,4082,15522,59280,227240,873886,3370030,13027730,50469890,195892565

222 {4312,3412,1423} 77,287,1080,4094,15611,59811,230048,887674,3434510,13319262,51756304,201467116

223 {3142,1423,1243} 77,287,1082,4128,15945,62330,246328,982977,3956136,16041373,65473465,268790735

224 {4132,1342,1423} 77,288,1091,4172,16069,62240,242152,945536,3703095,14539109,57204767,225484743

225 {2413,3142,1243} 77,288,1093,4202,16341,64187,254313,1015163,4078777,16481961,66940960,273115842

226 {2143,3142,1423} 77,288,1093,4203,16359,64377,255857,1025889,4145966,16873475,69105368,284618324

227 {2143,1432,1324} 77,289,1103,4261,16603,65100,256466,1014107,4021836,15988827,63691619,254145940

228 {3412,3142,4123} 77,289,1107,4322,17162,69137,281917,1161404,4826652,20211146,85192214,361185371

229 {2413,3142,4123}
{2143,1342,1423}
{2134,1342,1423} 77,290,1118,4398,17595,71385,293042,1215035,5081259,21408350,90786332,387212538

230 {4123,1243,1234} 78,294,1108,4165,15638,58762,221324,836330,3171916,12074924,46131496,176825773

231 {1324,4123,1423} 78,297,1143,4419,17119,66386,257621,1000407,3887666,15119991,58856167,229312425

232 {4123,1423,1234} 78,297,1144,4433,17238,67184,262276,1025202,4011660,15712335,61590780,241610745

233 {2143,1324,1243}
{2134,1324,1243}
{2134,1243,1234}
{3142,4132,1432}
{3142,4132,1342}
{3142,4132,1423}
{3142,1342,1324}
{3124,1342,1324}
{3124,1324,1423}
{4132,1432,1324}
{4132,4123,1423}
{1342,4123,1423} 78,298,1157,4539,17936,71251,284188,1137076,4561093,18333337,73816489,297635750

234 {3412,3142,4132}
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Continuation of Table 2

No. T {|Sn(T )|}16n=5

{3142,1342,1243} 78,299,1172,4677,18947,77746,322545,1350906,5704822,24265651,103872254,447146683

235 {3412,4132,4123}
{3142,1432,1423}
{3124,1243,1234} 78,301,1197,4875,20235,85294,364131,1571212,6841633,30025137,132668839,589726354

236 {3124,4123,1423}
{4132,1432,1342}
{1432,1324,1423}
{1324,1423,1243}
{1423,1243,1234} 79,309,1237,5026,20626,85242,354080,1476368,6173634,25873744,108628550,456710589

237 {1432,1324,1243} 79,310,1251,5150,21517,90921,387595,1663936,7183750,31158310,135661904,592558096

238 {2413,3142,1423}
{4312,3412,3142}
{1342,1324,1423}
{1342,1423,1243}
{1342,1423,1234} 79,310,1251,5151,21536,91137,389510,1678565,7284975,31811311,139661231,616097345

239 {2413,3412,3142}
{4312,3412,4132}
{3412,3142,1342}
{3142,1432,1342}
{3142,1342,1423}
{3124,1324,1243}
{1432,1423,1243}
{1324,1423,1234}
{4123,1423,1243} 79,311,1265,5275,22431,96900,424068,1876143,8377299,37704042,170870106,779058843

240 {4312,3412,4123} 79,313,1290,5475,23764,105001,470738,2136022,9791501,45275765,210931962,989153896

241 {1324,1243,1234} 80,322,1346,5783,25372,113174,511649,2338988,10793251,50205607,235156609,1108120540

242 {1432,1342,1423} 80,322,1347,5798,25512,114236,518848,2384538,11068567,51817118,244370806,1159883685

End of Table
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