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Taking transposes of Standard Young Tableaux defines a natural invo-

lution on the set I(n) of involutions of length n via the the Robinson-

Schensted correspondence. In some cases, this involution can be de-

fined without resorting to the Robinson-Schensted correspondence.

As a byproduct, we get an interesting generalization of layered per-

mutations.

1. INTRODUCTION

The Robinson-Schensted (RS) [4, 6] correspondence bijectively maps a permutation p into
an ordered pair of Standard Young Tableaux (SYT) (P (p), Q(p)) on n boxes and of the same
shape. This bijection, and its consequences, have been analyzed from numerous perspectives
in the last 50 years, see [5] for a comprehensive treatment of these results.

In particular, a famous result of Marcel-Paul Schützenberger [7] shows that if p−1 denotes
the inverse of p, then the RS correspondence maps p−1 into the pair (Q(p), P (p)). Therefore,
if p is an involution, that is, if p = p−1, then (P (p), Q(p)) = (Q(p), P (p)), which implies that
P (p) = Q(p). In other words, the RS correspondence defines a bijection from the set I(n) of
involutions of length n to the set SY T (n) of Standard Young Tableaux on n boxes. Therefore,
with a slight abuse of language, for layered permutations p, we will sometimes simply talk
about the tableau of p when we mean the tableau P (p) = Q(p).

Taking transposes defines a natural involution on SY T (n). Therefore, as I(n) is in bi-
jection with SY T (n), taking transposes of the corresponding Standard Young Tableaux also
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defines an involution f(n) on I(n). Interestingly, it seems that f has not been the subject of
many research papers.

Note that it is well known [5] that if p is any permutation and prev is its reverse, then
P (prev) = P (p)T , where P (p)T is the transpose of the tableau P (p). This implies that in the
special case when p is an involution and prev is also an involution, then f(p) = prev. However,
if p is an involution and prev is not an involution, then there is no clear way of describing f(p)
without using the machinery of the RS bijection.

In this paper, our goal is to describe the effect of f(n) on some subsets of I(n) in terms of
the involutions themselves only, that is, without resorting to the RS correspondence. In Section 2,
we give a description of f for layered permutations, which are necessarily involutions, while
in Section 3, we consider involutions that do not contain an increasing subsequence of length
three, or a decreasing subsequence of length three. Our results will be one-sided in that we
do have a simple description of f(p) when p is in a certain set S of involutions, but we do not
have a similarly simple description for f(w) if w ∈ f(S). This is, perhaps, not surprising, since
the roles of rows and columns of SYT in the RS correspondence are fundamentally different.
In Section 4, we use a new characterization of layered permutations that we prove in Section
2 to generalize these permutations in a natural way.

2. LAYERED PERMUTATIONS

Definition 2.1. A permutation p = p1p2 · · · pn is called layered if p is a concatenation of decreasing
subsequences (the layers) so that for all i, each entry of the ith decreasing subsequence from the left is
smaller than each entry of the (i+ 1)st decreasing subsequence from the left.

Example 2.2. Permutations 32154, 2154376, and 1234 are all layered.

Remark 2.3. All layered permutations are involutions.

There are many ways in which layered permutations can be characterized. For instance,
they are precisely the permutations that avoid both 231 and 132 as patterns, and they are
precisely the involutions whose patterns are all involutions. In fact, all the patterns of layered
patterns are themselves layered. See Chapter 4 of [1] for the relevant definitions in pattern
avoidance. Layered permutations have also been studied [8, 9] from the perspective of their
packing densities. Another characterization of layered permutations will become important
for us shortly.

As layered permutations of length n are clearly in bijection with compositions of n, their
number is 2n−1. So if Ln denotes the set of these permutations, f(Ln) is a 2n−1-element subset
of the symmetric group Sn. How can we describe this subset?

Lemma 2.4. Let T be a SYT on n boxes. Then T is the tableau of a layered permutation p if and only
if T satisfies the following requirements.

For all i ∈ {1, 2, 3, . . . , n− 1}, the entry i+ 1 is either

• in the row directly below the row containing i, or
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• in the top row.

Proof. First we prove the ”only if” part, by induction on the number of layers in p, the case
of one layer being obvious. Let p be a layered permutation with ℓ layers. As the entries of
the last layer are larger than all preceding entries of p, their insertion does not displace any
of these preceding entries of p from their place in the P -tableau of p, so they still satisfy the
conditions of the lemma. Consider the last layer of p. If that layer consist of the entry n only,
then that entry n will be inserted at the end of the first row of the P -tableau of p, and we are
done. If that last layer consists of the decreasing subsequence n(n − 1) · · · (n − a), then each
of these a + 1 entries will be inserted at the end of the first row of the P -tableau of p, and
the subsequently bumped one row lower by each entry that follows. So indeed, the entries
of the last layer will be positioned as described in the first condition of the Lemma, and our
induction proof is complete.

In order to prove the ”if” part, we can again argue by induction, or we can note that the
number of SYT satisfying the conditions of the Lemma is 2n−1, since any SYT on n− 1 boxes
that has the required properties can be completed to a SYT on n boxes having those properties
in two different ways, either by placing n at the end of the first row, or by placing n at the
end of the row right below the row that contains n − 1. Note that since no smaller entry can
be directly below n− 1, there is room in this lower row to place n. So, the injective map from
layered permutations with the given property must be surjective, hence it is bijective.

If a SYT satisfies the conditions of Lemma 2.4, in other words, when it is the tableau of a
layered permutation, we will call that tableau layered.

Note in particular that the entries of any one layer of p are in all distinct (and consecutive)
rows of P (p) = Q(p), the smallest entry of the layer in the first row, the second smallest entry
of the layer in the second row, and so on.

Example 2.5. The tableau of the layered permutation π = 215439876 is shown below

1 3 6

2 4 7

5 8

9

.

Taking the transpose of a layered tableau U will have an obvious effect on the properties
proved in Lemma 2.4. This motivates the following definition.

Definition 2.6. If U is a SYT in which for all i ≤ n− 1, the entry i+ 1 is

• in the first column, or

• in the column immediately on the right of the column that contains i,

then we say that U satisfies the transposed layer conditions.
If the tableau of the involution p satisfies the transposed layer condition, then we will say that p

satisfies the transposed layer condition.
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For instance, taking the transpose of the tableau of Example 2.5, we get the tableau

1 2 5 9

3 4 8

6 7

.

Applying the inverse of the RS correspondence to the SYT above, we get that f(p) =
673481259. We notice that all three layers of p are reversed in f(p), but the entries of each
layer of p are no longer in consecutive positions in f(p). We will explain that this is not by
accident, and discuss what part of the structure of a layered permutation is preserved by our
involution f .

In a permutation p = p1p2 · · · pn, we say that i is a descent if pi > pi+1. In a Standard Young
Tableaux T , we say that i is a descent if i + 1 occurs in a row that is strictly below the row
containing i. For instance, in the last displayed tableau, the entries 2 and 5 are descents.

The following well-known fact is easy to prove. (See [1], Theorem 7.15 for a proof.)

Proposition 2.7. For any permutation p, the position i is a descent in p if and only if the entry i is a
descent of Q(p).

Remark 2.8. Note that the two equivalent statements of Proposition 2.7 are also equivalent to the
statement that the entry i + 1 precedes the entry i in p−1. In particular, if p = p1p2 · · · pn is an
involution, then this just means that i+ 1 precedes i in p.

Let p be any permutation. We define a jog in p as a maximal increasing subsequence of
consecutive integers. For instance, p = 3614725 has jogs 12, 345, and 67. Each permutation
decomposes into its jogs. Note that if p = p1p2 · · · pn is an involution, then the fact that the
entries j, j+1, · · · , j+a form a jog is equivalent to the fact that pjpj+1 · · · pj+a is an increasing
subsequence of consecutive entries (position-wise) in p that cannot be extended on either side.
This is often described by saying that pjpj+1 · · · pj+a is a run or an ascending run in p.

Corollary 2.9. If w is a layered permutation, and the entries a, a + 1, · · · , a + b form a layer in w,
then the entries a, a+ 1, · · · , a+ b form a jog in f(w).

Proof. If the a, a+ 1, · · · , a+ b form a layer in w, then the positions a, a+ 1, · · · , a+ b− 1 are
descents in w, so those entries are descents in Q(w), which implies that they are not descents
in Q(w)T , and hence they are not descents in f(w). As f(w) is an involution, it follows that
the entries a, a + 1, · · · , a + b form a non-extendible increasing subsequence of consecutive
integers in f(w), that is, they form a jog.

In fact, Corollary 2.9 extends (by the same proof) to:

Corollary 2.10. If p is an involution, and the entries a, a+1 are in ascending order in p, then a, a+1
will form an inversion (be in descending order) in f(p).
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A k-increasing subsequence in a permutation is the union of k increasing subsequences. For
instance, if p = 741852963, then 748596 is a 2-increasing subsequence in p as it is the union of
the increasing subsequences 789 and 456. Similarly, a k-decreasing subsequence is a union of k
decreasing subsequences.

The following theorem connects k-increasing and k-decreasing subsequences of permuta-
tions to their images by the RS bijection.

Theorem 2.11 (Greene-Fomin-Kleitman, GFK). [2] [3] Let p be a permutation, and let ai denote
the length of the ith row of P (p). Then for all k, the sum a1 + a2 + · · · + ak is equal to the length of
the longest k-increasing subsequence of p.

Equivalently, let bi denote the length of the ith column of the P -tableau of p. Then for all k, the
sum b1 + b2 + · · ·+ bk is equal to the length of the longest k-decreasing subsequence of p.

Corollary 2.12. Let w be a layered permutation, and let bi denote the length of the ith column of the
tableau of w. Then bi is equal to the length of the ith longest layer of w.

Proof. A decreasing subsequence cannot contain entries from more than one layer of w, so
a k-decreasing subsequence of w must consist of subsequences of k distinct layers of w. So,
in order to maximize the length of a k-decreasing subsequence, one must choose complete
layers, and the k longest ones.

Let us keep the notation of Theorem 2.11. As in any permutation p, any k jogs form a
k-increasing subsequence, it follows that for any permutation p, the sum a1 + a2 + · · · + ak
must be at least as large as the combined length of the k longest jogs of p. This motivates the
following definition.

Definition 2.13. We say that a permutation p is GFK-tight if, for all k, the combined length of the k
longest jogs of p is equal to the length of the longest k-increasing subsequence of p.

Example 2.14. Consider p = 673481259. The jogs of p in descending order of length are
6789, 345, 12. These jogs also can be used to create corresponding k-increasing subsequences
of longest length, namely 6789, 6734859, 673481259.

The following theorem will show that the images of layered permutations under our in-
volution f are precisely the GFK-tight involutions.

Theorem 2.15. Let p = p1p2 · · · pn be an involution. Then p satisfies the transposed layer condition
if and only if p is GFK-tight.

Proof. Let ai be the length of the ith row of the tableau of p.
Let us first assume that p satisfies the transposed layer condition. Then P (p)T is layered,

so it is the P -tableau of a layered permutation w, whose ith column is of length ai. By Corol-

lary 2.12, the k longest layers of w have combined length
∑k

i=1
ai, so by Corollary 2.9, the

combined length of the k longest jogs of f(w) = p is also
∑k

i=1
ai, so by Theorem 2.11, p is

GFK-tight.
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Now let us assume that p is GFK-tight. Note that this implies that the first row of P (p) is
as long as the longest jog of p, the second row of P (p) is as long as the second longest jog of p,
and so on.

We will show that P (p) satisfies the transposed layer condition by showing that for each
jog A of p, the entries that belong to A belong to consecutive columns of P (p), starting with
the leftmost column. Let Aj be the jth longest jog of p, and let Aj be of length ℓj . We prove
our statement by induction on j.

First, let j = 1. If our claim did not hold for A1, that would mean that the entries of A1

would ”skip” a column, possibly the first one. As no column can contain more than one entry
of A1 (by Remark 2.8), this would imply that at least one entry of A1 is strictly on the right of
the ℓ1st column of P (p), which in turn would imply that the first row of P (p) is longer than
ℓ1. That would contradict the assumption that p is GFK-tight since it would imply that the
longest increasing subsequence of p is longer than its longest jog.

Now let us assume that our claim holds for all indices less than j, and prove it for j. Our
conditions then imply that for any i < j, each of the first ℓi columns of P (p) contains exactly
one entry of Ai. So the entries within each column of P (p) can be rearranged so that the first
row will consist of the entries of A1, the second row will consist of the entries of A2, and so on,
and the (j − 1)st row will consist of the entries of Aj−1. These rearrangements of the entries
do not change the column in which any one entry is located. So, after these rearrangements,
the entries that belong to Aj are all below the first j − 1 rows, and, if they skip a column, at
least one of them is strictly on the right of the ℓjth column. However, that implies that the jth
row of P (p) is longer than ℓj , contradicting the assumption that p is GFK-tight.

So if we know that p ∈ f(Ln), that is, that p is a GFK-tight involution, then we can obtain
f(p) as the unique layered permutation whose layers are identical to the reverses of the jogs
of p. In order to decide whether p is GFK-tight or not, it suffices to construct its P -tableau and
see if it satisfies the transposed layer condition.

For the sake of completeness, we say that a permutation p is dually GFK-tight if, for all k,
the length of the longest k-decreasing subsequence of p is equal to the combined length of the
k longest reverse jogs in p, where a reverse jog is a nonextendible decreasing subsequence of
consecutive integers. This leads to the analogous version of Theorem 2.15.

Theorem 2.16. A permutation p is layered if an only if it is a dually GFK-tight involution.

This is the new characterization of layered permutations that we promised at the begin-
ning of this section.

The results in this section raise the intriguing question. Let us consider permutations p for
which both P (p) and Q(p) satisfy the layer condition or the transposed layer condition, but
they are not necessarily identical. How can we describe these permutations? We will return
to these questions in Section 4.
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3. INVOLUTIONS THAT AVOID 321 OR 123

If a permutation does not contain a decreasing (resp. increasing) subsequence of length three,
then we say that it avoids the pattern 321 (resp. 123).

It follows from Theorem 2.11 that if an involution π avoids the pattern 321, then its tableau
consists of at most two rows. Therefore, the image f(π) consists of at most two columns.

It turns out that given P (π), we can recover the involution π without running the inverse
of the RS bijection. In an involution, each element is either a fixed point, or part of a 2-cycle.
If (i j) is a 2-cycle, and i < j, then each we call i a small entry and j a large entry. So each entry
of an involution is either a fixed point, or a small entry, or a large entry.

Proposition 3.1. Let π be a 321-avoiding involution. Then the first row of P (π) of π consists of all
the small entries and all the fixed points, and the second row consists of all the large entries.

Proof. A small entry can never be displaced during the formation of P (π). Indeed, if (ab) is a
2-cycle of π, a is the small entry in it, and later on, a is displaced by x, then bax is a 321-pattern
in π.

Also, a fixed point y can never be bumped. If such a y is bumped by j, then j < y, and j

follows y. So j = πi, where i > y. However, this implies that (i j) is a 2-cycle, so πj = i, and
iyj is a 321-pattern.

On the other hand, one can see that all large entries will be bumped. By way of contradic-
tion, suppose at least one large entry is not bumped to the second row. Let k be the number
of fixed points, let m be the number of 2-cycles. Then the first row would be at least k+m+1
entries long, which would imply, by Theorem 2.11, the existence of an increasing subsequence
of length k +m+ 1. That is impossible, since that would imply that there is a 2-cycle whose
entries both belong to that increasing subsequence.

We will now describe a way to directly recover the 321-avoiding involution π of length n

from its tableau P (π).
If n is in the first row, then n is a fixed point. Remove n from P (π), and continue with

n− 1.
If instead, n is in the second row, then n must be a large entry in π.
We claim n must be in a 2-cycle with the largest entry, say k in the first row. If this were

not the case, then n is in a 2-cycle with j where j < k. We then have two options. One, k is
a fixed point which means nkj is a 321 pattern in π. Or two, k is the small entry of a 2-cycle
with m where k < m < n and then nmkj is a 4321 pattern in π. Hence, we know n must be in
a 2-cycle with k and we remove n and k from P (π).

We can then continue this process with the next largest entry remaining in P (π).

Theorem 3.2. To obtain π from P (π), while P (π) 6= ∅, let n be the maximum of all entries in P (π). If
n is in the top row, then n is a fixed point of π and we remove n from P (π). Else, n is in a 2-cycle with
k where is the maximum of all entries in row one of P (π). Remove n and k from P (π) and continue
this process with the next largest entry remaining in P (π).
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Example 3.3. Let

P (π) =
1 2 4 6 7

3 5
.

Then we first note that 7 is a fixed point, then we note that 6 is a fixed point, after which
we recover the 2-cycles (4 5) and (2 3), and the fixed point 1, to obtain the involution π =
(1)(32)(54)(6)(7) = 1325467.

Therefore, if p is a 123-avoiding involution, and we knowQ(p), it is simple to compute f(p)
directly. In fact, knowing Q(p) is equivalent to knowing its first column. For the 123-avoiding
involution p = p1p2 · · · pn, let us call the index i a record-breaker if the longest decreasing
subsequence of the initial segment p1p2 · · · pi is longer than that of p1 · · · pi−1. It then follows
from Theorem 2.11 that the entries in the first column of Q(p) are precisely the record breakers
of p.

So, if p is a 123-avoiding involution, then we can first find its record-breakers, turn them
into the set of small entries and fixed points of f(p), turn the remaining entries of p into the
set of large entries of f(p), and finally match the small and large entries of f(p) as explained
in Theorem 3.2.

Example 3.4. Let p = 6574213, then the record-breakers of p are 1, 2, 4, 5, and 6. So the large
entries of f(p) are 3 and 7, while the other entries of f(p) are fixed points or small entries.
Therefore, Theorem 3.2 explains that f(p) = (1)(32)(4)(5)(76) = 1324576.

4. A GENERALIZATION OF LAYERED PERMUTATIONS

In this section, we are turning our attention to certain permutations instead of involutions. Our
main result is the following.

Theorem 4.1. For any permutation p, the following two statements are equivalent.

(A) Both P (p) and Q(p) satisfy the transpose layer conditions.

(B) Both p and p−1 are GFK-tight.

Note that in general, it is not true that p is GFK-tight if and only if p−1 is GFK-tight. While
the shapes of the tableaux of p and p−1 are always the same, the lengths of their jogs may not
be. For instance, p = 1423 is GFK-tight, but p−1 = 1342 is not. Also note that if both p and
p−1 are GFK-tight, then these two permutations must have the same number of jogs of each
length ℓ, namely, the number of rows of length ℓ of their tableaux.

Proof. 1. Let us assume that P (p) and Q(p) both satisfy the transpose layer conditions. Let
g1 = 1, g2, · · · , gt be the entries in the first column of Q(p). Then by Proposition 2.7, the
permutation p−1 has t jogs, one starting in each gi. If an entry x is the jth entry of its jog
of p−1, then the transposed layer condition implies that x appears in the jth column of
Q(p). Now let us assume that p−1 is not GFK-tight. Then there is a k so that the longest
k-increasing subsequence is longer then the combined length of the k longest jogs of
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p−1. Choose the smallest such k, then the kth row of Q(p) is of length ak, whereas the
kth longest jog of p−1 is of length ℓk, with ak > ℓk. As the last entry of this row must
be the akth entry of its jog in p−1, it follows that there are at least k jogs in p−1 that
are of length ak or more, contradicting the inequality ak > ℓk. This proves that p−1 is
GFK-tight.

Replacing Q(p) by P (p) and p−1 by p, we get an analogous proof of the fact that p is
GFK-tight.

2. Let us assume that p and p−1 are both GFK-tight. It then follows that for all i, the ith
row of P (p) and Q(p) as of length ℓi, the length of the ith longest jog of p. For any jog
Aj of p, no two entries of Aj can be in the same column of Q(p), since that would imply,
by Remark 2.8, that there is an entry i + 1 of that jog that precedes the entry i in p−1.
From this, we can prove that Q(p) satisfies the transposed layer condition as we did in
the proof of Theorem 2.15. Similarly, for any jog Bj of p−1, no two entries of Bj can be in
the same column of Q(p−1) = P (p), since that would imply, by Remark 2.8, that there is
an entry i+ 1 of Bj that precedes the entry i in p. Then we can prove that P (p) satisfies
the transposed layer condition in the same way.

Corollary 4.2. For any permutation p, the following two statements are equivalent.

(A) Both P (p) and Q(p) are layered.

(B) Both p and p−1 are dually GFK-tight.

It is natural to ask how many permutations are of the kind that is described by Theorem
4.1, or, equivalently, by Corollary 4.2. It is easier (in terms of terminology) to discuss the an-
swer for the latter. The first question we must answer is how many layered SYT of a given
shape are there? As layered SYT with column lengths b1, b2, · · · , bk are in bijection with lay-
ered permutations of layer lengths b1, b2, · · · , bk, it follows that the number of such SYT is
equal to the number of distinct multiset-permutations of the multiset {b1, b2, · · · , bk}.

In order to announce our formula, we need one definition. For a partition h of the integer
n, let comp(h) denote the total number of compositions of n that are obtained by rearranging
the parts of h. For instance, if h = 3 + 2 + 1, then comp(h) = 6, while if h = 2 + 2 + 1 + 1 + 1,
then comp(h) = 10.

So, there are comp(h)2 pairs of layered SYT of shape h, and we proved the following
theorem.

Theorem 4.3. The number of permutations p of length n so that both p and p−1 are dually GFK-tight
(equivalently, GFK-tight), is

An =
∑

h

comp(h)2,

where h ranges all partitions of the integer n.
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Note that the sequence of the numbers of An is in OEIS, as sequence A263897. It is obvious
that it also counts anagram compositions of 2n, that is, compositions of 2n into 2k parts, so that
the multiset of the first k parts is identical to the multiset of the last k parts. It would be
interesting to find out how large the numbers An are. It is clear that their exponential order is
4, since, on the one hand,

An =
∑

h

comp(h)2 ≤

(

∑

h

comp(h)

)2

= 4n−1,

and on the other hand, by the Cauchy-Schwarz inequality,

An =
∑

h

comp(h)2 ≥
1

p(n)

(

∑

h

comp(h)

)2

=
4n−1

p(n)
,

where p(n) denotes the number of partitions of n. As it is well known that p(n) is of exponen-
tial order 1, our claim is proved.

As dually GFK-tight involutions have a very simple characterization (they are the layered
permutations), it is natural to ask if GFK-tight involutions, as well as permutations described
in Theorem 4.1 and Corollary 4.2 can be described in a simpler way.
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