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Abstract. A PV number is an algebraic integer α of degree d ≥ 2 all of whose

Galois conjugates other than itself have modulus less than 1. Erdös [8] proved

that the Fourier transform ϕ̂, of a nonzero compactly supported scalar valued

function satisfying the refinement equation ϕ(x) =
|α|
2
ϕ(αx) +

|α|
2
ϕ(αx − 1)

with PV dilation α, does not vanish at infinity so by the Riemann-Lebesgue
lemma ϕ is not integrable. Dai, Feng and Wang [5] extended his result to

scalar valued solutions of ϕ(x) =
∑
k a(k)ϕ(αx−τ(k)) where τ(k) are integers

and a has finite support and sums to |α|. In ([22], Conjecture 4.2) we conjec-

tured that their result holds under the weaker assumption that τ has values in

the ring of polynomials in α with integer coefficients. This paper formulates
a stronger conjecture and provides support for it based on a solenoidal repre-

sentation of ϕ̂, and deep results of Erdös and Mahler [9];Odoni [26] that give

lower bounds for the asymptotic density of integers represented by integral
binary forms of degree > 2;degree = 2, respectively. We also construct an

integrable vector valued refinable function with PV dilation.

2010 Mathematics Subject Classification : 11D45, 11R06, 42C40, 43A60

1. Introduction

In this paper Z,N = {1, 2, 3, ...},Q,A,O,R,C are the integer, natural, ra-
tional, algebraic, algebraic integer, real, and complex numbers. For a ring R,
R[X];R[X,X−1] is the ring of polynomials; Laurent polynomials with coefficients
in R in the indeterminant X. If α ∈ A then Q[α] equals the algebraic number field
generated by α and we define Oα = O

⋂
Q[α], the degree function d : A → N,

and the trace and norm functions T ;N : A → Q. Their restrictions to O are in-
teger valued. For α ∈ A, Pα(X) ∈ Q[X] is its minimal degree monic polynomial
and L(α) is the least common multiple of the denominators of the coefficients of
Pα(X). O

⋂
Q = Z, α ∈ A ⇒ L(α)α ∈ O, and α ∈ O ⇒ Pα(X) ∈ Z[X]. There

exists B(α) ∈ N with

(1.1) Z[α] = Z + αZ · · ·+ αd(α)−1Z ⊆ Oα ⊆
1

B(α)
Z[α],

and hence, since N(α)α−1 ∈ Oα,
(1.2) N(α)B(α)α−1 ∈ Z[α].

1This work was done during my visit in the Department of Mathematics and Statistics at
Auburn University in Spring 2016. I thank Professor Richard Zalik for his great hospitality during

my stay in the department.
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2 REFINABLE FUNCTIONS WITH PV DILATIONS.

Example 1.1. If α ∈ A and Pα(X) = X3−X2− 2X − 8 = 0 Dedekind showed
([7], pp. 30-32), ([25], pp. 64) that {1, α, α(α + 1)/2} is an integral basis for Oα.
For this (1.1) holds with B(α) = 2 and both inclusions are proper.

T = R/Z;Tc = {w ∈ C : |w| = 1} is the circle group represented additively;
multiplicatively. For x ∈ R we define ||x|| = mink∈Z |x − k| ∈ [0, 12 ] and observe
that ||x + y|| ≤ ||x|| + ||y||. Since x + Z = y + Z ⇒ ||x|| = ||y||, we can define
|| || : T→ [0, 12 ] by ||x+ Z|| = ||x||. For α ∈ R \ [−1, 1] define its Pisot set

(1.3) Λα = {λ ∈ R \ {0} : lim
j→∞

||λαj || = 0 }.

A Pisot-Vijayaraghavan (PV) number [3, 27] is α = α1 ∈ O with d(α) ≥ 2 whose

Galois conjugates α2, ..., αd have moduli < 1. The Golden Mean 1+
√
5

2 ≈ 1.6180 has

Galois congugate 1−
√
5

2 ≈ −0.6180 so it is a PV number.

Theorem 1.1. (Pisot, Vijayaraghavan) If α ∈ A\[−1, 1] has degree d ≥ 2 and
Λα 6= φ then α is a PV number and

(1.4) Λα = {αmµ : m ∈ Z, µ ∈ Q[α] \ {0}, T (µαj) ∈ Z, j = 0, ..., d− 1 }.

Furthermore, for λ ∈ Λα, ||λαj || → 0 exponentially fast.

Proof. Cassels ([3], Chapter VIII, Theorem 1) gives a simplified version,
based on the properties of recursive sequences, of Pisot’s proof in [27]. We relaxed
the assumption that α is positive since α is a PV number iff−α is a PV number. The
sequence s(j) = T (µαj), j ≥ 0 satisfies s(j) = −cd−1s(j−1)−· · ·−c0s(j−d), j ≥ d,
where Pα(X) = Xd + cd−1X

d−1 + · · ·+ c0. Then (1.4) implies that s has values in
Z. If λ = αmµ and µ = µ1, µ2, ..., µd are the Galois conjugates of µ, then

(1.5) ||λαj || ≤ |µαj+m − T (µαj+m)| ≤
d∑
k=2

|µk| |αk|j+m, j ≥ −m,

converges to 0 exponentially fast as j →∞ since |αk| < 1, k = 2, ..., d. �

This paper studies refinable functions, nonzero complex scalar or vector valued
distributions ϕ satisfying a refinement equation

(1.6) ϕ(x) =

∞∑
k=1

a(k)ϕ(αx− τ(k)),

and whose Fourier transform ϕ̂(y) =
∫∞
−∞ f(x)e−2′ixydx is continuous at y = 0 and

ϕ̂(0) 6= 0. Here the dilation α ∈ R \ [−1, 1], the coefficient sequence a, which is
matrix valued for vector valued refinable functions, decays exponentially fast, and
τ takes values in Z[α, α−1]. Refinable functions constructed from integer α ≥ 2
and integer valued τ include Daubechies’ scaling functions used to construct or-
thonormal wavelet bases [6], basis functions constructed by Cavaretta, Dahmen,
and Michelli from stationary subdivision algorithms [4], and multiwavelets con-
structed from vector valued refinable functions [15]. (1.6) is equivalent to

(1.7) ϕ̂(y) = â(yα−1)ϕ̂(yα−1)

(1.8) â(y) = |α|−1
∞∑
k=1

a(k)e−2πiτ(k)y.
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Figure 1. Fourier Transform of the Dyadic Refinement Sequence

For scalar valued ϕ, â(0) = 1, for vector valued ϕ, â(0) ϕ̂(0) = ϕ̂(0), and

(1.9) ϕ̂(yαJ) =

∏
j<J

â(yαj)

 ϕ̂(0), J ∈ Z,

where for matrices the factors move right with decreasing j.

Example 1.2. We call ϕ = χ[0,1] the boxcar function. It satisfies (1.6) with

α = 2, a(0) = a(1) = 1, τ(0) = 0, τ(1) = 1. Then â(y) = eπiy cosπy and

(1.10) ϕ̂(y2J) = eπiy2
J sinπy2J

πy2J
= eπy2

J ∏
j<J

cos(πy2J).

ϕ is integrable and ϕ̂ vanishes at infinity, despite the fact that ϕ̂(πλ2j) converges
to 1 for every λ ∈ Z[2, 12 ] (the set of dyadic rational numbers), because for every

such λ there exists j ∈ Z such that cos(πλ2j) = 0.

Example 1.3. α = 2, a(k) = τ(k) = 21−k, k ∈ N gives the dyadic function and
â(y) =

∑
k∈N 2−k exp(−2πiy21−k) is Bohr almost periodic [2] since

(1.11) |â(y + 2L−1)− â(y)| ≤ 2−L, y ∈ R, L ∈ N.

Furthermore, infy∈R |â(y)| > 0, and limj→∞ â(λ2j) = 1 for every λ ∈ Z[2, 12 ].
Figure 1 shows the modulus of â over [0, 128]. ϕ̂ does not vanish at infinity since
limj→∞ ϕ̂(2j) ≈ 0.2578 + 0.0692i.

Example 1.4. If α = 1+
√
5

2 is the Golden Mean then ϕ =

[
χ[0,α−1]

χ[0,1]

]
satisfies

(1.6) with a(1) =

[
0 1
0 1

]
, a(2) =

[
0 0
1 0

]
, τ(1) = 0, τ(2) = 1.

(1.12) â(y) = α−1
[

0 1
e−2πiy 1

]
, ϕ̂(0) =

[
α−1

1

]
.

â(y) is never zero and satisfies limj→∞ â(λαj) = â(0) for all λ ∈ Z[α, α−1], and

(1.13) ϕ̂(yαJ) =

[
e−πiyα

J−1 sin(πyαJ−1)
πyαJ

e−πiyα
J sin(πyαJ )

πyαJ

]
=

∏
j<J

α−1
[

0 1

e−2πiyα
j

1

] ϕ̂(0).
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This example is related to the wavelets with PV dilations constructed by
Gazeau, Patera and Spiridinov [13], [14] and multiresolution analyses on quasicrys-
tals [22]. For λ ∈ Z[α, α−1], ϕ̂(λαj) is close to the eigenspace of â(0) with eigenvalue
α;− 1

α for j ≈ −∞;∞. This fact makes φ integrable despite â never vanishing, in
contrast to scalar refinable functions with PV dilations discussed below.

Erdös [8] proved that if α is a PV number then the refinable function satisfying

(1.14) ϕ(x) =
|α|
2
ϕ(αx) +

|α|
2
ϕ(αx− 1)

(a Bernoulli convolution) is not integrable by showing that

(1.15) ϕ̂(αJ) = e−πi
αJ

α−1

∏
j<J

cos(παj)

fails to converge to 0 as J → ∞ We give his proof. Since ||αj || converges to 0
exponentially fast as |j| → ∞, cosπαj converges to ±1 exponentially fast and hence
ϕ(αJ) converges to 0 iff there exists j ∈ Z such that cosπαj = 0, or equivalently
if αj ∈ 1

2 + Z. This is impossible because if αj ∈ Q then the Galois conjugates of
α would be multiples of each other by roots of a cyclotomic polynomial and thus
have identical moduli. Dai, Feng and Wang [5] extended Erdös’ result to scalar
valued refinable functions ϕ that satisfy (1.6) where a has finite support, α is a PV
number, and τ is integer valued. We give their proof. Since τ is integer valued, â
in (1.8) has period 1. Since a has finite support, â is real analytic so the set of its
zeros in [0, 1) is a finite set F, so the set of zeros of â equals F + Z. If ϕ̂ vanished
at infinity then for every m ∈ N, limJ→∞ ϕ̂(mαJ) = 0 and since ||mαj || converges
to 0 exponentially fast as |j| → ∞, the same argument used to obtain Erdös’ result
implies that there exists jm ∈ Z such that mαjm ∈ F + Z. Let d = d(α). (1.1)
implies that there exist unique km ∈ Z and βm ∈ αZ + · · ·+ αd−1Z with

(1.16) mαjm = mkm +mβm, jm ≥ 0

and (1.2) implies that

(1.17) mαjm = (N(α)B(α)))jmmkm + (N(α)B(α)))jmmβm, jm < 0.

Since αjm /∈ Q, βm 6= 0, choosing a prime p that does not divide N(α)B(α) and
letting m = pn, n ∈ N produces a set of values of (N(α)B(α)))jmmβm that are in-
finite modulo Z (infinite modulo Q since 1, α, ..., αd−1 are rationally independent),
contradicting the fact that F is finite.

This argument holds under the weaker assumption that a decays exponentially
fast because then â is a real analytic function with period 1. The remainder of this
paper provides support for the following extension of these results:

Conjecture 1.1. If φ is a scalar valued refinable function satisfying (1.6,) α
is a PV number, a decays exponentially fast, and τ has values in Z[α, α−1], then ϕ̂
does not vanish at infinity and hence ϕ is not integrable.

2. Solenoidal Representation

Let TZ be the group of functions g : Z → T under pointwise addition and the
product topology. Tychonoff’s theorem [31] implies that TZ is compact. Define
the shift automorphism σ : TZ → TZ by (σg)(j) = g(j + 1), g ∈ TZ, j ∈ Z, and
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homomorphisms ρn : TZ → Tn by ρn(g) = [g(0), ..., g(n−1)]T , g ∈ TZ, n ∈ N. Let
α be a PV number of degree d = d(α). Its Galois conjugates α = α1, ...αd are the
roots of its minimal polynomial Pα(X) = Xd + cd−1X

d−1 + · · ·+ c0 ∈ Z[X]. Define
the Vandermonde V , Frobenius Companion C, and Diagonal D, matrices

V =


1 . . . 1
α1 . . . αd
... . . .

...

αd−11 . . . αd−1d

C =


0 1 . . . 0
...

. . .
. . . 0

0 . . . 0 1
−c0 . . . . . . −cd−1

D =

 α1 . . . 0
...

. . .
...

0 . . . αd


detV =

∏
i<j(αj −αi) 6= 0⇒ V is invertible, CV = V D, and V −1C = DV −1. Let

S− = {[0, s2, ..., sd]T : sj ∈ C, αj = αk ⇒ sj = sk}, S+ = {[s1, 0, ..., 0]T : s1 ∈ R},
S = S+ +S−. These are real subspaces of Cd with dimensions d−1, 1, d. Construct
homomorphisms ϑ : S → TZ and θ : R→ TZ,

(2.1) ϑ(s)(j) =

d∑
k=1

sk α
j
k + Z, s ∈ S, j ∈ Z,

(2.2) θ(y)(j) = y αj + Z, y ∈ R, j ∈ Z,

and σ invariant subgroups M± = ϑ(S±), M = M+ + M−, and G = M. Then
DS± = S±, S = V −1Rd, M = ϑ(S), ρd(M) = Td, ρd(G) = Td, and hence G is a
compact, connected, abelian group with dimension ≥ d, the restriction σ : G→ G
gives a dynamical system (G, σ) that is an extension [11] of the dynamical system
(Td, C) since C ◦ ρd = ρd ◦σ. 0 ∈ G is an equilibrium point of σ and M+;M− is the
unstable;stable manifold of 0. DefineK = kernel of ρd : G→ Td, K− =

⋃
j∈Z σ

j(K),
G+ = M+, G− = M− + K−, and H = G+ ∩ G−. Then G = M + K = G+ + G−
and the orbits of points in H are homoclinic since h ∈ H ⇒ limj→±∞ σjh = 0.

Remark 2.1. Following Lind and Ward ([23], p. 411) we define a solenoid to be
a compact, connected, dimension n <∞ abelian group. Its dual group (see Section
4) is a discrete, torsion free, rank n abelian group, or equivalently, a subgroup of Qn.
The dynamical system (G, σ) is expansive, as defined by Lam [19], if there exists
a neighborhood U of 0 such that

⋂
j∈Z σ

j(U) = {0}. In [20] we used topological
entropy and Pontryagin duality to prove that every group that admits an expansive
automorphism is a solenoid. Schmidt ([29], Chap. III) used algebraic methods to
characterize more general expansive transformation groups.

Theorem 2.1. The assumptions above imply that:

(1) G is isomorphic to a group extension of Td by K.
(2) If |c0| = 1 then K = {0} and G is isomorphic to Td.
(3) If |c0| > 1 then K is homeomorphic to Cantor’s set.
(4) G is a d-dimensional solenoid and (G, σ) is expansive.
(5) θ(R) = ϑ(S+) is dense in G.
(6) θ(Λα) = H.

Proof. (1) holds since ρd : G → Td is surjective. (2-3) hold since (2.1) ⇒
every g ∈ G0, hence every g ∈ G, satisfies

(Pα(σ)g)(k) = c0g(k) + · · ·+ cd−1g(k + d− 1) + g(k + d) = 0, k ∈ Z,
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so K = { g ∈ TZ : g(k) = 0, k ≥ 0 and c−k0 g(k) = 0, k < 0}. (4) holds since
G = G+ + G−. (5) holds since (σθ(x))(j) = θ(x)(j + 1) = θ(xα) ⇒ θ(R) is σ-
invariant and ρd(θ(R)) = R[1, α, ...., αd−d]T + Zd is dense in Td by the Kronecker-
Weyl theorem [33],(Appendix, Theorem 4.1) since the entries of [1, α, ..., αs−1]T

are rationally independent. (6) holds since θ(s1) ∈ H ⇔ θ(s1) ∈ M− + K− iff
there exist −[0, s2, ..., sd]

T ∈ S−,m ∈ Z with θ(s1) + ϑ([0, s2, ..., sd]
T ) ∈ σmK ⇔

ρd(σ
−mϑ(s)) = 0 where s = [s1, s2, ..., sd]

T . Theorem 1.1 implies that this condition
holds iff V D−ms = [T (α−ms1), ..., T (α−m+d−1s1)]T ∈ Zd ⇔ s1 ∈ Λα. �

Assume that α is a PV number of degree d = d(α), a : N → C decays expo-
nentially fast,

∑
k∈N a(k) = 1, and τ : N→ Z[α, α−1]. For k ∈ N define τk : Z→ Z

such that τ(k) =
∑
j∈Z τk(j)αj . Each τk is finitely supported. Construct A : G→ C

(2.3) A(g) = |α|−1
∑
k∈N

a(k) exp

−2πi
∑
j∈Z

τk(j)g(k)

 , g ∈ G.

Theorem 2.2. These assumptions give the solenoidal representation â = A◦θ.

Proof. Follows from (1.8) and (2.2). �

3. Zero Sets

This section develops relationships between and properties of the zero sets S(φ̂),
S(â), and S(A). Since a has exponential decay A is a real-analytic function so S(A)
is a real-analytic set. Theorem 2.2 implies θ(S(â)) ⊂ S(A) and (1.7) implies that

(3.1) S(ϕ̂) = αS(â) + αS(ϕ̂),

(+ of zero multiplicities) so the lower d and upper d asymptotic densities satisfy

(3.2) d(S(â)) = (|α| − 1) d(S(ϕ̂)) ≤ d(S(â)) = (|α| − 1) d(S(ϕ̂)).

Theorem 3.1. If A is not zero then d(S(â)) <∞.

Proof. H(G) = { closed subsets of G } with the Hausdorff topology is a com-
pact space ([10], p. 205, 255) and T (G) = {θ([0, 1]) + g : g ∈ G} is a closed
subset and hence compact. If d(S(â)) = ∞ then there exist g ∈ G and a se-
quence xn ∈ R, n ∈ N such that A has at least n zeros in θ([xn, xn + 1]) and
limn→∞ θ(xn) = g. Define f(x) = |A(θ(x) + g)|2, x ∈ R. Then either f has an
infinite number of zeros in the interval [0, 1] or Rolle’s theorem implies that it has
a zero of infinite order in [0, 1]. Since A and hence f is real-analytic, f = 0. Since
θ(R), and hence θ(R) + g, is dense in G, A is zero thus giving a contradicting. �

For m ∈ Z and ε = [ε2, ..., εd] satisfying εk > 0 and αj = αk ⇒ εj = εk define

(3.3) U(m, ε) = σmK + {ϑ(s) : s ∈ S− and |sk| < εk, k = 2, ..., d } ⊂ G−.
Since U(m, ε) decreases to {0} as m → ∞ and εk → 0 we can, and will, choose
m and ε so that A never vanishes on U(m, ε). Also, U(m, ε) is σ invariant since
σU(m, ε) = U(m + 1, [ε2|α2|, ..., εd|αd|]) ⊂ U(m, ε). Let a be the number of real
αk, k = 2, ..., d and b be the number of complex conjugate pairs of αk, k = 2, ..., d,
and let γ = |detV | |c0|−m 2aπb ε1 · · · εd. For L > 0 define

W (L) = {V D−m[y, s2, ..., sd]
T : y ∈ (−L,L), |sk| < εk, k = 2, ..., d },

Y (L) = { y ∈ (−L,L) : θ(y) ∈ U(m, ε) }.
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The sets W (L), L > 0 are convex cylinders parallel to the vector [1, α, ..., αd−1]T

whose entries are rationally independent, therefore

(3.4) lim
L→∞

1

2L
card W (L) ∩ Zd =

1

2L
vol W (L) = γ.

Lemma 3.1. The R-linear function ξ : W (L) ∩ Zd → (−L,L) defined by
ξ(w) = [1, 0, ..., 0]DmV −1w is a bijection onto Y (L). Therefore

(3.5) lim
L→∞

1

2L
card Y (L) = γ.

Proof. Assume w ∈ W (L) ∩ Zd. If ξ(w) = 0 then w ∈ V D−mS− and hence
lim `→∞ C`w = 0. Since w ∈ Zd, w = 0, so ξ is injective. Assume that y ∈ (−L,L).
Then θ(y) ∈ U(m, ε) iff there exist −sk that satisfy |sk| < εk, k = 2, ..., d and

θ(y) ∈ σjK + ϑ([0,−s2, ...,−sd]T )⇔ σ−mϑ([y, s2, ..., sd]
T ) ∈ K

⇔ ρd(σ
−mϑ([y, s2, ..., sd]

T )) = 0⇔ V D−m[y, s2, ..., sd]
T ∈ Zd.

Since V D−m[y, s2, ..., sd]
T ∈ W (L), the last inclusion holds iff y ∈ ξ(W (L) ∩ Zd).

This shows that ξ maps W (L) ∩ Zd onto Y (L). Then (3.4)⇒ (3.5). �

Theorem 3.2. If ϕ̂ vanishes at infinity then d(S(ϕ̂)) ≥ γ.

Proof. (3.5) implies that it suffices to show that for every L > 0 it suffices to
show that ϕ̂ equals 0 at every point in Y (L). Since ϕ̂ vanishes at infinity,

0 = lim
J→∞

ϕ̂(αJy) = lim
J→∞

ϕ̂(y)

J∏
j=1

â(αjy).

Since y ∈ Y (L) and  ≥ 1 implies θ(αjy) = σjθ(y) ∈ U(m, ε), and since A never
vanishes on U(m, ε), (2.2) implies that â(αjy) = A(σj(θ(y)) 6= 0. Since σj(θ(y))
converges to 0 exponentially fast,

∏∞
j=1 â(αjy) 6= 0, and hence ϕ̂(y) = 0. �

Corollary 3.1. If ϕ̂ vanishes at infinity then d(S(â)) ≥ (|α| − 1) γ. S(A) is
a union of embedded manifolds in G and has dimension d− 1.

Proof. The first assertion follows from (3.2). Since S(A) is an real-analytic
set it is homeomorphic to a union of embedded manifolds by Lojasiewicz’s structure
theorem for real-analytic sets [17], [21], [24]. Since θ(R) is a uniformly distributed
embedding, if the dimension of S(A) were less than d− 1 then d(S(â)) = 0. �

Theorem 3.3. If α is a PV number of degree d ≥ 2 then the set of norms
N(Λα) is a set of rational numbers whose denominators have only a finite number
of prime divisors and whose numerators are values of integral forms (homogeneous
polynomials) of degree d in d integer variables. The number of these integer values
having modulus ≤ L is asymptotically bounded below by O(L2/d) for d ≥ 3 and by
O(L/(logL)p) for some p ∈ (0, 1) for d = 2.

Proof. Let α = α1, ...αd be the Galois conjugates of α. Theorem 1.1 implies
that λ ∈ Λα iff there exist m ∈ Z and µk ∈ Q[αk) such that λ = µ1α

j where
[µ1, ..., µd]

T ∈ V −1Zd. The elements of the kth row of V −1, being the coefficients of

the Lagrange interpolating polynomial Qk(X) = Pα(X)
(X−αk)P ′(αk) , belong to the field

Q[αk] and the elements in every column of V −1 are Galois conjugates. Therefore

N(λ) = N(α)mN(µ1), and N(µ1) =
∏d
k=1 µk is a form with rational coefficients
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of degree d in d integer variables (the coordinates of Zd). The denominators of
the coefficients of the form N(µ1) must divide detV so the prime factors of the
denominators of the numbers in N(Λα) must divide N(α) or detV. Therefore a
positive fraction of the numbers in N(Λα) have numerators that are values of an
integral form of degree d in d integer variables. For d ≥ 3 we obtain a binary form
of degree 3 by setting all except 2 of these integer variables to 0, and obtain the
lower asymptotic bound for the values of the numerators by a Theorem of Erdös
and Mahler [9]. For d = 2 we obtain a binary quadratic form and we obtain a lower
asymptotic bound given by a Theorem of Odoni ([26], Theorem S). �

We refer the reader to Section 4 for a discussion of Pontryagin duality. If χ ∈ Ĝ
and c ∈ Tc then the zero set S(χ− c) = {g ∈ G : χ(g)− c = 0} has dimension d−1.
We call a real-analytic subset of G simple if it is contained in a finite union of such
sets. Lagarias and Yang conjectured [18] that certain real-analytic subsets of T n,
that arise in the construction of refinable functions of several variables related to
tilings and that are analogous to our set S(A), are simple. We used Lojasiewicz’s
theorem [21] to prove their conjecture. Thus we find the following result interesting:

Theorem 3.4. If A is nonzero then S(A) is not simple.

Proof. The argument used in the proof of Theorem 3.2 shows that for every
λ ∈ Λα there exists m ∈ Z such that λαm ∈ S(â). Therefore Theorem 3.3 implies
that the set of norms N(S(â)) contains a set of rational numbers whose numerators
whose modulus is less than L has asymptotic density > O(L1/d). If S(A) were a
proper simple subset of G then all but a finite number of points in S(â) would
be contained in a finite union of sets having the form β + δZ where β and δ are
elements in Q[α]. However N(β+δk) is a form of degree d with rationall coefficients
in single integer variable k and therefore the set of numerators of the values of this
form has asymptotic density O(L1/d), thus giving a contradiction. �

Remark 3.1. Integral binary quadratic forms were studied by Gauss [12], who
focussed on forms having negative discriminant. Asymptotic estimates for the num-
ber of integers represented by integral binary quadratic forms with negative discrim-
inant were obtained in the doctoral dissertation of Bernays [1] and by James [16].
Numerical studies were compiled by Sloan [30].

Inspired by developments in Diophantine geometry and o-minimal theory we
make the following assertion whose validity proves Conjecture 1.1.

Conjecture 3.1. Every real-analytic subset of G that intersects every homo-
clinic orbit is simple.

4. Appendix: Pontryagin Duality and the Kronecker-Weyl Theorem

A character of a locally compact abelian topological group G is a continuous

homomorphism χ : G→ Tc. The dual group Ĝ consists of all characters under point-
wise multiplication and the topology of uniform convergence on compact subsets.

The Pontryagin duality theorem says that the homomorphism γ : G→ ̂̂
G

(4.1) γ(g)(χ) = χ(g), g ∈ G, χ ∈ Ĝ
is a bijective isomorphism. This was proved for second countable groups that
are either compact or discrete in 1934 by Lev Semyonovich Pontryagin [28] and
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extended to general locally compact groups in 1934 by Egbert van Kampen [32].

This theory shows that G is compact; discrete; connected; dimension d iff Ĝ is

discrete; compact; torsion free; rank d. For a ∈ Zn define χa ∈ T̂n by χa(g) =
exp 2πi(a(1)g(1)+ · · ·+a(n)g(n)). The mapping a→ χa is an isomorphism. If H is
a closed subgroup of G then the quotient G/H is locally compact and we have an

obvious injective homomorphism Ĝ/H → Ĝ. Therefore Pontrygin duality implies
that H is proper iff every character on G that vanishes on H vanishes on G. This
gives the following classical result [33].

Lemma 4.1. (Kronecker-Weyl Theorem) If v ∈ Rn then Rv + Zn is dense in
Tn iff the entries of v are rationally independent.

Proof. The closure H = Rv + Zn is a closed subgroup of Tn and is proper iff
there exists a ∈ Zn\{0} with χa(tv + Zn) = exp(2πitaT v), t ∈ R, or equivalently,
aT v = 0. This occurs iff the entries of v are rationally dependent. �
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