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Abstract

The partition algebraPk(n) and the symmetric groupSn are in Schur-Weyl duality on
the k-fold tensor powerM⊗k

n
of the permutation moduleMn of Sn, so there is a surjection

Pk(n)→ Zk(n) := EndSn
(M⊗k

n ), which is an isomorphism whenn ≥ 2k. We prove a dimen-
sion formula for the irreducible modules of the centralizeralgebraZk(n) in terms of Stirling
numbers of the second kind. Via Schur-Weyl duality, these dimensions equal the multiplicities
of the irreducibleSn-modules inM⊗k

n . Our dimension expressions hold for anyn ≥ 1 and
k ≥ 0. Our methods are based on an analog of Frobenius reciprocitythat we show holds for the
centralizer algebras of arbitrary finite groups and their subgroups acting on a finite-dimensional
module. This enables us to generalize the above result to various analogs of the partition algebra
including the centralizer algebra for the alternating group acting onM⊗k

n
and the quasi-partition

algebra corresponding to tensor powers of the reflection representation ofSn.
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1 Introduction

The partition algebrasPk(ξ), ξ ∈ C, were introduced by Martin ([M1],[M2],[M3]) to study the Potts
lattice model of interacting spins in statistical mechanics. As shown by Jones [J], there is a Schur-
Weyl duality between the partition algebraPk(n) and the symmetric groupSn acting as centralizers
of each other on thek-fold tensor powerM⊗k

n of then-dimensional permutation moduleMn for Sn
overC. The surjective algebra homomorphism given in [J] (see also[HR, Thm. 3.6]),

Pk(n)→ Zk(n) := EndSn(M
⊗k
n ) = {T ∈ End(M⊗k

n ) | T (σ.u) = σ.T (u) ∀σ ∈ Sn, u ∈ M⊗k
n },

is an isomorphism whenn ≥ 2k.
The partition algebraPk(ξ) for k ≥ 1 has a basis overC indexed by set partitions of the set

{1, 2, . . . , 2k} into disjoint nonempty blocks. An example of such a set partition for k = 7 is{
1, 9, 11 | 2, 13 | 3 | 4, 7, 8 | 5, 6, 12, 14

}
, which has 5 blocks. The Stirling number

{
2k
r

}
counts

the number of ways to partition2k objects intor nonempty disjoint blocks, so it follows that

dimPk(ξ) =
2k∑

r=1

{
2k

r

}
= B(2k), (the (2k)th Bell number).

In Pk+1(ξ), the basis elements indexed by set partitions which havek + 1 and2(k + 1) in the
same block form a subalgebraPk+ 1

2
(ξ) with dimPk+ 1

2
(ξ) = B(2k + 1). If we regardMn as a

module for the symmetric groupSn−1 by restriction, there is a surjective algebra homomorphism
Pk+ 1

2
(n)→ Zk+ 1

2
(n) := EndSn−1(M

⊗k
n ), which is an isomorphism ifn ≥ 2k. These intermediate

algebras play an important role in understanding the structure and representation theory of partition
algebras (see for example, [MR, HR]), and they are a crucial component of the work in this paper.

The irreducible modules forPk(n) andPk+ 1
2
(n) are labeled by partitionsν of r, wherer is an

integer satisfying0 ≤ r ≤ k. Since the irreducible modulesSλn for Sn are indexed by partitionsλ of
n, Schur-Weyl duality implies that the irreducible modules for Zk(n) are also indexed by partitions
λ of n, and forZk+ 1

2
(n), by partitionsµ of n − 1. The modulesSλn (resp.Sµn−1) occurring inM⊗k

n

are indexed by partitions with the property that the partition ν = λ# (resp. ν = µ#) that results
from deleting the largest part ofλ (resp. ofµ) must satisfy0 ≤ |ν| ≤ k, where|ν| is the sum of the
parts ofν.

In this paper, we

• establish general restriction/induction results for centralizer algebras, proving in Theorem 2.7
that an analog of Frobenius reciprocity for groups holds fortheir centralizer algebras;

• give restriction/induction Bratteli diagrams for the symmetric group-subgroup pair(Sn,Sn−1)
and for the alternating group-subgroup pair(An,An−1);

• use the reciprocity results to determine expressions for the dimensions of the irreducible mod-
ules forZk(n), andZk+ 1

2
(n) (in Theorem 5.5(a) and (b)), and forPk(ξ), Pk+ 1

2
(ξ) (in Corol-

lary 5.14);

• determine the dimensions of the centralizer algebrasZk(n) andZk+ 1
2
(n) (in Theorem 5.5(c)

and (d));
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• give a combinatorial proof in Section 5.3 of the dimension formula in Theorem 5.5(a) by
exhibiting a bijection between paths in the Bratteli diagram (aka vacillating tableaux) and
pairs(P, T ) consisting of set partitionsP of {1, . . . , k} and semistandard tableauxT whose
entries depend onP (this bijection holds for allk ≥ 0 andn ≥ 1 and extends the one in
[CDDSY], which was valid forn ≥ 2k);

• apply the restriction/induction results to the pair(Sn,An) (resp.(Sn−1,An−1)) to determine
the dimensions of the irreducible modules for the centralizer algebraŝZk(n) := EndAn

(M⊗k
n )

andẐk+ 1
2
(n) := EndAn−1(M

⊗k
n ) (in Theorem 6.1 (a) and (b));

• determine dimension formulas for the centralizer algebrasẐk(n) andẐk+ 1
2
(n) (Theorem 6.1);

• compute the dimensions of the irreducible modules for the centralizer algebrasQZk(n) :=

EndSn(R
⊗k
n ), whereRn := S

[n−1,1]
n is the(n−1)-dimensional irreducible reflection module of

Sn corresponding to the partition[n − 1, 1] of n, and for their relativesQZk+ 1
2
(n), Q̂Zk(n),

and Q̂Zk+ 1
2
(n) (in Theorem 7.1) and give Bratteli diagrams corresponding to Rn for the

group-subgroup pairs(Sn,Sn−1) and(An,An−1).

By Schur-Weyl duality, the dimension of an irreducible module for the centralizer algebra equals the
multiplicity of the corresponding irreducible module for the group. Consequently, our dimension
formulas also

• determine the multiplicities of irreducible modules forSn,Sn−1,An, andAn−1 in M⊗k
n and

in R⊗k
n for all n, k ∈ Z>0 (in Theorems 5.5 (a),(b), 6.1, and 7.1).

A preliminary version of this paper [BH1], posted on the arXiv by the first two authors, es-
tablished dimension formulas for centralizer algebras as alternating sums of expressions involving
Stirling numbers of the second kind and the number of standard tableaux compatible with certain
r-sequencesof partitions forλ. Upon seeing this result, the third author suggested the approach that
we adopt in this paper for Theorem 5.5 (a). As a consequence ofthis alternate way of computing the
dimensions of the irreducible modules forZk(n), we are able in this work to express all of the di-
mension formulas as positive sums using Stirling numbers ofthe second kind and Kostka numbers.
It remains an open question to determine the relation between these two approaches.

The dimensions of the centralizer algebrasZk(n) and Ẑk(n) were determined previously and
can be found in [HR] and [Bl1, Bl2], respectively. In this work, they are direct consequences of
the dimension formulas for the irreducible modules. This isa general phenomenon: IfZk(G) :=

EndG(X
⊗k) for a self-dual moduleX of a groupG, thendimZk(G) = dim

(
X⊗2k

)G
, where

(
X⊗2k

)G
is the space ofG-invariants inX⊗2k. Therefore,dimZk(G) is the multiplicity of the trivialG-module
G• in X⊗2k; equivalently, by Schur-Weyl duality, it is the dimension of the irreducible module
associated toG• for the centralizer algebraZ2k(G) (see Section 2 for details).

Motivated by the work of Goupil and Chauve [GC] on Kronecker tableaux and Kronecker co-
efficients, Daugherty and Orellana in [DO] introduced thequasi-partition algebrasQPk(ξ), ξ ∈ C,

and showed that there is a surjectionQPk(n) → QZk(n) = EndSn(R
⊗k
n ) for Rn = S

[n−1,1]
n , which

is an isomorphism whenn ≥ 2k. The dimensions for the irreducible modules forQPk(ξ), with ξ
generic, are the same as the dimensions forn ≥ 2k, and so are given by the dimension formulas in
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Section 7 below. These expressions differ from the ones thatappear in [DO], which were based on
results in [GC] and hold whenevern ≥ 2k, as the ones in Section 7 are valid for allk andn.

Using exponential generating functions from [GC], Ding [D]derived a formula for the multi-
plicity of the irreducibleSn-moduleSλn indexed by the partitionλ = [λ1, . . . , λn] in M⊗k

n when
1 ≤ k ≤ n − λ2 and used that to obtain an expression for the multiplicity ofSλn in tensor powers

R⊗k
n of its reflection moduleRn = S

[n−1,1]
n . The first is a special case of part (a) of Theorem 5.5

below and the second a special case of Theorem 7.1. As shown in[D, Sec. 3], when1 ≤ k ≤ n−λ2,
these multiplicity formulas can be used to bound the mixing time of a Markov chain onSn.

2 Restriction/Induction and Dimensions

We begin with some general results on restriction and induction for centralizer algebras and then
apply these results to the group-subgroup pairs(Sn,Sn−1), (Sn,An), and(An,An−1) acting on the
k-fold tensor power of then-dimensional permutation moduleMn. This will enable us to determine
the dimension of the centralizer algebras and their irreducible modules.

SupposeG is a finite group andH is a subgroup ofG. Assume{Gλ}λ∈ΛG
and{Hα}α∈ΛH

are the
corresponding sets of irreducible modules for these groupsoverC. We suppose that the restriction
from G toH onGλ is given by

ResGH(G
λ) =

⊕

α∈ΛH

cλα Hα. (2.1)

Then by Frobenius reciprocity, induction fromH toG is given by

IndGH(H
α) =

⊕

λ∈ΛG

cλα Gλ. (2.2)

Assume now thatX is a finite-dimensionalG-module, and consider the centralizer algebra
ZX(G) = EndG(X) = {T ∈ End(X) | T (g.x) = g.T (x), ∀g ∈ G, x ∈ X}. RegardingX as a
module for the subgroupH of G by restriction, we have reverse inclusion of the centralizer algebras
ZX(G) ⊆ ZX(H) = EndH(X). Let ΛX,G (resp. ΛX,H) denote the subset ofΛG (resp. ofΛH) cor-
responding to the irreducibleG-modules (resp.H-modules) which occur inX with multiplicity at
least one. ThenSchur-Weyl dualityimplies the following:

• the irreducibleZX(G)-modulesZλ
X,G are in bijection with the elements ofλ ∈ ΛX,G;

• the decomposition ofX into irreducibleG-modules is given by

X ∼=
⊕

λ∈ΛX,G

dλX,G Gλ, where dλX,G = dimZλ
X,G; (2.3)

• the decomposition ofX into irreducibleZX(G)-modules is given by

X ∼=
⊕

λ∈ΛX,G

dGλ Zλ
X,G, where dGλ = dimGλ; (2.4)
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• as a bimodule forG× ZX(G),

X ∼=
⊕

λ∈ΛX,G

(
Gλ ⊗ Zλ

X,G

)
; (2.5)

• ZX(G) is a finite-dimensional semisimple associative algebra and

dimZX(G) =
∑

λ∈ΛX,G

(
dim Zλ

X,G

)2
=

∑

λ∈ΛX,G

(dλX,G)
2. (2.6)

There is a corresponding Frobenius reciprocity for centralizer algebras of the group-subgroup
pair (G,H), as indicated in the next result.

Theorem 2.7. For a finite-dimensionalG-moduleX, letZX(G) = EndG(X) andZX(H) = EndH(X).
LetΛX,G (resp.ΛX,H) be the set of indicesλ ∈ ΛG (resp.α ∈ ΛH) such thatGλ (resp.Hα) occurs
in X with multiplicity≥ 1, and letZλ

X,G (resp.Zα
X,H) denote the corresponding irreducibleZX(G)-

module (resp.ZX(H)-module). Assumecλα is as in(2.1)and (2.2)above. Then the following hold:

(a) Res
ZX(H)
ZX(G)

(
Zα
X,H

)
=
⊕

λ∈ΛX,G

cλα Zλ
X,G.

(b) For α ∈ ΛX,H, dαX,H =
∑

λ∈ΛX,G

cλα dλX,G, where dαX,H := dimZα
X,H and dλX,G := dimZλ

X,G.

(c) Ind
ZX(H)
ZX(G)

(
Zλ
X,G

)
:= ZX(H)⊗ZX(G) Z

λ
X,G =

⊕

α∈ΛX,H

cλα Zα
X,H.

(d) As aZX(G)-module (via multiplication on the left),

ZX(H) =
⊕

λ∈ΛX,G

( ∑

α∈ΛX,H

cλα dαX,H

)
Zλ
X,G.

(e) AssumeY is an H-module and setX = IndGH(Y). Let ZY(H) = EndH(Y), and letZα
Y,H,

α ∈ ΛY,H, be the irreducibleZY(H)-modules. Then forλ ∈ ΛX,G,

dimZλ
X,G =

∑

α∈ΛY,H

cλα dimZα
Y,H.

Proof. (a) and (b): By Schur-Weyl duality,X ∼=
⊕

λ∈ΛX,G

(
Gλ ⊗ Zλ

X,G

)
as a(G × ZX(G))-

bimodule. Therefore, as an(H× ZX(G))-bimodule,

X ∼=
∑

λ∈ΛX,G

( ∑

α∈ΛH

cλα Hα

)
⊗ Zλ

X,G
∼=
∑

α∈ΛH

Hα ⊗

( ∑

λ∈ΛX,G

cλα Zλ
X,G

)
. (2.8)
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This says that theH-module Hα occurs as a summand ofX with multiplicity equal to∑
λ∈ΛX,G

cλα dimZλ
X,G. But from the decomposition

X ∼=
⊕

α∈ΛX,H

(
Hα ⊗ Zα

X,H

)
, (2.9)

we know that the onlyH-summands occurring inX are those withα ∈ ΛX,H, andHα has multiplic-
ity dimZα

X,H in X. Therefore, the sum in (2.8) must be overα ∈ ΛX,H, and we havedimZα
X,H =∑

λ∈ΛX,G
cλα dimZλ

X,G, as claimed in (b). Moreover, the restriction of the
(
H×ZX(H)

)
-decomposition

of X in (2.9) toH × ZX(G) givesX ∼=
⊕

α∈ΛX,H
Hα ⊗ Res

ZX(H)
ZX(G)

(
Zα
X,H

)
. Since the decomposition

of X as a
(
H × ZX(G)

)
-bimodule is unique,ResZX(H)

ZX(G)

(
Zα
X,H

)
=
⊕

λ∈ΛX,G
cλα Zλ

X,G must hold, as

asserted in (a). Note that part (b) is just the dimension version of this relation.
For part (c), we use the following standard result. AssumeA is an algebra andB is a subalgebra

of A. LetW be anA-module andV be aB-module. Then

HomA(A⊗B V,W) = HomB

(
V,ResAB(W)

)
. (2.10)

Now supposeA = ZX(H), B = ZX(G), V = Zλ
X,G, andW = Zα

X,H. Then

HomA

(
IndAB(Z

λ
X,G),Z

α
X,H

)
= HomB

(
Zλ
X,G,Res

A
B(Z

α
X,H)

)
= HomB


Zλ

X,G,
⊕

µ∈ΛX,G

cµα Z
µ
X,G


 .

Taking dimensions on both sides shows thatdimHomA

(
IndAB(Z

λ
X,G),Z

α
X,H

)
= cλα, and thus,

Ind
ZX(H)
ZX(G)

(
Zλ
X,G

)
=
⊕

α∈ΛX,H
cλα Zα

X,H.
(d) SinceZX(H) is a semisimple algebra, Wedderburn theory tells usZX(H) =

⊕
α∈ΛX,H

dαX,H Zα
X,H,

wheredαX,H = dimZα
X,H. Restricting toZX(G) gives

Res
ZX(H)
ZX(G)

(
ZX(H)

)
=

⊕

α∈ΛX,H

dαX,H Res
ZX(H)
ZX(G)

(
Zα
X,H

)
=
⊕

λ∈ΛX,G


 ⊕

α∈ΛX,H

cλα dαX,H


Zλ

X,G,

by part (a).
(e) The proof here is similar in spirit to that in parts (a) and(b). With Y anH-module, suppose

Y =
⊕

α∈ΛY,H
yαH

α, and assumeX := IndGH(Y) =
⊕

λ∈ΛX,G
xλG

λ. Then

X = IndGH(Y) =
∑

α∈ΛY,H

yλ IndGH(H
α) =

∑

α∈ΛY,H

yα

( ∑

λ∈ΛG

cλα Gλ

)
=
∑

λ∈ΛG

( ∑

α∈ΛY,H

cλα yα

)
Gλ,

so that the sum must be overλ ∈ ΛX,G, and

dimZλ
X,G = xλ =

∑

α∈ΛY,H

cλα yα =
∑

α∈ΛY,H

cλα dimZα
Y,H

for all λ ∈ ΛX,G.
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The following proposition will be used in Section 7 to relatemultiplicities in the tensor power of
the reflection module of the symmetric group to multiplicities in tensor powers of the permutation
module. AssumeG is a finite group andW is aG-module overC. LetV = G•⊕W be the extension
of W by the trivialG-moduleG•. DefineZk(G) = EndG(V

⊗k) andQZk(G) = EndG(W
⊗k), and

let Λk,G ⊆ Λ(G) (resp.,qΛk,G ⊆ Λ(G)) index the irreducibleG-modules that appear inV⊗k (resp.,
in W⊗k) with multiplicity at least one. LetZλ

k (resp.,QZλ
k ) denote the irreducibleZk(G)-module

(resp.,QZk(G)-module) indexed byλ ∈ Λk,G (resp.,λ ∈ qΛk,G).

Proposition 2.11. With notation as in the previous paragraph,

(a) dimQZλ
k =

k∑

ℓ=0

(−1)k−ℓ

(
k

ℓ

)
dimZλ

ℓ ,

(b) If W is a self-dualG-module, thendimQZk(G) = dimQZ•
2k =

2k∑

ℓ=0

(−1)2k−ℓ

(
2k

ℓ

)
dimZ•

ℓ ,

whereQZ•
2k is the irreducibleQZk(G)-module corresponding toG•; equivalently, the space

of G-invariants inW⊗2k.

Proof. Let χV, χ•, χW denote the characters ofV,G•, andW, respectively, so thatχV = χ• + χW.

ThenχV⊗k = χk
V = (χ• + χW)k =

k∑

ℓ=0

(
k

ℓ

)
χℓ
W, and the binomial inverse of this statement is

χW⊗k = χk
W =

k∑

ℓ=0

(−1)k−ℓ

(
k

ℓ

)
χℓ
V =

k∑

ℓ=0

(−1)k−ℓ

(
k

ℓ

)
χV⊗ℓ . (2.12)

By Schur-Weyl duality (2.3) we have

W⊗k =
⊕

λ∈qΛk

qdλk Gλ, where qdλk = dimQZλ
k . (2.13)

Computing the character of (2.13) and equating it with (2.12) gives

χW⊗k = χk
W =

∑

λ∈qΛk

qdλk χλ =

k∑

ℓ=0

(−1)k−ℓ

(
k

ℓ

)
∑

λ∈Λℓ

dλℓ χλ


 ,

wheredλℓ = dimZλ
ℓ , andχλ is the character ofGλ. Equating the coefficient ofχλ (working in the

ring of class functions onG) gives part (a). SinceW is isomorphic to its dual as aG-module, part
(b) is the special case of part (a) withλ = • (the index of the trivial module):

dimQZk(G) = dimQZ•
2k =

2k∑

ℓ=0

(−1)2k−ℓ

(
2k

ℓ

)
dimZ•

ℓ .
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3 Irreducible modules for symmetric and alternating groups and
their centralizer algebras

The irreducibleSn-modules are labeled by partitions ofn, so thatΛSn = {λ | λ ⊢ n}. When
writing λ = [λ1, . . . , λn] ⊢ n, we always assume that the parts of the partitionλ are arranged so
thatλ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0, and|λ| = n (the sum of the parts). We identify a partition with its
Young diagram, so forλ = [6, 4, 3, 22 ] ⊢ 17, we have

λ = .

Thehook lengthh(b) of a boxb in the diagram is 1 plus the number of boxes belowb in the same
column plus the number of boxes to the right ofb in the same row, andh(b) = 1 + 3 + 2 = 6 for
the shaded box above. The dimension of the irreducibleSn-moduleSλn, which we denotefλ, can
be easily computed by the well-known hook-length formula

fλ =
n!∏

b∈λ h(b)
, (3.1)

where the denominator is the product of the hook lengths asb ranges over the boxes in the Young
diagram ofλ. This is equal to the number of standard Young tableaux of shapeλ, where a standard
Young tableauT is a filling of the boxes in the Young diagram ofλ with the numbers{1, . . . , n}
such that the entries increase in every row from left to rightand in every column from top to bottom.

The restriction and induction rules for irreducible symmetric group modulesSλn are well known
(see for example [JK, Thm. 2.43]):

ResSnSn−1
(Sλn) =

⊕

µ=λ−�

S
µ
n−1 Ind

Sn+1

Sn
(Sλn) =

⊕

κ=λ+�

Sκn+1, (3.2)

where the first sum is over all partitionsµ of n − 1 obtained fromλ by removing a box from the
end of a row of the diagram ofλ, and the second sum is over all partitionsκ of n + 1 obtained by
adding a box to the end of a row ofλ.

Assumeλ = [λ1, . . . , λℓ(λ)] is a partition ofn andγ = [γ1, . . . , γn] is a weak composition of
n. TheKostka numberKλ,γ counts the number of semistandard tableauxT of shapeλ and typeγ,
whereT is a filling of the boxes of the Young diagram ofλ with numbers from{1, . . . , n} such that
j occursγj times, and the entries ofT weakly increase across the rows from left to right and strictly
increase down the columns. Ifγ = [γ1, γ2, . . . , γℓ(γ)] is a partition, thenKλ,γ = 0, unlessλ ≥ γ in
the dominance order, which is to say that for the first part where λ andγ differ λj > γj. Assume
Mγ is thepermutation moduleobtained from inducing the trivial module for the Young subgroup
Sγ1 × Sγ2 × · · · × Sγℓ(γ) to Sn. The irreducibleSn-moduleSλn occurs with multiplicityKλ,γ in the
decomposition ofMγ into irreducibleSn-summands.

For λ ⊢ n, let λ∗ be the conjugate (transpose) partition. SinceSλ
∗

n
∼= S

[1n]
n ⊗ Sλn, whereS[1

n]
n

is the one-dimensional irreducibleSn-module indexed by the partition ofn into n parts of size one,
which is the sign representation,Sλ

∗

n
∼= Sλn asAn-modules. Thus, we may assume thatλ ≥ λ∗ in

8



the dominance order. Then by Clifford theory, it is known that

ResSnAn
(Sλn) =

{
Aλ
n
∼= ResSnAn

(Sλ
∗

n ) if λ 6= λ∗,

Aλ+

n ⊕ Aλ−

n if λ = λ∗,
(3.3)

where in the first case,Aλ
n is irreducible as anAn-module; while in the second case,Sλn decom-

poses into the direct sum of two irreducibleAn-modules,Sλn = Aλ+

n ⊕ Aλ−

n , such thatdimAλ+

n =
dimAλ−

n = 1
2dimSλn = 1

2f
λ. Moreover,

ΛAn
= {λ | λ ⊢ n, λ > λ∗} ∪ {λ± | λ ⊢ n, λ = λ∗}.

The restriction rules for alternating groups are the following (see [R, Thm. 6.1], or [Mb] which
surveys how to derive these rules using Mackey’s theorem andClifford theory):

ResAn

An−1
(Aλ

n) =



⊕

µ=λ−�

µ>µ∗

A
µ
n−1


⊕



⊕

µ=λ−�

µ=µ∗

(Aµ+

n−1 ⊕ A
µ−

n−1)


 if λ > λ∗,

ResAn

An−1
(Aλ±

n ) =



⊕

µ=λ−�

µ>µ∗

A
µ
n−1


⊕



⊕

µ=λ−�

µ=µ∗

A
µ±

n−1


 if λ = λ∗.

(3.4)

Now letMn be then-dimensional permutation module forSn, and setX = M⊗k
n for k ≥ 0 in

applying the results of Section 2, whereM⊗0
n = S

[n]
n (the trivialSn-module). SinceMn will be fixed

throughout, it convenient here to adopt the shorthand notation in Table 1. For allk ∈ Z≥0, Λk,Sn

(resp.Λk,An
) is the set of indices for the irreducibleZk(n)-summands (resp.̂Zk(n)-summands) in

M⊗k
n with multiplicity at least one; similarlyΛk,Sn−1 (resp. Λk,An−1) is the set of indices for the

irreducibleZk+ 1
2
(n)-summands (resp.̂Zk+ 1

2
(n)-summands) inM⊗k

n with multiplicity at least one.

centralizer algebra irreducible modules

Zk(n) := EndSn(M
⊗k
n ) Zλ

k,n, λ ⊢ n, λ ∈ Λk,Sn ⊆ ΛSn

Zk+ 1
2
(n) := EndSn−1(M

⊗k
n ) Z

µ

k+ 1
2
,n
, µ ⊢ n− 1, µ ∈ Λk,Sn−1 ⊆ ΛSn−1

Ẑk(n) := EndAn
(M⊗k

n ) Ẑλ
k,n, λ ⊢ n, λ > λ∗, λ ∈ Λk,An

⊆ ΛAn

Ẑλ±

k,n, λ ⊢ n, λ = λ∗, λ± ∈ Λk,An
⊆ ΛAn

Ẑk+ 1
2
(n) := EndAn−1(M

⊗k
n ) Ẑ

µ

k+ 1
2
,n
, µ ⊢ n− 1, µ > µ∗, µ ∈ Λk+ 1

2
,An−1

⊆ ΛAn−1

Ẑ
µ±

k+ 1
2
,n
, µ ⊢ n, µ = µ∗, µ± ∈ Λk+ 1

2
,An−1

⊆ ΛAn−1

Table 1: Notation for the centralizer algebras and modules associated with the tensor productM⊗k
n

of the permutation moduleMn
∼= S

[n]
n ⊕ S

[n−1,1]
n of Sn and its restriction toSn−1, An, andAn−1.

Theorem 2.7(b) together with (3.3) imply the following:

9



Proposition 3.5. Assumeλ ⊢ n, λ ∈ Λk,An
, andλ ≥ λ∗. Then

dim Ẑλ
k,n = dimZλ

k,n + dimZλ∗

k,n, if λ > λ∗,

dim Ẑλ+

k,n = dim Ẑλ−

k,n = dimZλ
k,n, if λ = λ∗.

(3.6)

Example 3.7. For S4, we haveM⊗3
4 = 5S

[4]
4 ⊕ 10S

[3,1]
4 ⊕ 5S

[22]
4 ⊕ 6S

[2,12]
4 ⊕ S

[14]
4 , and forA4,

M⊗3
4 = 6A

[4]
4 ⊕ 16A

[3,1]
4 ⊕ 5A

[22]+

4 ⊕ 5A
[22]−

4 , as can be seen in rowℓ = 3 of Figures 1 and 2, where

dim Ẑ
[4]
3,4 = dimZ

[4]
3,4 + dimZ

[14]
3,4 = 5 + 1 = 6,

dim Ẑ
[3,1]
3,4 = dimZ

[3,1]
3,4 + dimZ

[2,12]
3.4 = 10 + 6 = 16,

dim Ẑ
[22]±

3,4 = dimZ
[22]
3,4 = 5.

4 Bratteli diagrams

Let (G,H) be a pair consisting of a finite groupG and a subgroupH ⊆ G. As in Section 2, let
{Gλ}λ∈ΛG

and{Hα}α∈ΛH
be the irreducible modules ofG andH overC with restriction and induc-

tion rules given by

ResGH(G
λ) =

⊕

α∈ΛH

cλα Hα and IndGH(H
α) =

⊕

λ∈ΛG

cλα Gλ. (4.1)

Let U0 = G•, the trivial G-module, and assume fork ∈ Z≥0 that theG-moduleUk has been

defined. LetUk+ 1
2 be theH-module defined byUk+ 1

2 := ResGH(U
k), and then letUk+1 be theG-

module specified byUk+1 := IndGH(U
k+ 1

2 ). In this way,Uℓ is defined inductively for allℓ ∈ 1
2Z≥0,

andUk =
(
IndGHRes

G
H

)k
(U0) for all k ∈ Z≥0. The moduleV := IndGH(Res

G
H(U

0)) = U1 is
isomorphic toG/H as aG-module, whereG acts on the left cosets ofG/H by multiplication.

For aG-moduleX and anH-moduleY, the “tensor identity” says thatIndGH(Res
G
H(X) ⊗ Y) ∼=

X⊗ IndGH(Y) (see for example [HR, (3.18)] for an explicit isomorphism).Hence, whenX = Uk and
Y = ResGH(U

0), this gives

IndGH(Res
G
H(U

k)) ∼= IndGH(Res
G
H(U

k)⊗ ResGH(U
0)) ∼= Uk ⊗ IndGH(Res

G
H(U

0)) = Uk ⊗ V. (4.2)

By induction, we have the following isomorphisms for allk ∈ Z≥0:

V⊗k ∼= Uk (asG-modules) and ResGH(V
⊗k) ∼= Uk+ 1

2 (asH-modules). (4.3)

It follows that there are centralizer algebras isomorphisms:

Zk(G) := EndG(V
⊗k) ∼= EndG(U

k),

Zk+ 1
2
(H) := EndH(Res

G
H(V

⊗k)) ∼= EndH(U
k+ 1

2 ).
(4.4)

Suppose fork ∈ Z≥0 that

10



• Λk,G ⊆ ΛG indexes the irreducibleG-modules, and hence also the irreducibleZk(G)-modules,
in Uk ∼= V⊗k;

• Λk+ 1
2
,H ⊆ ΛH indexes the irreducibleH-modules, and hence also the irreducibleZk+ 1

2
(H)-

modues, inUk+ 1
2 ∼= ResGH(V

⊗k).

The restriction-induction Bratteli diagramfor the pair(G,H) is an infinite, rooted treeB(G,H)
whose vertices are organized into rows labeled by half integersℓ in 1

2Z≥0. For ℓ = k ∈ Z≥0, the
vertices on rowk are the elements ofΛk,G, and the vertices on rowℓ = k + 1

2 are the elements of
Λk+ 1

2
,H. The vertex on row0 is the root, the label of the trivialG-module, and the vertex on row12

is the label of the trivialH-module. For the pair(Sn,Sn−1) (or (An,An−1)), the labels on rows0
and 1

2 are the partitions[n], [n− 1] having just one part.
The edges ofB(G,H) are given by drawingcλα edges fromλ ∈ Λk,G to α ∈ Λk+ 1

2
,H, wherecλα

is as in (4.1). Similarly, there arecκβ edges fromβ ∈ Λk+ 1
2
,H to κ ∈ Λk+1,G. The Bratteli diagram

is constructed in such a way that

• the number of paths from the root at level 0 toλ ∈ Λk,G equals the multipicity ofGλ in
Uk ∼= V⊗k and thus also equals the dimension of the irreducibleZk(G)-moduleZλ

Uk,G
(these

numbers are computed in Pascal-triangle-like fashion and are placed below each vertex);

• the number of paths from the root at level 0 toα ∈ Λk+ 1
2
,H equals the multipicity ofHα in

Uk+ 1
2 and thus also equals the dimension of theZk+ 1

2
(H)-moduleZα

U
k+1

2 ,H
(and is indicated

beneath each vertex);

• the sum of the squares of the labels on rowk (resp. rowk + 1
2 ) equalsdimZk(G) (resp.

dimZk+ 1
2
(H)).

When(G,H) = (Sn,Sn−1) or when(G,H) = (An,An−1), it is well known (and easy to verify)

that the permutation module satisfiesMn
∼= U1 = IndSnSn−1

(ResSnSn−1
(S

[n]
n )). Then (4.4) implies

there are partition algebra surjections asPk(n) → Zk(n) = EndSn(M
⊗k
n ) ∼= EndSn(U

k) and
Pk+ 1

2
(n)→ Zk+ 1

2
(n) = EndSn−1(M

⊗k
n ) ∼= EndSn−1(U

k). Using the restriction/induction rules for

Sn in (3.2) and forAn in (3.4), we construct the Bratteli diagram for(S4,S3) (see Figure 1) and for
(A4,A3) (see Figure 2). In Appendices A.1 and A.3, we construct the Bratteli diagrams for(S6,S5)
and(A6,A5).

Remark 4.5. Amazingly, the Bratteli diagrams in Figures 1 and 2 also appear in the Schur-Weyl
duality analysis of the McKay correspondence, as discussedin [B] and [BH3]. The binary octa-
hedral subgroupO of the special unitary groupSU2 is the two-fold cover of the octahedral group,
which is isomorphic to the symmetric groupS4. We use that fact to show that the Bratteli diagram
for tensor powers of the 2-dimensional spin module ofO (which is the defining module ofO and
SU2) is identical to Figure 1. Similarly, the binary tetrahedral subgroupT is the two-fold cover of
tetrahedral group, which is isomorphic to the alternating groupA4. The Bratteli diagram for tensor
powers of the 2-dimensional defining module ofT is identical to Figure 2.

Remark 4.6. The tensor power Bratteli diagramBV(G) is constructed using the centralizer alge-
brasZk(G) = EndG(V

⊗k). The vertices on levelk of BV(G) are labeled by elements ofΛk,G, and

11



ℓ = 0
1

ℓ = 1

2

1

ℓ = 1
1

1

ℓ = 3

2

2
1

ℓ = 2
2

3 1 1

ℓ = 5

2

5
5 1

ℓ = 3
5

10 5 6 1

ℓ = 7

2

15
21 7

ℓ = 4
15

36 21 28 7

1

1

2

5

15

51

187

715

2795

Figure 1: Levelsℓ = 0, 12 , 1, . . . ,
7
2 , 4 of the Bratteli diagram for the pair(S4,S3).

there arecλµ edges fromλ ∈ Λk,G to µ ∈ Λk+1,G if Gλ ⊗ V ∼=
⊕

µ∈ΛG
cλµG

µ. In the special case

thatV = IndGH(Res
G
H(U

0)) andU0 is the trivialG-module,BV(G) is identical toB(G,H) except
that the half integer levels are missing fromBV(G). So for example, in the tensor power Bratteli
diagram that corresponds to Figure 1, there are two edges from the vertex on level1 to the ver-
tex on level2. Including the intermediate half-integer levels, which corresponds to performing
restriction and then induction, results in a diagram without multiple edges between vertices when
(G,H) = (Sn,Sn−1) or (An,An−1), since the restriction/induction rules for those pairs aremulti-
plicity free. The half-integer centralizer algebras have proven to be a powerful tool in studying the
structure of these tensor power centralizer algebras (for example, in [HR] and [BH3]), and we use
them here to recursively derive dimension formulas.

5 Dimensions formulas for symmetric group centralizer algebras

In the next two sections, we determine expressions for the dimensions of the irreducible modules
for the centralizer algebras in Table 1. Our arguments will invoke standard combinatorial facts
about representations of the symmetric groupSn. The dimensions will be expressed as integer
combinations of Stirling numbers of the second kind. We begin by briefly reviewing some known

12



ℓ = 0
1

ℓ = 1

2

1

ℓ = 1
1

1

ℓ = 3

2

+ −

2
1 1

ℓ = 2
+ −

2
4 1 1

ℓ = 5

2

+ −

6
5 5

ℓ = 3
+ −

6
16 5 5

ℓ = 7

2

+ −

22 21 21

1

1

2

6

22

86

342

1366

Figure 2: Levelsℓ = 0, 12 , 1, . . . , 3,
7
2 of the Bratteli diagram for the pair(A4,A3).

results about these numbers.

5.1 Stirling numbers of the second kind and Bell numbers

There are several commonly used notations for Stirling numbers of the second kind; for example,
S(k, t) is used by Stanley [S1]. In [K], Knuth remarks “The lack of a widely accepted way to refer
to these numbers has become almost scandalous,” and he goes on to make a convincing argument

for adopting the notation
{

k
t

}
, which we will do here.

TheStirling number
{

k
t

}
of the second kindcounts the number of ways to partition a set ofk

elements intot disjoint nonempty blocks. In particular,
{

k
0

}
= 0 for all k ≥ 1, and

{
k
t

}
= 0 if

t > k. By convention,
{0
0

}
= 1. These numbers satisfy the recurrence relations,

{
k + 1

t+ 1

}
=

k∑

r=t

(
k

r

){r
t

}
(5.1)

{
k + 1

t

}
= t

{
k

t

}
+

{
k

t− 1

}
. (5.2)

Fork ≥ 1,
k∑

t=0

{
k

t

}
=

k∑

t=1

{
k

t

}
= B(k), (5.3)

13



whereB(k) is thekth Bell number. More generally, fork ≥ 1,

n∑

t=1

{
k

t

}
=: B(k, n) (5.4)

counts the number of ways to partition a set ofk elements into at mostn disjoint nonempty blocks,
andB(k, n) = B(k) if n ≥ k. Identifying P0(ξ) with C, we havedimPk(ξ) = B(2k) for all
k ∈ Z≥0. In fact, dimPℓ(ξ) = B(2ℓ) for all ℓ ∈ 1

2Z≥0, which can be seen by takingν = ∅ in
Corollary 5.14 below.

5.2 Main result for symmetric group centralizer algebras

Our aim in this section is to establish Theorem 5.5, which gives the dimensions of the irreducible
modules for the centralizer algebrasZk(n) = EndSn(M

⊗k
n ) and Zk+ 1

2
(n) = EndSn−1(M

⊗k
n ).

Throughout, the notationλ# = [λ2, . . . , λℓ(λ)] will designate a partitionλ = [λ1, λ2, . . . , λℓ(λ)]

with its largest partλ1 removed, andfλ will be the number of standard tableaux of shapeλ, which
is also the dimension of the irreducible symmetric group module labeled byλ. If π is a partition con-
tained inλ, thenfλ/π denotes the number of standard tableaux with skew shapeλ \ π. The Kostka
numberKλ,γ counts the number of semistandard tableaux of shapeλ and typeγ (see Section 3).

Theorem 5.5. Letk, n ∈ Z≥0 andn ≥ 1, and let the notation be as in Table 1.

(a) Assumeλ = [λ1, . . . , λn] ⊢ n, andλ ∈ Λk,Sn . Then

dimZλ
k,n =

n∑

t=0

{
k

t

}
Kλ,[n−t,1t] =

n∑

t=|λ#|

{
k

t

}
fλ/[n−t]

= fλ#
n−λ2∑

t=|λ#|

{
k

t

} (
t

|λ#|

)
+

n∑

t=n−λ2+1

{
k

t

}
fλ/[n−t].

(b) Assumeµ = [µ1, . . . , µn−1] ⊢ n− 1, andµ ∈ Λk+ 1
2
,Sn−1

. Then

dimZ
µ

k+ 1
2
,n

=

n−1∑

t=0

{
k + 1

t+ 1

}
Kµ,[n−1−t,1t] =

n−1∑

t=|µ#|

{
k + 1

t+ 1

}
fµ/[n−1−t]

= fµ#
n−1−µ2∑

t=|µ#|

{
k + 1

t+ t

} (
t

|µ#|

)
+

n∑

t=n−µ2

{
k + 1

t+ 1

}
fµ/[n−1−t].

(c) dimZk(n) = dimZ
[n]
2k,n =

n∑

t=0

{
2k

t

}
= B(2k, n) ( = B(2k) if n ≥ 2k ).

(d) dimZk+ 1
2
(n) = dimZ

[n−1]

2k+ 1
2
,n

=

n−3∑

t=0

{
2k + 1

t+ 1

}
+

({
2k + 1

n− 1

}
+

{
2k + 1

n

})

=

n∑

t=1

{
2k + 1

t

}
= B(2k + 1, n) ( = B(2k + 1) if n ≥ 2k + 1 ).
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Remark 5.6. Whenn > k, the top limit in the summation in part (a) can be taken to bek as the

Stirling numbers
{

k
t

}
are 0 fort > k. Whenn ≤ k, the term[n − t, 1t] for t = n should be

interpreted as the partition[1n]. In that special case,Kλ,[1n] = fλ, the number standard tableaux
of shapeλ, as each entry in the tableau appears only once. The termt = n − 1 gives the same
Kostka numberKλ,[1n] = fλ. The only time that the termt = 0 contributes is whenk = 0. The

Stirling number
{0
0

}
= 1, and the Kostka numberKλ,[n] = 0 if λ 6= [n] andK[n],[n] = 1. Thus,

dimZλ
0(n) = δλ,[n], as expected, sinceM⊗0

n = S
[n]
n by definition. In the proof to follow, we will

assumek ≥ 1.

Proof. (a) For1 ≤ t ≤ n, the linear span oft-element ordered subsets of{1, 2, . . . , n} forms an
Sn-module isomorphic to the permutation moduleM[n−t,1t]. Fort = n−1 andt = n, both modules
are isomorphic toM[1n]. We claim that

M⊗k
n =

n∑

t=1

{
k

t

}
M

[n−t,1t]. (5.7)

This can be seen as follows: Letu1, . . . un be the basis forMn that Sn permutes. For each set
partition of{1, . . . , k} into t blocks, we get a copy ofM[n−t,1t] spanned by the vectorsuj1 ⊗ uj2 ⊗

· · · ⊗ ujk , whereja = jb if and only if a, b are in the same part of the set partition. There are
{

k
t

}

such set partitions. The multiplicity ofSλn in M⊗k
n is obtained from (5.7) by observing thatSλn has

multiplicity Kλ,[n−t,1t] in M[n−t,1t]. By Schur-Weyl duality, the multiplicity ofSλn in M⊗k
n equals

dimZλ
k(n), and therefore,dimZλ

k,n =
∑n

t=1

{
k
t

}
Kλ,[n−t,1t].

The second equality in part (a) follows from the fact thatKλ,[n−t,1t] = 0 unlessλ1 ≥ n− t, i.e.
unlesst ≥ n − λ1 = |λ#|, and from the fact that a semistandard tableau, whose entries aren − t
zeros and the numbers1, 2, . . . , t, must have then − t zeros in the first row and have a standard
filling of the skew shapeλ/[n − t]. To see that the last line of part (a) holds, observe that when
n− t ≥ λ2, any standard tableau of shapeλ/[n− t], hasλ1− (n− t) = t− (n−λ1) entries chosen
from {1, 2, . . . , t} in its first row. There are

(
t

t− (n− λ1)

)
=

(
t

n− λ1

)
=

(
t

|λ#|

)

ways to select those entries. The remaining integers from{1, 2, . . . , t} fill the shapeλ# to give a
standard tableau. Therefore,fλ/[n−t] =

( t
|λ#|

)
fλ#

if n− λ2 ≥ t.
For part (b), identifyingSn−1 with the permutations ofSn that fixn, we see that restriction from

Sn to Sn−1 givesMn = Mn−1 ⊕ Cun, whereMn−1 is the permutation module ofSn−1 spanned by
the vectorsu1, . . . , un−1. Hence,M⊗k

n
∼=
⊕k

s=0

(
k
s

)
M⊗s

n−1 as anSn−1-module, which together with
(a) implies
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dimZ
µ

k+ 1
2
,n

=

k∑

s=0

(
k

s

)
dimZ

µ
s,n−1

=

k∑

s=0

(
k

s

)(n−1∑

t=1

{s
t

}
Kµ,[n−1−t,1t]

)

=

n−1∑

t=0

(
k∑

s=0

(
k

s

) {s
t

})
Kµ,[n−1−t,1t]

=

n−1∑

t=0

(
k∑

s=t

(
k

s

) {s
t

})
Kµ,[n−1−t,1t]

=

n−1∑

t=0

{
k + 1

t+ 1

}
Kµ,[n−1−t,1t] using (5.1).

This establishes the first equality in (b) fork and alln ≥ 1. The remainder of (b) can be shown by
arguments similar to the ones used for part (a).

Part (c) is an immediate consequence of (a), sinceS
[n]
n is the trivial Sn-module, andM⊗k

n is
isomorphic, as anSn-module, to its dual module, so that

dimZk(n) = dimZ
[n]
2k,n =

n∑

t=0

{
2k

t

}
K[n],[n−t,1t]

=
n∑

t=0

{
2k

t

}
= B(2k, n) (= B(2k) if n ≥ 2k ) .

Part (d) follows readily from (b) for similar reasons.

Remark 5.8. In [D, Prop. 2.1], it was shown using the exponential generating functions of Goupil
and Chauve [GC] that for the partitionλ = [λ1, λ2, . . . , λℓ(λ)], the multiplicity ofSλn in M⊗k

n (i.e.

dimZλ
k,n) equalsfλ# ∑n−2

t=|λ#|

( t
|λ#|

) {k
t

}
whenever1 ≤ k ≤ n− λ2. This is a special case of part

(a) of Proposition 5.10. As mentioned earlier, this result was used in [D] to bound the mixing time
of a Markov chain onSn.

Remark 5.9. Supposeν = [ν1, . . . , νℓ(ν)] is a partition with 0 ≤ |ν| ≤ k, and for n ≥ 2k,
let [n − |ν|, ν] be the partition ofn given by [n − |ν|, ν] := [n − |ν|, ν1, . . . , νℓ(ν)]. In the next

proposition, we obtain an expression for the dimension of the irreducibleZk(n)-moduleZ[n−|ν|,ν]
k,n

(and for theZk+ 1
2
(n)-moduleZ[n−1−|ν|,ν]

k+ 1
2
,n

whenn− 1 ≥ 2k). We prove that both dimensions equal

f ν = dimSνk when |ν| = k. Whenν = [k], dimZ
[n−k,k]
k,n = f [k] = 1 for all n ≥ 2k. When

n = 2k − 1, the kernel of the mapPk(n) → Zk(n) is one-dimensional, since[n − k, k] is not a
partition in that case. In [BH2], we describe the kernel of the mapPk(n)→ Zk(n) for all n < 2k.
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Proposition 5.10. Assumeν = [ν1, . . . , νℓ(ν)] is a partition with0 ≤ |ν| ≤ k.

(a) If 0 ≤ 2k ≤ n, then

dimZ
[n−|ν|,ν]
k,n = f ν

k∑

t=|ν|

(
t

|ν|

){
k

t

} (
= f ν when |ν| = k

)
. (5.11)

(b) If 0 ≤ 2k ≤ n− 1, then

dimZ
[n−1−|ν|,ν]

k+ 1
2
,n

= f ν
k∑

t=|ν|

(
t

|ν|

) {
k + 1

t+ 1

} (
= f ν when |ν| = k

)
. (5.12)

Proof. (a) From Theorem 5.5 (a), we know for the partition[n − |ν|, ν] = [n − |ν|, ν1, . . . , νℓ(ν)]
that

dimZ
[n−|ν|,ν]
k,n = f ν

n−ν1∑

t=|ν|

{
k

t

} (
t

|ν|

)
+

n∑

t=n−ν1+1

{
k

t

}
f [n−|ν|,ν]/[n−t]. (5.13)

Sinceν1 ≤ |ν| ≤ k, and we are assumingn ≥ 2k, it follows thatn − ν1 ≥ n − k ≥ k. Thus, the

first summation equalsf ν
∑k

t=|ν|

{
k
t

} (
t
|ν|

)
, and the second is 0, which is the assertion in (a). The

argument for part (b) is completely analogous.

The partition algebrasPk(ξ) andPk+ 1
2
(ξ) are generically semisimple for allξ ∈ C with ξ 6∈

{0, 1, . . . , 2k − 1} (see [MS] or [HR, Thm. 3.7]. Assumeν = [ν1, . . . , νℓ(ν)] is a partition with
0 ≤ |ν| ≤ k, and letPν

k,ξ denote the irreduciblePk(ξ)-module andPν
k+ 1

2
,ξ

denote the irreducible

Pk+ 1
2
(ξ)-module indexed byν. The dimension ofPν

k,ξ (resp. Pν
k+ 1

2
,ξ

) is the same for all generic

values ofξ. Therefore, we can apply Proposition 5.10 withn = 2k andλ = [n−|ν|, ν1, . . . , νℓ(ν)] ⊢
n to conclude the following:

Corollary 5.14. Let ν be a partition with0 ≤ |ν| ≤ k. For ξ 6∈ {0, 1, . . . , 2k − 1}, letPν
k,ξ denote

the irreduciblePk(ξ)-module andPν
k+ 1

2
,ξ

denote the irreduciblePk+ 1
2
(ξ)-module indexed byν.

Then

dimPν
k,ξ = f ν

k∑

t=|ν|

(
t

|ν|

){
k

t

} (
= f ν when |ν| = k

)

dimPν
k+ 1

2
,ξ
= f ν

k∑

t=|ν|

(
t

|ν|

) {
k + 1

t+ 1

} (
= f ν when |ν| = k

)
.

5.3 Bijective proof of Theorem 5.5 (a)

By Theorem 5.5(a), we know thatdimZλ
k,n equals the number of pairs(P, T ) whereP is a set

partition of{1, 2, . . . , k} into t blocks for somet ∈ {1, . . . , n}, andT is a semistandard tableau of
shapeλ filled with n − t zeros andt distinct numbers fromZ>0, so thatT has type[n − t, 1t]. By
Section 4, we know that this dimension is also equal to the number of paths from the root of the
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Bratteli diagramB(Sn,Sn−1) to λ ∈ Λk,Sn . Such paths (also referred to as vacillating tableaux) are
given by a sequence of partitions

(
λ(0) = [n], λ( 1

2
) = [n− 1], λ(1), λ(1+ 1

2
), . . . , λ(k−1), λ(k− 1

2
), λ(k) = λ

)

such thatλ(i) ∈ Λi,Sn , λ(i− 1
2
) ∈ Λi− 1

2
,Sn−1

for eachi, and

(a) λ(i− 1
2
) = λ(i−1) −�,

(b) λ(i) = λ(i− 1
2
) +�,

for each integer1 ≤ i ≤ k. In this section, we demonstrate a bijection between paths and pairs
(P, T ), thereby giving a combinatorial proof of Theorem 5.5(a). The corresponding bijection for
Theorem 5.5(b) is gotten by applying this same bijection on paths toµ ∈ Λk− 1

2
,Sn−1

. We assume
familiarity with the RSK row-insertion algorithm (see for example [S2, Sec. 7.11]), and letT ← b
denote row insertion of the integerb into the semistandard tableauT . The bijection here, which
works for alln ≥ 1 andk ≥ 0, extends that of [CDDSY, Thm. 2.4], which holds forn ≥ 2k. It is
easily adaptable to give a combinatorial proof of Theorem 5.5 (b).

Bijection from paths to pairs (P, T ): Given a path(λ(0), λ( 1
2
), . . . , λ(k) = λ) to λ ∈ Λk,Sn , we

recursively construct a sequence(P0, T0), (P 1
2
, T 1

2
), (P1, T1), . . . , (Pk, Tk) such that, for eachi, Pi

is a set partition of{1, . . . , ⌈i⌉} into t blocks, andTi is a semistandard tableau of shapeλ(i) with
n− t zeros and nonzero entries from the setmax(Pi) whose elements are the maximal entries in the
t blocks ofPi. Then(Pk, Tk) is the pair associated with the path(λ(0), λ( 1

2
), . . . , λ(k) = λ).

LetP0 = ∅ and letT0 be the semistandard tableau of shape[n] and type[n], i.e., with each entry
equal to 0. Then for each integeri = 1, 2, . . . , k, perform these steps.

(1) Construct(Pi− 1
2
, Ti− 1

2
) from (Pi−1, Ti−1) as follows: Letb be the unique nonegative integer

such thatTi−1 = (Ti− 1
2
← b). Sinceb ∈ Ti−1, we know that0 ≤ b < i. If b = 0, thenPi− 1

2

is obtained by adding the block{i} to Pi−1. If b > 0, thenPi− 1
2

is obtained by addingi to
the block that containsb in Pi−1.

(2) Construct(Pi, Ti) from (Pi− 1
2
, Ti− 1

2
) by lettingPi equalPi− 1

2
andTi be the column strict

tableau obtained fromTi− 1
2

by adding the entryi in the boxλi \ λi− 1
2 .

By the above construction,Pi is a set partition of{1, . . . , ⌈i⌉} for eachi, and if Pi hast parts,
thenTi is a semistandard tableau withn− t zeros and with the elements ofmax(Pi) as its nonzero
entries.

The map is bijective since the above construction can be reversed: Given a pair(P, T ) consisting
of a set partitionP of {1, . . . , k} into t blocks and a semistandard tableauT of shapeλ ∈ Λk,Sn

filled with n− t zeros and the elements ofmax(P ), we produce a path(λ0 = [n], λ
1
2 , . . . , λk = λ)

by performing these steps: Start withPk = P, Tk = T , and work backwards to produce the
sequence(Pk, Tk), (Pk− 1

2
, Tk− 1

2
), (Pk−1, Tk−1), . . . , (P0, T0) as follows:

(1)′ Construct(Pi− 1
2
, Ti− 1

2
) from (Pi, Ti) by lettingPi− 1

2
= Pi and deletingi from Ti.
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(2)′ Construct(Pi−1, Ti−1) from (Pi− 1
2
, Ti− 1

2
) by the following procedure: Ifi is a singleton

block inPi− 1
2
, thenTi−1 = (Ti− 1

2
← 0). If i is not a singleton block inPi− 1

2
, thenTi−1 =

(Ti− 1
2
← b), whereb is the second largest element of the block containingi. Let Pi−1 be

obtained by deleting{i} from Pi− 1
2
.

If λ(i) is the partition shape ofTi for i = 0, 12 , 1, . . . , k, then (λ(0), λ( 1
2
), . . . , λ(k)) to λ is the

corresponding path in the Bratteli diagram. This bijectionis illustrated in the next example.

Example 5.15. If n = 4, k = 3, andλ = [2, 2], then

dimZ
[2,2]
3,4 =

{
3

1

}
K[2,2],[3,1] +

{
3

2

}
K[2,2],[2,1,1] +

{
3

3

}
K[2,2],[1,1,1,1] = 1 · 0 + 3 · 1 + 1 · 2 = 5.

This is the subscript5 on [2, 2] at level 3 in the Bratteli diagram in Figure 1. The five corresponding
pairs(P, T ) of set partitions and semistandard tableaux are:

(
{1, 2 | 3}, 0 0

2 3

)
,
(
{1, 3 | 2}, 0 0

2 3

)
,
(
{1 | 2, 3}, 0 0

1 3

)
,
(
{1 | 2 | 3}, 0 2

1 3

)
,
(
{1 | 2 | 3}, 0 1

2 3

)
.

The five paths to[2, 2] ∈ Λ3,S4 and the corresponding bijections with these pairs are illustrated in
Figure 3.

5.4 Dimension Examples

Example 5.16. Assumeλ = [λ1, λ2, . . . , λℓ(λ)] ⊢ n and1 ≤ λ2 ≤ 2. We claim that under these
assumptions, Theorem 5.5(a) simplifies to

dimZλ
k,n =





fλ#
n−2∑

t=|λ#|

(
t

|λ#|

){
k

t

}
+ fλ

({
k

n− 1

}
+

{
k

n

})
if λ1 > 1,

{
k

n− 1

}
+

{
k

n

}
if λ1 = 1,

(5.17)

whereλ# = [λ2, . . . , λℓ(λ)]. In particular, this formula holds for allλ whenn ≤ 5. Whenλ1 = 1,

thenλ = [1n], and this saysdimZ
[1n]
k,n =

{
k

n− 1

}
+

{
k

n

}
for all n ≥ 1.

To verify this assertion, we start from the last line of Theorem 5.5 (a),

dimZλ
k,n = fλ#

n−λ2∑

t=|λ#|

{
k

t

} (
t

|λ#|

)
+

n∑

t=n−λ2+1

{
k

t

}
fλ/[n−t]. (5.18)

Whenλ1 = 1, thenλ = [1n] andλ# = [1n−1], and this reduces to

dimZ
[1n]
k,n = f [1n−1]

{
k

n− 1

}
+ f [1n]

{
k

n

}
=

{
k

n− 1

}
+

{
k

n

}
.
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level p1 p2 p3 p4 p5
ℓ = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

∅ ∅ ∅ ∅ ∅

ℓ = 1
2 0 0 0 ← 0 0 0 0 ← 0 0 0 0 ← 0 0 0 0 ← 0 0 0 0 ← 0

{1} {1} {1} {1} {1}

ℓ = 1 0 0 0 1 0 0 0
1

0 0 0
1

0 0 0
1

0 0 0
1

{1} {1} {1} {1} {1}

ℓ = 11
2 0 0 0 ← 1 0 0 1 ← 0 0 0

1
← 0 0 0

1
← 0 0 0

1
← 0

{1, 2} {1 | 2} {1 | 2} {1 | 2} {1 | 2}

ℓ = 2 0 0 0
2

0 0 1
2

0 0 2
1

0 0
1 2

0 0
1
2

{1, 2} {1 | 2} {1 | 2} {1 | 2} {1 | 2}

ℓ = 21
2 0 0

2
← 0 0 0

2
← 1 0 0

1
← 2 0 2

1
← 0 0 1

2
← 0

{1, 2 | 3} {1, 3 | 2} {1 | 2, 3} {1 | 2 | 3} {1 | 2 | 3}

ℓ = 3 0 0
2 3

0 0
2 3

0 0
1 3

0 2
1 3

0 1
2 3

{1, 2 | 3} {1, 3 | 2} {1 | 2, 3} {1 | 2 | 3} {1 | 2 | 3}

Figure 3: The bijection between the five paths toλ = [2, 2] ∈ Λ3,S4 in the Bratteli diagram
B(S4,S3) and pairs(P, T ) of Example 5.15 consisting of a set partitionP of {1, 2, 3} into t blocks
and a semistandard tableauT filled with 4− t zeroes and the maximum entries of the blocks ofP .

Whenλ1 > 1, andλ2 = 1, thenλ# = [1n−λ1 ], and

dimZλ
k,n = fλ#

n−1∑

t=|λ#|

{
k

t

} (
t

|λ#|

)
+ fλ

{
k

n

}

= fλ#
n−2∑

t=|λ#|

{
k

t

} (
t

|λ#|

)
+ fλ#

{
k

n− 1

}(
n− 1

|λ#|

)
+ fλ

{
k

n

}

= fλ#
n−2∑

t=|λ#|

(
t

|λ#|

){
k

t

}
+ fλ

({
k

n− 1

}
+

{
k

n

})
,

sincefλ = fλ#( n−1
n−λ1

)
. Finally, whenλ2 = 2, the assertion is exactly (5.18), asfλ/[1] = fλ.

Example 5.19. Sincef [n] = 1, Corollary 5.14 implies for allk ≥ n and all generic values ofξ that

dimP
[n]
k,ξ =

k∑

t=n

(
t

n

){
k

t

}
and dimP

[n]

k+ 1
2
,ξ
=

k∑

t=n

(
t

n

){
k + 1

t+ 1

}
. (5.20)
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The last line (5.18) of part (a) of Theorem 5.5 gives

dimZ
[n]
k,n =

n∑

t=0

{
k

t

}
= B(k, n) (= B(k) when n ≥ k) , (5.21)

while the last line of part (b) of Theorem 5.5 says

dimZ
[n−1]

k+ 1
2
,n

=
n∑

t=1

{
k + 1

j

}
= B(k + 1, n) (= B(k + 1) whenn ≥ k + 1) . (5.22)

Remark 5.23. A (Gelfand) modelfor an algebra is a module in which each irreducible module
appears as a direct summand with multiplicity one. In [HRe],Halverson and Reeks construct mod-
els for certain diagram algebras, including the partition algebrasPk(ξ) for genericξ, using basis
diagrams invariant under reflection about the horizontal axis (the symmetric diagrams) and the dia-
gram conjugation action ofPk(ξ) on them. The modelMPk

for Pk(ξ) decomposes into submodules
MPk

=
⊕

r,pM
r,p
Pk

, whereMr,p
Pk

=
⊕

ν⊢r
odd(ν)=p

Pν
k,ξ according to the sizer = |ν| of the partitionν

and its numberp = odd(ν) of odd parts. By enumerating symmetric diagrams, they determine that

dimM
r,p
Pk

=

k∑

t=r

(
r

p

)
(r − p− 1)!!

(
t

r

){
k

t

}
=

(
r

p

)
(r − p− 1)!!

k∑

t=r

(
t

r

){
k

t

}
, (5.24)

wherer− p is even and(r− p− 1)!! = (r− p− 1)(r− p− 3) · · · 3 · 1. The factor
(
r
p

)
(r− p− 1)!!

comes from the fact (see [HRe]) that

∑

ν⊢r
odd(ν)=p

f ν = |Ir,p| =

(
r

p

)
(r − p− 1)!!, (5.25)

whereIr,p is the set of involutions (elements of order 2) withp fixed points in the symmetric group
Sr. Corollary 5.14 and (5.25) give an alternate proof of (5.24):

dimM
r,p
Pk

=
∑

ν⊢r
odd(ν)=p

dimPν
k,ξ =

∑

ν⊢r
odd(ν)=p

f ν

(
k∑

t=|ν|

(
t

|ν|

){
k

t

})
=

(
r

p

)
(r − p− 1)!!

k∑

t=r

(
t

r

){
k

t

}
.

6 Dimension formulas for alternating group centralizer algebras

The restriction rules in (3.6) combined with Theorem 2.7 (b)can be used to derive expressions for
the dimensions of the irreducible modules for the alternating group centralizer algebraŝZk(n) and
Ẑk+ 1

2
(n) from the dimension formulas for irreducible modules forZk(n) andZk+ 1

2
(n) in Theorem

5.5.

Theorem 6.1. Assumek ∈ Z≥0. The dimensions of the irreducible modules forẐk(n) andẐk+ 1
2
(n)

are as follows (using notation from Table 1).
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(a) For λ ⊢ n andλ ∈ Λk,An
,

dim Ẑλ
k,n = dimZλ

k,n + dimZλ∗

k,n, if λ > λ∗,

dim Ẑλ+

k,n = dim Ẑλ−

k,n = dimZλ
k,n, if λ = λ∗,

wheredimZλ
k,n anddimZλ∗

k,n are given by the formula in Theorem 5.5 (a).

(b) For µ ⊢ n− 1 andµ ∈ Λk,An−1 ,

dim Ẑ
µ

k+ 1
2
,n

= dimZ
µ

k+ 1
2
,n
+ dimZ

µ∗

k+ 1
2
,n
, if µ > µ∗,

dim Ẑ
µ+

k+ 1
2
,n

= dim Ẑ
µ−

k+ 1
2
,n

= dimZ
µ

k+ 1
2
,n
, if µ = µ∗,

wheredimZ
µ

k+ 1
2
,n

anddimZ
µ∗

k+ 1
2
,n

are given by the formula in Theorem 5.5 (b).

The next corollary gives some particular instances of Theorem 6.1 of special interest.

Corollary 6.2. Assumek ∈ Z≥0 andr ≥ 2. Recall the definitions of the Bell numbersB(k, n) and
B(k) from (5.3)and (5.4).

(a) dim Ẑ
[n]
k,n = dimZ

[n]
k,n + dimZ

[1n]
k,n =

n∑

t=0

{
k

t

}
+

{
k

n− 1

}
+

{
k

n

}

= B(k, n) +

{
k

n− 1

}
+

{
k

n

}
.

(b) dim Ẑk(n) = dim Ẑ
[n]
2k,n = B(2k, n) +

{
2k

n− 1

}
+

{
2k

n

}
.

In particular, dim Ẑk(n) = B(2k) + 1 if n = 2k + 1, anddim Ẑk(n) = B(2k) if n > 2k + 1.

(c) dim Ẑ
[n−1]

k+ 1
2
,n

= dimZ
[n−1]

k+ 1
2
,n
+ dim Ẑ

[1n−1]

k+ 1
2
,n

=
n∑

j=1

{
k + 1

j

}
+

{
k + 1

n− 1

}
+

{
k + 1

n

}

= B(k + 1, n) +

{
k + 1

n− 1

}
+

{
k + 1

n

}
= dim Ẑ

[n]
k+1,n.

(d) dim Ẑk+ 1
2
(n) = dim Ẑ

[n−1]

2k+ 1
2
,n

= B(2k + 1, n) +

{
2k + 1

n− 1

}
+

{
2k + 1

n

}
.

In particular, dim Ẑk+ 1
2
(n) = B(2k + 1) + 1 if n = 2k + 2, anddim Ẑk+ 1

2
(n) = B(2k + 1)

if n > k + 2.

Remark 6.3. Part (b) of Corollary 6.2 was shown by Bloss [Bl1, Bl2] by different methods. Part
(d) extends that result to the centralizer algebrasẐk+ 1

2
(n) and gives some indication of how the

algebraŝZk+ 1
2
(n) “fill the gap” between the integer levels.

Example 6.4. Corollary 6.2 (c) says that fork = 3 andn = 4,

dim Ẑ
[3]

3+ 1
2
,4
=

4∑

j=1

{
4

j

}
+

{
4

3

}
+

{
4

4

}
= 1 + 7 + 2(6 + 1) = 22.

This is the subscript on the partition[3] in the last row of the Bratteli diagram in Figure 2.
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7 The centralizer algebra QZk(n) := EndSn(R
⊗k
n ) for Rn = S

[n−1,1]
n

and its relatives

In [DO], Daugherty and Orellana investigated the centralizer algebraQZk(n) := EndSn(R
⊗k
n ),

whereRn = S
[n−1,1]
n , and proved that there is a variant of the partition algebra,that they termed the

quasi-partition algebraand denotedQPk(n). They exhibited an algebra homomorphismQPk(n)→
EndSn(R

⊗k
n ) and showed that this mapping is always a surjection and is an isomorphism whenn ≥

2k. The irreducible modulesQZλ
k,n for QZk(n) are indexed by partitionsλ = [λ1, λ2, . . . , λn] ⊢ n.

In this last section, we determine a formula for the dimensions of these irreducible modules.
The dimension expression we obtain holds for arbitrary values ofk andn and differs from that
in [DO, Thm. 4.6], which is valid forn > k + λ2, and is more closely related to the one in [D,
Cor. 2.2], which holds forn ≥ k+λ2. We also extend these results to the case of the corresponding
centralizer algebra of the alternating group:̂QZk(n) := EndAn

(R⊗k
n ).

We adopt the notation in Table 2 for various centralizer algebras and their irreducible modules
associated withR⊗k

n . In this table, for allk ∈ Z≥0, qΛk,Sn (resp.qΛk,An
) is the set of indices for

the irreducibleQZk(n)-summands (resp.̂QZk(n)-summands) inR⊗k
n with multiplicity at least one;

similarly qΛk,Sn−1 (resp. qΛk,An−1) is the set of indices for the irreducibleQZk+ 1
2
(n)-summands

(resp.Q̂Zk+ 1
2
(n)-summands) inR⊗k

n with multiplicity at least one.

centralizer algebra irreducible modules

QZk(n) := EndSn(R
⊗k
n ) QZλ

k,n, λ ⊢ n, λ ∈ qΛk,Sn ⊆ ΛSn

QZk+ 1
2
(n) := EndSn−1(R

⊗k
n ) QZ

µ

k+ 1
2
,n
, µ ⊢ n− 1 µ ∈ qΛk+ 1

2
,Sn−1

⊆ ΛSn−1

Q̂Zk(n) := EndAn
(R⊗k

n ) Q̂Z
λ

k,n, λ ⊢ n, λ > λ∗, λ ∈ qΛk,An
⊆ ΛAn

Q̂Z
λ±

k,n, λ ⊢ n, λ = λ∗, λ ∈ qΛk,An
⊆ ΛAn

Q̂Zk+ 1
2
(n) := EndAn−1(R

⊗k
n ) Q̂Z

µ

k+ 1
2
,n, µ ⊢ n− 1, µ > µ∗, µ ∈ qΛk+ 1

2
,An−1

⊆ ΛAn−1

Q̂Z
µ±

k+ 1
2
,n, µ ⊢ n, µ = µ∗, µ ∈ qΛk+ 1

2
,An−1

⊆ ΛAn−1

Table 2: Notation for the centralizer algebras and modules associated with the tensor productR⊗k
n

of the reflection moduleRn = S
[n−1,1]
n of Sn and its restriction toSn−1,An, andAn−1.

The permutation moduleMn of the symmetric group satisfiesMn
∼= Rn ⊕ S

[n]
n , whereRn =

S
[n−1,1]
n is the (n − 1)-dimensional reflection representation ofSn andS[n]n is the trivial module.

Applying Proposition 2.11 (a) and Theorem 6.1 gives the following:
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Theorem 7.1. Letk, n ∈ Z≥0 with n ≥ 1. The dimensions of the irreducible modules forQZk(n),

QZk+ 1
2
(n), Q̂Zk(n) andQ̂Zk+ 1

2
(n) are as follows (using notation from Tables 1 and 2).

(a) For λ ⊢ n, λ ∈ qΛk,Sn , dimQZλ
k,n =

k∑

ℓ=0

(−1)k−ℓ

(
k

ℓ

)
dimZλ

ℓ,n.

(b) For µ ⊢ n− 1, µ ∈ qΛk,Sn−1 , dimQZ
µ

k+ 1
2
,n

=

k∑

ℓ=0

(−1)k−ℓ

(
k

ℓ

)
dimZ

µ

ℓ+ 1
2
,n
.

(c) For λ ⊢ n with λ ∈ qΛk,An
,

dim Q̂Z
λ

k,n =

k∑

ℓ=0

(−1)k−ℓ

(
k

ℓ

)
dim Ẑλ

ℓ,n =

k∑

ℓ=0

(−1)k−ℓ

(
k

ℓ

)(
dimZλ

ℓ,n + dimZλ∗

ℓ,n

)
, if λ > λ∗,

dim Q̂Z
λ±

k,n =
k∑

ℓ=0

(−1)k−ℓ

(
k

ℓ

)
dim Ẑλ±

ℓ,n =
k∑

ℓ=0

(−1)k−ℓ

(
k

ℓ

)
dimZλ

ℓ,n = dimQZλ
k,n, if λ = λ∗.

(d) For µ ⊢ n− 1 with µ ∈ qΛk+ 1
2
,An−1

,

dim Q̂Z
µ

k+ 1
2
,n =

k∑

ℓ=0

(−1)k−ℓ

(
k

ℓ

)
dim Ẑ

µ

ℓ+ 1
2
,n

=

k∑

ℓ=0

(−1)k−ℓ

(
k

ℓ

)(
dimZ

µ

ℓ+ 1
2
,n
+ dimZ

µ∗

ℓ+ 1
2
,n

)
, if µ > µ∗,

dim Q̂Z
µ±

k+ 1
2
,n =

k∑

ℓ=0

(−1)k−ℓ

(
k

ℓ

)
dim Ẑ

µ±

ℓ+ 1
2
,n

=

k∑

ℓ=0

(−1)k−ℓ

(
k

ℓ

)
dimZ

µ

ℓ+ 1
2
,n

= dimQZ
µ

k+ 1
2
,n
, if µ = µ∗.

Applying Proposition 2.11(b) and Theorem 7.1 gives the following:

Corollary 7.2. Letk, n ∈ Z≥0 with n > 0, and let the notation be as in Table 2.

(a) dimQZk(n) = dimQZ
[n]
2k,n =

2k∑

ℓ=0

(−1)2k−ℓ

(
2k

ℓ

)
B(ℓ, n)

(
=

2k∑

ℓ=0

(−1)2k−ℓ

(
2k

ℓ

)
B(ℓ) = 1 +

2k∑

ℓ=1

(−1)ℓ−1B(2k − ℓ) if n ≥ 2k + 2

)
.

(b) dimQZk+ 1
2
(n) = dimQZ

[n−1]

2k+ 1
2
,n

=

2k∑

ℓ=0

(−1)2k−ℓ

(
2k

ℓ

)
B(ℓ+ 1, n)

(
=

2k∑

ℓ=0

(−1)2k−ℓ

(
2k

ℓ

)
B(ℓ+ 1) = B(2k) if n ≥ 2k + 1

)
.
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(c) dim Q̂Zk(n) = dim Q̂Z
[n]

2k,n =

2k∑

ℓ=0

(−1)2k−ℓ

(
2k

ℓ

)(
B(ℓ, n) +

{
ℓ

n− 1

}
+

{
ℓ

n

})

(
=

2k∑

ℓ=0

(−1)2k−ℓ

(
2k

ℓ

)
B(ℓ) = 1 +

2k∑

ℓ=1

(−1)ℓ−1B(2k − ℓ) if n ≥ 2k + 2

)
.

(d) dim Q̂Zk+ 1
2
(n) = dim Q̂Z

[n−1]

2k+ 1
2
,n

=
2k∑

ℓ=0

(−1)2k−ℓ

(
2k

ℓ

)(
B(ℓ+ 1, n) +

{
ℓ+ 1

n− 1

}
+

{
ℓ+ 1

n

})

(
=

2k∑

ℓ=0

(−1)2k−ℓ

(
2k

ℓ

)
B(ℓ+ 1) = B(2k) if n ≥ 2k + 2

)
.

Proof. The first two equalities in parts (a)-(d) of the corollary follow from Proposition 2.11 (b),
(5.21), (5.22), and Corollary 6.2 (b) and (d). The final equality in (a) and (c) can be seen as follows:
Let υℓ be the number of set partitions of{1, . . . , ℓ}, with no blocks of size 1. Then, as shown in
[Be, Sec. 3.5],υℓ + υℓ+1 = B(ℓ), (the ℓth Bell number). Now [SW, Sec. 1] implies thatυ2k =∑2k

ℓ=0(−1)
2k−ℓ

(2k
ℓ

)
B(ℓ). However, substituting the expressionυℓ + υℓ+1 for B(ℓ) shows that the

telescoping sum1+
∑2k

ℓ=1(−1)
ℓ−1B(2k− ℓ) = υ2k also. Hence, the two expressions forυ2k equal.

The final equality in parts (b) and (d) is a well-known property of Bell numbers (see for example
[SW, (1.2)]).

Remark 7.3. The result from Corollary 7.2 (a) thatdimQZk(n) = 1 +
∑2k

ℓ=1(−1)
ℓ−1B(2k − ℓ)

whenn ≥ 2k + 2 was shown in [DO, Cor. 2.6]. As noted there, the sequence{υℓ} is #A000296 in
[OEIS].

The results in Theorem 7.1 enable us to conclude the following for generic quasi-partition algebras.

Corollary 7.4. Letν be a partition with0 ≤ |ν| ≤ k. For ξ 6∈ {0, 1, . . . , 2k − 1}, letQPν
k,ξ denote

the irreducibleQPk(ξ)-module. Then

dimQPν
k,ξ = f ν

k∑

ℓ=0

(−1)k−ℓ

(
k

ℓ

)


ℓ∑

t=|ν|

(
t

|ν|

){
ℓ

t

}
 (

= f ν when |ν| = k
)
.

The Bratteli diagrams constructed using the reflection module Rn for the pairs(Sn,Sn−1),
(An,An−1) for n = 6 are displayed in A.2 and A.4 of the Appendix. The subscript ona partition at
level ℓ ∈ 1

2Z≥0 is the dimension of the irreducible module for the centralizer algebraQZℓ(6). For

k ∈ Z≥0, Ind
Sn
Sn−1

ResSnSn−1
(R⊗k

n ) is isomorphic as anSn-module toR⊗k
n ⊕ R

⊗(k+1)
n . This implies

that the subscripts on levelk+ 1
2 are gotten from levelk by Pascal addition; however, the subscripts

on levelk+1 are obtained by first performing Pascal addition from levelk+ 1
2 and then subtracting

the corresponding subscript from levelk.
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A Appendix: Bratteli Diagrams

A.1 Levels ℓ = 0, 1
2
, 1, . . . , 7

2
, 4 of the Bratteli diagram B(S6, S5)

Level ℓ = 7
2 is the first time the centralizer algebra loses a dimension from the generic dimension,

which is the 7th Bell numberB(7) = 877.

ℓ = 0
1

ℓ = 1

2

1

ℓ = 1
1 1

ℓ = 3

2
2 1

ℓ = 2
2 3 1 1

ℓ = 5

2
5 5 1 1

ℓ = 3
5 10 6 6 1 2 1

ℓ = 7

2
15 22

9 9
2

1

ℓ = 4
15 37 31 31 9 20 10 2 3 1

1

1

2

5

15

52

203

876

4111
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A.2 Levels ℓ = 0, 1
2
, 1, . . . , 7

2
, 4 of the quasi-Bratteli diagram QB(S6, S5)

To calculate the subscripts on the half-integer rows, use Pascal addition of the subscripts from the
row above. To calculate the subscripts on integer level rows, first use Pascal addition from the row
above, and then subtract the subscript on the same partitionfrom two rows above.

ℓ = 0
1

ℓ = 1

2

1

ℓ = 1
0 1

ℓ = 3

2
1 1

ℓ = 2
1 1 1 1

ℓ = 5

2
2 3 1 1

ℓ = 3
1 4 3 3 1 2 1

ℓ = 7

2
5 10

6 6
2

1

ℓ = 4
4 11 13 13 5 12 6 2 3 1

1

1

1

2

4

15

41

202

694
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A.3 Levels ℓ = 0, 1
2
, 1, . . . , 7

2
, 4 of the Bratteli diagram B(A6,A5)

ℓ = 0
1

ℓ = 1

2

1

ℓ = 1
1 1

ℓ = 3

2
2 1

ℓ = 2
2 3 1 1

ℓ = 5

2

+ −

5 5 1 1 1

ℓ = 3
+ −

5 10 6 7 1 2 2

ℓ = 7

2

+ −

15 23
11 9 9

ℓ = 4
+ −

15 38 34 41 11 20 20

1

1

2

5

15

53

219

1037

5427
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A.4 Levels ℓ = 0, 1
2
, 1, . . . , 7

2
, 4 of the quasi-Bratteli diagram QB(A6,A5)

To calculate the subscripts on the half-integer rows, use Pascal addition of the subscripts from the
row above. To calculate the subscripts on integer level rows, first use Pascal addition from the row
above, and then subtract the subscript on the same partitionfrom two rows above.

ℓ = 0
1

ℓ = 1

2

1

ℓ = 1
0 1

ℓ = 3

2
1 1

ℓ = 2
1 1 1 1

ℓ = 5

2

+ −

2 3 1 1 1

ℓ = 3
+ −

1 4 3 4 1 2 2

ℓ = 7

2

+ −

5 11
8 6 6

ℓ = 4
+ −

4 12 16 19 7 12 12

1

1

1

2

4

16

51

282

1114

31


	1 Introduction
	2 Restriction/Induction and Dimensions
	3 Irreducible modules for symmetric and alternating groups and  their centralizer algebras
	4 Bratteli diagrams
	5 Dimensions formulas for symmetric group centralizer algebras
	5.1 Stirling numbers of the second kind and Bell numbers
	5.2 Main result for symmetric group centralizer algebras
	5.3 Bijective proof of Theorem ?? (a)
	5.4 Dimension Examples

	6 Dimension formulas for alternating group centralizer algebras
	7 The centralizer algebra QZk(n): = EndSn(Rnk) for  Rn = Sn[n-1,1]  and its relatives
	A Appendix: Bratteli Diagrams
	A.1 Levels  = 0,12,1,…,72,4  of the Bratteli diagram B(S6,S5)
	A.2 Levels = 0,12,1,…,72,4 of the quasi-Bratteli diagram  QB(S6,S5)
	A.3 Levels  = 0,12,1,…,72,4 of the Bratteli diagram B(A6, A5)
	A.4 Levels  = 0,12,1,…,72,4 of the quasi-Bratteli diagram QB(A6,A5)


