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Abstract

Inspired by Yakoubov’s 2015 investigation of pattern avoiding linear extensions of the posets
called combs, we study pattern avoiding linear extensions of rectangular posets. These linear
extensions are closely related to standard tableaux. For positive integers s and t we consider
two natural rectangular partial orders on {1, 2, . . . , st}, which we call the NE rectangular order
and the EN rectangular order. First we enumerate linear extensions of both rectangular orders
avoiding most sets of patterns of length three. Then we use both a generating tree and a bijection
to show that the linear extensions of the EN rectangular order which avoid 1243 are counted
by the Fuss-Catalan numbers. Next we use the transfer matrix method to enumerate linear
extensions of the EN rectangular order which avoid 2143. Finally, we open an investigation of
the distribution of the inversion number on pattern avoiding linear extensions.

Keywords: Catalan number, lattice path, linear extension, partially ordered set, pattern
avoiding permutation, standard tableaux.

1 Introduction

In [Yak15] Yakoubov introduced an extensive new family of permutation enumeration problems.
To state the most general of these problems, suppose n is a positive integer, ⇑ is a partial order on
[n], and σ1, . . . , σk are permutations (see Section 2 for definitions and notation). Then Yakoubov’s
problem is to determine how many permutations of [n] avoid σ1, . . . , σk and also have the property
that if π(i) ⇑ π(j) then i < j. In other words, how many linear extensions of the poset ([n],⇑)
avoid σ1, . . . , σk?

As Yakoubov points out, this problem is hopelessly general without some additional information
about ⇑. For example, if ⇑ is empty (meaning no two elements of [n] are related by ⇑) then
Yakoubov’s question reduces to the problem of enumerating the permutations avoiding a given
set of patterns, a problem about which much has been written over the past thirty years, and
about which much more is still unknown. On the other hand, as Yakoubov also illustrates, for
some particular families of partial orders we can make significant progress for a variety of short
forbidden patterns. In particular, Yakoubov obtains simple closed formulas for the number of linear
extensions of posets she calls combs (see Figure 1 for two typical examples) which avoid various
sets of patterns of length three.

In this paper we extend Yakoubov’s investigation by studying pattern avoiding linear extensions
of rectangular posets (see Figures 2 and 3 for two typical examples). In Section 2 we give some
background on pattern avoidance and partially ordered sets, we define the particular posets we plan
to study, and we prove some preliminary results to reduce the scope of our problem. In Section 3 we
consider linear extensions avoiding sets of patterns of length three, finding simple closed formulas
in most cases. In Section 4 we use a generating tree to show that the Fuss-Catalan numbers
enumerate the linear extensions of a particular poset which avoid 1243. We then give a natural
bijection between this set of linear extensions and the set of Fuss-Catalan paths. In Section 5 we
use the transfer matrix method to enumerate a set of linear extensions avoiding 2143. In Section 6
we extend Yakoubov’s work in another direction, studying the distribution of the inversion number
on pattern avoiding linear extensions of our rectangular posets. Finally, in Section 7 we describe
future directions for this research along with some open problems.

∗2010 AMS Subject Classifications: 05A05, 05A15
†Corresponding author.
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Figure 1: The Hasse diagrams of a comb of type α (left) and β (right).
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Figure 2: The Hasse diagram of the rectangular poset NE4,3.

2 Background and Notation

Our problem has two main ingredients: pattern avoiding permutations and linear extensions of
rectangular partially ordered sets. To describe pattern avoiding permutations, let n be a positive
integer, let [n] denote the set {1, 2, . . . , n}, and let Sn denote the set of permutations of [n], written
in one-line notation. For any permutation π, we write |π| to denote the length of π, so |π| = n
is equivalent to π ∈ Sn. We say a permutation π contains a permutation σ whenever π has a
subsequence with the same relative order as σ, and we say π avoids σ whenever π has no such sub-
sequence. For example, 786549312 has subsequence 8491, so it contains 3241. However, 786549312
has no subsequence with the same relative order as 132, so 786549312 avoids 132. In this context
we sometimes call σ a forbidden pattern and we sometimes call π a pattern avoiding permutation.
Pattern avoiding permutations have received a considerable amount of attention over the past thirty
years; for more information, see Kitaev’s encyclopedic book [Kit11] and the references he cites.

Our language and notation for partially ordered sets, their Hasse diagrams, and their linear
extensions will follow [Sta11, Chap. 3], but for convenience we summarize these ideas here. Recall
that a partial ordering ⇑ of a set X is a reflexive, antisymmetric, and transitive binary relation on
X. A partially ordered set (or poset, for short) (X,⇑) is a set X together with a partial ordering
⇑ of X. If a, b ∈ X are distinct elements of a poset (X,⇑), then we say a covers b whenever b ⇑ a
and there is no element c ∈ X which is distinct from a and b and for which b ⇑ c ⇑ a. A Hasse
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Figure 3: The Hasse diagram of the rectangular poset EN4,3.

diagram of a poset (X,⇑) is a drawing of the graph whose vertices are the elements of X, in which
two vertices are connected by an edge whenever one vertex covers the other in the partial ordering.
Typically we make this partial ordering apparent in the diagram by drawing a above b whenever
b ⇑ a. Because Hasse diagrams are often the clearest way to describe the relations in a poset, we
sometimes use them to define our posets.

For any poset P = (X,⇑), a linear extension of P is a total ordering ≺ of X which is consistent
with ⇑. In other words, if a ⇑ b then a ≺ b. When X = [n] for some positive integer n, these
linear extensions are naturally associated with permutations in Sn. Specifically, the permutation
π associated with ≺ is the permutation with π(1) ≺ π(2) ≺ · · · ≺ π(n). For example, if P is the
poset whose Hasse diagram is given in Figure 4, then P has four linear extensions: 25413, 25431,
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Figure 4: The Hasse diagram of a poset on [5].

52413, and 52431.
Many of our posets will have the property that their Hasse diagrams can be represented as

tilted rectangles, as in Figure 3; we call such a poset rectangular. Following Yakoubov, for a given
rectangular representation of a rectangular poset, we call the sequences of elements in the diagonals
from lower left to upper right the spines, and we write s to denote the number of elements in each
spine. Similarly, we call the sequences of elements in the diagonals from lower right to upper left
the teeth, and we write t to denote the number of elements in each tooth. We number the spines
from upper left to lower right, and the teeth from upper right to lower left. In Figure 3 we have
s = 4, t = 3, the first spine contains 3, 6, 9, and 12, and the third tooth contains 7, 8, and 9.

Given positive integers s and t, there are eight natural rectangular partial orderings of [st] with
spine length s and tooth length t. For example, in one natural rectangular partial ordering the first
spine is 1, 2, . . . , s from first tooth to last, the second spine is s + 1, s + 2, . . . , 2s from first tooth
to last, and in general the jth spine is (j − 1)s + 1, (j − 1)s + 2, . . . , js from first tooth to last. In
another natural rectangular partial ordering the sth tooth is t, t− 1, . . . , 1 from first spine to last,
the (s− 1)th tooth is 2t, 2t− 1, . . . , t+1 from first spine to last, and in general the (s− j)th tooth
is (j +1)t, (j +1)t− 1, . . . , jt+1 from first spine to last. In each of these eight natural rectangular
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partial orderings one spine or tooth is 1, 2, . . . in order, so we name each ordering according to the
corners of the Hasse diagram (North, East, South, or West) at which this spine or tooth begins and
ends. For example, in Figure 3 we have the Hasse diagram for EN4,3, and in Figure 5 we have the
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Figure 5: The Hasse diagram of the rectangular poset SW2,4.

Hasse diagram for SW2,4. Finally, for any rectangular poset P = ([st],⇑) and any permutations
σ1, . . . , σn, we write P (σ1, . . . , σn) to denote the set of linear extensions of P which avoid each of
σ1, . . . , σn.

Although there are eight natural rectangular partial orderings on [st], when counting their
pattern avoiding linear extensions we need only concern ourselves with two of them. For instance,
by reflecting their Hasse diagrams over a vertical line, we can see that ENs,t = WNt,s, NEs,t =
NWt,s, ESs,t = WSt,s, and SEs,t = SWt,s. Similarly, reflecting a Hasse diagram over a horizontal
line has the effect of reversing the linear extensions of the associated poset. Therefore, for any
permutations σ1, . . . , σn we have |ESs,t(σ1, . . . , σn)| = |ENt,s(σ

r
1, . . . , σ

r
n)|, |SEs,t(σ1, . . . , σn)| =

|NEt,s(σ
r
1, . . . , σ

r
n)|, |WSs,t(σ1, . . . , σn)| = |WNt,s(σ

r
1, . . . , σ

r
n)|, and finally |SWs,t(σ1, . . . , σn)| =

|NWt,s(σ
r
1, . . . , σ

r
n)|, where σr

j is the reverse of σj. Combining these observations, we see we can
restrict our attention to ENs,t(σ1, . . . , σn) and NEs,t(σ1, . . . , σn).

In addition to reducing the collection of posets we need to consider, we can also reduce the
collection of forbidden patterns we need to consider. In particular, if we write σrc to denote the
reverse complement of a permutation σ, then we have the following result.

Proposition 2.1. For any rectangular poset P and any permutations σ1, . . . , σn, we have

|P (σ1, . . . , σn)| = |P (σrc
1 , . . . , σrc

n )|.

Proof. We prove the result for ENs,t; the other cases are similar.
Since a permutation π avoids a permutation σ if and only if πrc avoids σrc, and rc is invertible,

it’s sufficient to show that the set of linear extensions of ENs,t is closed under rc. To do this, we
describe rc in terms of bijections on sets of linear extensions.

We have observed that reflecting the Hasse diagram of ENs,t over a vertical line induces a
bijection between the set of linear extensions of ENs,t and the set of linear extensions of WNt,s. In
fact, this bijection is the identity map. Similarly, reflection over a horizontal line induces a bijection
between the set of linear extensions of WNt,s and the set of linear extensions of WSs,t. In fact, this
bijection simply reverses each linear extension. If we now replace each j ∈ [st] with its complement
st+ 1 − j, then we have a bijection from the set of linear extensions of WSs,t to the set of linear
extensions of ENs,t. The composition of these three maps is rc, so the set of linear extensions of
ENs,t is closed under rc, as desired.

We now have all of the background and notation we need to begin counting pattern avoiding
linear extensions of ENs,t and NEs,t. Before we do this, it’s natural to ask what happens when
there are no patterns to avoid. That is, how many linear extensions of ENs,t and NEs,t are there?
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To address this question, first note that the answer depends only on the shape of the Hasse
diagram, and not on the names of the elements of the posets, so ENs,t and NEs,t have the same
number of linear extensions. Furthermore, the linear extensions of ENs,t are in bijection with the
labelings of the vertices of its Hasse diagram with 1, 2, . . . , st such that if x ⇑ y for vertices x and
y then the label on x is less than the label on y. Now recall that a standard tableaux of shape
t, · · · , t
︸ ︷︷ ︸

s

= ts is a filling of a s × t rectangle with 1, 2, . . . , st in which the entries in each row are

strictly increasing from left to right, the entries in each column are strictly increasing from top
to bottom, and each of 1, 2, . . . , st appears exactly once. Suppose we have a linear extension π
of ENs,t. Number each vertex of the Hasse diagram for ENs,t with its position in π, rotate the
diagram through 3π/4 radians clockwise, and enclose each vertex in a square. When π is the linear
extension of EN4,3 given by 10 7 11 4 1 8 12 5 2 9 6 3, the resulting object is the standard tableaux
in Figure 6. In general, the resulting object is a standard tableaux of shape ts, and this procedure

1 3 7

2 6 10

4 8 11

5 9 12

Figure 6: The standard tableaux associated with 10 7 11 4 1 8 12 5 2 9 6 3.

is a bijection between the set of linear extensions of ENs,t and the set of standard tableaux of shape
ts. Therefore, the classical hook length formula [GNW79] [Sag01, Sec. 3.10] gives us the following
result.

Proposition 2.2. For any positive integers s and t, the number of linear extensions of ENs,t (or

NEs,t) is (st)!
t∏

j=1

(s + t− j)!

(j − 1)!
.

Since the Catalan numbers are so ubiquitous, it’s worth noting their appearance in a special
case of Proposition 2.2.

Corollary 2.3. For any positive integer n, the number of linear extensions of any of ENn,2, NEn,2

EN2,n, or EN2,n is the Catalan number Cn =
1

n+ 1

(
2n

n

)

.

3 Avoiding Patterns of Length Three

In this section we enumerate the linear extensions of ENs,t and NEs,t avoiding various sets of
patterns of length three. We begin with linear extensions of ENs,t.

Theorem 3.1. For all s ≥ 1 and all t ≥ 1 we have |ENs,t(213)| = 1.

Proof. Notice that if any element of the ith tooth precedes an element of the (i + 1)th tooth in
a linear extension π of NEs,t, then π contains 213. Therefore, only the linear extension st − t +
1, st − t + 2, . . . , st, st − 2t + 1, . . . , st − t, . . . , 1, 2, . . . , t can be in ENs,t(213). This permutation
avoids 213, and the result follows.

Our proof of Theorem 3.1 amounts to showing that ENs,t(213) is the set of linear extensions
of the poset we obtain by adding certain covering relations to ENs,t. In particular, in this new
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Figure 7: The modified poset related to ENs,t(213) when s = t = 3.

poset we require that 1 + (j − 1)t (the lower right element of the jth tooth) covers (j + 1)t (the
upper left element of the (j + 1)th tooth). See Figure 7 for the Hasse diagram of this new poset
when s = t = 3. This method of exchanging additional covering relations for pattern avoidance
restrictions will prove useful later.

Theorem 3.2. For all s ≥ 2 and all t ≥ 2,

(i) |EN1,t(231)| = 1;

(ii) |ENs,1(231)| = 1;

(iii) |ENs,t(231)| = 0.

Proof. Notice that if any two elements of the ith tooth precede any element in the (i− 1)th tooth
in a linear extension π, then π will contain 231. Thus, it is not possible for any linear extension of
a poset with more than one spine or more than one tooth to avoid 213. Therefore, only the linear
extensions 1, 2, ..., t − 1, t of EN1,t and s, s− 1, s − 2, ..., 2, 1 of ENs,1 avoid 213.

Theorem 3.3. For all s ≥ 3 and all t ≥ 1,

(i) |EN1,t(321)| = 1;

(ii) |EN2,t(321)| = Ct;

(iii) |ENs,t(321)| = 0.

Proof. When s = 1, the poset has one linear extension, namely 1, 2, ..., t − 1, t, and this linear
extension avoids 321.

When s = 2, every linear extension in EN2,t(321) is a union of two increasing subsequences of
length t, corresponding to the teeth of EN2,t. Each such permutation avoids 321, and the result
follows from Corollary 2.3.

When s ≥ 3, every linear extension of ENs,t contains the subsequence 2t + 1, t + 1, 1, so none
of these linear extensions avoid 321.
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Theorem 3.4. For all s ≥ 1 and all t ≥ 3,

(i) |ENs,1(123)| = 1;

(ii) |ENs,2(123)| = Cs;

(iii) |ENs,t(123)| = 0.

Proof. The proof is similar to that of Theorem 3.3.

In view of Proposition 2.1, we have now found |ENs,t(σ)| for all σ ∈ S3, and by combining our
results we can easily find the number of linear extensions of ENs,t which avoid any list of patterns
in S3. With this done, we turn our attention to linear extensions of NEs,t which avoid various
patterns of length three.

Theorem 3.5. For all s ≥ 1 and all t ≥ 1,

|NEs,t(213)| = ts−1. (1)

Proof. We argue by induction on s.
When s = 1, the poset only has one linear extension, namely st, st− 1, st− 2, . . . , 2, 1, and this

linear extension avoids 213. Thus NE1,t(213) = t0 = 1.
Now we will show that |NEs+1,t(213)| = t·ts−1 by mapping every linear extension in NEs,t(213)

to t linear extensions in NEs+1,t(213). Let S = ast, . . . , a1 be a linear extension in NEs,t(213). We
can map S to the linear extension in NEs+1,t(213) that we obtain by inserting (s+ 1)t, . . . , st+ 1
into S (in this order) so that the resulting linear extension still avoids 213. We must add (s + 1)t
before ast (because it is now the largest element in the poset). To ensure that we map to a linear
extension that avoids 213, we must insert the rest of the numbers b ∈ {(s+1)t− 1, . . . , st+1} into
two places: directly between (s+1)t and ast, or immediately after ast. Otherwise, the subsequence
ast, k, b (where k ∈ S and k < ast) creates a 213 pattern. Since (s+1)t− 1, . . . , st+1 must appear
greatest to least, there are exactly t ways of inserting them into the two possible locations.

Example 3.6. We can insert 9, 8, and 7 into 635421, which is an element of NE2,3(213), in three
ways to obtain linear extensions in NE3,3(213). The resulting linear extensions are 987635421,
986735421, and 968735421. Here we have underlined the newly inserted entries.

Later, we will revisit this technique of constructing linear extensions of a larger poset by inserting
elements into linear extensions of a smaller poset. However, as an immediate consequence of the
form linear extensions avoiding 213 must take, as described in the above proof, we can enumerate
the linear extensions of NEs,t which avoid particular sets of two patterns.

Corollary 3.7. For all s ≥ 1 and all t ≥ 1,

|NEs,t(213, 123)| = ts−1.

Proof. We claim that every linear extension in NEs,t(213) is also in NEs,t(123), arguing by induc-
tion on s. The base case is clear from the previous theorem, since the single linear extension of
NE1,t is strictly decreasing and therefore avoids both 213 and 123.

According to the algorithm described in the proof of Theorem 3.5 for inserting elements into
a linear extension ast, ast−1, ..., a2, a1 to construct a linear extension in NEs+1,t(213), all linear
extensions in NEs+1,t(213) must begin with a strictly decreasing sequence of the first i (1 ≤ i ≤ t)
elements from (s + 1)t, ..., st + 1, followed by ast. Next, these linear extensions contain another

8



strictly decreasing sequence of the remaining t− i elements from (s + 1)t, ..., st + 1. Finally, each
of these extended linear extensions ends with the original linear extension of the remaining st− 1
elements of NEs,t, which we now assume avoids both 123 and 213 as our inductive hypothesis. If a
123 pattern were to appear in the arrangement of these two sequences inserted around ast, then it
must contain ast, since the inserted elements are in strictly decreasing order and therefore do not
contain a 123 pattern. Moreover, ast would have to act as a “1”, since it is smaller than the other
inserted elements. However, the strictly decreasing subsequence of elements we inserted after ast
are all greater than the final st− 1 elements of the linear extension, so we cannot complete the 123
pattern with any increasing subsequence of length two. Hence, NEs,t(213, 123) = NEs,t(213).

Corollary 3.8. For all s ≥ 1 and all t ≥ 2,

(i) |NEs,1(213, 132)| = 1;

(ii) |NEs,t(213, 132)| = 2s−1.

Proof. We again use the insertion algorithm from the previous corollary. To avoid 132 as we insert
our t largest elements, we can place at most one element after ast and before the rest of the old
linear extension of NEs,t. Otherwise, ast, st+2, st+1 form a 132 pattern. Hence, there are exactly
two ways to build a linear extension in NEs+1,t(132, 213) from a linear extension in NEs,t(132, 213),
and the result follows by induction.

Theorem 3.9. For all s ≥ 1 and all t ≥ 1 we have |NEs,t(312)| = 1.

Proof. Every linear extension of NEs,t begins with its largest element, st, so a linear extension can
avoid 312 if and only if it is st, st − 1, . . . , 1. This is, in fact, a linear extension of NEs,t, so the
result follows.

Combining the results in this section with Proposition 2.1 allows us to find |NEs,t(σ1, . . .)| for
any list of forbidden patterns of length three, with one notable exception: so far we have said
nothing about |NEs,t(123)|. In Table 1 we have the values of |NEs,t(123)| for various small s and

s \ t 1 2 3 4 5 6

1 1 1 1 1 1 1
2 1 2 5 14 42 132
3 1 5 33 234 1706 12618
4 1 14 238 4146 72152 1246804
5 1 42 1782 75187 3099106
6 1 132 13593 1378668
7 1 429 104756 25430445

Table 1: |NEs,t(123)| for small s and t.

t. We leave it as an exercise for the reader to show that for all s ≥ 1 and all t ≥ 1 we have
|NEs,1(123)| = |NE1,t(123)| = 1, |NEs,2(123)| = Cs, and |NE2,t(123)| = Ct. It is an open problem
to find |NEs,t(123)| for s ≥ 3 and t ≥ 3.

4 EN(1243), Generating Trees, and Fuss-Catalan Paths

We now turn our attention to linear extensions of ENs,t avoiding 1243. In our proofs of Theorems
3.1 and 3.2, we saw that the linear extensions of ENs,t which avoid 213 are the linear extensions of

9



a poset we obtain by adding several new covering relations to ENs,t, as are the linear extensions of
ENs,t which avoid 231. As a first step in enumerating ENs,t(1243), we show that a similar result
holds in this case. However, our new posets, which we call sawblade posets, are somewhat more
complicated.

Definition 4.1. A sawblade poset, denoted SAWs,t, is the poset we obtain from ENs,t by adding
covering relations such that (j − 1)t+ 2 covers (j + 1)t for all j with 1 ≤ j ≤ s− 1.

In Figure 8 we have the Hasse diagram for SAW4,3, drawn to suggest the teeth of a saw. In

�
�

�
�

�
�

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

1

2

3

4

5

6

7

8

9

10

11

12

Figure 8: The sawblade poset SAW4,3.

Figure 9 we have the Hasse diagram of SAW4,3 drawn to respect the convention that if a covers b
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Figure 9: The sawblade poset SAW4,3.

then a is above b in the diagram.

Theorem 4.2. For all s ≥ 0 and all t ≥ 0, a linear extension of ENs,t avoids 1243 if and only if
it is a linear extension of SAWs,t.

Proof. First, we will show that the property is necessary, that is, in any linear extension of ENs,t

avoiding 1243, the entry (j + 1)t precedes the entry (j − 1)t+ 2 for all j with 1 ≤ j ≤ s− 1.
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Suppose not, and (j − 1)t + 2 occurs before (j + 1)t for some particular j. Since (j − 1)t + 1
is below (j − 1)t + 2 on the same tooth, (j − 1)t+ 1 precedes (j − 1)t+ 2 in our linear extension.
Similarly, since jt is above (j + 1)t on the same spine, (j + 1)t precedes jt. Combining these
observations, we see that (j − 1)t + 1, (j − 1)t + 2, (j + 1)t, jt is a subsequence with the same
relative order as 1243.

To show that the given property is sufficient, suppose abcd is a subsequence of a linear extension
of ENs,t with the same relative order as 1243. We make several observations about where b and c
can occur in the Hasse diagram of ENs,t.

First note that b is not on the tth spine of ENs,t: if it were then all entries to its left in the
linear extension would be greater than b, but a is to the left of b and less than b.

We now claim that b and c cannot be on the same tooth. If b and c did occur on the same
tooth, then every z with b < z < c would occur between b and c in the linear extension, because
all such z occur between b and c on their common tooth. However, b < d < c but d occurs after c
in our linear extension.

We also observe that c cannot be on a higher (that is, lower-numbered) tooth than b, because
the elements of higher teeth are less than the elements of lower teeth, but c > b.

Now suppose b is on the jth tooth. Since b is not on the tth spine, either b = (j − 1)t + 2 or
(j − 1)t+ 2 occurs before b. On the other hand, c is on a lower tooth than b, so either c = (j +1)t
or (j+1)t occurs after c. Combining these observations with the fact that b precedes c in our linear
extension, we see that (j − 1)t+ 2 precedes (j + 1)t, as desired.

Our first approach to enumerating the linear extensions of SAWs,t is modeled on our enumera-
tion of NEs,t(213) in Theorem 3.5. In particular, for each s, we look at how many linear extensions
of SAWs+1,t we can obtain from a given linear extension of SAWs,t by adding a tooth. This number
depends on the particular linear extension we choose, so we use a technical tool called a generating
tree to keep track of it.

Recall from the work of West and others [Wes95, Wes96, BM03] that a generating tree is a
root with a particular label or labels together with a method for determining the children of any
node from the label of that node. In our generating tree, each node at depth s will correspond to
a linear extension of SAWs,t, and each node’s children will correspond to the linear extensions of
SAWs+1,t created by extending that linear extension. Therefore, our root will represent the empty
linear extension of a 0 × t poset. From here, we need a method for determining the children of a
node, which will require assigning a label to each node.

Definition 4.3. For any positive integers s and t, and any linear extension π of SAWs,t, the label
of π, written label(π), is the number j such that 1 is in position st− j of π.

As we show next, the label of a given linear extension of SAWs,t determines the labels of its
children.

Theorem 4.4. For any positive integers s and t, if π is a linear extension of SAWs,t then the
labels of the children of π are

t− 1, t, t+ 1, . . . , label(π) + t− 1.

Proof. We will construct each possible π′ from π. To start, we take π and consider it as a partial
linear extension of SAWs+1,t, updating the values of elements by adding t, lacking only the elements
1, . . . , t. The elements 2, . . . , t must come at the end of this linear extension by the covering relations
of the poset. The only element whose position is not fixed is 1. We then construct a child π′ of π
for each possible position of 1, which can be placed at any point after label(π) + t and before 2.
These correspond to children with labels t− 1, t, t+ 1, . . . , label(π) + t− 1, respectively.
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Note that each linear extension π of SAWs,t has t+ label(π) children.

Corollary 4.5. For any s ≥ 1, the generating tree of linear extensions of SAWs,t is isomorphic to
the generating tree given by

Root : (0)

Rule : (j) → (t− 1)(t) . . . (j + t− 1)

Proof. This is immediate from Theorem 4.4.

We call the generating tree in Corollary 4.5 the t-Fuss-Catalan generating tree. Note that the
2-Fuss-Catalan generating tree is isomorphic to West’s Catalan generating tree [Wes96, Ex. 4].

Theorem 4.6. For s, t ≥ 1, the number of nodes at depth s in the t-Fuss-Catalan tree is the
Fuss-Catalan number

1

st+ 1

(
st+ 1

s

)

=
1

(t− 1)s + 1

(
st

s

)

.

Proof. Define G(x, y) to be the generating function for the nodes of the generating tree given as
follows:

G(x, y) =
∑

σ

xl(σ)yp(σ),

with l(σ) denoting the depth of the node σ in the tree (with the root at depth 0), and p(σ)
indicating the label of σ. This generating function can equivalently be written in terms of Gp(x),
the coefficient of yp. That is, we have

G(x, y) =
∑

p≥0

Gp(x)y
p.

Since each node other than the root is a child of another node, we have

G(x, y) = x0y0 + x
∑

p≥0

Gp(x)(y
t−1 + yt + · · · + yp+t−1)

= 1 +
xyt−1

y − 1
(yG(x, y) −G(x, 1)) .

Rearranging, we find

G(x, y)

(

1−
xyt

y − 1

)

= 1−
xyt−1

y − 1
G(x; 1).

We now use the kernel method [Pro04] to find G(x, 1). In particular, we set

y(x) =

∞∑

s=0

1

st+ 1

(
st+ 1

s

)

xs

and we use the fact [GKP90, Ex. 5 in Sec. 7.5] that 1−
xyt

y − 1
= 0 to find

G(x, 1) =
y − 1

xyt−1
.

Now the fact that y − 1 = xyt means G(x, 1) = y(x), and the result follows.
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Corollary 4.7. For all s, t ≥ 1,

|ENs,t(1243)| =
1

(t− 1)s + 1

(
st

s

)

.

Proof. This is immediate from Theorem 4.6 and Corollary 4.5.

The Fuss-Catalan numbers that appear in Corollary 4.7 are known to count a variety of gen-
eralized Catalan objects. For example, it’s not difficult to use the discussion following [GKP90,
Eq. (7.69)] to show these numbers count a type of generalized Catalan paths we will call Fuss-
Catalan paths.

For all s ≥ 0 and all t ≥ 2, a t-Fuss-Catalan path of semilength s is a lattice path consisting
of s unit East and (t − 1)s unit North steps, with the property that each initial string of steps
includes at least t− 1 times as many Ns as Es. Equivalently, a t-Fuss-Catalan path must remain
on or above the line y = (t− 1)x. As we see in Figure 10, the path NNNNENNENNNE is a

✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂✂

t

t

(0, 0)

(3, 9)

y = 3x

Figure 10: The 4-Fuss-Catalan path NNNNENNENNNE and the line y = 3x.

4-Fuss-Catalan path of semilength 3. Note that the 2-Fuss-Catalan paths are the classical Catalan
paths.

We conclude this section by giving a constructive bijection between ENs,t(1243) and the set
of t-Fuss-Catalan paths of semilength s, which gives us an alternative proof of Theorem 4.6 and
Corollary 4.7. As we describe this mapping, we will use the term root to refer to an element of the
tth spine. Thus, the vertices on the bottom-right side of SAWs,t are the roots. For example, in
Figure 9 the vertices labeled 1, 4, 7, and 10 are roots. In our function, these roots will correspond
to unit East steps. All other vertices of the poset will correspond to unit North steps.

Given a linear extension in ENs,t(1243), we construct the associated t-Fuss-Catalan path as
follows. First, in an ordered s-tuple record the numbers corresponding to the positions (counted
from the start of the linear extension) of the roots. Then complement the s-tuple with respect to
the total number of vertices, st. Finally, construct a string of Ns and Es with total length st by
placing an E in the positions (counted from left to right) corresponding to the integer entries in
the complemented s-tuple, and then filling in the remaining positions with an N .

As an example, suppose we are given the linear extension 10 11 7 12 8 9 4 5 1 6 2 3 of the poset
in Figure 9. The s-tuple of its root positions is (1, 3, 7, 9), and the complement of this s-tuple is
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(12, 10, 6, 4). The resulting lattice path is NNNENENNNENE, which is a 3-Fuss-Catalan path
of semilength 4.

In general, the covering relations in SAWs,t guarantee that the t− 1 non-root vertices in each
tooth, which map to North steps, will always precede the root in their tooth, which maps to an East
step. Consequently, the resulting lattice path will always be a t-Fuss-Catalan path of semilength s.

To show our map is a bijection, we construct its inverse. Given a t-Fuss-Catalan path of
semilength s, read the path from right to left, constructing an s-tuple recording the positions
(counted from the right end) of the Es. Map these entries of the s-tuple to the positions of the
s roots of a linear extension of ENs,t. Fill these positions with the integers t(s − 1) + 1, t(s −
2) + 1, . . . , t+ 1, 1 in decreasing order from left to right. Then fill the non-root positions with the
integers t(s− 1) + 2, t(s− 1) + 3, . . . , st, t(s− 2) + 2, t(s− 2) + 3, . . . , t(s− 1), . . . , 2, 3, . . . , t in this
order from left to right. Notice that the relative positioning of the North and East steps required
for a t-Fuss-Catalan path ensures that at least one root will precede the start of each new block of
t− 1 non-roots in the linear extensions we are constructing, so the resulting permutation is indeed
a linear extension of SAWs,t. The reader can verify that our two functions are inverses of one
another, so we have proved the following result.

Theorem 4.8. There is a constructive bijection between the set of all linear extensions of SAWs,t

and the set of all t-Fuss-Catalan paths of semilength s.

We can modify our construction above to obtain a set of lattice paths which are in bijection
with ENs,t(12354). These paths are another generalization of the classical Catalan paths, but they
do not appear to have been previously studied. We describe these paths in Section 7.

5 Catalan Zippers and EN(2143)

Now that we have enumerated ENs,t(1243) using both a generating tree and Fuss-Catalan paths,
we turn our attention to ENs,t(2143). As we did for ENs,t(1243), we first show that ENs,t(2143) is
actually the set of all linear extensions of another poset. More specifically, we show that ENs,t(2143)
is exactly the set of linear extensions of ENs,t in which all elements of the jth tooth appear before
any element of the (j − 2)th tooth.

Theorem 5.1. For all s ≥ 1 and all t ≥ 2, a linear extension of ENs,t avoids 2143 if and only if
jt precedes (j − 3)t+ 1 for all j with 3 ≤ j ≤ s.

Proof. (⇒) To prove the contrapositive, suppose π is a linear extension of ENs,t such that for some
j, 3 ≤ j ≤ s, the entry (j − 3)t+ 1 precedes jt. Since (j − 3)t+ 1 covers (j − 2)t+ 1 in ENs,t, we
know (j − 2)t+1 precedes (j − 3)t+1 in π. Similarly, since (j − 1)t covers jt in ENs,t we know jt
precedes (j − 1)t in π. Now the subsequence (j − 2)t+1, (j − 3)t+1, jt, (j − 1)t of π has the same
relative order as 2143, so π does not avoid 2143.

(⇐) To prove the contrapositive in this case, suppose π is a linear extension of ENs,t and abcd
is a subsequence of π with the same relative order as 2143. Since the entries of each tooth appear
in increasing order in π, the entries a and b must be in different teeth in ENs,t. Furthermore, the
entries in the higher (that is, lower-numbered) teeth are less than the entries in the lower teeth, so
a’s tooth is below b’s tooth. For the same reason, c’s tooth is also below a’s tooth. Now the first
element of b’s tooth must appear before the last element of c’s tooth, which implies that if c is in
tooth j then (j − 3)t+ 1 precedes jt.

Recall that a Catalan path of semilength n is a sequence of n Ns and n Es such that for each j,
1 ≤ j ≤ 2n, the number of Ns among the first j terms of the sequence is greater than or equal to
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the number of Es among the first j terms. Theorem 5.1 allows us to recognize the linear extensions
in ENs,t(2143) as a new kind of generalized Catalan path.

Definition 5.2. For any nonnegative integers s and t, a Catalan zipper of dimension s and length
t is a sequence of t Njs for each j, 1 ≤ j ≤ s, such that the following hold.

1. For each j, 1 ≤ j ≤ s, if we replace each Nj with N , replace each Nj+1 with E, and remove
all other entries, then we obtain a Catalan path.

2. For each j, 1 ≤ j ≤ s− 2, the rightmost Nj precedes the leftmost Nj+2.

Note that the Catalan zippers of dimension 2 are essentially the Catalan paths. In addition,
the function which replaces each entry a in a linear extension of ENs,t with Nt+1−tooth(a), where
tooth(a) is the number of the tooth containing a, is a bijection between ENs,t(2143) and the set of
Catalan zippers of dimension s and length t. In Table 2 we have the number of linear extensions

s \ t 1 2 3 4 5

1 1 1 1 1 1
2 1 2 5 14 42
3 1 4 21 121 728
4 1 8 89 1094 14041
5 1 16 377 9841 266110
6 1 32 1597 88574 5057369

Table 2: |ENs,t(2143)| and the number of Catalan zippers of dimension s and length t for small s
and t.

of ENs.t(2143) and the number of Catalan zippers of dimension s and length t for small s and t.
The sequences in the columns of Table 2 seem to satisfy linear homogeneous recurrence relations

with constant coefficients. To obtain these recurrence relations in general, we consider Catalan
zippers according to the number of Nss at their right ends. More specifically, for positive integers
j, s, and t, let at,j(s) denote the number of Catalan zippers of dimension s and length t whose last
j+1 entries are Ns−1Ns · · ·Ns

︸ ︷︷ ︸

j

, and note that |ENs,t(2143)| =
∑t

j=1 at,j(s). We will obtain simple

recurrence relations for at,j(s), but to do this, we will need yet another variation on the idea of a
Catalan path.

Definition 5.3. For any positive integer n and any integers j, k with 0 ≤ j ≤ n and 1 ≤ k ≤ n, a
j, k-Catalan path p of semilength n is a sequence of j Ns and n Es such that the following hold.

1. The sequence N · · ·N
︸ ︷︷ ︸

n−j

p is a Catalan path.

2. The last k + 1 entries of p are N E · · ·E
︸ ︷︷ ︸

k

, or k = n and p = E · · ·E
︸ ︷︷ ︸

k

.

We write bj,k(n) to denote the number of j, k-Catalan paths of semilength n.

Notice that in any Catalan zipper of dimension s and length t, the entries to the right of the
rightmost Ns−2 form a j, k-Catalan path of semilength t, where j is the number of Ns−1s to the
right of the rightmost Ns−2 and k is the number of Nss to the right of the rightmost Ns−1. This
observation allows us to use the numbers bj,k(n) to obtain our recurrence relation for at,k(s).
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Theorem 5.4. For all s ≥ 2, all t ≥ 1, and all k with 1 ≤ k ≤ t,

at,k(s) =

t∑

j=1

bj,k(t)at,j(s− 1). (2)

Proof. The result follows from the fact that each Catalan zipper of dimension s and length t whose
last k + 1 entries are Ns−1Ns · · ·Ns

︸ ︷︷ ︸

k

can be constructed uniquely as follows.

First choose j with 1 ≤ j ≤ t, and then choose a j, k-Catalan path p of semilength t. Now choose
a Catalan zipper π′ of dimension s− 1 and length t whose last j+1 entries are Ns−2Ns−1 · · ·Ns−1

︸ ︷︷ ︸

j

.

To merge p and π′ into a longer Catalan zipper, first let p′ be the sequence we obtain from p by
replacing N with Ns−1 and E with Ns. Then, in π′, replace the tail Ns−2Ns−1 · · ·Ns−1

︸ ︷︷ ︸

j

with p′.

By construction the resulting sequence is a Catalan zipper of dimension s and length t whose last
k + 1 entries are Ns−1Ns · · ·Ns

︸ ︷︷ ︸

k

. Furthermore, given such a Catalan zipper, p′ is the sequence of

entries to the right of its rightmost Ns−2 and π′ is the Catalan zipper we obtain by removing all
of the Nss from π. Therefore, each such Catalan zipper is uniquely constructed as described, and
the result follows.

Equation (2) is only useful if we can compute bj,k(n) efficiently. Fortunately, as we show next,
bj,k(n) satisfies a remarkably simple recurrence relation.

Theorem 5.5. We have b1,1(1) = 1, and for all n ≥ 2 and all j and k with 1 ≤ j, k ≤ n,

bj,k(n) = bj,k(n− 1) + bj−1,k(n). (3)

Proof. The fact that b1,1(1) = 1 is clear. In addition, it’s not difficult to check that b1,k(n) = 1 for
all k with 1 ≤ k ≤ n, and that bj,n(n) = 1 for all j with 1 ≤ j ≤ n, so (3) holds for j = 1 and
k = n.

When j > 1 and k < n there are two kinds of j, k-Catalan paths: those beginning with E
and those beginning with N . Removing the leading E from a path of the first kind results in a
j, k-Catalan path of semilength n−1. Conversely, if p is a j, k-Catalan path of semilength n−1 then
Ep is a j, k-Catalan path of semilength n which begins with E. Similarly, removing the leading
N from a path of the second kind results in a j − 1, k-Catalan path of semilength n, and if p is a
j − 1, k-Catalan path of semilength n then Np is a j, k-Catalan path of semilength n which begins
with N . Now the result follows.

If we write Bn to denote the n× n matrix whose j, kth entry is bj,k(n) then we have

B2 =

(
1 1
1 1

)

,

B3 =





1 1 1
2 2 1
2 2 1



 ,

and

B4 =







1 1 1 1
3 3 2 1
5 5 3 1
5 5 3 1







.
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As these examples suggest, Bn has a symmetry which is not apparent in (3). To prove this symmetry
persists, we first prove an analogue of (3).

Theorem 5.6. For all n ≥ 2 and all j and k with 1 ≤ j, k ≤ n,

bj,k(n) = bj,k+1(n) + bj−1,k−1(n− 1). (4)

Proof. In the proof of Theorem 5.5 we saw that b1,k(n) = 1 for all k with 1 ≤ k ≤ n and bj,n(n) = 1
for all j with 1 ≤ j ≤ n, so (4) holds for j = 1 and k = n. When j > 1 and k < n there are two
kinds of j, k-Catalan paths: those in which the entry immediately preceding the rightmost N is E
and those in which it is N . In the first case, moving the E immediately preceding the rightmost
N to the right end of the path is a bijection with the set of j, k + 1-Catalan paths of semilength
n. In the second case, removing the rightmost N and the rightmost E is a bijection with the set of
j − 1, k − 1-Catalan paths of semilength n− 1.

Combining (3) and (4) leads directly to a proof of our observed symmetry.

Theorem 5.7. For all n ≥ 1 and all j, k with 1 ≤ j, k ≤ n, we have bj,k(n) = bn+1−k,n+1−j(n).
That is, the number of j, k-Catalan paths of semilength n is equal to the number of n+1−k, n+1−j-
Catalan paths of semilength n.

Proof. The result is clear when n + j ≤ 2, so we argue by induction on n + j. Using (3) and our
induction hypothesis we find

bj,k(n) = bj,k(n− 1) + bj−1,k(n)

= bn−k,n−j(n− 1) + bn+1−k,n+2−j(n).

Now the result follows from (4) when we replace j with n+ 1− k and k with n+ 1− j.

As our small examples suggest, we can also show that the upper right corner of Bn is the first
n rows of Pascal’s triangle.

Theorem 5.8. For all n ≥ 1 and all j and k with k ≥ j we have bj,k(n) =
(
n−k+j−1

j−1

)
.

Proof. We saw in the proof of Theorem 5.5 that b1,k(n) = 1 for all k with 1 ≤ k ≤ n and bj,n(n) = 1
for all j with 1 ≤ j ≤ n, so the result holds for j = 1 and k = n. Arguing by induction on j + n
and using (3), we find

bj,k(n) = bj,k(n− 1) + bj−1,k(n)

=

(
n− 1− k + j − 1

j − 1

)

+

(
n− k + j − 2

j − 2

)

=

(
n− k + j − 1

j − 1

)

,

as desired.

We can now use the transfer matrix method and standard results about rational generating
functions to find |ENs,t(2143)| for small values of t.

Theorem 5.9. For all s ≥ 1,

(i) |ENs,1(2143)| = 1;
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(ii) |ENs,2(2143)| = 2s−1;

(iii) |ENs,3(2143)| = F3s−1;

(iv) |ENs,4(2143)| =
1

2

(
3 · 9s−1 + (−1)s

)
.

Here Fn is the nth Fibonacci number, defined with F0 = 0 and F1 = 1.

Proof. (i) ENs,1 has only one linear extension, namely s, s − 1, . . . , 1, and this linear extension
avoids 2143.

(ii) By [Sta11, Thm. 4.7.2] and [Sta11, Thm. 4.1.1], since det(I2 − xB2) = 1− 2x, the sequence
{|ENs,2(2143)|}

∞
s=1 satisfies the recurrence relation an = 2an−1. Now (ii) follows by induction on

s.
(iii) This is similar to the proof of (ii). Specifically, since det(I3 − xB3) = 1 − 4x − x2, the

sequence {|ENs,3(2143)|}
∞
s=1 satisfies the recurrence relation an = 4an−1 + an−2. Now the result

follows by induction on s, since

4F3s−4 + F3s−7 = 4F3s−4 + F3s−5 − F3s−6

= F3s−3 + 3F3s−4 − F3s−6

= F3s−3 + 2F3s−4 + F3s−5

= 2F3s−3 + F3s−4

= F3s−2 + F3s−3

= F3s−1.

(iv) This is similar to the proofs of (ii) and (iii), using the fact that det(I4 − xB4) = 1− 8x−
9x2.

We can use the same techniques as in the proof of Theorem 5.9 to find a recurrence relation
satisfied by {|ENs,t(2143)|}

∞
s=1 for any t ≥ 1. For example, when t = 5 we find the sequence satisfies

an = 16an−1 +3an−2 − 235an−3 +36an−4. But when t ≥ 5 this does not seem to result in a simple
formula for |ENs,2(2143)|.

6 Inversions and Pattern Avoiding Linear Extensions

In this section we extend Yakoubov’s work in a new direction, turning our attention from classical
enumeration of pattern avoiding linear extensions to q-enumeration of these linear extensions. More
specifically, recall that an inversion in a permutation (or, more generally, any finite sequence of
integers) π is a pair i < j such that π(i) > π(j); we write inv(π) to denote the number of inversions
in π. For any rectangular poset P and any permutation σ, let P (σ)(q) be the generating function
given by

P (σ)(q) =
∑

π∈P (σ)

qinv(π).

In this section we determine P (σ)(q) for a variety of P and σ.
Several of our results in this section are most easily stated in terms of well-known q-analogues

of the Catalan numbers. To describe these q-analogues, recall that a Catalan word of length 2n is
a sequence of n 0s and n 1s in which the number of 0s in each initial segment is greater than or
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equal to the number of 1s in that initial segment. Following [FH85], we write Cn(q) to denote the
polynomial given by

Cn(q) =
∑

w∈CWn

qinv(w), (5)

where CWn is the set of Catalan words of length 2n. Sometimes it is more convenient to work with
the polynomial we get by reversing the coefficients of Cn(q), so we again follow [FH85] by writing
C̃n(q) to denote the polynomial given by

C̃n(q) = q(
n

2)Cn

(
q−1

)
. (6)

Although we will not need them, it is worth noting that these polynomials satisfy the recurrences

Cn(q) =

n∑

k=1

qk(n−k)Ck−1(q)Cn−k(q) (7)

and

C̃n(q) =
n∑

k=1

qk−1C̃k−1(q)C̃n−k(q) (8)

for n ≥ 1. We can now prove q-analogues of some of our results in Section 3.

Theorem 6.1. For all s ≥ 1 and all t ≥ 1,

(i) EN2,t(321)(q) = q(
t+1
2 )C̃t(q);

(ii) ENs,2(123)(q) = q3(
s

2)Cs(q);

(iii) NEs,2(123)(q) = q
s(3s−1)

2 Cs(q);

(iv) NE2,t(123)(q) = q
t(3t−1)

2 C̃t(q).

Proof. To prove (i), first associate with each linear extension π in EN2,t(321) a sequence w(π) by
replacing, in πr (the reverse of π), each of 1, 2, . . . , t with 0 and each of t + 1, t + 2, . . . , 2t with
1. Note that this gives a bijection between EN2,t(321) and the set of Catalan words of length
2t. Furthermore, each inversion in w(π) corresponds to an inversion in πr. The entries 1, 2, . . . , t
and the entries t + 1, t + 2, . . . , 2t appear in decreasing order in πr, and these are the only other
inversions in πr, so by (5) we have

∑

π∈EN2,t(321)

qinv(π
r) = q2(

t

2)Ct(q).

Since inv(πr) =
(2t
2

)
− inv(π), equation (6) and some algebra complete the proof of (i).

To prove (ii), in each π ∈ ENs,2(123) we consider four kinds of inversions i < j, according to
the parities of π(i) and π(j). There are 2

(
s
2

)
of these in which π(i) and π(j) have the same parity,

and there are
∑s

j=1(j − 1) =
(
s
2

)
of them when π(i) is odd and π(j) is even. To handle the case in

which π(i) is even and π(j) is odd, note that we can associate with each π a Catalan word w(π) by
replacing each odd entry with 0 and each even entry with 1, and this correspondence is a bijection
between ENs,2(123) and the set of Catalan words of length 2s. Furthermore, i < j is an inversion
in w(π) if and only if it is an inversion in π in which π(i) is even and π(j) is odd. Combining these
observations with (5) completes the proof of (ii).
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The proof of (iii) is similar to the proof of (ii): if π ∈ NEs,2(123) then π has 2
(
s
2

)
inversions

i < j in which π(i) and π(j) have the same parity,
∑s

j=1 j =
(
s+1
2

)
inversions i < j in which π(i) is

even and π(j) is odd, and Cs(q) is the generating function for the inversions in which π(i) is odd
and π(j) is even.

Finally, the proof of (iv) is similar to the proof of (i).

Note that the pattern avoidance conditions in Theorem 6.1 can be dropped, since in each case
every linear extension of the given poset avoids the given pattern. As a result, Theorem 6.1 also
gives us q-analogues of Corollary 2.3.

Our last q-analogue of a result in Section 3 involves the classical q-integers, defined by [n]q =
1 + q + · · ·+ qn−1 for n ≥ 1.

Theorem 6.2. For all s ≥ 1 and all t ≥ 1,

NEs,t(213)(q) = qs(
t

2)+t(s2)+
(s−1)(t−1)(st−2)

2 [t]s−1
q . (9)

Proof. The only linear extension in NE1,t(213) is t(t − 1) · · · 21, so NE1,t(213)(q) = q(
t

2), and the
result holds for s = 1. Now suppose s > 1 and (9) holds with s replaced by s − 1; we argue by
induction on s.

In the proof of Theorem 3.5 we showed that π ∈ NEs,t(213) if and only if there is a j with
1 ≤ j ≤ t and a linear extension π′ ∈ NEs−1,t(213) such that π has the form

π = st, (st− 1), . . . , st− j + 1
︸ ︷︷ ︸

j

, (s − 1)t
︸ ︷︷ ︸

π′(1)

, st− j, . . . , (s− 1)t− 1
︸ ︷︷ ︸

t−j

, π′(2), π′(3), . . . , π′((s− 1)t).

Now the inversions in π consist of the inversions in π′, the inversions among the t largest entries of
π, the inversions in which π′(1) = (s− 1)t is the smaller entry, and the inversions involving one of
the t largest entries of π and one of the entries π′(k) for 2 ≤ k ≤ (s− 1)t. This means

inv(π) = inv(π′) +

(
t

2

)

+ j + t((s− 1)t− 1). (10)

Using (10), we find

NEs,t(213)(q) =
∑

π′∈NEs−1,t(213)

t∑

j=1

q(
t

2)+j+t((s−1)t−1)qinv(π
′).

Now by induction we have

NEs,t(213)(q) = q(
t

2)+t((s−1)t−1)




∑

π′∈NEs−1,t(213)

qinv(π
′)



 [t]q

= qs(
t

2)+t(s2)+
(s−1)(t−1)(st−2)

2 [t]s−1
q ,

as desired.

Theorems 6.1 and 6.2 include q-analogues of all of our results for one forbidden pattern of
length three, so we now turn our attention to forbidden patterns of length four. In these cases we
do not have explicit factorizations of ENs,t(σ)(q) or NEs,t(σ)(q) for any σ, but we do have a result
concerning the maximum and minimum degrees of the terms in ENs,t(1243)(q).
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Theorem 6.3. For any positive integers s and t, the inversion numbers of the linear extensions of
ENs,t which avoid 1243 have minimum (t2 − t+ 1)

(
s
2

)
and maximum t2

(
s
2

)
.

Proof. To show the minimum number of inversions is (t2 − t + 1)
(
s
2

)
, first note that by Theorem

5.1, each entry which is not on the tth tooth must form an inversion with all entries on higher (that
is, lower-numbered) spines. In particular, each entry on the jth tooth that is not on the tth spine
contributes (j−1)(t−1) inversions, so the jth tooth contributes (j−1)(t−1)2 inversions. Now note
that each entry on the nth tooth forms an inversion with all of the entries on higher (that is, lower-
numbered) teeth, so the jth entry on the tth tooth contributes (j−1)t inversions. In total, then, each
linear extension of ENs,t which avoids 1243 has at least

∑s
j=1((j−1)(t−1)2+(j−1)t) =

(
s
2

)
(t2−t+1)

inversions. Since the linear extension which begins with the entries on the sth spine has no other
inversions, it must have exactly

(
s
2

)
(t2 − t+ 1) inversions.

To show the maximum number of inversions is t2
(
s
2

)
, for each linear extension π we consider pairs

i < j with π(i) < π(j). That is, we consider the noninversions or coinversions in π. On each tooth
there are

(
t
2

)
such pairs, so no linear extension has more than

(
st
2

)
− s

(
t
2

)
= t2

(
s
2

)
inversions. Since

the linear extension we obtain by traversing the teeth from sth to first has no other noninversions,
it must have exactly t2

(
s
2

)
inversions.

Theorem 6.3 captures a striking observation about the data in Table 3, which shows the mini-

s \ t 1 2 3 4 5 6

1 0 0 0 0 0 0
2 1 3-4 7-9 13-16 21-25 31-36
3 3 9-12 21-27 39-48 63-75 93-108
4 6 18-24 42-54 78-96 126-150 196-216
5 10 30-40 70-90 130-160 210-250 310-360
6 15 45-60 105-135 195-240 315-375 465-540

Table 3: The range of inversion numbers (minimum-maximum) for linear extensions of ENs,t(1243).

mum and maximum inversion numbers among linear extensions in ENs,t(1243) for various s and t.
Namely, for linear extensions in ENs,t(1243), the minimum inversion number is the product of the
inversion number of the linear extension in ENs,1(1243) and the minimum inversion number over
linear extensions in EN2,t(1243). Similarly, the maximum inversion number is the product of the
inversion number of the linear extension in ENs,1(1243) and the maximum inversion number over
linear extensions in EN2,t(1243). In other words, in Table 3 the entry in row i and column j is the
product of the entry in row i and column 1 with the entry in row 2 and column j.

7 Open Problems and Future Directions

The first and most fundamental open problem related to this work is to enumerate NEs,t(123)
when s ≥ 3 and t ≥ 3. See Table 1 for the values of |NEs,t(123)| for some small s and t. Yakoubov
[Yak15] also has some open problems involving monotone forbidden patterns of length three, so
it would also be interesting to connect NEs,t(123) with one or more of these problems. Similarly,
Levin, Pudwell, Riehl, and Sandberg [LPRS16] have some open problems involving binary heaps
avoiding monotone patterns, and it would be interesting to connect NEs,t(123) with one or more
of these problems.

At the end of Section 2 we noted that the set of linear extensions of ENs,t (or NEs,t) is naturally
in bijection with the set of standard tableaux of shape ts, which we can enumerate with the classical
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hook length formula. Later we showed that the set of linear extensions of ENs,t which avoid 1243
is in bijection with the set of linear extensions of the sawblade poset SAWs,t. By rotating the
Hasse diagram for SAWs,t through 3π/4 radians clockwise and enclosing each vertex in a box, we
see that the linear extensions of SAWs,t are in bijection with the “standard tableaux” of a new
partition-type shape. Figure 11 shows the “sawblade partition” shape for s = 3 and t = 4. In

Figure 11: A “sawblade partition” shape for s = 3 and t = 4.

view of this connection between linear extensions and this type of generalized standard tableaux,
and because the number of linear extensions of SAWs,t is given by a simple ratio of products, we
believe there is a hook length formula explaining these results. However, we have not yet found
such a formula.

At the end of Section 4 we mentioned that ENs,t(12354) is in bijection with another set of
generalized Catalan paths. These paths are the sequences of s N1s, s N2s, and (t − 2)s Es such
that the subsequence of N1s and N2s is a Catalan path (with N2 playing the role of E), while
the subsequence of N2s and Es is a t− 1-Fuss-Catalan path of semilength s. These paths do not
appear to have been previously studied, so it might be fruitful to explore their enumerative and
combinatorial properties. In addition, their form may suggest other interesting generalized Catalan
paths.

In Section 6 we studied P (σ)(q), the generating function with respect to inversion number for
linear extensions of a rectangular poset P which avoid σ, but there is much more to do in this
direction. For example, in most of our Section 6 results we had |σ| = 3, so it’s natural to ask
whether there are similar results for any σ with |σ| ≥ 4. As a first step toward answering this
question, we have found that computer generated data support the following conjecture, which we
have verified for t ≤ 9.

Conjecture 7.1. For all t ≥ 1,

EN3,2t−1(1243)(q) = q3(t
2−t+1)[2t− 1]q[4t− 1]q.

More generally, we conjecture that there is a natural statistic istat on the set FSs,t of t-Fuss-
Catalan paths of semilength s such that the q-Fuss-Catalan number given by

∑

p∈FCs,t

qistat(p)

satisfies q-analogues of (7) and [GKP90, Eq. (7.68)], and that ENs,t(1243)(q) = qf(s,t)C(q) for an
appropriate function f(s, t). In addition, we expect istat to be closely related to inv.

Turning from 1243 to 2143, computer generated data also support our next conjecture, which
we have verified for s ≤ 10. This conjecture is a q-analogue of Theorem 5.9(ii).

Conjecture 7.2. For all s ≥ 1,

ENs,2(2143)(q) = q(2s−1)(s−1)(1 + q)s−1.

Our next conjecture, which we have verified for s ≤ 9, is a q-analogue of Theorem 5.9(iii).
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Conjecture 7.3. For all s ≥ 1,

ENs,3(2143)(q) = q9(
s

2)Fs

(
1

q

)

,

where Fs(q) is defined by F0(q) = 1, F1(q) = 1, and Fs(q) = (1 + q + 2q2)Fs−1(q) + q3Fs−2(q) for
s ≥ 2.

The polynomials Fs(q) have a variety of interesting properties in addition to the fact that Fs(1)
is the Fibonacci number F3s−1. For example, when s ≥ 2 it’s not difficult to prove by induction
that Fs(q) has degree 2s − 1, the coefficient of q2s−1 is 2s−2, the constant term is Fs(0) = 1, the

coefficient of q is s − 1, and the coefficient of q2 is s(s+3)
2 . In addition, we make the following

conjectures, all of which we have verified for s ≤ 10.

Conjecture 7.4. For all s ≥ 2, the coefficient of q3 in Fs(q) is the binomial transform of the
sequence obtained by interleaving n+ 1 and 2n+ 1. This is OEIS sequence A098156.

Conjecture 7.5. For all s ≥ 2, the coefficient of q2s−2 in Fs(q) the number of compositions of
s+ 9 into s parts, none of which is 2 or 3. This is OEIS sequence A134465.

Conjecture 7.6. For all s ≥ 2, the coefficient of qs+2 in Fs(q) is the number of jumps in all binary
trees with s edges. This is OEIS sequence A127531.

Conjecture 7.7. For all s ≥ 2, the coefficient of qs is given by OEIS sequence A072547.

Conjecture 7.8. For all s ≥ 2, the coefficient of qs+1 in Fs(q) is
(2s+1
s−1

)
.

Conjecture 7.9. For all s ≥ 2, the coefficient of qs−1 in Fs(q) is the number of hill-free Dyck
paths of semilength s. This is OEIS sequence A116914.

Conjecture 7.10. For all s ≥ 0, the sequence of coefficients of Fs(q) is unimodal.

Finally, since Fs(q) is a q-analogue of F3s−1, it would be interesting and useful to have a q-
analogue fn(q) of the Fibonacci numbers such that Fs(q) is f3s−1(q), up to an appropriate power
of q.

Of course, inv is just one of many useful and interesting statistics on permutations, so it’s
natural to ask whether there are results similar to those we have in Section 6 for other permutation
statistics. For example, recall that a descent i in a permutation (or any sequence of integers) π is a
position with π(i) > π(i+1), and the major index of π, written maj(π), is the sum of the descents
in π. Then for any rectangular poset P and any forbidden pattern σ, we define P (σ)[q] by

P (σ)[q] =
∑

π∈P (σ)

qmaj(π). (11)

Although we have no results involving P (σ)[q], we do have several conjectures. To state these
conjectures, recall that Fürlinger and Hofbauer [FH85] and Andrews [And93] (among others) have
studied another q-Catalan number, which can be defined in terms of the major index. In particular,
let cn(q) denote the polynomial given by

cn(q) =
∑

π∈CWn

qmaj(π),

where the sum on the right is over all Catalan words of length 2n. With this notation we have the
following conjecture, which we have verified for s ≤ 9 and t ≤ 9.
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Conjecture 7.11. For all s ≥ 1 and all t ≥ 1,

(i) EN2,t(321)[q] = qtct(q);

(ii) ENs,2(123)[q] = q2(
s

2)cs(q);

(iii) NEs,2(123)[q] = qs
2
cs(q);

(iv) NE2,t(123)[q] = qt
2
ct(q).

There are even more interesting directions to proceed in the study of ENs,t(σ) when |σ| = 4.
For example, we can show that when σ = 1243 the maximum major index of any linear extension
in ENs,t(1243) is twice the minimum major index of any such linear extension (a proof we leave
as an exercise for the reader), but we have no such results for other forbidden patterns σ, and we
know little else about the distribution of maj even on ENs,t(1243). Along these lines, however, it
appears that descents in Fuss-Catalan words correspond under our bijection to descents in linear
extensions of ENs,t which avoid 1243, though the converse is not true. It would be interesting
to find a statistic on Fuss-Catalan paths which corresponds with major index on linear extensions
under our bijection. More generally, many statistics on permutations and lattice paths have been
studied in various contexts, so it seems likely there are correspondences between statistics on these
objects waiting to be discovered.
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