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Abstract. A neighborhood for d-dimensional cellular automata is intro-
duced that spans the range from von Neumann’s to Moore’s neighbor-
hood using a parameter which represents the dimension of hypercubes
connecting neighboring cells. The neighborhood is extended to include a
concept of radius. The number of neighbors is calculated. For diamond-
shaped neighborhoods, a sequence is obtained whose partial sums equal
Delannoy numbers.
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1 Introduction

Cellular automata [5] are defined over certain lattices where cells change their
states in either a synchronous or an asynchronous way depending on a set of
local rules which specify a mapping from the state of each cell’s neighborhood
at the current step into a cell state at the next step. In the present paper we
focus on the specification and enumeration of cell neighbors.

In cellular automata theory [5], two kinds of cell neighborhood, von Neu-
mann’s and Moore’s, are usually considered for two dimensional space. These
are then generalized to multidimensional space, and extended for radius greater
than one.

However, for multidimensional space, von Neumann’s neighborhood can gen-
erate too sparse a topology, while Moore’s is too dense. Our idea consists in
introducing an adjustable parameter which allows us to span between these two
neighborhoods. The parameter represents the dimension of hypercubes connect-
ing neighboring cells. “The On-Line Encyclopedia of Integer Sequences” [9] has
recently approved two new sequences (OEIS A265014) and (OEIS A266213)
studied in the present paper and implemented with software [12].

2 Basic Notions

Let us consider an infinite integer lattice of dimension d. Nodes of this lattice
have coordinates i = (i1, i2, ..., id), ij∈Z, 1≤j≤d. According to the terminology
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of cellular automata [5], we call these nodes cells, denoted ci, and consider each
of them to be a unit-size d-hypercube with its center situated with coordinates
i. To study neighborhoods of a cell systematically, we recall the definitions of
the following distances in multidimensional space [11]:

– Minkowsky distance [6]: Lp(i′, i) = (
∑
j

|i′ − i|)p)1/p.

– Manhattan distance [11]: L1(i′, i) =
∑
j

(|i′ − i|).

– Chebyshev distance [3]: L∞(i′, i) = max
j

(|i′ − i|).

Using these definitions of the above distances, we can characterize Moore’s
neighborhood [7] of a cell ci as the set of cells which are situated at Cheby-
shev distance 1, and von Neumann’s neighborhood [8] as the set of cells which
are situated at Manhattan distance 1, from ci. For the 2-dimensional case, two
neighborhoods are illustrated in Figure 1.

Fig. 1. Classical neighborhoods (2-dimensional case): a) von Neumann’s neighborhood;
b) Moore’s neighborhood.

Note that the facets of a finite d-dimensional hypercube include 2d facets
which are (d− 1)-dimensional hypercubes, each of them includes 2(d− 1) facets
which are (d − 2)-dimensional hypercubes and so on; finally, there are 2d 0-
dimensional hypercubes (i.e. vertices). In von Neumann’s neighborhood, cells
are connected only via facets which are (d − 1)-dimensional hypercubes while
in Moore’s neighborhood, cells are connected via bounds which are (d − j)-
dimensional hypercubes, 1≤j≤d.

3 k-neighborhood

Let us consider an infinite d-dimensional lattice. In von Neumann’s neighbor-
hood, the neighboring cells are situated at a Manhattan distance of 1. The
number of neighbors is 2d and given by the sequence (OEIS A005843). This is
clear if we consider the cell coordinate difference ∆i = i′ − i, since this differ-
ence vector can contain only one nonzero element (belonging to the set {−1, 1},
which consists of two elements), and any one of the d coordinates can be chosen
to take this value.
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In Moore’s neighborhood, the neighboring cells are situated at Chebyshev
distance of 1. The number of neighbors is calculated as (3d − 1) and given by
the sequence (OEIS A024023). Indeed, when we consider the cell coordinate
difference ∆i, its elements give precisely the set {−1, 0, 1}d (with 3d elements),
except that the vector having all coordinates equal to 0 is excluded.

Definition 1. A sharp k-neighborhood is a set of cells having difference of
either −1 or 1 in exactly k coordinates with respect to the current cell.

Thus, we consider neighbors connected via (d− k)-cube bounds of the unit-
size d-hypercube which represents a cell. In other words, neighbors are situated
at a Chebyshev distance of 1 restricted by Manhattan distance equal to k. We
denote this neighborhood by S(d, k). Noticing that only k coordinates of the
difference vector ∆i (which can be chosen in Ck

d ways) are nonzero, and must
belong to the set {−1, 1} consisting of two elements, gives us the following for-
mula

K̂(d, k) = |S(d, k)| = 2kCk
d (1)

represented by sequence (OEIS A013609). Note that, S(d, 1) coincides with
von Neumann’s neighborhood as far as C1

d = d and a union over k gives us

Moore’s neighborhood with
∑d

j=1 K̂(d, j) = 3d − 1. The diagonal numbers

equal K̂(d, d) = 2d. For instance, in the 3-dimensional case, we have 6 sharp 1-
neighbors connected via 2-cube bounds (facets or squares), 12 sharp 2-neighbors
connected via 1-cube bounds (sides), and 8 sharp 3-neighbors connected via
0-cube bounds (vertices).

Definition 2. A k-neighborhood is a set of cells having difference of either
−1 or 1 in j coordinates, 1 ≤ j ≤ k, with respect to the current cell.

It directly follows from the definition that the number of neighbors in a
k-neighborhood can be calculated as:

K(d, k) = |G(d, k)| =
k∑

j=1

K̂(d, k) =

k∑
j=1

2jCj
d (2)

represented by a new sequence (OEIS A265014). Thus, a k-neighborhood con-
nects cells via cubes of dimension (d− j), where 1 ≤ j ≤ k ≤ d. In other words,
neighboring cells are situated at Chebyshev distance 1, restricted by Manhattan
distance less than or equal to k. Of the various k-neighborhoods, we obtain as
particular cases: von Neumann’s neighborhood for k = 1 and Moore’s neighbor-
hood for k = d.

Now we are interested in efficient computation of K(d, k). We know that
K(d, 1) = 2d andK(d, d) = 3d−1. For K̂(d, k), the following recurrent expression
is known (OEIS A013609):

K̂(d, k) = 2K̂(d− 1, k − 1) + K̂(d− 1, k) (3)

combined with K̂(d, 0) = 1 in the original sequence (or K̂(d, 1) = 2d in our
case starting from 1). Taking into consideration the fact that K(d, k) represents
partial sums of K̂(d, k) on rows, we write:

K(d, k) = K(d, k − 1) + K̂(d, k), K(d, 1) = K̂(d, 1).
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Thus we can use a combined scheme, sequentially computing K(d, k) after
K̂(d, k) for each combination (d, k). To obtain a completely separated scheme,
we use (3) and write

K(d, k) = K(d, k − 1) + 2K̂(d− 1, k − 1) + K̂(d− 1, k).

Expressing K̂(d, k) via K(d, k) in the following way

K̂(d, k) = K(d, k)−K(d, k − 1)

yields

K(d, k) = K(d, k − 1) +K(d− 1, k) +K(d− 1, k − 1)− 2K(d− 1, k − 2)). (4)

4 k-neighborhoods of Radius Greater than One

The offsets of separate coordinates to neighboring cells are usually equal to
either −1 or 1, which gives us cells connected with the current cell via some
common (d−k)-cube. Such a set of direct neighbors defines the mesh (lattice) of
connections studied in the previous sections. But sometimes more distant cells,
which are separated from the current cell by a hypercube of direct neighbors,
influence its behavior. Such an influence is usually specified using a concept of
radius [5] which extends the standard notion of neighborhood, considered as
a neighborhood of radius 1. Sometimes it is of some use to distinguish sharp
from usual neighborhoods of definite radius r by applying the equality L(i, i′) =
r, or the inequality L(i, i′) ≤ r, respectively, in the same way as for the k-
neighborhood discussed above. A sharp neighborhood corresponds to the surface
area of the corresponding figure while the usual neighborhood corresponds to its
volume. Some difficulty concerns border cells because they are included twice
in the usual formula for a hypercube’s surface area, 2d(2r + 1)d−1. Usually, the
figure of a cell neighborhood defined by some metric is convex. Following the
principles outlined in the previous section we will decrement the value excluding
from it the current cell. We denote the number of neighbors by capital R in
calculations which use parameter r to specify the radius of the neighborhood.
Note that the number of neighbors in a standard neighborhood represents the
sum of its sharp neighborhoods:

R(r) =

r∑
l=1

R̂(l). (5)

Extending Moore’s neighborhood for radius r ≥ 1 to a set of cells situated at
Chebyshev distance r gives us a d-hypercube of size 2r+1 with the current cell in
its center (which is excluded). Then the total number of neighbors is calculated
as

RMoore(d, r) = (2r + 1)d − 1, (6)

R̂Moore(d, r) =

d∑
m=1

Cm
d 2m(2r − 1)

d−m
. (7)
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Among the various kinds of extended neighborhood, Moore’s is the most spa-
cious. Sometimes it is convenient to think of other neighborhoods as its restric-
tions.

Extending von Neumann’s neighborhood for radius r ≥ 1 to a set of cells
situated at Manhattan distance r gives us a diamond-shaped neighborhood,
illustrated for the 2-dimensional case in Figure 2. Let us calculate the number
of neighbors in this neighborhood.

Fig. 2. Diamond-shaped neighborhood of radius r as a set of cells situated at Manhat-
tan distance r.

Theorem 1. The number of cells situated at sharp radius r in a diamond-shaped
neighborhood of a d-dimensional lattice is calculated as

R̂diamond(d, r) =

min(d,r)∑
k=1

Ck−1
r−1C

k
d2k.

Proof. We organize a combinatorial choice in the following way. We consider
sequentially variants having exactly k nonzero coordinates. At first, we choose k
coordinates from the total set of d coordinates, which can be done in Ck

d ways.
Next, we partition r into a sum of exactly k nonzero numbers, which can be
done in Ck−1

r−1 ways; the choice is organized as a distribution of r balls between
k boxes [10]. Finally, because the Manhattan distance uses absolute values, we
can choose variants of sign distribution over the k nonzero values in 2k ways.
Multiplying the various magnitudes and summing up the required function on
the number of nonzero elements k, we obtain the required expression.

Theorem 2. The number of cells situated at radius r in a diamond-shaped
neighborhood for a d-dimensional lattice is calculated as

Rdiamond(d, r) =

min(d,r)∑
k=1

Ck
rC

k
d2k;

the numbers D(d, r) = Rdiamond(d, r) + 1, which are obtained starting the sum
from zero, are known as Delannoy numbers [1].

Proof. We organize a combinatorial choice in the way similar to that in the proof
of Theorem 1, but to cover all variants which contain k nonzero components
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whose sum is equal to or less than r, we introduce a dummy box and a dummy
ball which are not taken into consideration subsequently. Next, we distribute
(r + 1) balls between (k + 1) boxes. Of these, k boxes correspond to the vector
i and the final one is a dummy used to allow distributions of all x ≤ r balls
between k boxes. The dummy box contains a surplus, the other boxes contain
more than 1 ball, with the total being less than or equal to r balls. Thus at
this stage we obtain Ck

r variants, which yields the required expression (known
as Delannoy numbers [1]).

Corollary. The following equality holds:

D(d, r) =

min(d,r)∑
k=1

Ck
rC

k
d2k =

r∑
l=1

min(d,l)∑
k=1

Ck−1
l−1 C

k
d2k

To prove the Corollary, we use (5). The expression gives us one more variant
for computing Delannoy numbers, showing that they can be decomposed into
partial sums of a new useful sequence R̂diamond(d, r) represented with (OEIS
A266213). Note that, [2] includes a table showing the size of a diamond-shaped
neighborhood of radius r comparing to Moore’s neighborhood of radius r, but
without mentioning Delannoy numbers and without proof.

Delannoy numbers [1], sequence (OEIS A008288), are represented as a trian-
gle using its detour on anti-diagonals. Note that they were initially introduced
to describe the number of paths in a 2-dimensional rectangular d×r lattice from
its left-bottom corner with coordinates (0, 0) to its right-upper corner with coor-
dinates (d, r) using only the three following steps: (1, 0), (0, 1), (1, 1). Delannoy
numbers are also known as the tribonacci triangle because of the following ef-
ficient recursive scheme for their computation using three previously computed
members:

D(d, r) = 1, if d = 1 or r = 1,

D(d, r) = D(d− 1, r) +D(d− 1, r − 1) +D(d, r − 1).

Note that the same scheme is valid for R̂diamond(d, r) with the following
initial conditions:

R̂diamond(d, 0) = 1, d ≥ 0; R̂diamond(0, r) = 0, r > 0

There are also other known ways for extending von Neumann’s neighborhood
using radius r > 1; for example the scheme outlined in [4]. This only allows
differences with absolute value equal to r in a single coordinate and is illustrated
in Figure 3 for the 2-dimensional case. We will call this extension a narrow von
Neumann’s neighborhood of radius r. It suits our intention to extend the k-
neighborhood studied in previous section to extended neighborhoods of radius
r > 1.

Definition 3. A k-neighborhood of radius r is a set of cells having difference
|∆| ≤ r with respect to the current cell in j ≤ k coordinates. When using
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equalities instead of inequalities we say that the neighborhoods are sharp on r
or k (or both), respectively.

Note that the parameter k allows us to span neighborhoods of radius r from
narrow von Neumann’s (k = 1) to Moore’s (k = d). However, using neighbor-
hoods sharp on k seems unmotivated because it contains gaps.

Fig. 3. Narrow von Neumann’s neighborhood of radius r.

A k-neighborhood of radius r is the union of all (d−k)-cubes of size (2r+ 1)
which have their center in the current cell. However, when calculating the number
of neighbors as a sum of cells in (d− k)-cubes for all possible combinations of k-
from-d coordinates, we should exclude intersections of cubes which are summed
up multiple times.

Theorem 3. The number of neighbors in a k-neighborhood of radius r is calcu-
lated using the following expression:

R(d, k, r) =

k∑
j=0

Cj
d(2r)j (8)

Proof. To prove (8) we organize a combinatorial choice on the number j of
nonzero components of the coordinates offset vector ∆i. For each component,
there are 2r variants since zero is excluded; thus, we obtain (2r)j combinations of
nonzero coordinates. Next, j nonzero coordinates are chosen from d coordinates
in Cj

d ways which give us the corresponding multiplier.

5 Conclusions

For d-dimensional cellular automata, we have introduced k-neighborhood based
on a parameter k that corresponds to connections of neighboring cells via com-
mon (d − k)-cubes. We distinguish sharp and usual neighborhoods, according
to whether equality of inequality on the parameter k is considered. Usual k-
neighborhoods span from von Neumann’s neighborhood (k = 1) to Moore’s
neighborhood (k = d). This concept is useful for adjusting the density of neigh-
bors, which increases with increasing k. The k-neighborhood was extended using
the concept of radius r greater than one. We studied both von Neumann’s neigh-
borhoods of radius r: the narrow corresponding to k = 1 and the diamond-shaped
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corresponding to a set of cells situated at Manhattan distance r. Calculating the
number of neighbors for the sharp case provided a new expression which partial
sums equal Delannoy numbers. Two new sequences (OEIS A265014) and (OEIS
A266213) have been approved by OEIS [9] and implemented in software [12].
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