
ar
X

iv
:1

60
5.

08
88

4v
1 

 [
m

at
h.

N
T

] 
 2

8 
M

ay
 2

01
6

ON ERDŐS CONSTANT

VLADIMIR SHEVELEV

Abstract. In 1944, P. Erdős [1] proved that if n is a large highly
composite number (HCN) and n1 is the next HCN, then

n < n1 < n+ n(logn)−c

,

where c > 0 is a constant. In this paper, using numerical results by D.
A. Corneth, we show that most likely c < 1.

1. Introduction

In 1915, Ramanujan [2] introduced highly composite numbers (HCN) as

positive integers n such that d(m) < d(n) for all m < n. (cf. A002182[3]).

At the same time, he introduced a more wide sequence of largely compos-

ite numbers (LCN’s) as positive integers n such that d(m) ≤ d(n) for all

m < n. (cf. A067128[3]) In 1944, P. Erdős [1], strengthening inequality of

Ramanujan, proved that if n is a large HCN and n1 is the next HCN, then

(1) n < n1 < n+ n(log n)−c,

where c > 0 is a constant. This result is equivalent to the following: the

number of HCN’s<= x is greater than (log x)1+c. At the beginning of the

article he writes: ”At present I cannot decide whether the number of HCN’s

not exceeding x is greater than (log x)κ for every κ.” In this paper, using

numerical results by D. A. Cormeth, we show that most likely c < 1, or,

the same, in the cited Erdős’ question, only κ < 2.

2. Sequence A273379 [3]

Erdos [1] noted that every HCN is divisible by every prime less than its

greatest prime divisor p. The author with P. J. C. Moses considered the

sequence ”LCN’s n which are not divisible by all the primes < p, where p is

the greatest prime divisor of n.” The first few numbers of this sequence are

(2) 3, 10, 20, 84, 168, 336, 504, 660, 672, 3960, 4680, 32760, 42840, ...

Consider prime power factorization of these terms ≥ 10 :

2 · 5, 22 · 5, 22 · 3 · 7, 23 · 3 · 7, 24 · 3 · 7, 23 · 32 · 7, 22 · 3 · 5 · 11, 25 · 3 · 7,

23 · 32 · 5 · 11, 23 · 32 · 5 · 13, 23 · 32 · 5 · 7 · 13, 23 · 32 · 5 · 7 · 17, ...
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Note that among the first 12 terms ≥ 10, in ten terms there is missed

only one prime between the greatest prime divisor and the second greatest

prime divisor, while in two terms there missed two primes. D. A. Corneth

(A273415[3]) found the smallest LCN’s with i missed primes between the

greatest prime divisor and the second greatest prime divisor, such that

smaller primes all divide the terms, i = 1, 2, ..., 10 :

10, 4680, 6585701522400, 193394747145600, 27377180785991836800,

29378941900252048776672000, 5384823686347760468943298225056000,

404593694258692410380118300618528000,

1714431214566179268370439406441900195214656000,

(3) 180656647480221782329653424360823828484237888000.

He asks, whether this sequence is infinite?

3. Infiniteness of sequence (3)

Let n be a large HCN. Let its greatest prime divisor be the k-th prime

number pk, k = k(n). It is known [1], that pk||n.

Lemma 1. [1]

(4) c1 log n < pk < c2 log n.

By Lemma 1 and prime number theorem, we have

(5) k = O(logn/ log logn).

Lemma 2. Let n1 be the next HCN after n. Then all numbers in the interval

[n, n1) of the form

(6) npk+1/pk, ..., npk+r/pk,

if they exist, are LCN’s.

Proof. All numbers (6) have the same number of divisors as n, and between

them there is no any HCN, since the smallest HCN > n is n1 which is

larger every number (6). �

Lemma 3. Let N be a term of sequence (3) with r missed primes between

the greatest prime divisor pk+r and the second greatest prime divisor pk−1

of N. Then together with N all numbers

Npk+r−1/pk+r, Npk+r−2/pk+r, ..., Npk/pk+r

are LCN’s (but not HCN’s, except for the last number).



ON ERDŐS CONSTANT 3

Proof. Indeed, in the opposite case, between these numbers there is a HCN

≤ N, but since all they, including N, have the same number of divisors, it

would contradict the condition, that N is LCN. �

Lemma 3 means that every number of sequence (3) is building from an

HCN (which always has not any gap between its prime divisors 2, ..., pk) by

consecutive multiplication by pk+1/pk, pk+2/pk+1, ..., pk+r/pk+r−1 with the

possible maximal r. By (1) and (6),

n < npk+r/pk < n(1 + (logn)−c).

In order to have a real chance to obtain the numbers (3), let require a

stronger inequality

(7) pk+r/pk < 1 +
1

2
(logn)−c.

Here 1

2
could be changed by any smaller positive constant. Note that (7)

means that

(8) (1 + o(1))(k + r) log(k + r)/(k log k) < 1 +
1

2
(logn)−c,

where, by (5), k = O(logn/ log log n). Since, for r < k, log(k + r) =

log k + log(1 + r/k) = log k + r/k + O((r/k)2), then log(k + r)/ log k =

1 +O(r/(k log k). So, by (8), we see that (7) yields

1 + r/k +O(r/(k log k)) < 1 +
1

2
(logn)−c,

or

r ≤
k

2(logn)c
= O((logn)1−c/ log logn).

Thus if and only if c < 1, the value of r could be arbitrary large for suffi-

ciently large n. Moreover, the existence the numbers (3) allows to conjecture

that, indeed, 0 < c < 1.
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