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TOWARDS THE CLASSIFICATION OF FINITE SIMPLE GROUPS WITH

EXACTLY THREE OR FOUR SUPERCHARACTER THEORIES

A. R. ASHRAFI AND F. KOOREPAZAN-MOFTAKHAR

Abstract. A supercharacter theory for a finite group G is a set of superclasses each of which is a

union of conjugacy classes together with a set of sums of irreducible characters called supercharacters

that together satisfy certain compatibility conditions. The aim of this paper is to give a description of

some finite simple groups with exactly three or four supercharacter theories.
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1. Introduction

Throughout this paper G is a finite group, d(n) denotes the number of divisors of positive integer

n, Irr(G) stands for the set of all ordinary irreducible character of G and Con(G) is the set of all

conjugacy classes of G. For other notations and terminology concerning character theory, we refer

to the famous book of Isaacs [11]. Following Diaconis and Isaacs [7], a pair (X , K) together with

the choices of characters χX is called a supercharacter theory of G if the following conditions are

satisfied:

(1) X is a partition of Irr(G) and K is a partition of Con(G);

(2) {1} ∈ K;

(3) the characters χX , X ∈ X , are constant on the members of K;

(4) |X | = |K|.
The elements of X and K are called supercharacters and superclasses of G, respectively. It is

easy to see that m(G) = (Irr(G), Con(G)) and M(G) = (X ,K), where X = {{1}, Irr(G) \ {1}} and

K = {{1}, Con(G) \ {1}} are supercharacter theories of G which are called the trivial supercharacter

theories of G. The set of all supercharacter theories of a finite group G is denoted by Sup(G) and set

s(G) = |Sup(G)|. These notions were first introduced by Andre for finite unitriangular groups using

polynomial equations defining certain algebraic varieties [1, 2, 3].

Following Hendrickson [9], we assume that Part(S) denotes the set of all partitions of a set S. If

X and Y are two elements of Part(S) then we say that X is a refinement of Y or Y is coarser

than X and we write “X � Y”, if [a]X ⊆ [a]Y for all a ∈ S. For two supercharacter theories (X ,K)

and (Y,L), we define (X ,K) ∨ (Y,L) = (X ∨ Y,K ∨ L). It is well-know that (Part(S),�) is a lattice

which is called the partition lattice of S. By [10, Proposition 2.16], the join of two supercharacter

theories of a group G is again a supercharacter theory for G, but it is possible to find a pair of

supercharacter theories such that their meet is not a supercharacter theory. This shows that the set
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of all supercharacter theories of a finite group with usual join and meet don’t constitute a lattice in

general.

Burkett et al. [5] gave a classification of finite groups with exactly two supercharacter theories. They

proved that a finite group G has exactly two supercharacter theories if and only if G is isomorphic

to the cyclic group Z3, the symmetric group S3 or the simple group Sp(6, 2). The aim of this paper

is to continue this work towards a classification of finite simple groups with exactly three or four

supercharacter theories.

If p and 2p+1 are primes then p is called a Sophie Germain prime and 2p+1 is said to be a safe

prime. The safe primes are recorded in on-line encyclopedia of integer sequences as A005385, see [16]

for details. The first few members of this sequence is 5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263,

347, 359, 383, 467, 479, 503, 563, 587, 719, 839, 863, 887, 983, 1019, 1187, 1283, 1307, 1319, 1367,

1439, 1487, 1523, 1619, 1823, 1907. These two sequences of prime numbers have several applications

in public key cryptography and primality testing and it has been conjectured that there are infinitely

many Sophie Germain primes, but this remains unproven [6].

2. Supercharacter Theory Construction for Sporadic Groups

The aim of this section is to compute some supercharacter theories for sporadic simple groups. We

use the following simple lemma in our calculations:

Lemma 2.1. Let G be a finite group, χ be a non-real valued irreducible character of G and x ∈ G

such that χ(x) is a non-real number. We also assume that each row and column of G has at most two

non-real numbers. Define:

X = {{χ1}, {χ, χ}, Irr(G) − {χ1, χ, χ}}
K = {{e}, {xG, (x−1)G}, Con(G)− {e, xG, (x−1)G}}.

Then (X ,K) is a supercharacter theory for G.

Proof. To prove, it is enough to investigate the main condition of supercharacter theory for the con-

jugacy classes xG, (x−1)G and irreducible characters χ, χ. By definition of σX on X = {xG, (x−1)G},

σX(x−1) = χ(1)χ(x−1) + χ(1)χ(x−1)

= χ(1)χ(x) + χ(1)χ(x)

= χ(1) χ(x) + χ(1)χ(x)

= σX(x).

Therefore, σX is constant on the part {xG, (x−1)G} of K, as desired. �

The following lemma is important for constructing supercharacter theories on simple groups.

Lemma 2.2. Suppose G is a finite group, A = {χ(x) | χ ∈ Irr(G)} and Q(A) denotes the filed

generated by Q and A. Then the following holds:

(1) If X (G) = {{χ, χ} | χ ∈ Irr(G)} and K(G) = {{xG, (x−1)G} | x ∈ G} then (X ,K) is a

supercharacter theory of G.

(2) If Γ = Gal(Q(A)
Q

), X (G) is the set of all orbits of Γ on Irr(G) and K(G) is the set of all orbits

of Γ on Con(G) then (X ,K) is a supercharacter theory of G.
2



Proof. The proof follows from [7, p. 2360] and [15]. �

To calculate the supercharacter of a finite group G, we first sort the character table of G by the

following GAP commands [19]:

u:=CharacterTable(G);

t:=CharacterTableWithSortedCharacters(u);

Then we prepare a GAP program to check whether or not a given pair (X ,K) of a partition K
for conjugacy classes and another partition X for irreducible characters constitutes a supercharacter

theory. To find this pair of partitions, we usually apply Lemma 2.1.

Theorem 2.3. The Mathieu groups M11,M12,M22,M23 and M24 have at least five supercharacter

theories.

Proof. We will present five supercharacter theories for each Mathieu group as follows:

• The Mathieu group M11. Suppose the irreducible characters and conjugacy classes of the

Mathieu group M11 are Irr(M11) = {χ1, χ2, . . . , χ10} and Con(M11) = {xM11

1 , xM11

2 , . . . , xM11

10 },
respectively. We now define:

K1 =
{

{1}, {xM11

i }(2 ≤ i ≤ 8), {xM11

9
, xM11

10
}
}

,

X1 = {{1}, {χi}(2 ≤ i ≤ 5), {χ6, χ7}, {χi}(8 ≤ i ≤ 10)} ,
K2 =

{

{1}, {xM11

i }(2 ≤ i ≤ 6), {xM11

7
, xM11

8
}, {xM11

i }(9 ≤ i ≤ 10)
}

,

X2 = {{1}, {χ2}, {χ3, χ4}, {χi}(5 ≤ i ≤ 10)} .

By Lemma 2.1 and [10, Proposition 2.16], C1 = (X1,K1), C2 = (X2,K2) and C3 = C1 ∨ C2 are

supercharacter theories of M11. Since C1, C2, C3, m(M11) andM(M11) are distinct, s(M11) ≥ 5.
• The Mathieu group M12. We assume that the irreducible characters and conjugacy classes of
the Mathieu group M12 are Irr(M12) = {χ1, χ2, . . . , χ15} and Con(M12) = {xM12

1 , . . . , xM12

15 },
respectively. Define:

K1 =
{

{1}, {xM12

i }(2 ≤ i ≤ 13), {xM12

14
, x

M12

15
}
}

,

X1 = {{1}, {χi}(2 ≤ i ≤ 3), {χ4, χ5}, {χi}(6 ≤ i ≤ 15)} ,

K2 =
{

{1}, {xM12

i }(2 ≤ i ≤ 5), {xM12

6
, x

M12

7
}, {xM12

i }(8 ≤ i ≤ 10), {xM12

11
, x

M12

12
}, {xM12

i }(13 ≤ i ≤ 15)
}

,

X2 = {{1}, {χ2, χ3}, {χi}(4 ≤ i ≤ 8), {χ9, χ10}, {χi}(11 ≤ i ≤ 15)} .

Then by Lemma 2.1 and [10, Proposition 2.16], the pairs C1 = (X1,K1), C2 = (X2,K2) and

C3 = C1 ∨ C2 are three supercharacter theories of M12 different from m(M12) and M(M12).

This proves that s(M12) ≥ 5, as desired.

• The Mathieu group M22. Suppose Irr(M22) = {χ1, . . . , χ12} and Con(M22) = {xM22

1 , . . . , xM22

12 }.
We define:

K1 =
{

{1}, {xM22

i }(2 ≤ i ≤ 10), {xM22

11
, xM22

12
}
}

,

X2 = {{1}, {χi}(2 ≤ i ≤ 9), {χ10, χ11}, {χ12}} ,
K2 =

{

{1}, {xM22

i }(2 ≤ i ≤ 7), {xM22

8
, xM22

9
}, {xM22

i }(10 ≤ i ≤ 12)
}

,

X2 = {{1}, {χ2}, {χ3, χ4}, {χi}(5 ≤ i ≤ 12)} .
3



Then by Lemma 2.1 the pairs C1 = (X1,K1) and C2 = (X2,K2) are supercharacter theories of

M22. We now apply [10, Proposition 2.16] to prove that C3 = C1∨C2 is another supercharacter

theory for M22 which shows that s(M22) ≥ 5.

• The Mathieu group M23. Suppose Irr(M23) = {χ1, . . . , χ17} and Con(M23) = {xM23

1 , . . . , xM23

17 }
are the irreducible characters and conjugacy classes of the Mathieu group M23, respectively.

If we can present three supercharacter theories for M23 different from m(M23) and M(M23)

then it can be easily proved that s(M23) ≥ 5, as desired. Define:

K1 =
{

{1}, {xM23

i }(2 ≤ i ≤ 15), {xM23

16
, xM23

17
}
}

,

X1 = {{1}, {χi}(2 ≤ i ≤ 9), {χ10, χ11}, {χi}(12 ≤ i ≤ 17)} ,
K2 =

{

{1}, {xM23

i }(2 ≤ i ≤ 9), {xM23

10
, xM23

11
}, {xM23

i }(12 ≤ i ≤ 17)
}

,

X2 = {{1}, {χi}(2 ≤ i ≤ 11), {χ12, χ13}, {χi}(14 ≤ i ≤ 17)} .

To complete the proof, it is enough to apply Lemma 2.1 and [10, Proposition 2.16] for proving

that C1 = (X1,K1), C2 = (X2,K2) and C3 = C1 ∨ C2 are supercharacter theories of M23.

• The Mathieu group M24. We now assume that Irr(M24) = {χ1, χ2, . . . , χ26} and Con(M24) =

{xM24

1 , xM24

2 , . . . , xM24

26 }. If we define:

K1 =
{

{1}, {xM24

i }(2 ≤ i ≤ 20), {xM24

21
, xM24

22
}, {xM24

i }(23 ≤ i ≤ 26)
}

,

X1 = {{1}, {χi}(2 ≤ i ≤ 4), {χ5, χ6}, {χi}(7 ≤ i ≤ 26)} ,
K2 =

{

{1}, {xM24

i }(2 ≤ i ≤ 24), {xM24

25
, xM24

26
}
}

,

X2 = {{1}, {χi}(2 ≤ i ≤ 9), {χ10, χ11}, {χi}(12 ≤ i ≤ 26)} .

then by a similar calculation as other cases, we can prove that C1 = (X1,K1), C2 = (X2,K2)

and C3 = C1∨C2 are three supercharacter theories different from m(M24) and M(M24), proving

this case.

This completes the proof. �

Theorem 2.4. The Leech lattice groups have at least five supercharacter theories.

Proof. There are seven Leech lattice simple groups. These are HS, J2, Co1, Co2, Co3, McL and Suz.

Our main proof will consider seven cases as follows:

• The Higman-Sims group HS. To establish five supercharacter theories for HS, we assume that

Irr(HS) = {χi}1≤i≤24 and Con(HS) = {xHS
i }1≤i≤24. Define:

K1 =
{

{1}, {xHS
i }(2 ≤ i ≤ 22), {xHS

23
, xHS

24
}
}

,

X1 = {{1}, {χi}(2 ≤ i ≤ 10), {χ11, χ12}, {χi}(13 ≤ i ≤ 24)} ,
K2 =

{

{1}, {xHS
i }(2 ≤ i ≤ 18), {xHS

19 , xHS
20 }, {xHS

i }(21 ≤ i ≤ 24)
}

,

X2 = {{1}, {χi}(2 ≤ i ≤ 13), {χ14, χ15}, {χi}(16 ≤ i ≤ 24)} .

Then by Lemma 2.1, one can see that C1 = (X1,K1) and C2 = (X2,K2) are supercharacter

theories of HS. We now apply [10, Proposition 2.16], to prove that C3 = C1 ∨ C2 is another

supercharacter theory of HS. These supercharacter theories are different from m(HS) and

M(HS) which concludes that s(HS) ≥ 5.
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• The Conway group Co1. Suppose Irr(Co1) = {χi}1≤i≤101 and Con(Co1) = {xCo1
i }1≤i≤101.

Define:

K1 =
{

{1}, {xCo1
i }(2 ≤ i ≤ 96), {xCo1

97
, xCo1

98
}, {xCo1

i }(99 ≤ i ≤ 101)
}

,

X1 = {{1}, {χi}(2 ≤ i ≤ 26), {χ27, χ28}, {χi}(29 ≤ i ≤ 101)} ,
K2 =

{

{1}, {xCo1
i }(2 ≤ i ≤ 77), {xCo1

78
, xCo1

79
}, {xCo1

i }(80 ≤ i ≤ 101)
}

,

X2 = {{1}, {χi}(2 ≤ i ≤ 16), {χ17, χ18}, {χi}(19 ≤ i ≤ 101)} .

By Lemma 2.1, C1 = (X1,K1) and C2 = (X2,K2) are supercharacter theories of Co1 and by

[10, Proposition 2.16], C3 = C1 ∨ C2. Since these supercharacter theories are different from

m(Co1) and M(Co1), s(Co1) ≥ 5. Hence the result follows.

• The second Conway group Co2. Let Irr(Co2) = {χi}1≤i≤60 and Con(Co2) = {xCo2
i }1≤i≤60.

Define:

K1 =
{

{1}, {xCo2
i }(2 ≤ i ≤ 45), {xCo2

46
, xCo2

47
}, {xCo2

i }(48 ≤ i ≤ 58), {xCo2
59

, xCo2
60

}
}

,

X1 = {{1}, {χi}(2 ≤ i ≤ 11), {χ12, χ13}, {χi}(14 ≤ i ≤ 30), {χ31, χ32}, {χi}(33 ≤ i ≤ 60)} ,
K2 =

{

{1}, {xCo2
i }(2 ≤ i ≤ 52), {xCo2

53
, xCo2

54
}, {xCo2

i }(55 ≤ i ≤ 60)
}

,

X2 = {{1}, {χi}(2 ≤ i ≤ 9), {χ10, χ11}, {χi}(12 ≤ i ≤ 60)} .

By Lemma 2.1 and [10, Proposition 2.16], C1 = (X1,K1), C2 = (X2,K2) and C3 = C1 ∨ C2
are supercharacter theories of the Conway group Co2. Since these supercharacter theories are

different from m(Co2) and M(Co2), s(Co2) ≥ 5.
• The third Conway group Co3. We assume that Irr(Co3) = {χi}1≤i≤42 and Con(Co3) =

{xCo3
i }1≤i≤42. Define:

K1 =
{

{1}, {xCo3
i }(2 ≤ i ≤ 23), {xCo3

24
, x

Co3
25

}, {xCo3
i }(26 ≤ i ≤ 35), {xCo3

36
, x

Co3
37

}, {xCo3
i }(38 ≤ i ≤ 42)

}

,

X1 = {{1}, {χi}(2 ≤ i ≤ 5), {χ6, χ7}, {χi}(8 ≤ i ≤ 17), {χ18, χ19}, {χi}(20 ≤ i ≤ 42)} ,

K2 =
{

{1}, {xCo3
i }(2 ≤ i ≤ 37), {xCo3

38
, x

Co3
39

}, {xCo3
i }(40 ≤ i ≤ 42)

}

,

X2 = {{1}, {χi}(2 ≤ i ≤ 15), {χ16, χ17}, {χi}(18 ≤ i ≤ 42)} .

Then m(Co3), M(Co3), C1 = (X1,K1), C2 = (X2,K2) and C3 = C1 ∨C2 are five supercharacter

theories for Co3. Thus s(Co3) ≥ 5, as required.

• The McLaughlin group McL. Suppose Irr(McL) = {χi}1≤i≤24 and Con(McL) = {xMcL
i }1≤i≤24.

We now define:

K1 =
{

{1}, {xMcL
i }(2 ≤ i ≤ 15), {xMcL

16
, xMcL

17
}, {xMcL

i }(18 ≤ i ≤ 24)
}

,

X1 = {{1}, {χi}(2 ≤ i ≤ 6), {χ7, χ8}, {χi}(9 ≤ i ≤ 24)} ,
K2 =

{

{1}, {xMcL
i }(2 ≤ i ≤ 12), {xMcL

13
, xMcL

14
}, {xMcL

i }(15 ≤ i ≤ 24)
}

,

X2 = {{1}, {χi}(2 ≤ i ≤ 20), {χ21, χ22}, {χi}(23 ≤ i ≤ 24)} .

Sincem(McL), M(McL), C1 = (X1,K1), C2 = (X2,K2) and C3 = C1∨C2 are five supercharacter
theories of McL, s(McL) ≥ 5.

5



• The Suzuki group Suz. The irreducible characters and conjugacy classes for the Suzuki group

Suz are Irr(Suz) = {χi}1≤i≤43 and Con(Suz) = {xSuzi }1≤i≤43, respectively. Define:

K1 =
{

{1}, {xSuz
i }(2 ≤ i ≤ 40), {xSuz

41 , xSuz
42 }, {xSuz

43 }
}

,

X1 = {{1}, {χi}(2 ≤ i ≤ 24), {χ25, χ26}, {χi}(27 ≤ i ≤ 43)} ,
K2 =

{

{1}, {xSuz
i }(2 ≤ i ≤ 34), {xSuz

35 , xSuz
36 }, {xSuz

i }(37 ≤ i ≤ 43)
}

,

X2 = {{1}, {χi}(2 ≤ i ≤ 12), {χ13, χ14}, {χi}(15 ≤ i ≤ 43)} .

Since this group has five supercharacter theories m(Suz), M(Suz), C1 = (X1,K1), C2 =

(X2,K2) and C3 = C1 ∨ C2, we conclude that s(Suz) ≥ 5.

This completes the proof. �

Theorem 2.5. The Monster sections have at least five supercharacter theories.

Proof. The Monster sections are eight simple groups He, HN , Th, Fi22, Fi23, Fi′24, B and M . We

will present five supercharacter theories in each case as follows:

• The Held group He. Suppose Irr(He) = {χi}1≤i≤33 and Con(He) = {xHe
i }1≤i≤33 are irre-

ducible characters and conjugacy classes of the group He, respectively. Define:

K1 =
{

{1}, {xHe
i }(2 ≤ i ≤ 27), {xHe

28
, xHe

29
}, {xHe

i }(30 ≤ i ≤ 33)
}

,

X1 = {{1}, {χi}(2 ≤ i ≤ 29), {χ30, χ31}, {χi}(32 ≤ i ≤ 33)} ,
K2 =

{

{1}, {xHe
i }(2 ≤ i ≤ 25), {xHe

26
, xHe

27
}, {xHe

i }(28 ≤ i ≤ 33)
}

,

X2 = {{1}, {χi}(2 ≤ i ≤ 6), {χ7, χ8}, {χi}(9 ≤ i ≤ 33)} .

Since m(He), M(He), C1 = (X1,K1), C2 = (X2,K2) and C3 = C1 ∨ C2 are five supercharacter

theories for He, s(He) ≥ 5.

• The Harada-Norton group HN . This group has exactly 54 conjugacy classes and irreducible

characters. Suppose Irr(HN) = {χi}1≤i≤54 and Con(HN) = {xHN
i }1≤i≤54. We also define:

K1 =
{

{1}, {xHN
i }(2 ≤ i ≤ 38), {xHN

39 , xHN
40 }, {xHN

i }(41 ≤ i ≤ 54)
}

,

X1 = {{1}, {χi}(2 ≤ i ≤ 50), {χ51, χ52}, {χi}(53 ≤ i ≤ 54)} ,
K2 =

{

{1}, {xHN
i }(2 ≤ i ≤ 52), {xHN

53 , xHN
54 }

}

,

X2 = {{1}, {χi}(2 ≤ i ≤ 34), {χ35, χ36}, {χi}(37 ≤ i ≤ 54)} .

By Lemma 2.1 and [10, Proposition 2.16], C1 = (X1,K1), C2 = (X2,K2) and C3 = C1 ∨ C2 are

supercharacter theories of HN and apart from supercharacter theories m(HN) and M(HN),

it concludes that m(HN) ≥ 5.

• The Thompson group Th. The Thompson group Th has exactly 48 conjugacy classes and

irreducible characters. We assume that Irr(Th) = {χi}1≤i≤48 and Con(Th) = {xTh
i }1≤i≤48

and define:

K1 =
{

{1}, {xTh
i }(2 ≤ i ≤ 24), {xTh

25 , x
Th
26 }, {xTh

i }(27 ≤ i ≤ 39), {xTh
40 , x

Th
41 }, {xTh

i }(42 ≤ i ≤ 48)
}

,

X1 = {{1}, {χi}(2 ≤ i ≤ 8), {χ9, χ10}, {χi}(11 ≤ i ≤ 34), {χ35, χ36}, {χi}(37 ≤ i ≤ 48)} ,
K2 =

{

{1}, {xTh
i }(2 ≤ i ≤ 36), {xTh

37
, xTh

38
}, {xTh

i }(39 ≤ i ≤ 48)
}

,

X2 = {{1}, {χi}(2 ≤ i ≤ 21), {χ22, χ23}, {χi}(24 ≤ i ≤ 48)} .
6



Again apply Lemma 2.1 and [10, Proposition 2.16] to deduce that C1 = (X1,K1), C2 = (X2,K2)

and finally C3 = C1 ∨ C2 are supercharacter theories for Th. Thus s(Th) ≥ 5.
• The Fischer group Fi22. The Fischer group Fi22 has exactly 65 conjugacy classes and ir-
reducible characters. Set Irr(Fi22) = {χi}1≤i≤65 and Con(Fi22) = {xF i22

i }1≤i≤65. We also
define:

K1 =
{

{1}, {xFi22
i }(2 ≤ i ≤ 35), {xFi22

36
, x

Fi22
37

}, {xFi22
i }(38 ≤ i ≤ 60), {xFi22

61
, x

Fi22
62

}, {xFi22
i }(63 ≤ i ≤ 65)

}

,

X1 = {{1}, {χi}(2 ≤ i ≤ 39), {χ40, χ41}, {χi}(42 ≤ i ≤ 50), {χ51, χ52}, {χi}(53 ≤ i ≤ 65)} ,

K2 =
{

{1}, {xFi22
i }(2 ≤ i ≤ 54), {xFi22

55
, x

Fi22
56

}, {xFi22
i }(57 ≤ i ≤ 65)

}

,

X2 = {{1}, {χi}(2 ≤ i ≤ 42), {χ43, χ44}, {χi}(45 ≤ i ≤ 65)} .

Since C1 = (X1,K1), C2 = (X2,K2) and finally C3 = C1 ∨ C2, are three supercharacter theories

of Fi22 different from m(Fi22) and M(Fi22), s(Fi22) ≥ 5.
• The Fischer group Fi23. This group has exactly 98 conjugacy classes and irreducible characters.
Set Irr(Fi23) = {χi}1≤i≤98 and Con(Fi23) = {xF i23

i }1≤i≤98. Define:

K1 =
{

{1}, {xFi23
i }(2 ≤ i ≤ 79), {xFi23

80
, x

Fi23
81

}, {xFi23
i }(82 ≤ i ≤ 98)

}

,

X1 = {{1}, {χi}(2 ≤ i ≤ 16), {χ17, χ18}, {χi}(19 ≤ i ≤ 98)} ,

K2 =
{

{1}, {xFi23
i }(2 ≤ i ≤ 62), {xFi23

63
, x

Fi23
64

}, {xFi23
i }(65 ≤ i ≤ 79), {xFi23

80
, x

Fi23
81

}, {xFi23
i }(82 ≤ i ≤ 98)

}

,

X2 = {{1}, {χi}(2 ≤ i ≤ 14), {χ15, χ16}, {χ17, χ18}, {χi}(19 ≤ i ≤ 98)} ,

C1 = (X1,K1), C2 = (X2,K2), C3 = C1 ∨ C2.

Since {m(Fi23),M(Fi23), C1, C2, C3} ⊆ Sup(Fi23), s(Fi23) ≥ 5.

• The Fischer group Fi′24. The largest Fischer group has exactly 108 conjugacy classes and

irreducible characters. Set Irr(Fi′24) = {χi}1≤i≤108 and Con(Fi′24) = {xF i′
24

i }1≤i≤108. Define:

K1 =
{

{1}, {xFi′
24

i }(2 ≤ i ≤ 105), {xFi′
24

106
, x

Fi′
24

107
}, {xFi′

24

108
}
}

,

X1 = {{1}, {χi}(2 ≤ i ≤ 98), {χ99, χ100}, {χi}(101 ≤ i ≤ 108)} ,
K2 =

{

{1}, {xFi′
24

i }(2 ≤ i ≤ 80), {xFi′
24

81
, x

Fi′
24

82
}, {xFi′

24

i }(83 ≤ i ≤ 108)
}

,

X2 = {{1}, {χi}(2 ≤ i ≤ 100), {χ101, χ102}, {χi}(103 ≤ i ≤ 108)} .

Since m(Fi′24), M(Fi′24), C1 = (X1,K1), C2 = (X2,K2) and C3 = C1 ∨ C2 are supercharacter

theories of Fi24, s(Fi24) ≥ 5.

• The Baby Monster group B. This group has exactly 184 conjugacy classes and irreducible

characters. Suppose Irr(B) = {χi}1≤i≤184, Con(B) = {xBi }1≤i≤184 and define:

K1 =
{

{1}, {xB
i }(2 ≤ i ≤ 177), {xB

178
, xB

179
}, {xB

i }(180 ≤ i ≤ 184)
}

,

X1 = {{1}, {χi}(2 ≤ i ≤ 177), {χ178, χ179}, {χi}(180 ≤ i ≤ 184)} ,
K2 =

{

{1}, {xB
i }(2 ≤ i ≤ 171), {xB

172
, xB

173
}, {xB

i }(174 ≤ i ≤ 184)
}

,

X2 = {{1}, {χi}(2 ≤ i ≤ 20), {χ21, χ22}, {χi}(23 ≤ i ≤ 184)} .

Since m(B), M(B), C1 = (X1,K1), C2 = (X2,K2) and C3 = C1∨C2 are supercharacter theories

of B, s(B) ≥ 5, as desired.
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• The Monster group M . The largest sporadic group M has exactly 198 conjugacy classes and

irreducible characters. Set Irr(M) = {χi}1≤i≤194 and Con(M) = {xMi }1≤i≤194.

K1 =
{

{1}, {xM
i }(2 ≤ i ≤ 192), {xM

193
, xM

194
}
}

,

X1 = {{1}, {χi}(2 ≤ i ≤ 46), {χ47, χ48}, {χi}(49 ≤ i ≤ 194)} ,
K2 =

{

{1}, {xM
i }(2 ≤ i ≤ 188), {xM

189
, xM

190
}, {xM

i }(191 ≤ i ≤ 194)
}

,

X2 = {{1}, {χi}(2 ≤ i ≤ 123), {χ124, χ125}, {χi}(126 ≤ i ≤ 194)} .

We can see that the group M has at least 5 supercharacter theories as m(M), M(M), C1 =

(X1,K1), C2 = (X2,K2) and C3 = C1 ∨ C2. This shows that s(M) ≥ 5.

This completes the proof. �

Theorem 2.6. The Pariahs have at least five supercharacter theories.

Proof. The Pariahs are six sporadic groups J1, O
′N , J3, Ru, J4 and Ly. Our main proof will consider

six separate cases as follows:

• Janko group J1. The first Janko group J1 has exactly 15 conjugacy classes and irreducible
characters. Set Irr(J1) = {χi}1≤i≤15 and Con(J1) = {xJ1i }1≤i≤15.

K1 =
{

{1}, {xJ1

i }(2 ≤ i ≤ 3), {xJ1

4
, x

J1

5
}, {xJ1

i }(6 ≤ i ≤ 7), {xJ1

8
, x

J1

9
}, {xJ1

10
}, {xJ1

11
, x

J1

12
}, {xJ1

i }(13 ≤ i ≤ 15)
}

,

X1 = {{1}, {χ2, χ3}, {χi}(4 ≤ i ≤ 6), {χ7, χ8}, {χi}(9 ≤ i ≤ 12), {χ13, χ14}, {χ15}} ,

K2 =
{

{1}, {xJ1

i }(2 ≤ i ≤ 12), {xJ1

13
, x

J1

14
, x

J1

15
}
}

,

X2 = {{1}, {χi}(2 ≤ i ≤ 8), {χ9, χ10, χ11}, {χi}(12 ≤ i ≤ 15)} .

Since m(J1), M(J1), C1 = (X1,K1), C2 = (X2,K2) and C3 = C1∨C2 are supercharacter theories
of J1, s(J1) ≥ 5.

• The O′Nan group O′N . The O′Nan group O′N has exactly 30 conjugacy classes and irreducible

characters. Set Irr(O′N) = {χi}1≤i≤30 and Con(O′N) = {xO′N
i }1≤i≤30.

K1 =
{

{1}, {xO′N
i }(2 ≤ i ≤ 21), {xO′N

22
, xO′N

23
, xO′N

24
}, {xO′N

i }(25 ≤ i ≤ 30)
}

,

X1 = {{1}, {χi}(2 ≤ i ≤ 25), {χ26, χ27, χ28}, {χi}(29 ≤ i ≤ 30)} ,
K2 =

{

{1}, {xO′N
i }(2 ≤ i ≤ 26), {xO′N

27 , xO′N
28 }, {xO′N

i }(29 ≤ i ≤ 30)
}

,

X2 = {{1}, {χi}(2 ≤ i ≤ 28), {χ29, χ30}} .

Apply Lemma 2.1 and [10, Proposition 2.16] to deduce that C1 = (X1,K1), C2 = (X2,K2) and

C3 = C1 ∨ C2 are supercharacter theories of O′N . Hence s(O′N) ≥ 5, as desired.

• The Janko group J3. We assume that Irr(J3) = {χi}1≤i≤21 and Con(J3) = {xJ3i }1≤i≤21.

Define:

K1 =
{

{1}, {xJ3

i }(2 ≤ i ≤ 9), {xJ3

10
, xJ3

11
, xJ3

12
}, {xJ3

i }(13 ≤ i ≤ 21)
}

,

X1 = {{1}, {χi}(2 ≤ i ≤ 13), {χ14, χ15, χ16}, {χi}(17 ≤ i ≤ 21)} ,
K2 =

{

{1}, {xJ3

i }(2 ≤ i ≤ 19), {xJ3

20
, xJ3

21
}
}

,

X2 = {{1}, {χ2, χ3}, {χi}(4 ≤ i ≤ 21)} .

Since m(J3), M(J3), C1 = (X1,K1), C2 = (X2,K2) and C3 = C1∨C2 are supercharacter theories
of J3, s(J3) ≥ 5.
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• The Rudvalis group Ru. Set Irr(Ru) = {χi}1≤i≤36 and Con(Ru) = {xRu
i }1≤i≤36 and define:

K1 =
{

{1}, {xRu
i }(2 ≤ i ≤ 34), {xRu

35 , xRu
36 }

}

,

X1 = {{1}, {χi}(2 ≤ i ≤ 33), {χ34, χ35}, {χ36}} ,
K2 =

{

{1}, {xRu
i }(2 ≤ i ≤ 31), {xRu

32 , xRu
33 , xRu

34 }, {xRu
i }(35 ≤ i ≤ 36)

}

,

X2 = {{1}, {χi}(2 ≤ i ≤ 16), {χ17, χ18, χ19}, {χi}(20 ≤ i ≤ 36)} .

Apply again Lemma 2.1 and [10, Proposition 2.16] to deduce that the Rudvalis group Ru

has at least five supercharacter theories as m(Ru), M(Ru), C1 = (X1,K1), C2 = (X2,K2) and

C3 = C1 ∨ C2. Hence s(Ru) ≥ 5, as required.
• The Janko group J4. This group has exactly 62 conjugacy classes and irreducible characters.
Define Irr(J4) = {χi}1≤i≤62, Con(J4) = {xJ4i }1≤i≤62 and define:

K1 =
{

{1}, {xJ4

i }(2 ≤ i ≤ 49), {xJ4

50
, x

J4

51
, x

J4

52
}, {xJ4

i }(53 ≤ i ≤ 62)
}

,

X1 = {{1}, {χi}(2 ≤ i ≤ 52), {χ53, χ54, χ55}, {χi}(56 ≤ i ≤ 62)} ,

K2 =
{

{1}, {xJ4

i }(2 ≤ i ≤ 42), {xJ4

43
, x

J4

44
, x

J4

45
}, {xJ4

i }(46 ≤ i ≤ 49), {xJ4

50
, x

J4

51
, x

J4

52
}, {xJ4

i }(53 ≤ i ≤ 62)
}

,

X2 = {{1}, {χi}(2 ≤ i ≤ 52), {χ53, χ54, χ55}, {χ56, χ57, χ58}, {χi}(59 ≤ i ≤ 62)} .

The Janko group J4 has at least five supercharacter theories as m(J4), M(J4), C1 = (X1,K1),

C2 = (X2,K2) and C3 = C1 ∨ C2. Therefore, s(J4) ≥ 5.
• The Lyons group Ly. The Lyons group Ly has exactly 53 irreducible characters and conjugacy

classes. Set Irr(Ly) = {χi}1≤i≤53 and Con(Ly) = {xLyi }1≤i≤53 and define:

K1 =
{

{1}, {xLy
i }(2 ≤ i ≤ 37), {xLy

38
, x

Ly
39

, x
Ly
40

, x
Ly
41

, x
Ly
42

}, {xLy
i }(43 ≤ i ≤ 53)

}

,

X1 = {{1}, {χi}(2 ≤ i ≤ 38), {χ39, χ40, χ41, χ42, χ43}, {χi}(44 ≤ i ≤ 53)} ,

K2 =
{

{1}, {xLy
i }(2 ≤ i ≤ 37), {xLy

38
, x

Ly
39

, x
Ly
40

, x
Ly
41

, x
Ly
42

}, {xLy
i }(43 ≤ i ≤ 50), {xLy

51
, x

Ly
52

, x
Ly
53

}
}

,

X2 = {{1}, {χi}(2 ≤ i ≤ 25), {χ26, χ27, χ28}, {χi}(29 ≤ i ≤ 38), {χ39, χ40, χ41, χ42, χ43}, {χi}(44 ≤ i ≤ 53)} .

Since the group Ly has at least five supercharacter theories as m(Ly), M(Ly), C1 = (X1,K1),

C2 = (X2,K2) and C3 = C1 ∨ C2, s(Ly) ≥ 5.

This completes the proof. �

Lemma 2.7. The Janko group J2 has at least three supercharacter theories.

Proof. A simple investigation shows that the supercharacter theories of the Janko group J2 are m(J2),
M(J2), C = (X ,K) such that

K =
{

{1}, {xJ2

i }(2 ≤ i ≤ 6), {xJ2

7
, x

J2

8
}, {xJ2

9
, x

J2

10
}, {xJ2

i }(11 ≤ i ≤ 14), {xJ2

15
, x

J2

16
}, {xJ2

17
, x

J2

18
}, {xJ2

19
}, {xJ2

20
, x

J2

21
}
}

,

X = {{1}, {χ2, χ3}, {χ4, χ5}, {χi}(6 ≤ i ≤ 7), {χ8, χ9}, {χi}(10 ≤ i ≤ 13), {χ14, χ15}, {χ16, χ17}, {χi}(18 ≤ i ≤ 20)} ,

proving the lemma. �

We run a GAP program to be sure that s(J2) = 3, but our program after some days stopped,

because it needs a huge amount of RAM.

Conjecture 2.8. s(J2) = 3.
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3. Supercharacter Theory Construction for Alternating and Suzuki Groups

The intention of this section is to move a step towards a classification of the finite simple groups

with exactly three and four supercharacter theories. We start with the cyclic group of order p.

Lemma 3.1. Suppose p is prime. Then,

(1) s(Zp) = 3 if and only if p = 5,

(2) s(Zp) = 4 if and only if p is a Sophie Germain prime.

Proof. It is clear that p is an odd prime. By [9, Theorem 6.32 and Table 1], s(Zp) = d(p− 1).

(1) s(Zp) = 3. In this case, s(Zp) = d(p− 1) and so p ≥ 5. Since p− 1 is an even integer, the case

of p > 5 cannot be occurred and so p = 5, as desired.

(2) s(Zp) = 4. Since d(p − 1) = 4, p − 1 = q3, q is prime, or p − 1 = 2r, where r is prime. If

p− 1 = q3 then q = 2 and p = 9, a contradiction. So, p− 1 = 2r, where r is prime. This shows

that p is a Sophie Germain prime.

This completes the proof. �

The following well-known results are crucial in the classification of alternating simple groups with

exactly three or four supercharacter theories.

Theorem 3.2. The following are hold:

(1) (Berggren [4]) Every irreducible characters of the alternating group An are real valued if and

only if n ∈ {1, 2, 5, 6, 10, 14}.
(2) (Grove [8, Proposition 8.2.1]) If K is a conjugacy class in Sn, K ⊂ An, and σ ∈ K, then K

is a conjugacy class in An if and only if some odd elements of Sn commutes with σ; if that is

not the case, then the conjugacy class K splits as the union of two An−classes, each of size

|K|/2. If λ is the (partition) type of σ then K splits if and only if the parts of λ are all odd

and all different from each other.

(3) Suppose x ∈ An is a product of r pair-wise disjoint cycles including all fixed points as singleton

cycles. Then xAn is non-real if and only if
∑m

j=1
rj−1
2 is odd.

Theorem 3.3. The simple alternating group An has exactly three supercharacter theories if and only

if n = 5 or 7. There is no simple alternating groups with exactly four supercharacter theories.

Proof. Suppose n ≥ 5. It is easy to see that the alternating groups A5 and A7 have exactly three

supercharacter theories. Our main proof will consider three separate cases as follows:

(1) All character values of An are real. Since n ≥ 5, Theorem 3.2(1) implies that n = 5, 6, 10 or

14. In what follows three non-trivial supercharacter theories for the alternating groups A6, A10

and A14 are presented.

(a) By a GAP program, one can see that the group A5 has exactly 3 supercharacter theories

m(A5), M(A5) and C = (X ,K) such that

K =
{

{1}, {xA5

2
}, {xA5

3
}, {xA5

4
, xA5

5
}
}

,

X = {{1}, {χ2, χ3}, {χi}(4 ≤ i ≤ 5)} .

Here, Irr(A5) = {χ1, χ2, χ3, χ4, χ5} and Con(A5) = {xA5

1 , xA5

2 , xA5

3 , xA5

4 , xA5

5 }.
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(b) Suppose Irr(A6) = {χ1, χ2, . . . , χ7} and Con(A6) = {xA6

1 , xA6

2 , . . . , xA6

7 }. Define C1 =

(X1,K1) and C2 = (X2,K2) as follows:

K1 =
{

{1}, {xA6

2
}, {xA6

3
, xA6

4
}, {xA6

5
}, {xA6

6
, xA6

7
}
}

,

X1 = {{1}, {χ2, χ3}, {χ4, χ5}, {χ6}, {χ7}} ,
K2 =

{

{1}, {xA6

2
, xA6

5
}, {xA6

3
, xA6

4
}, {xA6

6
}, {xA6

7
}
}

,

X2 = {{1}, {χ2, χ3, χ7}, {χ4}, {χ5}, {χ6}} ,

If C3 = C1 ∨ C2 then C3 is a supercharacter theory for A6 different from C1, C2, m(A6)

and M(A6). Therefore, A6 has at least five supercharacter theories.

(c) Suppose Irr(A10) = {χ1, χ2, . . . , χ24}, Con(A10) = {xA10

1 , xA10

2 , . . . , xA10

24 }, C1 = (X1,K1),

C2 = (X2,K2) and C3 = C1 ∨ C2, where

K1 =
{

{1}, {xA10

i }(2 ≤ i ≤ 19), {xA10

20
, xA10

21
}, {xA10

i }(22 ≤ i ≤ 24)
}

,

X1 = {{1}, {χi}(2 ≤ i ≤ 19), {χ20, χ21}, {χi}(22 ≤ i ≤ 24)} ,
K2 =

{

{1}, {xA10

i }(2 ≤ i ≤ 22), {xA10

23
, xA10

24
}
}

,

X2 = {{1}, {χi}(2 ≤ i ≤ 11), {χ12, χ13}, {χi}(14 ≤ i ≤ 24)} .

Then Ci = (Xi,Ki), 1 ≤ i ≤ 3, are three supercharacter theories of A10 different from

m(A10) and M(A10).

(d) We claim that the alternating group A14 has at least 5 supercharacter theories. These are

m(A14), M(A14), C1 = (X1,K1), C2 = (X2,K2) and C3 = C1 ∨ C2 such that

K1 =
{

{1}, {xA14

i }(2 ≤ i ≤ 70), {xA14

71
, xA14

72
}
}

,

X1 = {{1}, {χi}(2 ≤ i ≤ 19), {χ20, χ21}, {χi}(22 ≤ i ≤ 72)} ,
K2 =

{

{1}, {xA14

i }(2 ≤ i ≤ 67), {xA14

68
, xA14

69
}, {xA14

i }(70 ≤ i ≤ 72)
}

,

X2 = {{1}, {χi}(2 ≤ i ≤ 56), {χ57, χ58}, {χi}(59 ≤ i ≤ 72)} .

(2) The alternating group An has exactly one pair of non-real valued irreducible character. In

this case, we will prove n ∈ {7, 9, 11, 15, 18, 19, 23}. Since the number of non-real irreducible

characters is equal to the number of conjugacy classes that are not preserved by the inversion

mapping, we need those n for which An has exactly two such conjugacy classes. Suppose

x ∈ An. By [12, Proposition 12.17(2)], xSn = xAn∪(12)x(12)An if and only if CSn(x) = CAn(x).

By Theorem 3.2(2), the last one is satisfied if and only if
n− r

2
is odd, where r is the number

of cycles in decomposition of x. Our aim is to find all natural numbers n such that An has

exactly one non-real class. Our main proof will consider the following separate cases:

(a) n ≡ 0 (mod 4). If n ≥ 8 then [1, n − 1] and [3, n − 3] are two partitions with given

properties. So, n = 4 which contradicts by our main assumption that n ≥ 5.

(b) n ≡ 1 (mod 4). If n ≥ 13 then [1, 3, n − 4] and [1, 5, n − 6] are two partitions with this

property that all parts are odd and n−3
2 (r = 3) is odd. Thus n = 5 or 9. By Theorem

3.2(1), the alternating group A5 does not have non-real class and the alternating group

A9 has exactly a unique pair of non-real class.

(c) n ≡ 2 (mod 4). If n ≥ 22 then [1, 3, 5, n − 9] and [1, 3, 7, n − 11] are two partitions with

given properties and so n = 6, 10, 14 or 18. By Theorem 3.2(1), the alternating groups
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A6, A10 and A14 don’t have non-real conjugacy class, but the alternating group A18 has

a unique pair of conjugate non-real characters.

(d) n ≡ 3 (mod 4). If n ≥ 31 then [1, 3, 5, 7, n − 16] and [1, 3, 5, 9, n − 18] are two partitions

with this property that all parts are odd and n−5
2 (r = 5) is odd. Thus n = 7, 11, 15, 19, 23

or 27. Since [27] and [1, 5, 7, 9, 11] are two partitions with mentioned properties, the case

of n = 27 cannot be happened. Other cases are solution of our problem.

Hence, the alternating group An, n ≥ 5, has a unique non-real conjugacy class if and only

if n ∈ {7, 9, 11, 15, 18, 19, 23}. A simple calculations by GAP shows that the alternating group

A7 has exactly three supercharacter theories m(A7), M(A7) and C = (X ,K), where

K =
{

{1}, {xA7

i }(2 ≤ i ≤ 7), {xA7

8
, xA7

9
}
}

,

X = {{1}, χ2, {χ3, χ4}, {χi}(5 ≤ i ≤ 9)} .

The alternating group A9 has at least 5 supercharacter theories m(A9), M(A9), C1 = (X1,K1),

C2 = (X2,K2) and C3 = C1 ∨ C2. The partitions of conjugacy classes and irreducible characters

of C1 and C2 are defined as follows:

K1 =
{

{1}, {xA9

i }(2 ≤ i ≤ 12), {xA9

13
, xA9

14
}, {xA9

i }(15 ≤ i ≤ 18)
}

,

X1 = {{1}, {χ2}, {χ3, χ4}, {χi}(5 ≤ i ≤ 18)} ,
K2 =

{

{1}, {xA9

i }(2 ≤ i ≤ 16), {xA9

17
, xA9

18
}
}

,

X2 = {{1}, {χi}(2 ≤ i ≤ 6), {χ7, χ8}, {χi}(9 ≤ i ≤ 18)} .

The alternating groups A11, A15, A18, A19 and A23 has at least one non-real irreducible char-

acter and one non-rational irreducible real character. So, by Lemma 2.1 it has at least five

supercharacter theories m, M , C1, C2 and C3 = C1 ∨ C2, proving this case.

(3) The alternating group An has at least two pairs of non-real valued irreducible characters. We

first assume that n > 24. If A = {χ(x) | χ ∈ Irr(G)} and Q(A) denotes the filed generated

by Q and A then by [14, Theorem], the character table of An has both irrational and non-real

character values. On the other hand, by [13, Theorem 2.5.13], each row or column of the

character table of An contains at most one pair of irrational numbers. Now by Lemma 2.1, we

have at least five supercharacter theories, as required.

Next we assume that n ≤ 24. Set Γ1 = {5, 6, 7, 9, 10, 11, 14, 15, 18, 19, 23} and Γ2 =

{8, 12, 13, 16, 17, 20, 21, 22, 24}. If n ∈ Γ1 then the number of supercharacter theories of An

are investigated in Cases (1) and (2). So, we have to prove that s(An) ≥ 5, when n ∈ Γ2. By

an easy calculation with GAP, one can see that if n ∈ Γ2 then An has at least two pairs of

non-real valued irreducible characters and by Lemma 2.1, s(An) ≥ 5.

Hence the result. �

In the end of this paper we prove that the simple Suzuki group Sz(q), q = 22n+1 has at least six

super character theories.
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Theorem 3.4. The Suzuki group Sz(q) has at least 6 supercharacter theories as: m(Sz(q)), M(Sz(q)),

C1 = (X1,K1), C2 = (X2,K2), C3 = (X3,K3) and C4 = (X4,K4), where

K1 = {{1}, {ρ, ρ−1}, Con(G(q)) − {ρ, ρ−1}},
X1 = {{1}, {W1,W2}, Irr(G(q)) − {W1,W2}},
K2 = {{1}, {π0}, Con(G(q)) − {π0}},
X2 = {{1}, {Xi}, Irr(G(q)) − {Xi}},
K3 = {{1}, {π1}, Con(G(q)) − {π1}},
X3 = {{1}, {Yj}, Irr(G(q)) − {Yj}},
K4 = {{1}, {π2}, Con(G(q)) − {π2}},
X4 = {{1}, {Zk}, Irr(G(q)) − {Zk}}.

Proof. The schematic form of the character table of Sz(q), q = 22n+1, is shown in Table 1, see [17, 18]

for details.

Table 1. The Schematic Form of the Character Table of Sz(q).

Irreducible Characters Degrees #Irreducible Characters

X q2 1

Xi q2 + 1 q/2− 1

Yj (q − r + 1)(q − 1) (q + r)/4

Zk (q + r + 1)(q − 1) (q − r)/4

Wl r(q − 1)/2 2

In this table, the first column designates the characters, the second column indicates the degrees,

and the last one is the number of characters of each degree.

Suppose 2q = r2. The Suzuki group Sz(q) contains cyclic groups of order q − 1, q + r + 1 and

q − r + 1. These subgroups are denoted by A0, A1 and A2, respectively. We also assume that πi is a

typical non-identity element of Ai, i = 0, 1, 2, σ = (0, 1) and ρ = (1, 0).

Let ε0, ε1 and ε2 be a (q − 1)th, a primitive (q + r + 1)th and a (q − r + 1)th root of unity. We

also assume that ξ0, ξ1 and ξ2 are generators of A0, A1 and A2, respectively. Define εi0, ε
i
1 and εi2 as

follows:

εi0(ξ
j
0) = εij0 + ε−ij

0 ; ( i = 1, . . . , q/2− 1),

εi1(ξ
k
1 ) = εik1 + εikq1 + ε−ik

1 + ε−ikq
1 ; ( i = 1, . . . , q + r),

εi2(ξ
k
2 ) = εik2 + εikq2 + ε−ik

2 + ε−ikq
2 .

The functions εi0, ε
i
1 and εi2 are characters of A0, A1 and A2, respectively. Following Suzuki [17], the

character table of Sz(q), is computed in Table 2.

We now apply Lemma 2.1 to construct four supercharacter theories given the statement of this

theorem. By considering m(Sz(q)) and M(Sz(q)), it can be proved that s(Sz(q)) ≥ 6. �
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Table 2. The character table of Sz(q).

1 σ ρ, ρ−1 π0 π1 π2

X q2 0 0 1 −1 −1

Xi q2 + 1 1 1 εi0(π0) 0 0

Yj (q − r + 1)(q − 1) r − 1 −1 0 −εj1(π0) 0

Zk (q + r + 1)(q − 1) −r − 1 −1 0 0 −εk2(π0)

Wl r(q − 1)/2 −r/2 ±r
√
−1/2 0 1 −1
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