LINK HOMOLOGY AND THE NABLA OPERATOR

ANDREW TIMOTHY WILSON

Abstract

In recent work, Elias and Hogancamp develop a recurrence for the Poincaré series of the triply graded Hochschild homology of certain links, one of which is the (n, n) torus link. In this case, Elias and Hogancamp give a combinatorial formula for this homology that is reminiscent of the combinatorics of the modified Macdonald polynomial eigenoperator ∇. We give a combinatorial formula for the homologies of all links considered by Elias and Hogancamp. Our first formula is not easily computable, so we show how to transform it into a computable version. Finally, we conjecture a direct relationship between the (n, n) torus link case of our formula and the symmetric function $\nabla p_{1}{ }^{n}$.

1. Introduction

We begin by establishing some notation from knot theory, following [EH16]. The remaining sections of the paper will take a more combinatorial perspective.

The braid group on n strands, denoted Br_{n}, can be defined by the presentation

$$
\begin{equation*}
\operatorname{Br}_{n}=\left\langle\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1} \mid \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}, \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}\right\rangle \tag{1}
\end{equation*}
$$

for all $1 \leq i \leq n-2$ and $|i-j| \geq 2$. This group can be pictured as all ways to "braid" together n strands, where σ_{i} corresponds to crossing string $i+1$ over string i and the group operation is concatenation. One particularly notable braid is the full twist braid on n strands, denoted FT_{n}, which can be written

$$
\begin{equation*}
\mathrm{FT}_{n}=\left(\left(\sigma_{1}\right)\left(\sigma_{2} \sigma_{1}\right) \ldots\left(\sigma_{n-1} \sigma_{n-2} \ldots \sigma_{1}\right)\right)^{2} \tag{2}
\end{equation*}
$$

where multiplication is left to right. We will also need an operation ω on braids which corresponds to rotation around the horizontal axis. We define ω on Br_{n} by $\omega\left(\sigma_{i}\right)=\sigma_{i}$ and $\omega(\alpha \beta)=\omega(\beta) \omega(\alpha)$. Then ω is an anti-involution on Br_{n}. All of our braids will have the property that the string that begins in column i also ends in column i for all i; these are sometimes called perfect braids.

Given a braid with n strands, one can form a link (i.e. nonintersecting collection of knots) by identifying the top of the strand that begins in position i with the bottom of the strand that ends in position i for $1 \leq i \leq n$. The result is called a closed braid. Alexander proved that every link can be represented by a closed braid (although this representation is not unique) Ale23]. The closure of a perfect braid is a link that consists of n separate unknots linked together.

In [EH16], Elias and Hogancamp assign a complex C_{v} to every binary word v. We describe this assignment here - see Figure 1 for an example. Say $v \in\{0,1\}^{n}$ with $|v|=m$. We begin with two braids, the full twist braid FT_{n-m} and a certain recursively defined complex K_{m} EH16, which sits to the right of FT_{n-m}. For $i=1$ to n, we feed string i into the leftmost available position in K_{m} if $v_{i}=1$; otherwise, we feed string i into the leftmost available position in FT_{n-m}. All crossings that occur are forced to be "positive," i.e. the right strand crosses over the left strand.

Figure 1. We have drawn the complex $C_{10101101, ~ w h e r e ~} \mathrm{FT}_{3}$ is the full twist braid and K_{5} is a certain complex defined recursively in EH16]. This figure is used courtesy of EH16.

This induces a braid $\beta_{v} \in \mathrm{Br}_{n}$ that occurs before the adjacent FT_{n-m} and K_{m}. The final complex C_{v} is obtained by performing $\omega\left(\beta_{v}\right)$, followed by β_{v}, followed by the adjacent FT_{n-m} and K_{m}. We note that $C_{0^{n}}$ is the full twist braid FT_{n} and that the closure of this braid is the (n, n) torus link. The combinatorics of other links, in particular the (m, n) torus link for m and n coprime, has been studied by a variety of authors in recent years GORS14, GN15. Haglund gives an overview of this work from a combinatorial perspective in Hag16.

Elias and Hogancamp map each complex C_{v} to a graded Soergel bimodule and then consider the Hochschild homology of this bimodule; this is sometimes called Khovanov-Rozansky homology Kho07, KR08]. This homology has three gradings: the bimodule degree (using the variable Q), the homological degree (T), and the Hochschild degree (A). After the grading shifts $q=Q^{2}, t=T^{2} Q^{-2}$, and $a=A Q^{-2}$, Elias and Hogancamp give a recurrence for the Poincaré series of this triply graded homology, which they denote $f_{v}(q, a, t)$. They also give a combinatorial formula for the special case $f_{0^{n}}(q, a, t)$. We will give two combinatorial formulas for $f_{v}(q, a, t)$ for every $v \in\{0,1\}^{n}$.

In Section 2, we define a symmetric function $L_{v}(x ; q, t)$ which we call the link symmetric function. Its definition is reminiscent of the combinatorics of the Macdonald eigenoperator ∇, introduced in BGHT99. We prove that $f_{v}(q, a, t)$ is equal to a certain inner product with $L_{v}(x ; q, t)$.

The main weakness of our first formula is that it is a sum over infinitely many objects, so it is not clear how to compute using this formula. We address this issue in Section 3, obtaining a finite formula for $L_{v}(x ; q, t)$ using a collection of combinatorial objects we call barred Fubini words.

We close by presenting some conjectures in Section 4 . In particular, we conjecture that

$$
\begin{equation*}
L_{0^{n}}(x ; q, t)=(1-q)^{-n} \nabla p_{1^{n}} \tag{3}
\end{equation*}
$$

where the terminology is defined in Section 4. A proof of this conjecture would provide the first combinatorial interpretation for $\nabla p_{1^{n}}$. There has been much recent work establishing combinatorial interpretations for ∇e_{n} CM15] and ∇p_{n} Ser16. We believe that $L_{v}(x ; q, t)$ is also related to Macdonald polynomials for general v, although we do not have an explicit conjecture in this direction.

Figure 2. We have depicted the example $\gamma=20141022$ and $\pi=$ 41322231 by drawing bottom-justified columns with heights γ_{1}, $\gamma_{2}, \ldots, \gamma_{8}$ and the labels π_{i} are placed as high as possible in each column. In this example, we compute area $(\gamma)=6, \operatorname{dinv}(\gamma, \pi)=7$, where the contributing pairs are in columns $(1,7),(1,8),(2,3)$, $(2,5),(3,5),(5,7),(7,8)$, and $x^{\pi}=x_{1}^{2} x_{2}^{3} x_{3}^{2} x_{4}$.

2. An infinite formula

Let $\mathbb{N}=\{0,1,2, \ldots\}$ and $\mathbb{P}=\{1,2,3, \ldots\}$. We begin by defining two statistics.
Definition 2.1. Given words $\gamma \in \mathbb{N}^{n}$ and $\pi \in \mathbb{P}^{n}$, we define

$$
\begin{align*}
\operatorname{area}(\gamma) & =|\gamma|-\#\left\{1 \leq i \leq n: \gamma_{i}>0\right\} \tag{4}\\
\operatorname{dinv}(\gamma, \pi) & =\#\left\{1 \leq i<j \leq n: \gamma_{i}=\gamma_{j}, \pi_{i}>\pi_{j}\right\} \tag{5}\\
& +\#\left\{1 \leq i<j \leq n: \gamma_{i}+1=\gamma_{j}, \pi_{i}<\pi_{j}\right\} \\
x^{\pi} & =\prod_{i=1}^{n} x_{\pi_{i}} \tag{6}
\end{align*}
$$

In Figure 2, we draw a diagram for $\gamma=20141022$ and $\pi=41322231$. Area counts the empty boxes in such a diagram, dinv counts certain pairs of labels, and x^{π} records all labels that appear in the diagram.
Definition 2.2. Given $n \in \mathbb{P}$ and $v \in\{0,1\}^{n}$, define

$$
\begin{equation*}
L_{v}=L_{v}(x ; q, t)=\sum_{\substack{\gamma \in \mathbb{N}^{n}, \pi \in \mathbb{P}^{n} \\ \gamma_{i}=0 \Leftrightarrow v_{i}=1}} q^{\operatorname{area}(\gamma)} t^{\operatorname{dinv}(\gamma, \pi)} x^{\pi} \tag{7}
\end{equation*}
$$

Perhaps the first thing to note about L_{v} is that it can be expressed as a sum of LLT polynomials LLT97; as a result, it is symmetric in the x_{i} variables. More precisely, each $\gamma \in \mathbb{N}^{n}$ can be associated with an n-tuple $\lambda(\gamma)$ of single cell partitions in the plane, where the i th cell is placed on diagonal γ_{i} and the order is not changed. Using the notation of HHL05, the unicellular LLT polynomial $G_{\lambda(\gamma)}(x ; t)$ can be used to write

$$
\begin{equation*}
L_{v}=\sum_{\substack{\gamma \in \mathbb{N}^{n} \\ \gamma_{i}=0 \Leftrightarrow v_{i}=1}} q^{\operatorname{area}(\gamma)} G_{\lambda(\gamma)}(x ; t) . \tag{8}
\end{equation*}
$$

Since LLT polynomials are symmetric, every L_{v} is also symmetric.
We also remark that $L_{1^{n}}$ is equal to the modified Macdonald polynomial $\widetilde{H}_{1^{n}}(x ; q, t)$, which is also equal to the graded Frobenius series of the coinvariants of \mathfrak{S}_{n} with grading in t.

Next, we note that the Poincaré series $f_{v}(q, a, t)$ can be recovered as a certain inner product of L_{v}. We follow the standard notation for symmetric functions and
their usual inner product, as described in Chapter 7 of Sta99. Before we can prove Theorem 2.1, we need the following lemma.

Lemma 2.1.

$$
\begin{equation*}
L_{0^{n}}=\frac{1}{1-q} L_{10^{n-1}} \tag{9}
\end{equation*}
$$

Proof. By definition,

$$
\begin{equation*}
L_{0^{n}}=\sum_{\gamma, \pi \in \mathbb{P}^{n}} q^{\operatorname{area}(\gamma)} t^{\operatorname{dinv}(\gamma, \pi)} x^{\pi} \tag{10}
\end{equation*}
$$

Our aim is to show that

$$
\begin{equation*}
L_{0^{n}}=q^{n} L_{0^{n}}+\left(1+q+\ldots+q^{n-1}\right) L_{10^{n-1}} \tag{11}
\end{equation*}
$$

which clearly implies the lemma.
If $\gamma_{i}>1$ for all i, then let γ^{\prime} be the word obtained by decrementing each entry in γ by 1. Set $\pi^{\prime}=\pi$. Note that the pair $\left(\gamma^{\prime}, \pi^{\prime}\right)$ has

$$
\begin{align*}
& \operatorname{area}\left(\gamma^{\prime}\right)=\operatorname{area}(\gamma)-n \tag{12}\\
& \operatorname{dinv}\left(\gamma^{\prime}, \pi^{\prime}\right)=\operatorname{dinv}(\gamma, \pi) \tag{13}\\
& x^{\pi^{\prime}}=x^{\pi} \tag{14}
\end{align*}
$$

Furthermore, every pair of words of positive integers can be obtained as $\left(\gamma^{\prime}, \pi^{\prime}\right)$ in this fashion. This case corresponds to the first term on the right-hand side of (11).

The other case we must consider is if $\gamma_{i}=1$ for some i. Let k be the rightmost position such that $\gamma_{k}=1$. Then we define

$$
\begin{align*}
\gamma^{\prime \prime} & =\left(\gamma_{k}-1\right)\left(\gamma_{k+1}-1\right) \ldots\left(\gamma_{n}-1\right) \gamma_{1} \gamma_{2} \ldots \gamma_{k-1} \tag{15}\\
\pi^{\prime \prime} & =\pi_{k} \pi_{k+1} \ldots \pi_{n} \pi_{1} \pi_{2} \ldots \pi_{k-1} \tag{16}
\end{align*}
$$

It is straightforward to check that

$$
\begin{align*}
\operatorname{area}\left(\gamma^{\prime \prime}\right) & =\operatorname{area}(\gamma)-(n-k) \tag{17}\\
\operatorname{dinv}\left(\gamma^{\prime \prime}, \pi^{\prime \prime}\right) & =\operatorname{dinv}(\gamma, \pi) \tag{18}\\
x^{\pi^{\prime \prime}} & =x^{\pi} \tag{19}
\end{align*}
$$

Furthermore, by construction we have $\gamma_{1}^{\prime \prime}=0$ and the other entries of $\gamma^{\prime \prime}$ are greater than 0 . Summing over all values of k and pairs $\left(\gamma^{\prime \prime}, \pi^{\prime \prime}\right)$ obtained in this way, we get the remaining terms in the right-hand side of 11 .

Theorem 2.1. For any $v \in\{0,1\}^{n}$,

$$
\begin{equation*}
f_{v}(q, a, t)=\sum_{d=0}^{n}\left\langle L_{v}, e_{n-d} h_{d}\right\rangle a^{d} \tag{20}
\end{equation*}
$$

Proof. Let us denote the right-hand side of the statement in the theorem by $L_{v}(q, a, t)$. In [EH16, the authors prove that $f_{v}(q, a, t)$ satisfies a certain recurrence. We will use their recurrence as our definition of $f_{v}(q, a, t)$.

Given $v \in\{0,1\}^{n}$ and $w \in\{0,1\}^{n-|v|}$, we form a word $u \in\{0,1,2\}^{n}$ that depends on v and w. We set $u_{i}=1$ if $v_{i}=1$. If $v_{i}=0$, say that we are at the
j th zero in v, counting from left to right. Then we set $u_{i}=2 w_{j}$. For example, if $v=10110100$ and $w=0110$ then $u=10112120$. We form a product

$$
\begin{equation*}
P_{v, w}(a, t)=\prod_{i: v_{i}=1}\left(t^{\#\left\{j<i: u_{j}=1\right\}+\#\left\{j>i: u_{j}=2\right\}}+a\right) \tag{21}
\end{equation*}
$$

Then the recurrence in [EH16] is

$$
\begin{equation*}
f_{v}(q, a, t)=\sum_{w \in\{0,1\}^{n-|v|}} q^{n-|v|-|w|} P_{v, w}(a, t) f_{w}(q, a, t) \tag{22}
\end{equation*}
$$

with base cases $f_{\emptyset}(q, a, t)=1$ and $f_{0^{n}}(q, a, t)=(1-q)^{-1} f_{10^{n-1}}(q, a, t)$. We use this as the definition of $f_{v}(q, a, t)$.

The goal of this proof is to show that $L_{v}(q, a, t)$ satisfies 21). As discussed in Hag08, taking the inner product with $e_{n-d} h_{d}$ can be thought of as replacing π with a word containing $n-d \underline{0}$'s and $d 1$'s. For the purposes of computing $\operatorname{dinv}(\gamma, \pi)$ we consider $\underline{0}$ to be less than itself, but we do not make this convention for 1 . For example, if $\gamma=1111$ and $\pi=\underline{0} \underline{0} 1$, we have $\operatorname{dinv}(\gamma, \pi)=2$, where the two pairs we count are $(1,3)$ and $(1,2)$. With these definitions, we can write

$$
\begin{equation*}
L_{v}(q, a, t)=\sum_{\substack{\gamma \in \mathbb{N}^{n}, \pi \in\{\underline{0}, 1\}^{n} \\ \gamma_{i}=0 \Leftrightarrow v_{i}=1}} q^{\operatorname{area}(\gamma)} t^{\operatorname{dinv}(\gamma, \pi)} a^{\# 1 ' s i s i n} . \tag{23}
\end{equation*}
$$

Given such a word γ, we form a word u by setting $u_{i}=1$ if $\gamma_{i}=0, u_{i}=2$ if $\gamma_{i}=1$, and $u_{i}=0$ otherwise. From this word u we construct another word $w \in\{0,1\}^{n-|v|}$ by scanning u from left to right and appending a 1 to w whenever we see a 2 in u and appending a 0 to w whenever we see a 0 in u. For example, if $\gamma=013021$ we have $u=120102$ and $w=1001$.

Now we can explain why $L_{v}(q, a, t)$ satisfies 22). First, we note that the $q^{n-|v|-|w|}$ term counts the contribution of empty boxes in row 1 to area. We also claim that $P_{v, w}(a, t)$ uniquely counts the contributions from dinv pairs (i, j) with either $\gamma_{i}=\gamma_{j}=0$ or $\gamma_{i}=0$ and $\gamma_{j}=1$. For each such pair, say that the pair projects onto j if $\gamma_{i}=\gamma_{j}=0$ or i if $\gamma_{i}=0$ and $\gamma_{j}=1$. Then every such pair projects onto a unique i such that $\gamma_{i}=0$, which is equivalent to $v_{i}=1$. Furthermore, the number of pairs projecting onto a particular i is 0 if $\pi_{i}=1$ and

$$
\begin{equation*}
\#\left\{j<i: \gamma_{j}=0\right\}+\#\left\{j>i: \gamma_{j}=1\right\}=\#\left\{j<i: u_{j}=1\right\}+\#\left\{j>i: u_{j}=2\right\} \tag{24}
\end{equation*}
$$

if $\pi_{i}=\underline{0}$. Hence, $P_{v, w}(a, t)$ accounts for the contribution all such dinv pairs. By induction, $L_{w}(q, a, t)$ accounts for all other area and all other dinv pairs. The $v=0^{n}$ case follows from Lemma 2.1.

For the sake of comparison with EH16, we give a simplified formula that directly computes $f_{v}(q, a, t)$ from Theorem 2.1. Given $\gamma \in \mathbb{N}^{n}$ and $1 \leq i \leq n$, let

$$
\begin{equation*}
\operatorname{dinv}_{i}(\gamma)=\#\left\{j<i: \gamma_{j}=\gamma_{i}\right\}+\#\left\{j>i: \gamma_{j}=\gamma_{i}+1\right\} \tag{25}
\end{equation*}
$$

Corollary 2.1.

$$
\begin{equation*}
f_{v}(q, a, t)=\sum_{\substack{\gamma \in \mathbb{N}^{n} \\ \gamma_{i}=0 \Leftrightarrow v_{i}=1}} q^{\operatorname{area}(\gamma)} \prod_{i=1}^{n}\left(a+t^{\operatorname{dinv}_{i}(\gamma)}\right) \tag{26}
\end{equation*}
$$

where, as before, area $(\gamma)=|\gamma|-\#\left\{1 \leq i \leq n: \gamma_{i}>0\right\}$.

If $v=0^{n}$ and $a=0$, this is exactly Theorem 1.9 in EH16.

3. A Finite formula

Although the combinatorial definition of L_{v} is straightforward, it is not computationally effective ${ }^{1}$ since it is a sum over infinitely many words $\gamma \in \mathbb{N}^{n}$. We rectify this issue in Theorem 3.1 below. The idea is to compress the vectors γ while altering the statistics so that the link polynomial L_{v} is not changed.
Definition 3.1. A word $\gamma \in \mathbb{N}^{n}$ is a Fubini word if every integer $0 \leq k \leq \max (\gamma)$ appears in γ.

For example, 41255103 is a Fubini word but 20141022 is not a Fubini word, since it contains a 4 but not a 3 . We call these Fubini words because they are counted by the Fubini numbers (Slo, A000670), which also count ordered partitions of the set $\{1,2, \ldots, n\}$. We will actually be interested in certain decorated Fubini words.
Definition 3.2. Given $v \in\{0,1\}^{n}$, we say that a Fubini word γ is associated with v if either

- $v=0^{n}$ and the only zero in γ occurs at γ_{1}, or
- $v \neq 0^{n}$ and $\gamma_{i}=0$ if and only if $v_{i}=1$.

Definition 3.3. A barred Fubini word associated with v is a Fubini word γ associated with v where we may place bars over certain entries. Specifically, the entry γ_{j} may be barred if
(1) $\gamma_{j}>0$,
(2) γ_{j} is unique in γ, and
(3) for each $i<j$ we have $\gamma_{i}<\gamma_{j}$, i.e. γ_{j} is a left-to-right maximum in γ. We denote the collection of barred Fubini words associated with v by $\overline{\mathcal{F}}_{v}$.

For example,

$$
\begin{align*}
\overline{\mathcal{F}}_{0} & =\{0\} \tag{27}\\
\overline{\mathcal{F}}_{00} & =\{01,0 \overline{1}\} \tag{28}\\
\overline{\mathcal{F}}_{000} & =\{011,012,0 \overline{1} 2,01 \overline{2}, 0 \overline{12}, 021,0 \overline{2} 1\} \tag{29}
\end{align*}
$$

The sequence $\left|\overline{\mathcal{F}}_{0^{n}}\right|$ for $n \in \mathbb{N}$ begins $1,1,2,7,35,226, \ldots$ and seems to appear in the OEIS as A014307 [Slo. One way to define sequence A014307 is that it has exponential generating function

$$
\begin{equation*}
\sqrt{\frac{e^{z}}{2-e^{z}}} \tag{30}
\end{equation*}
$$

This sequence is given several combinatorial interpretations in Ren15. It would be interesting to obtain a bijection between $\overline{\mathcal{F}}_{0^{n}}$ and one of the collections of objects in Ren15. See Figure 3 for more examples of barred Fubini words.

Given a barred Fubini word γ and a word $\pi \in \mathbb{P}^{n}$, we modify the dinv statistic slightly:

$$
\begin{align*}
\operatorname{dinv}(\gamma, \pi) & =\#\left\{1 \leq i<j \leq n: \gamma_{i}=\gamma_{j}, \pi_{i}>\pi_{j}\right\} \tag{31}\\
& +\#\left\{1 \leq i<j \leq n: \gamma_{i}+1=\gamma_{j}, \pi_{i}<\pi_{j}, \gamma_{j} \text { is not barred }\right\}
\end{align*}
$$

[^0]| v | $\overline{\mathcal{F}}_{v}$ |
| :---: | :---: |
| 111 | 000 |
| 011 | $100, \overline{1} 00$ |
| 101 | $010,0 \overline{1} 0$ |
| 110 | $001,00 \overline{1}$ |
| 001 | $110,120,1 \overline{2} 0, \overline{\overline{1}} 20, \overline{12} 0,210, \overline{2} 10$ |
| 010 | $101,102,10 \overline{2}, \overline{1} 02, \overline{1} 0 \overline{2}, 201, \overline{2} 01$ |
| 100 | $011,012,0 \overline{1} 2,01 \overline{2}, 0 \overline{12}, 021,0 \overline{2} 1$ |
| 000 | $011,012,0 \overline{1} 2,01 \overline{2}, 0 \overline{12}, 021,0 \overline{2} 1$ |

Figure 3. We have listed the barred Fubini words $\overline{\mathcal{F}}_{v}$ for each $v \in\{0,1\}^{3}$.

We also let $\operatorname{bar}(\gamma)$ be the number of barred entries in γ. We have the following result.

Theorem 3.1. For $v \in\{0,1\}^{n}$,

$$
\begin{equation*}
L_{v}=\sum_{\substack{\gamma \in \overline{\mathcal{F}}_{v} \\ \pi \in \mathbb{P}^{n}}} q^{\operatorname{area}(\gamma)+\operatorname{bar}(\gamma)} t^{\operatorname{dinv}(\gamma, \pi)}(1-q)^{-\operatorname{bar}(\gamma)-\chi\left(v=0^{n}\right)} x^{\pi} \tag{32}
\end{equation*}
$$

where χ of a statement is 1 if the statement is true and 0 if it is false.
Proof. Assume, for now, that $v \neq 0^{n}$. Let $\overline{\mathcal{F}}_{v}^{(0)}$ denote the set of all $\gamma \in \mathbb{N}^{n}$ such that $\gamma_{i}=0$ if and only if $v_{i}=1$. For each $1 \leq k \leq n$, let $\bar{F}_{v}^{(k)}$ be the set of vectors $\gamma \in \mathbb{N}^{n}$ such that
(1) $\gamma_{i}=0$ if and only if $v_{i}=1$,
(2) each number $0,1,2, \ldots, k$ appears in γ.

We also allow certain entries to be barred. Specifically, $\gamma_{j} \in \overline{\mathcal{F}}_{v}^{(k)}$ may be barred if
(1) $0<\gamma_{j} \leq k$,
(2) γ_{j} is unique in γ, and
(3) for each $i<j$ we have $\gamma_{i}<\gamma_{j}$, i.e. γ_{j} is a left-to-right maximum in γ.

Note that $\overline{\mathcal{F}}_{v}^{(n)}=\overline{\mathcal{F}}_{v}$, and is therefore finite. For convenience, we set

$$
\begin{equation*}
\mathrm{wt}_{\gamma, \pi}=\mathrm{wt}_{\gamma, \pi}(x ; q, t)=q^{\operatorname{area}(\gamma)+\operatorname{bar}(\gamma)} t^{\operatorname{dinv}(\gamma, \pi)}(1-q)^{-\operatorname{bar}(\gamma)} x^{\pi} . \tag{33}
\end{equation*}
$$

where the dinv statistic is the one we defined for barred Fubini words. Our goal is to show that

$$
\begin{equation*}
\sum_{\substack{\gamma \in \overline{\mathcal{F}}_{v}^{(k-1)} \\ \pi \in \mathbb{P}^{n}}} \mathrm{wt}_{\gamma, \pi}=\sum_{\substack{\gamma \in \overline{\mathcal{F}}_{v}^{(k)} \\ \pi \in \mathbb{P}^{n}}} \mathrm{wt}_{\gamma, \pi} \tag{34}
\end{equation*}
$$

for each $1 \leq k \leq n$. Then we can chain together these identities for $k=1,2, \ldots, n$ to obtain the desired result.

First, we remove the intersection $\overline{\mathcal{F}}_{v}^{(k-1)} \cap \overline{\mathcal{F}}_{v}^{(k)}$ from both summands in (34) to obtain the equivalent statement

$$
\begin{equation*}
\sum_{\substack{\gamma \in \overline{\mathcal{F}}_{v}^{(k-1)} \backslash \overline{\mathcal{F}}_{v}^{(k)} \\ \pi \in \mathbb{P}^{n}}} \mathrm{wt}_{\gamma, \pi}=\sum_{\substack{\gamma \in \overline{\mathcal{F}}_{v}^{(k)} \backslash \overline{\mathcal{F}}_{v}^{(k)} \\ \pi \in \mathbb{P}^{n}}} \mathrm{wt}_{\gamma, \pi} . \tag{35}
\end{equation*}
$$

Now we wish to describe the γ that appear in the left- and right-hand summands of (35). $\gamma \in \overline{\mathcal{F}}_{v}^{(k-1)}$ is not in $\overline{\mathcal{F}}_{v}^{(k)}$ if and only if it does not contain a k; similarly, $\gamma \in \overline{\mathcal{F}}_{v}^{(k)}$ is not in $\overline{\mathcal{F}}_{v}^{(k-1)}$ if and only if it contains a single k and that k is barred. This allows us to rewrite (35) as

$$
\begin{equation*}
\sum_{\substack{\gamma \in \overline{\mathcal{F}}_{v}^{(k-1)} \\ k \in \gamma \\ \pi \in \mathbb{P}^{n}}} \mathrm{wt}_{\gamma, \pi}=\sum_{\substack{\gamma \in \overline{\mathcal{F}}_{v}^{(k)} \\ \bar{k} \in \gamma \\ \pi \in \mathbb{P}^{n}}} \mathrm{wt}_{\gamma, \pi} \tag{36}
\end{equation*}
$$

Specifically, for each subset $S \subseteq\{1,2, \ldots, n\}$ we will show that

$$
\begin{equation*}
\sum_{\substack{\gamma \in \overline{\mathcal{F}}_{v}^{(k-1)} \\ k \notin \gamma \\ \gamma_{i}<k \Leftrightarrow \ll \in \\ \pi \in \mathbb{P}^{n} \in S}} \mathrm{wt}_{\gamma, \pi}=\sum_{\substack{\gamma \in \overline{\mathcal{F}}_{v}^{(k)} \\ \bar{k} \in \gamma \\ \gamma_{i}<k \Leftrightarrow i \in S \\ \pi \in \mathbb{P}^{n}}} \mathrm{wt}_{\gamma, \pi} . \tag{37}
\end{equation*}
$$

Then summing over all S will conclude the proof.
We consider the left-hand side of (37). Note that there cannot be any dinv between entries i and j if $\gamma_{i}<k$ and $\gamma_{j}>k$. In this sense, the entries i with $\gamma_{i}<k$ are independent of the columns j with $\gamma_{j}>k$. This allows us to write the left-hand side of 37 as a product

$$
\begin{equation*}
q^{n-|S|} L_{0^{n-|S|}} F_{v, S} \tag{38}
\end{equation*}
$$

where $F_{v, S}$ is a certain symmetric function that accounts for all contribution to the weights coming from columns $i \in S$. The factor of q appears because each of the entries $j \notin S$ has an empty box in the diagram that is not counted by either of the other factors. Now we can use Lemma 2.1 to rewrite this product as

$$
\begin{equation*}
\frac{q^{n-|S|}}{1-q} L_{10^{n-|S|-1}} F_{v, S} \tag{39}
\end{equation*}
$$

Let m be the minimal index not in S. Our last goal is to show that the product in (39) is equal to the right-hand side of (37).

We note that, by the definition of dinv for barred words, there are no dinv pairs (i, j) with $i \in S$ and $j \notin S$, i.e. $\gamma_{i}<k$ and $\gamma_{j} \geq k$ for γ that appear in the sum on the right-hand side of 37). We also note that $L_{10^{n-|S|-1}}$ accounts for the contribution from columns $j \notin S$ except that it does not account for the bar on γ_{m}. This bar contributes a factor of $q /(1-q)$. Now there are $q^{n-|S|-1}$ columns with an extra box; these are the columns $j \notin S$ and $j \neq m$. The same polynomial $F_{v, S}$ accounts for the contributions of columns $i \in S$. Multiplying these together, we obtain (39).

Finally, we must address the case $v=0^{n}$. In this case, we immediately use $L_{0^{n}}=(1-q)^{-1} L_{10^{n-1}}$ and then proceed as above. This is why Fubini words associated with 0^{n} have an "extra" zero at the beginning. This also slightly adjusts the weight of the summands, explaining the $\chi\left(v=0^{n}\right)$ in the statement of the theorem.

As in Section 2, we give a formula for computing $f_{v}(q, a, t)$ directly. Given a barred Fubini word γ, we define

$$
\begin{equation*}
\operatorname{dinv}_{i}(\gamma)=\#\left\{j<i: \gamma_{j}=\gamma_{i}\right\}+\#\left\{j>i: \gamma_{j}=\gamma_{i}+1, \gamma_{j} \text { is not barred }\right\} \tag{40}
\end{equation*}
$$

Figure 4. This is the Ferrers diagram of the partition $\mu=$ $(4,3,1)$. In each cell we have written the monomial $q^{i} t^{j}$ that corresponds to the cell, yielding $B_{\mu}=\left\{1, q, q^{2}, q^{3}, t, q t, q^{2} t, t^{2}\right\}$.

Corollary 3.1.

$$
\begin{equation*}
f_{v}(q, a, t)=\sum_{\gamma \in \overline{\mathcal{F}}_{v}} q^{\operatorname{area}(\gamma)+\operatorname{bar}(\gamma)}(1-q)^{-\operatorname{bar}(\gamma)-\chi\left(v=0^{n}\right)} \prod_{i=1}^{n}\left(a+t^{\operatorname{dinv}_{i}(\gamma)}\right) \tag{41}
\end{equation*}
$$

4. Conjectures

So far, we have used the inner product $\left\langle L_{v}, e_{n-d} h_{d}\right\rangle$ to compute $f_{v}(q, a, t)$; one might wonder if there is any value in studying the full symmetric function L_{v}. In this section, we conjecture that the link symmetric function L_{v} is closely related to the combinatorics of Macdonald polynomials, hinting at a stronger connection between Macdonald polynomials and link homology. Following EH16, we must first define a "normalized" version of the link symmetric function L_{v}.

Definition 4.1.

$$
\begin{equation*}
\widetilde{L}_{v}=\widetilde{L}_{v}(x ; q, t)=(1-q)^{n-|v|} L_{v}(x ; q, t) . \tag{42}
\end{equation*}
$$

We could also define \widetilde{L}_{v} in terms of diagrams; each box that contains a number contributes an additional factor of $1-q$. Theorem 3.1 implies that \widetilde{L}_{v} has coefficients in $\mathbb{Z}[q, t]$, whereas the coefficients of L_{v} are elements of $\mathbb{Z}[[q, t]]$. We conjecture that the normalized link symmetric function \widetilde{L}_{v} is closely connected to the Macdonald eigenoperators ∇ and Δ.

The modified Macdonald polynomials \widetilde{H}_{μ} form a basis for the ring of symmetric functions with coefficients in $\mathbb{Q}(q, t)$. They can be defined via triangularity relations of combinatorially HHL05, Hag08. Given a partition μ, let B_{μ} be the alphabet of monomials $q^{i} t^{j}$ where (i, j) ranges over the coordinates of the cells in the Ferrers diagram of μ. We compute an example in Figure 4 .

Given a symmetric function F and a set of monomials $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, we let $F[A]$ be the result of setting $x_{i}=a_{i}$ for $1 \leq i \leq n$ and $x_{i}=0$ for $i>n$. Then we define two operators on symmetric functions by setting, for $\mu \vdash n$,

$$
\begin{align*}
\Delta_{F} \widetilde{H}_{\mu} & =F\left[B_{\mu}\right] \widetilde{H}_{\mu} \tag{43}\\
\nabla \widetilde{H}_{\mu} & =\Delta_{e_{n}} \widetilde{H}_{\mu} \tag{44}
\end{align*}
$$

and expanding linearly. Note that, for $\mu \vdash n, e_{n}\left[B_{\mu}\right]$ is simply the product of the n monomials in B_{μ}; we will sometime write T_{μ} for the product $e_{n}\left[B_{\mu}\right]$.

Conjecture 4.1.

$$
\begin{align*}
\nabla p_{1^{n}} & =\widetilde{L}_{0^{n}} \tag{45}\\
\Delta_{e_{n-1}} p_{1^{n}} & =\sum_{\substack{v \in\{0,1\}^{n} \\
|v|=1}} \widetilde{L}_{v} \tag{46}
\end{align*}
$$

In fact, both conjectures follow from the conjecture that

$$
\begin{equation*}
\widetilde{L}_{v 0}=\nabla p_{1} \nabla^{-1} \widetilde{L}_{v} \tag{47}
\end{equation*}
$$

We should mention that Eugene Gorsky first noticed that the identity

$$
\begin{equation*}
\sum_{a=0}^{d}\left\langle\nabla p_{1^{n}}, e_{n-d} h_{d}\right\rangle a^{d}=(1-q)^{n} f_{0^{n}}(q, a, t) \tag{48}
\end{equation*}
$$

seemed to hold and communicated this observation to the author via Jim Haglund. Gorsky's conjectured identity is a special case of Conjecture 4.1. It is also interesting to note that the operator in (47) appears in the setting of the Rational Shuffle Conjecture as $-\mathbf{Q}_{1,1}$ [BGLX15].

Proof. We prove that (47) implies (45) and (46). The fact that (47) implies (45) is clear. For the second implication, consider $v \in\{0,1\}^{n}$ with $|v|=1$. Say k is the unique position such that $v_{k}=1$. By (45), $\widetilde{L}_{0^{k-1}}=\nabla p_{1^{k-1}}$. By definition, $\widetilde{L}_{0^{k-1} 1}$ considers γ such that $\gamma_{i}=0$ if and only if $i=k$. It follows that π_{k} cannot be involved in any dinv pairs, and that γ_{k} contributes no new area. Therefore

$$
\begin{equation*}
\widetilde{L}_{0^{k-1} 1}=p_{1} \nabla p_{1^{k-1}} . \tag{49}
\end{equation*}
$$

Using (45) again, we get

$$
\begin{equation*}
\widetilde{L}_{0^{k-1} 10^{n-k}}=\nabla p_{1^{n-k}} \nabla^{-1} p_{1} \nabla p_{1^{k-1}} \tag{50}
\end{equation*}
$$

We define the Macdonald Pieri coefficients $d_{\mu, \nu}$ by

$$
\begin{equation*}
p_{1} \widetilde{H}_{\nu}=\sum_{\mu \leftarrow \nu} d_{\mu, \nu} \widetilde{H}_{\mu} \tag{51}
\end{equation*}
$$

where the sum is over partitions μ obtained by adding a single cell to ν. Given a standard tableau τ, let $\mu^{(i)}$ be the partition obtained by taking the cells containing $1,2, \ldots, i$ in τ. Then each $\mu^{(i+1)}$ is obtained by adding a single cell to $\mu^{(i)}$. Let d_{τ} denote the product of the Macdonald Pieri coefficients

$$
\begin{equation*}
d_{\tau}=d_{\mu^{(1)}, \emptyset} d_{\mu^{(2)}, \mu^{(1)}} \ldots d_{\mu^{(n)}, \mu^{(n-1)}} . \tag{52}
\end{equation*}
$$

Now we can express the right-hand side of (50) as

$$
\begin{align*}
& \nabla p_{1^{n-k}} \nabla^{-1} p_{1} \nabla \sum_{\nu \vdash k-1} \sum_{\tau \in \operatorname{SYT}(\nu)} d_{\tau} \widetilde{H}_{\nu} \tag{53}\\
& =\nabla p_{1^{n-k}} \nabla^{-1} p_{1} \sum_{\nu \vdash k-1} \sum_{\tau \in \operatorname{SYT}(\nu)} d_{\tau} T_{\nu} \widetilde{H}_{\nu} \tag{54}\\
& =\nabla p_{1^{n-k}} \sum_{\lambda \vdash k} \sum_{\tau \in \operatorname{SYT}(\lambda)} d_{\tau} B_{\lambda}(\tau, n)^{-1} \widetilde{H}_{\lambda} \tag{55}
\end{align*}
$$

where by $B_{\lambda}(\tau, n)$ we mean the monomial $q^{i} t^{j}$ associated to the cell containing n in τ. Completing the computation, we get

$$
\begin{equation*}
\sum_{\mu \vdash n} \widetilde{H}_{\mu} \sum_{\tau \in \operatorname{SYT}(\mu)} d_{\tau} \prod_{i \neq k} B_{\mu}(\tau, i) . \tag{56}
\end{equation*}
$$

Summing over all k, we obtain $\Delta_{e_{n-1}} p_{1^{n}}$.
As an example of our conjecture, we can use Sage to compute

$$
\begin{equation*}
\left\langle\nabla p_{1,1}, p_{1,1}\right\rangle=1+q+t-q t . \tag{57}
\end{equation*}
$$

This expression should equal $\left\langle\widetilde{L}_{00}, p_{1,1}\right\rangle$ by Conjecture 4.1. To compute this inner product using Theorem 3.1 , we consider the barred Fubini words 01 and $0 \overline{1}$, each of which can receive labels $\pi=12$ or 21 . The corresponding diagrams are

where we have moved the bars from γ_{i} to the corresponding π_{i}. The weights of these diagrams coming from Theorem 3.1 are

$$
\begin{equation*}
\frac{t}{1-q} \quad \frac{1}{1-q} \quad \frac{q}{(1-q)^{2}} \quad \frac{q}{(1-q)^{2}} \tag{58}
\end{equation*}
$$

respectively. After multiplying by the normalizing factor $(1-q)^{2}$ to go from L_{00} to \widetilde{L}_{00}, we sum the resulting weights to get

$$
\begin{equation*}
(1-q) t+1-q+q+q=1+q+t-q t \tag{59}
\end{equation*}
$$

as desired.
After reading an earlier version of this paper, François Bergeron contacted the author with the following additional conjectures.

Conjecture 4.2 (Bergeron, 2016).

$$
\begin{align*}
L_{v 0} & =L_{1 v}+q L_{0 v} \tag{60}\\
L_{0^{n}} & =\sum_{v \in\{0,1\}^{k}} q^{n-|v|} L_{v 0^{n-k}} \tag{61}\\
t\left(L_{u 011 v}-L_{u 101 v}\right) & =L_{u 101 v}-L_{u 110 v} \tag{62}\\
\widetilde{L}_{0^{a} 1^{b} 0^{c}} & =\nabla p_{1^{c}} \nabla^{-1} \widetilde{H}_{1^{b}} \nabla p_{1^{a}} \tag{63}\\
L_{1^{a} 01^{b}} & =\frac{t^{a}-1}{t^{a+b}-1}\left[\nabla p_{1} \nabla^{-1}, \widetilde{H}_{1^{a+b}}\right]+\widetilde{H}_{1^{a+b}} p_{1} \tag{64}
\end{align*}
$$

where the bracket represents the Lie bracket and operators are applied to 1 if nothing is explicitly specified. Bergeron also observed that $L_{v}(x ; q, 1+t)$ is e-positive. (For more context on this last statement, see Section 4 of [Ber16].)

It is clear that 60) implies 61). We do not know of any other relations between these conjectures. We close with two more open questions.
(1) Is there a Macdonald eigenoperator expression for \widetilde{L}_{v} for other v ? Perhaps we can use ideas from the Rational Shuffle Conjecture BGLX15, recently proved by Mellit Mel16.
(2) Can we generalize our conjecture for $\nabla p_{1^{n}}$ to "interpolate" between our conjecture and the Shuffle Theorem CM15, or maybe the Square Paths Theorem Ser16]?

5. Acknowledgements

The author would like to Ben Elias and Matt Hogancamp for their exciting paper and for use of Figure 1] Lyla Fadali for reading an earlier draft; Jim Haglund for editing and feedback; Eugene Gorsky for his comments and for the idea that Elias and Hogancamp's work could be related to Macdonald polynomials; and François Bergeron for Conjecture 4.2 along with other helpful suggestions.

References

[Ale23] J. Alexander. A lemma on a system of knotted curves. Proc. Nat. Acad. Sci. USA, 9:93-95, 1923.
[Ber16] F. Bergeron. Open Questions for operators related to Rectangular Catalan Combinatorics. arXiv:1603.04476, March 2016.
[BGHT99] F. Bergeron, A. M. Garsia, M. Haiman, and G. Tesler. Identities and positivity conjectures for some remarkable operators in the theory of symmetric functions. Meths. and Appls. of Analysis, 6(3):363-420, 1999.
[BGLX15] F. Bergeron, A. Garsia, E. S. Leven, and G. Xin. Compositional ($k m, k n$)-Shuffle Conjectures. Int. Math. Research Notices, October 2015.
[CM15] E. Carlsson and A. Mellit. A proof of the shuffle conjecture. arXiv:math/1508.06239, August 2015.
[EH16] B. Elias and Matthew Hogancamp. On the computation of torus link homology. arXiv:1603.00407, March 2016.
[GN15] E. Gorsky and A. Negut. Refined knot invariants and Hilbert schemes. J. Math. Pures Appl., 9(104):403-435, 2015.
[GORS14] E. Gorsky, A. Oblomkov, J. Rasmussen, and V. Shende. Torus knots and the Rational DAHA. Duke Math. J., 163(14):2709-2794, 2014.
[Hag08] J. Haglund. The q, t-Catalan Numbers and the Space of Diagonal Harmonics. Amer. Math. Soc., 2008. Vol. 41 of University Lecture Series.
[Hag16] J. Haglund. The combinatorics of knot invariants arising from the study of Macdonald polynomials. In A. Beveridge, J. R. Griggs, L. Hogben, G. Musiker, and P. Tetali, editors, Recent Trends in Combinatorics, pages 579-600. The IMA Volumes in Math. and its Applications, 2016.
[HHL05] J. Haglund, M. Haiman, and N. Loehr. A combinatorial formula for Macdonald polynomials. J. Amer. Math. Soc., 18:735-761, 2005.
[Kho07] Mikhail Khovanov. Triply-graded link homology and Hochschild homology of soergel bimodules. Internat. J. Math., 18(8):869-885, 2007.
[KR08] Mikhail Khovanov and Lev Rozansky. Matrix factorizations and link homology. Fund. Math., 199(1):1-91, 2008.
[LLT97] A. Lascoux, B. Leclerc, and J.-Y. Thibon. Ribbon tableaux, Hall-Littlewood functions, quantum affine algebras, and unipotent varieties. J. Math. Phys., 38(2):1041-1068, 1997.
[Mel16] A. Mellit. Toric braids and (m, n)-parking functions. arXiv:1604.07456, April 2016.
[Ren15] Q. Ren. Ordered partitions and drawings of rooted plane trees. Discrete Math., 338:19, 2015.
[Ser16] E. Sergel Leven. A proof of the Square Paths Conjecture. arXiv:1601.06249, January 2016.
[Slo] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. Published electronically at http://oeis.org.
[Sta99] R. P. Stanley. Enumerative Combinatorics, volume 2. Cambridge University Press, 1999.

[^0]: ${ }^{1}$ There are also infinitely many $\pi \in \mathbb{P}^{n}$, but this problem can be rectified with standardization Hag08.

