LINK HOMOLOGY AND THE NABLA OPERATOR

ANDREW TIMOTHY WILSON

ABSTRACT. In recent work, Elias and Hogancamp develop a recurrence for the Poincaré series of the triply graded Hochschild homology of certain links, one of which is the (n, n) torus link. In this case, Elias and Hogancamp give a combinatorial formula for this homology that is reminiscent of the combinatorics of the modified Macdonald polynomial eigenoperator ∇ . We give a combinatorial formula for the homologies of all links considered by Elias and Hogancamp. Our first formula is not easily computable, so we show how to transform it into a computable version. Finally, we conjecture a direct relationship between the (n, n) torus link case of our formula and the symmetric function ∇p_{1^n} .

1. INTRODUCTION

We begin by establishing some notation from knot theory, following [EH16]. The remaining sections of the paper will take a more combinatorial perspective.

The braid group on n strands, denoted Br_n , can be defined by the presentation

(1)
$$\operatorname{Br}_{n} = \langle \sigma_{1}, \sigma_{2}, \dots, \sigma_{n-1} | \sigma_{i} \sigma_{i+1} \sigma_{i} = \sigma_{i+1} \sigma_{i} \sigma_{i+1}, \sigma_{i} \sigma_{j} = \sigma_{j} \sigma_{i} \rangle$$

for all $1 \leq i \leq n-2$ and $|i-j| \geq 2$. This group can be pictured as all ways to "braid" together *n* strands, where σ_i corresponds to crossing string i+1 over string *i* and the group operation is concatenation. One particularly notable braid is the *full twist braid* on *n* strands, denoted FT_n, which can be written

(2)
$$\operatorname{FT}_{n} = \left((\sigma_{1})(\sigma_{2}\sigma_{1}) \dots (\sigma_{n-1}\sigma_{n-2}\dots\sigma_{1}) \right)^{2}.$$

where multiplication is left to right. We will also need an operation ω on braids which corresponds to rotation around the horizontal axis. We define ω on Br_n by $\omega(\sigma_i) = \sigma_i$ and $\omega(\alpha\beta) = \omega(\beta)\omega(\alpha)$. Then ω is an anti-involution on Br_n. All of our braids will have the property that the string that begins in column *i* also ends in column *i* for all *i*; these are sometimes called *perfect braids*.

Given a braid with n strands, one can form a *link* (i.e. nonintersecting collection of knots) by identifying the top of the strand that begins in position i with the bottom of the strand that ends in position i for $1 \le i \le n$. The result is called a *closed braid*. Alexander proved that every link can be represented by a closed braid (although this representation is not unique) [Ale23]. The closure of a perfect braid is a link that consists of n separate unknots linked together.

In [EH16], Elias and Hogancamp assign a complex C_v to every binary word v. We describe this assignment here – see Figure 1 for an example. Say $v \in \{0,1\}^n$ with |v| = m. We begin with two braids, the full twist braid FT_{n-m} and a certain recursively defined complex K_m [EH16], which sits to the right of FT_{n-m} . For i = 1 to n, we feed string i into the leftmost available position in K_m if $v_i = 1$; otherwise, we feed string i into the leftmost available position in FT_{n-m} . All crossings that occur are forced to be "positive," i.e. the right strand crosses over the left strand.

FIGURE 1. We have drawn the complex $C_{10101101}$, where FT₃ is the full twist braid and K_5 is a certain complex defined recursively in [EH16]. This figure is used courtesy of [EH16].

This induces a braid $\beta_v \in \operatorname{Br}_n$ that occurs before the adjacent FT_{n-m} and K_m . The final complex C_v is obtained by performing $\omega(\beta_v)$, followed by β_v , followed by the adjacent FT_{n-m} and K_m . We note that C_{0^n} is the full twist braid FT_n and that the closure of this braid is the (n, n) torus link. The combinatorics of other links, in particular the (m, n) torus link for m and n coprime, has been studied by a variety of authors in recent years [GORS14, GN15]. Haglund gives an overview of this work from a combinatorial perspective in [Hag16].

Elias and Hogancamp map each complex C_v to a graded Soergel bimodule and then consider the *Hochschild homology* of this bimodule; this is sometimes called Khovanov-Rozansky homology [Kho07, KR08]. This homology has three gradings: the bimodule degree (using the variable Q), the homological degree (T), and the Hochschild degree (A). After the grading shifts $q = Q^2$, $t = T^2Q^{-2}$, and $a = AQ^{-2}$, Elias and Hogancamp give a recurrence for the Poincaré series of this triply graded homology, which they denote $f_v(q, a, t)$. They also give a combinatorial formula for the special case $f_{0^n}(q, a, t)$. We will give two combinatorial formulas for $f_v(q, a, t)$ for every $v \in \{0, 1\}^n$.

In Section 2, we define a symmetric function $L_v(x;q,t)$ which we call the *link* symmetric function. Its definition is reminiscent of the combinatorics of the Macdonald eigenoperator ∇ , introduced in [BGHT99]. We prove that $f_v(q, a, t)$ is equal to a certain inner product with $L_v(x;q,t)$.

The main weakness of our first formula is that it is a sum over infinitely many objects, so it is not clear how to compute using this formula. We address this issue in Section 3, obtaining a finite formula for $L_v(x;q,t)$ using a collection of combinatorial objects we call *barred Fubini words*.

We close by presenting some conjectures in Section 4. In particular, we conjecture that

(3)
$$L_{0^n}(x;q,t) = (1-q)^{-n} \nabla p_{1^n}.$$

where the terminology is defined in Section 4. A proof of this conjecture would provide the first combinatorial interpretation for ∇p_{1^n} . There has been much recent work establishing combinatorial interpretations for ∇e_n [CM15] and ∇p_n [Ser16]. We believe that $L_v(x;q,t)$ is also related to Macdonald polynomials for general v, although we do not have an explicit conjecture in this direction.

FIGURE 2. We have depicted the example $\gamma = 20141022$ and $\pi = 41322231$ by drawing bottom-justified columns with heights γ_1 , γ_2 , ..., γ_8 and the labels π_i are placed as high as possible in each column. In this example, we compute area $(\gamma) = 6$, dinv $(\gamma, \pi) = 7$, where the contributing pairs are in columns (1,7), (1,8), (2,3), (2,5), (3,5), (5,7), (7,8), and $x^{\pi} = x_1^2 x_2^3 x_3^2 x_4$.

2. An infinite formula

Let $\mathbb{N} = \{0, 1, 2, ...\}$ and $\mathbb{P} = \{1, 2, 3, ...\}$. We begin by defining two statistics. **Definition 2.1.** Given words $\gamma \in \mathbb{N}^n$ and $\pi \in \mathbb{P}^n$, we define

(4)
$$\operatorname{area}(\gamma) = |\gamma| - \#\{1 \le i \le n : \gamma_i > 0\}$$

(5)
$$\operatorname{dinv}(\gamma, \pi) = \#\{1 \le i < j \le n : \gamma_i = \gamma_j, \pi_i > \pi_j\}$$

$$+ \# \{ 1 \le i < j \le n : \gamma_i + 1 = \gamma_j, \pi_i < \pi_j \}$$

(6)
$$x^{\pi} = \prod_{i=1}^{n} x_{\pi_i}.$$

In Figure 2, we draw a diagram for $\gamma = 20141022$ and $\pi = 41322231$. Area counts the empty boxes in such a diagram, dinv counts certain pairs of labels, and x^{π} records all labels that appear in the diagram.

Definition 2.2. Given $n \in \mathbb{P}$ and $v \in \{0, 1\}^n$, define

(7)
$$L_{v} = L_{v}(x;q,t) = \sum_{\substack{\gamma \in \mathbb{N}^{n}, \, \pi \in \mathbb{P}^{n} \\ \gamma_{i} = 0 \Leftrightarrow v_{i} = 1}} q^{\operatorname{area}(\gamma)} t^{\operatorname{dinv}(\gamma,\pi)} x^{\pi}$$

Perhaps the first thing to note about L_v is that it can be expressed as a sum of LLT polynomials [LLT97]; as a result, it is symmetric in the x_i variables. More precisely, each $\gamma \in \mathbb{N}^n$ can be associated with an *n*-tuple $\lambda(\gamma)$ of single cell partitions in the plane, where the *i*th cell is placed on diagonal γ_i and the order is not changed. Using the notation of [HHL05], the unicellular LLT polynomial $G_{\lambda(\gamma)}(x;t)$ can be used to write

(8)
$$L_{v} = \sum_{\substack{\gamma \in \mathbb{N}^{n} \\ \gamma_{i} = 0 \Leftrightarrow v_{i} = 1}} q^{\operatorname{area}(\gamma)} G_{\lambda(\gamma)}(x; t).$$

Since LLT polynomials are symmetric, every L_v is also symmetric.

We also remark that L_{1^n} is equal to the modified Macdonald polynomial $H_{1^n}(x;q,t)$, which is also equal to the graded Frobenius series of the coinvariants of \mathfrak{S}_n with grading in t.

Next, we note that the Poincaré series $f_v(q, a, t)$ can be recovered as a certain inner product of L_v . We follow the standard notation for symmetric functions and their usual inner product, as described in Chapter 7 of [Sta99]. Before we can prove Theorem 2.1, we need the following lemma.

Lemma 2.1.

(9)
$$L_{0^n} = \frac{1}{1-q} L_{10^{n-1}}.$$

Proof. By definition,

(10)
$$L_{0^n} = \sum_{\gamma, \pi \in \mathbb{P}^n} q^{\operatorname{area}(\gamma)} t^{\operatorname{dinv}(\gamma, \pi)} x^{\pi}.$$

Our aim is to show that

(11)
$$L_{0^n} = q^n L_{0^n} + \left(1 + q + \ldots + q^{n-1}\right) L_{10^{n-1}}$$

which clearly implies the lemma.

If $\gamma_i > 1$ for all *i*, then let γ' be the word obtained by decrementing each entry in γ by 1. Set $\pi' = \pi$. Note that the pair (γ', π') has

(12)
$$\operatorname{area}(\gamma') = \operatorname{area}(\gamma) - n$$

(13)
$$\operatorname{dinv}(\gamma', \pi') = \operatorname{dinv}(\gamma, \pi)$$

(14) $x^{\pi'} = x^{\pi}.$

Furthermore, every pair of words of positive integers can be obtained as (γ', π') in this fashion. This case corresponds to the first term on the right-hand side of (11).

The other case we must consider is if $\gamma_i = 1$ for some *i*. Let *k* be the rightmost position such that $\gamma_k = 1$. Then we define

(15)
$$\gamma'' = (\gamma_k - 1)(\gamma_{k+1} - 1)\dots(\gamma_n - 1)\gamma_1\gamma_2\dots\gamma_{k-1}$$

(16)
$$\pi'' = \pi_k \pi_{k+1} \dots \pi_n \pi_1 \pi_2 \dots \pi_{k-1}.$$

It is straightforward to check that

(17)
$$\operatorname{area}(\gamma'') = \operatorname{area}(\gamma) - (n-k)$$

(18)
$$\operatorname{dinv}(\gamma'', \pi'') = \operatorname{dinv}(\gamma, \pi)$$

$$(19) x^{\pi''} = x^{\pi}.$$

Furthermore, by construction we have $\gamma_1'' = 0$ and the other entries of γ'' are greater than 0. Summing over all values of k and pairs (γ'', π'') obtained in this way, we get the remaining terms in the right-hand side of (11).

Theorem 2.1. For any $v \in \{0, 1\}^n$,

(20)
$$f_v(q, a, t) = \sum_{d=0}^n \langle L_v, e_{n-d} h_d \rangle a^d.$$

Proof. Let us denote the right-hand side of the statement in the theorem by $L_v(q, a, t)$. In [EH16], the authors prove that $f_v(q, a, t)$ satisfies a certain recurrence. We will use their recurrence as our definition of $f_v(q, a, t)$.

Given $v \in \{0,1\}^n$ and $w \in \{0,1\}^{n-|v|}$, we form a word $u \in \{0,1,2\}^n$ that depends on v and w. We set $u_i = 1$ if $v_i = 1$. If $v_i = 0$, say that we are at the

*j*th zero in v, counting from left to right. Then we set $u_i = 2w_j$. For example, if v = 10110100 and w = 0110 then u = 10112120. We form a product

(21)
$$P_{v,w}(a,t) = \prod_{i:v_i=1} \left(t^{\#\{j < i: u_j=1\} + \#\{j > i: u_j=2\}} + a \right).$$

Then the recurrence in [EH16] is

(22)
$$f_{v}(q,a,t) = \sum_{w \in \{0,1\}^{n-|v|}} q^{n-|v|-|w|} P_{v,w}(a,t) f_{w}(q,a,t)$$

with base cases $f_{\emptyset}(q, a, t) = 1$ and $f_{0^n}(q, a, t) = (1-q)^{-1} f_{10^{n-1}}(q, a, t)$. We use this as the definition of $f_v(q, a, t)$.

The goal of this proof is to show that $L_v(q, a, t)$ satisfies (21). As discussed in [Hag08], taking the inner product with $e_{n-d}h_d$ can be thought of as replacing π with a word containing n-d 0's and d 1's. For the purposes of computing dinv (γ, π) we consider 0 to be less than itself, but we do not make this convention for 1. For example, if $\gamma = 1111$ and $\pi = 0101$, we have dinv $(\gamma, \pi) = 2$, where the two pairs we count are (1, 3) and (1, 2). With these definitions, we can write

(23)
$$L_{v}(q, a, t) = \sum_{\substack{\gamma \in \mathbb{N}^{n}, \pi \in \{\underline{0}, 1\}^{n} \\ \gamma_{i} = 0 \Leftrightarrow v_{i} = 1}} q^{\operatorname{area}(\gamma)} t^{\operatorname{dinv}(\gamma, \pi)} a^{\# 1 \operatorname{'s in} \pi}.$$

Given such a word γ , we form a word u by setting $u_i = 1$ if $\gamma_i = 0$, $u_i = 2$ if $\gamma_i = 1$, and $u_i = 0$ otherwise. From this word u we construct another word $w \in \{0, 1\}^{n-|v|}$ by scanning u from left to right and appending a 1 to w whenever we see a 2 in u and appending a 0 to w whenever we see a 0 in u. For example, if $\gamma = 013021$ we have u = 120102 and w = 1001.

Now we can explain why $L_v(q, a, t)$ satisfies (22). First, we note that the $q^{n-|v|-|w|}$ term counts the contribution of empty boxes in row 1 to area. We also claim that $P_{v,w}(a,t)$ uniquely counts the contributions from dinv pairs (i,j) with either $\gamma_i = \gamma_j = 0$ or $\gamma_i = 0$ and $\gamma_j = 1$. For each such pair, say that the pair projects onto j if $\gamma_i = \gamma_j = 0$ or i if $\gamma_i = 0$ and $\gamma_j = 1$. Then every such pair projects onto a unique i such that $\gamma_i = 0$, which is equivalent to $v_i = 1$. Furthermore, the number of pairs projecting onto a particular i is 0 if $\pi_i = 1$ and (24)

$$\#\{j < i : \gamma_j = 0\} + \#\{j > i : \gamma_j = 1\} = \#\{j < i : u_j = 1\} + \#\{j > i : u_j = 2\}$$

if $\pi_i = \underline{0}$. Hence, $P_{v,w}(a,t)$ accounts for the contribution all such dinv pairs. By induction, $L_w(q, a, t)$ accounts for all other area and all other dinv pairs. The $v = 0^n$ case follows from Lemma 2.1.

For the sake of comparison with [EH16], we give a simplified formula that directly computes $f_v(q, a, t)$ from Theorem 2.1. Given $\gamma \in \mathbb{N}^n$ and $1 \leq i \leq n$, let

(25)
$$\dim v_i(\gamma) = \#\{j < i : \gamma_j = \gamma_i\} + \#\{j > i : \gamma_j = \gamma_i + 1\}.$$

Corollary 2.1.

(26)
$$f_v(q, a, t) = \sum_{\substack{\gamma \in \mathbb{N}^n \\ \gamma_i = 0 \Leftrightarrow v_i = 1}} q^{\operatorname{area}(\gamma)} \prod_{i=1}^n \left(a + t^{\operatorname{dinv}_i(\gamma)} \right)$$

where, as before, area $(\gamma) = |\gamma| - \#\{1 \le i \le n : \gamma_i > 0\}.$

If $v = 0^n$ and a = 0, this is exactly Theorem 1.9 in [EH16].

3. A FINITE FORMULA

Although the combinatorial definition of L_v is straightforward, it is not computationally effective¹ since it is a sum over infinitely many words $\gamma \in \mathbb{N}^n$. We rectify this issue in Theorem 3.1 below. The idea is to compress the vectors γ while altering the statistics so that the link polynomial L_v is not changed.

Definition 3.1. A word $\gamma \in \mathbb{N}^n$ is a Fubini word if every integer $0 \le k \le \max(\gamma)$ appears in γ .

For example, 41255103 is a Fubini word but 20141022 is not a Fubini word, since it contains a 4 but not a 3. We call these Fubini words because they are counted by the Fubini numbers ([Slo], A000670), which also count ordered partitions of the set $\{1, 2, ..., n\}$. We will actually be interested in certain decorated Fubini words.

Definition 3.2. Given $v \in \{0,1\}^n$, we say that a Fubini word γ is associated with v if either

- $v = 0^n$ and the only zero in γ occurs at γ_1 , or
- $v \neq 0^n$ and $\gamma_i = 0$ if and only if $v_i = 1$.

Definition 3.3. A barred Fubini word associated with v is a Fubini word γ associated with v where we may place bars over certain entries. Specifically, the entry γ_i may be barred if

- (1) $\gamma_j > 0$,
- (2) γ_j is unique in γ , and

(3) for each i < j we have $\gamma_i < \gamma_j$, i.e. γ_j is a left-to-right maximum in γ . We denote the collection of barred Fubini words associated with v by $\overline{\mathcal{F}}_v$.

For example,

$$\mathcal{F}_0 = \{0\}$$

(28)
$$\mathcal{F}_{00} = \{01, 01\}$$

(29) $\overline{\mathcal{F}}_{000} = \{011, 012, 0\overline{12}, 0\overline{12}, 0\overline{12}, 0\overline{21}\}.$

The sequence $|\overline{\mathcal{F}}_{0^n}|$ for $n \in \mathbb{N}$ begins $1, 1, 2, 7, 35, 226, \ldots$ and seems to appear in the OEIS as A014307 [Slo]. One way to define sequence A014307 is that it has exponential generating function

(30)
$$\sqrt{\frac{e^z}{2-e^z}}.$$

This sequence is given several combinatorial interpretations in [Ren15]. It would be interesting to obtain a bijection between $\overline{\mathcal{F}}_{0^n}$ and one of the collections of objects in [Ren15]. See Figure 3 for more examples of barred Fubini words.

Given a barred Fubini word γ and a word $\pi \in \mathbb{P}^n$, we modify the dinv statistic slightly:

(31) $\operatorname{dinv}(\gamma, \pi) = \#\{1 \le i < j \le n : \gamma_i = \gamma_j, \pi_i > \pi_j\} \\ + \#\{1 \le i < j \le n : \gamma_i + 1 = \gamma_j, \pi_i < \pi_j, \gamma_j \text{ is not barred}\}$

¹There are also infinitely many $\pi \in \mathbb{P}^n$, but this problem can be rectified with standardization [Hag08].

v	$ $ $\overline{\mathcal{F}}_v$
111	000
011	$100,\overline{1}00$
101	$010, 0\overline{1}0$
110	$001,00\overline{1}$
001	$110, 120, 1\overline{2}0, \overline{1}20, \overline{1}\overline{2}0, 210, \overline{2}10$
010	$101, 102, 10\overline{2}, \overline{1}02, \overline{1}0\overline{2}, 201, \overline{2}01$
100	$011, 012, 0\overline{1}2, 01\overline{2}, 0\overline{12}, 021, 0\overline{2}1$
000	$011, 012, 0\overline{1}2, 01\overline{2}, 0\overline{12}, 0\overline{2}1, 0\overline{2}1$

FIGURE 3. We have listed the barred Fubini words $\overline{\mathcal{F}}_v$ for each $v \in \{0, 1\}^3$.

We also let $bar(\gamma)$ be the number of barred entries in γ . We have the following result.

Theorem 3.1. For $v \in \{0, 1\}^n$,

(32)
$$L_{v} = \sum_{\substack{\gamma \in \overline{\mathcal{F}}_{v} \\ \pi \in \mathbb{P}^{n}}} q^{\operatorname{area}(\gamma) + \operatorname{bar}(\gamma)} t^{\operatorname{dinv}(\gamma,\pi)} (1-q)^{-\operatorname{bar}(\gamma) - \chi(v=0^{n})} x^{\pi}$$

where χ of a statement is 1 if the statement is true and 0 if it is false.

Proof. Assume, for now, that $v \neq 0^n$. Let $\overline{\mathcal{F}}_v^{(0)}$ denote the set of all $\gamma \in \mathbb{N}^n$ such that $\gamma_i = 0$ if and only if $v_i = 1$. For each $1 \leq k \leq n$, let $\overline{\mathcal{F}}_v^{(k)}$ be the set of vectors $\gamma \in \mathbb{N}^n$ such that

- (1) $\gamma_i = 0$ if and only if $v_i = 1$,
- (2) each number $0, 1, 2, \ldots, k$ appears in γ .

We also allow certain entries to be barred. Specifically, $\gamma_j \in \overline{\mathcal{F}}_v^{(k)}$ may be barred if

- (1) $0 < \gamma_j \leq k$,
- (2) γ_j is unique in γ , and
- (3) for each i < j we have $\gamma_i < \gamma_j$, i.e. γ_j is a left-to-right maximum in γ .

Note that $\overline{\mathcal{F}}_{v}^{(n)} = \overline{\mathcal{F}}_{v}$, and is therefore finite. For convenience, we set

(33)
$$\operatorname{wt}_{\gamma,\pi} = \operatorname{wt}_{\gamma,\pi}(x;q,t) = q^{\operatorname{area}(\gamma) + \operatorname{bar}(\gamma)} t^{\operatorname{dinv}(\gamma,\pi)} (1-q)^{-\operatorname{bar}(\gamma)} x^{\pi}.$$

where the dinv statistic is the one we defined for barred Fubini words. Our goal is to show that

(34)
$$\sum_{\substack{\gamma \in \overline{\mathcal{F}}_{v}^{(k-1)} \\ \pi \in \mathbb{P}^{n}}} \operatorname{wt}_{\gamma,\pi} = \sum_{\substack{\gamma \in \overline{\mathcal{F}}_{v}^{(k)} \\ \pi \in \mathbb{P}^{n}}} \operatorname{wt}_{\gamma,\pi}$$

for each $1 \le k \le n$. Then we can chain together these identities for k = 1, 2, ..., n to obtain the desired result.

First, we remove the intersection $\overline{\mathcal{F}}_{v}^{(k-1)} \cap \overline{\mathcal{F}}_{v}^{(k)}$ from both summands in (34) to obtain the equivalent statement

(35)
$$\sum_{\substack{\gamma \in \overline{\mathcal{F}}_{v}^{(k-1)} \setminus \overline{\mathcal{F}}_{v}^{(k)} \\ \pi \in \mathbb{P}^{n}}} \operatorname{wt}_{\gamma,\pi} = \sum_{\substack{\gamma \in \overline{\mathcal{F}}_{v}^{(k)} \setminus \overline{\mathcal{F}}_{v}^{(k)} \\ \pi \in \mathbb{P}^{n}}} \operatorname{wt}_{\gamma,\pi}.$$

Now we wish to describe the γ that appear in the left- and right-hand summands of (35). $\gamma \in \overline{\mathcal{F}}_{v}^{(k-1)}$ is not in $\overline{\mathcal{F}}_{v}^{(k)}$ if and only if it does not contain a k; similarly, $\gamma \in \overline{\mathcal{F}}_{v}^{(k)}$ is not in $\overline{\mathcal{F}}_{v}^{(k-1)}$ if and only if it contains a single k and that k is barred. This allows us to rewrite (35) as

(36)
$$\sum_{\substack{\gamma \in \overline{\mathcal{F}}_{v}^{(k-1)} \\ k \notin \gamma \\ \pi \in \mathbb{P}^{n}}} \operatorname{wt}_{\gamma,\pi} = \sum_{\substack{\gamma \in \overline{\mathcal{F}}_{v}^{(k)} \\ \overline{k} \in \gamma \\ \pi \in \mathbb{P}^{n}}} \operatorname{wt}_{\gamma,\pi}.$$

Specifically, for each subset $S \subseteq \{1, 2, ..., n\}$ we will show that

(37)
$$\sum_{\substack{\gamma \in \overline{\mathcal{F}}_{v}^{(k-1)} \\ k \notin \gamma \\ \gamma_{i} < k \Leftrightarrow i \in S \\ \gamma_{i} < k \Leftrightarrow i \in S \\ \pi \in \mathbb{P}^{n}}} \operatorname{wt}_{\gamma,\pi} = \sum_{\substack{\gamma \in \overline{\mathcal{F}}_{v}^{(k)} \\ \overline{k} \in \gamma \\ \gamma_{i} < k \Leftrightarrow i \in S \\ \pi \in \mathbb{P}^{n}}} \operatorname{wt}_{\gamma,\pi}.$$

Then summing over all S will conclude the proof.

We consider the left-hand side of (37). Note that there cannot be any dinv between entries *i* and *j* if $\gamma_i < k$ and $\gamma_j > k$. In this sense, the entries *i* with $\gamma_i < k$ are independent of the columns *j* with $\gamma_j > k$. This allows us to write the left-hand side of (37) as a product

(38)
$$q^{n-|S|}L_{0^{n-|S|}}F_{v,S}$$

where $F_{v,S}$ is a certain symmetric function that accounts for all contribution to the weights coming from columns $i \in S$. The factor of q appears because each of the entries $j \notin S$ has an empty box in the diagram that is not counted by either of the other factors. Now we can use Lemma 2.1 to rewrite this product as

(39)
$$\frac{q^{n-|S|}}{1-q}L_{10^{n-|S|-1}}F_{v,S}.$$

Let m be the minimal index not in S. Our last goal is to show that the product in (39) is equal to the right-hand side of (37).

We note that, by the definition of dinv for barred words, there are no dinv pairs (i, j) with $i \in S$ and $j \notin S$, i.e. $\gamma_i < k$ and $\gamma_j \geq k$ for γ that appear in the sum on the right-hand side of (37). We also note that $L_{10^{n-|S|-1}}$ accounts for the contribution from columns $j \notin S$ except that it does not account for the bar on γ_m . This bar contributes a factor of q/(1-q). Now there are $q^{n-|S|-1}$ columns with an extra box; these are the columns $j \notin S$ and $j \neq m$. The same polynomial $F_{v,S}$ accounts for the contributions of columns $i \in S$. Multiplying these together, we obtain (39).

Finally, we must address the case $v = 0^n$. In this case, we immediately use $L_{0^n} = (1-q)^{-1}L_{10^{n-1}}$ and then proceed as above. This is why Fubini words associated with 0^n have an "extra" zero at the beginning. This also slightly adjusts the weight of the summands, explaining the $\chi(v = 0^n)$ in the statement of the theorem.

As in Section 2, we give a formula for computing $f_v(q, a, t)$ directly. Given a barred Fubini word γ , we define

(40)
$$\operatorname{dinv}_{i}(\gamma) = \#\{j < i : \gamma_{j} = \gamma_{i}\} + \#\{j > i : \gamma_{j} = \gamma_{i} + 1, \gamma_{j} \text{ is not barred}\}.$$

t^2			
t	qt	q^2t	
1	q	q^2	q^3

FIGURE 4. This is the Ferrers diagram of the partition $\mu = (4,3,1)$. In each cell we have written the monomial $q^i t^j$ that corresponds to the cell, yielding $B_{\mu} = \{1, q, q^2, q^3, t, qt, q^2t, t^2\}$.

Corollary 3.1.

(41)
$$f_{v}(q,a,t) = \sum_{\gamma \in \overline{\mathcal{F}}_{v}} q^{\operatorname{area}(\gamma) + \operatorname{bar}(\gamma)} (1-q)^{-\operatorname{bar}(\gamma) - \chi(v=0^{n})} \prod_{i=1}^{n} \left(a + t^{\operatorname{dinv}_{i}(\gamma)} \right)$$

4. Conjectures

So far, we have used the inner product $\langle L_v, e_{n-d}h_d \rangle$ to compute $f_v(q, a, t)$; one might wonder if there is any value in studying the full symmetric function L_v . In this section, we conjecture that the link symmetric function L_v is closely related to the combinatorics of Macdonald polynomials, hinting at a stronger connection between Macdonald polynomials and link homology. Following [EH16], we must first define a "normalized" version of the link symmetric function L_v .

Definition 4.1.

(42)
$$\widetilde{L}_v = \widetilde{L}_v(x;q,t) = (1-q)^{n-|v|} L_v(x;q,t).$$

We could also define \tilde{L}_v in terms of diagrams; each box that contains a number contributes an additional factor of 1-q. Theorem 3.1 implies that \tilde{L}_v has coefficients in $\mathbb{Z}[q, t]$, whereas the coefficients of L_v are elements of $\mathbb{Z}[[q, t]]$. We conjecture that the normalized link symmetric function \tilde{L}_v is closely connected to the Macdonald eigenoperators ∇ and Δ .

The modified Macdonald polynomials \hat{H}_{μ} form a basis for the ring of symmetric functions with coefficients in $\mathbb{Q}(q,t)$. They can be defined via triangularity relations of combinatorially [HHL05, Hag08]. Given a partition μ , let B_{μ} be the alphabet of monomials $q^{i}t^{j}$ where (i, j) ranges over the coordinates of the cells in the Ferrers diagram of μ . We compute an example in Figure 4.

Given a symmetric function F and a set of monomials $A = \{a_1, a_2, \ldots, a_n\}$, we let F[A] be the result of setting $x_i = a_i$ for $1 \le i \le n$ and $x_i = 0$ for i > n. Then we define two operators on symmetric functions by setting, for $\mu \vdash n$,

(43)
$$\Delta_F \tilde{H}_{\mu} = F \left[B_{\mu} \right] \tilde{H}_{\mu}$$

(44)
$$\nabla H_{\mu} = \Delta_{e_n} H_{\mu}$$

and expanding linearly. Note that, for $\mu \vdash n$, $e_n[B_\mu]$ is simply the product of the *n* monomials in B_μ ; we will sometime write T_μ for the product $e_n[B_\mu]$.

Conjecture 4.1.

(45)
$$\nabla p_{1^n} = \widetilde{L}_{0^n}$$

(46)
$$\Delta_{e_{n-1}} p_{1^n} = \sum_{\substack{v \in \{0,1\}^n \\ |v|=1}} \widetilde{L}_v$$

In fact, both conjectures follow from the conjecture that

(47)
$$\widetilde{L}_{v0} = \nabla p_1 \nabla^{-1} \widetilde{L}_v$$

We should mention that Eugene Gorsky first noticed that the identity

(48)
$$\sum_{a=0}^{d} \langle \nabla p_{1^{n}}, e_{n-d}h_{d} \rangle a^{d} = (1-q)^{n} f_{0^{n}}(q, a, t)$$

seemed to hold and communicated this observation to the author via Jim Haglund. Gorsky's conjectured identity is a special case of Conjecture 4.1. It is also interesting to note that the operator in (47) appears in the setting of the Rational Shuffle Conjecture as $-\mathbf{Q}_{1,1}$ [BGLX15].

Proof. We prove that (47) implies (45) and (46). The fact that (47) implies (45) is clear. For the second implication, consider $v \in \{0,1\}^n$ with |v| = 1. Say k is the unique position such that $v_k = 1$. By (45), $\tilde{L}_{0^{k-1}} = \nabla p_{1^{k-1}}$. By definition, $\tilde{L}_{0^{k-1}1}$ considers γ such that $\gamma_i = 0$ if and only if i = k. It follows that π_k cannot be involved in any dinv pairs, and that γ_k contributes no new area. Therefore

(49)
$$\widetilde{L}_{0^{k-1}1} = p_1 \nabla p_{1^{k-1}}$$

Using (45) again, we get

(50)
$$\widetilde{L}_{0^{k-1}10^{n-k}} = \nabla p_{1^{n-k}} \nabla^{-1} p_1 \nabla p_{1^{k-1}}.$$

We define the Macdonald Pieri coefficients $d_{\mu,\nu}$ by

(51)
$$p_1 \widetilde{H}_{\nu} = \sum_{\mu \leftarrow \nu} d_{\mu,\nu} \widetilde{H}_{\mu}$$

where the sum is over partitions μ obtained by adding a single cell to ν . Given a standard tableau τ , let $\mu^{(i)}$ be the partition obtained by taking the cells containing $1, 2, \ldots, i$ in τ . Then each $\mu^{(i+1)}$ is obtained by adding a single cell to $\mu^{(i)}$. Let d_{τ} denote the product of the Macdonald Pieri coefficients

(52)
$$d_{\tau} = d_{\mu^{(1)},\emptyset} d_{\mu^{(2)},\mu^{(1)}} \dots d_{\mu^{(n)},\mu^{(n-1)}}.$$

Now we can express the right-hand side of (50) as

(53)
$$\nabla p_{1^{n-k}} \nabla^{-1} p_1 \nabla \sum_{\nu \vdash k-1} \sum_{\tau \in \text{SYT}(\nu)} d_\tau \widetilde{H}_{\mu}$$

(54)
$$= \nabla p_{1^{n-k}} \nabla^{-1} p_1 \sum_{\nu \vdash k-1} \sum_{\tau \in \operatorname{SYT}(\nu)} d_{\tau} T_{\nu} \widetilde{H}_{\nu}$$

(55)
$$= \nabla p_{1^{n-k}} \sum_{\lambda \vdash k} \sum_{\tau \in \text{SYT}(\lambda)} d_{\tau} B_{\lambda}(\tau, n)^{-1} \widetilde{H}_{\lambda}$$

10

where by $B_{\lambda}(\tau, n)$ we mean the monomial $q^i t^j$ associated to the cell containing n in τ . Completing the computation, we get

(56)
$$\sum_{\mu \vdash n} \widetilde{H}_{\mu} \sum_{\tau \in \operatorname{SYT}(\mu)} d_{\tau} \prod_{i \neq k} B_{\mu}(\tau, i).$$

Summing over all k, we obtain $\Delta_{e_{n-1}} p_{1^n}$.

As an example of our conjecture, we can use Sage to compute

(57)
$$\langle \nabla p_{1,1}, p_{1,1} \rangle = 1 + q + t - qt.$$

This expression should equal $\langle \tilde{L}_{00}, p_{1,1} \rangle$ by Conjecture 4.1. To compute this inner product using Theorem 3.1, we consider the barred Fubini words 01 and $0\overline{1}$, each of which can receive labels $\pi = 12$ or 21. The corresponding diagrams are

where we have moved the bars from γ_i to the corresponding π_i . The weights of these diagrams coming from Theorem 3.1 are

(58)
$$\frac{t}{1-q}$$
 $\frac{1}{1-q}$ $\frac{q}{(1-q)^2}$ $\frac{q}{(1-q)^2}$

respectively. After multiplying by the normalizing factor $(1-q)^2$ to go from L_{00} to \widetilde{L}_{00} , we sum the resulting weights to get

(59)
$$(1-q)t + 1 - q + q + q = 1 + q + t - qt$$

as desired.

After reading an earlier version of this paper, François Bergeron contacted the author with the following additional conjectures.

Conjecture 4.2 (Bergeron, 2016).

(60)
$$L_{v0} = L_{1v} + qL_{0v}$$

(61)
$$L_{0^n} = \sum_{v \in \{0,1\}^k} q^{n-|v|} L_{v0^{n-k}}$$

(62)
$$t \left(L_{u011v} - L_{u101v} \right) = L_{u101v} - L_{u110v}$$

(63)
$$L_{0^a 1^b 0^c} = \nabla p_{1^c} \nabla^{-1} H_{1^b} \nabla p_{1^a}$$

(64)
$$L_{1^{a}01^{b}} = \frac{t^{a} - 1}{t^{a+b} - 1} \left[\nabla p_{1} \nabla^{-1}, \widetilde{H}_{1^{a+b}} \right] + \widetilde{H}_{1^{a+b}} p_{1}$$

where the bracket represents the Lie bracket and operators are applied to 1 if nothing is explicitly specified. Bergeron also observed that $L_v(x;q,1+t)$ is e-positive. (For more context on this last statement, see Section 4 of [Ber16].)

It is clear that (60) implies (61). We do not know of any other relations between these conjectures. We close with two more open questions.

(1) Is there a Macdonald eigenoperator expression for \tilde{L}_v for other v? Perhaps we can use ideas from the Rational Shuffle Conjecture [BGLX15], recently proved by Mellit [Mel16].

A. T. WILSON

(2) Can we generalize our conjecture for ∇p_{1^n} to "interpolate" between our conjecture and the Shuffle Theorem [CM15], or maybe the Square Paths Theorem [Ser16]?

5. Acknowledgements

The author would like to Ben Elias and Matt Hogancamp for their exciting paper and for use of Figure 1; Lyla Fadali for reading an earlier draft; Jim Haglund for editing and feedback; Eugene Gorsky for his comments and for the idea that Elias and Hogancamp's work could be related to Macdonald polynomials; and François Bergeron for Conjecture 4.2 along with other helpful suggestions.

References

- [Ale23] J. Alexander. A lemma on a system of knotted curves. Proc. Nat. Acad. Sci. USA, 9:93–95, 1923.
- [Ber16] F. Bergeron. Open Questions for operators related to Rectangular Catalan Combinatorics. arXiv:1603.04476, March 2016.
- [BGHT99] F. Bergeron, A. M. Garsia, M. Haiman, and G. Tesler. Identities and positivity conjectures for some remarkable operators in the theory of symmetric functions. *Meths.* and Appls. of Analysis, 6(3):363–420, 1999.
- [BGLX15] F. Bergeron, A. Garsia, E. S. Leven, and G. Xin. Compositional (km, kn)-Shuffle Conjectures. Int. Math. Research Notices, October 2015.
- [CM15] E. Carlsson and A. Mellit. A proof of the shuffle conjecture. arXiv:math/1508.06239, August 2015.
- [EH16] B. Elias and Matthew Hogancamp. On the computation of torus link homology. arXiv:1603.00407, March 2016.
- [GN15] E. Gorsky and A. Negut. Refined knot invariants and Hilbert schemes. J. Math. Pures Appl., 9(104):403–435, 2015.
- [GORS14] E. Gorsky, A. Oblomkov, J. Rasmussen, and V. Shende. Torus knots and the Rational DAHA. Duke Math. J., 163(14):2709–2794, 2014.
- [Hag08] J. Haglund. The q,t-Catalan Numbers and the Space of Diagonal Harmonics. Amer. Math. Soc., 2008. Vol. 41 of University Lecture Series.
- [Hag16] J. Haglund. The combinatorics of knot invariants arising from the study of Macdonald polynomials. In A. Beveridge, J. R. Griggs, L. Hogben, G. Musiker, and P. Tetali, editors, *Recent Trends in Combinatorics*, pages 579 – 600. The IMA Volumes in Math. and its Applications, 2016.
- [HHL05] J. Haglund, M. Haiman, and N. Loehr. A combinatorial formula for Macdonald polynomials. J. Amer. Math. Soc., 18:735–761, 2005.
- [Kho07] Mikhail Khovanov. Triply-graded link homology and Hochschild homology of soergel bimodules. Internat. J. Math., 18(8):869–885, 2007.
- [KR08] Mikhail Khovanov and Lev Rozansky. Matrix factorizations and link homology. Fund. Math., 199(1):1–91, 2008.
- [LLT97] A. Lascoux, B. Leclerc, and J.-Y. Thibon. Ribbon tableaux, Hall-Littlewood functions, quantum affine algebras, and unipotent varieties. J. Math. Phys., 38(2):1041–1068, 1997.
- [Mel16] A. Mellit. Toric braids and (m, n)-parking functions. arXiv:1604.07456, April 2016.
- [Ren15] Q. Ren. Ordered partitions and drawings of rooted plane trees. Discrete Math., 338:1– 9, 2015.
- [Ser16] E. Sergel Leven. A proof of the Square Paths Conjecture. arXiv:1601.06249, January 2016.
- [Slo] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. Published electronically at http://oeis.org.
- [Sta99] R. P. Stanley. Enumerative Combinatorics, volume 2. Cambridge University Press, 1999.