
ar
X

iv
:1

60
6.

01
57

6v
1

 [
cs

.S
C

]
 5

 J
un

 2
01

6

Computing Hypergeometric Solutions of

Second Order Linear Differential Equations

using Quotients of Formal Solutions and

Integral Bases

Erdal Imamoglu 1

Department of Mathematics, Florida State University, Tallahassee, FL 32306, USA.

Mark van Hoeij 1

Department of Mathematics, Florida State University, Tallahassee, FL 32306, USA.

Abstract

We present two algorithms for computing hypergeometric solutions of second order linear dif-
ferential operators with rational function coefficients. Our first algorithm searches for solutions
of the form

exp(

∫

r dx) · 2F1(a1, a2; b1; f) (1)

where r, f ∈ Q(x), and a1, a2, b1 ∈ Q. It uses modular reduction and Hensel lifting. Our second
algorithm tries to find solutions in the form

exp(

∫

r dx) ·
(

r0 · 2F1(a1, a2; b1; f) + r1 · 2F1

′(a1, a2; b1; f)
)

(2)

where r0, r1 ∈ Q(x), as follows: It tries to transform the input equation to another equation
with solutions of type (1), and then uses the first algorithm.

Key words: Symbolic Computation, Linear Differential Equations, Closed Form Solutions,
Hypergeometric Solutions, Integral Bases.

1 Supported by NSF grant 1319547.

Email addresses: eimamogl@math.fsu.edu (Erdal Imamoglu), hoeij@math.fsu.edu (Mark van Hoeij).

Preprint submitted to Journal of Symbolic Computation 7 June 2016

http://arxiv.org/abs/1606.01576v1

1. Introduction

A second order homogeneous linear differential equation with rational function coeffi-
cients Ai ∈ Q(x)

A2y
′′ +A1y

′ +A0y = 0 (3)

corresponds to the differential operator

L = A2∂
2 +A1∂ +A0 ∈ Q(x)[∂]

where ∂ = d
dx . Another representation of (3) is

L(y) = 0.

This paper gives two heuristic (see Remarks 1.2 and 3.4) algorithms to find a hyperge-
ometric solution of (3) in the form (1) and (2). The form (2) is more general than in prior
works Fang and van Hoeij (2011); Kunwar and van Hoeij (2013); van Hoeij and Vidunas
(2015); Kunwar (2014). Papers van Hoeij and Vidunas (2015) and Kunwar (2014) were
restricted to a specific number of singularities (4 in van Hoeij and Vidunas (2015) and 5
in Kunwar (2014)). Papers Kunwar and van Hoeij (2013) and Fang and van Hoeij (2011)
were restricted to specific degrees (degree 3 in Kunwar and van Hoeij (2013) and a degree-
2 decomposition in Fang and van Hoeij (2011)). Our algorithms are not restricted to a
specific number of singularities or a specific degree. Moreover, our algorithms can find
algebraic functions f in (1) and (2).

Our first algorithm, Algorithm 3.1, tries to find solutions of (3) in the form of (1). Our
second algorithm, Algorithm 4.1, tries to reduce equations with solutions of form (2) to
equations and then calls our first algorithm.

We assume that (3) has no Liouvillian solutions and hence irreducible. Otherwise one
can solve (3) with Kovacic’s algorithm Kovacic (1986).

Let Linp ∈ Q(x)[∂] (L input) be a second order linear differential operator, regular
singular (details in Section 2.1) and without Liouvillian solutions:

• Goal 1: (Algorithm 3.1) Find a solution of form (1) if it exists.
• Goal 2: (Algorithm 4.1) Try to transform Linp to a simpler operator (which hope-
fully has a solution in form (1)).

The crucial steps for Goal 1 are to find (candidates for) a1, a2, b1 and the pullback

function f . Finding the parameters a1, a2, b1 is the combinatorial part; Theorem 3.2
helps us to eliminate the vast majority of cases. Given a1, a2, b1 (or equivalently a base
operator LB), if we know the value of a certain constant c, by comparing quotients of

formal solutions of LB and Linp, we can compute f . We have no direct formula for
c; to obtain it with a finite computation, we take a prime number ℓ. Then, for each
c ∈ {1, . . . , ℓ− 1} we try to compute f modulo ℓ. If this succeeds, then we lift f modulo
a power of ℓ, and try rational number reconstruction.

Goal 2 is to find a transformation to convert Linp to a simpler operator L̃inp. The key
idea is to follow the strategy of the POLRED algorithm in Cohen and Diaz Y Diaz (1991).
It takes as input a polynomial Linp ∈ Q[x] and finds an element G ∈ Q[x]/Q[x]Linp

whose minimal polynomial is close to optimal. It works as follows:
(1) “Finite points”: Compute an integral basis.
(2) “Valuations at infinity”: Find an integral element G with (near) optimal absolute

values.

2

Our key idea is to apply POLRED’s strategy to Linp ∈ Q(x)[∂]. First compute an integral
basis (introduced in Kauers and Koutschan (2015)). Then normalize at infinity (following
(Trager, 1984, Section 2.3) where this is done for function fields) so we can select an
element with minimal valuations at infinity.

Example 1.1 (Rational Pullback Function). The differential operator

Linp = 147x(x− 1)(x+ 1)∂2 + (266x2 − 42x− 98)∂ + 20x− 5

has a 2F1-type solution in the form of (1), which is

Y (x) = exp (

∫

r dx) · 2F1

(

5

42
,
11

42
;
2

3
; f

)

where

exp(

∫

r dx) = (x+ 1)−
5

21 and f =
4x

(x+ 1)2
(4)

Section 3.4 shows how to find the parameters a1, a2, b1 = 5
42 ,

11
42 ,

2
3 . Then f is computed

with the quotient method:

Remark 1.1 (The Quotient Method). The hypergeometric function

2F1

(

5

42
,
11

42
;
2

3
;x

)

is a solution of the Gauss hypergeometric differential operator

LB = ∂2 +
(29 x− 14)

21x (x− 1)
∂ +

55

1764 x (x− 1)
.

LB has two solutions at x = 0. They are

y1(x) = 2F1

(

5

41
,
11

42
;
2

3
, x

)

= 1 +
55

1176
x+ . . . ,

y2(x) = x
1

3

(

1 +
475

2352
x+

1941325

19361664
x2 + . . .

)

.

The so-called exponents of LB at x = 0 are the exponents of x in the dominant terms
of the solutions y1 and y2, so the exponents are e0,1 = 0 and e0,2 = 1

3 . The minimal
operator for y(f) has the following solutions at x = 0:

y1(f) = 1 +
55

294
x− 4939

86436
x2 +

16135823

304946208
x3 + . . . ,

y2(f) = c · x 1

3

(

1 +
83

588
x+

6805

1210104
x2 + . . .

)

for some constant c that depends on f . The exponents are again 0 and 1
3 , because x = 0

is a root of f with multiplicity e0 = 1 (Theorem 2.1). Let

Y1(x) = exp(

∫

r dx)y1(f) = 1− 5

98
x+

439

9604
x2 + . . . , (5)

Y2(x) = exp(

∫

r dx)y2(f) = c · x 1

3

(

1− 19

196
x+ . . .

)

. (6)

3

(5) and (6) form a basis of solutions of Linp. Here exp(
∫

r dx) is the same as in (4).
Denote the quotients of the formal solutions of LB and Linp by

q =
y1(x)

y2(x)

Q =
Y1(x)

Y2(x)
=

y1(f)

y2(f)
= q(f)

respectively. It follows that q−1(Q(x)) gives a series expansion of f at x = 0. Given
enough terms we can compute f with rational function reconstruction. This Quotient

Method was already used in (van Hoeij and Vidunas, 2015, Section 5.1). In order to turn
this into an algorithm for solving differential equations we need to answer the following
questions:
Q1. How many terms are needed to reconstruct f? This is equivalent to finding a degree

bound for f .
Q2. How to find the parameters a1, a2, b1? This is the combinatorial part of our algo-

rithm.
Q3. The exponents 0, 1

3 of Linp at x = 0 only determine Y1

Y2

up to a constant factor (see

Remark 2.2 in Section 2.3). This means the quotient y1(f)
y2(f)

is only known up to a

constant c. How to find this constant?
Q4. What if Linp has logarithmic solutions at x = 0?
Q5. What if f is an algebraic function?
Q6. What if Linp does not have solutions in the form of (1), but has solutions in the

form of (2)?
Remark 3.2, Section 3.4, Section 3.6, and Section 3.5.2 provide answers to Q1, Q2,

Q3, and Q4 respectively. Section 3.6 answers Q5. The parts Q1,...,Q5 are already in our
ISSAC 2015 paper Imamoglu and van Hoeij (2015). Algorithm 4.1, which finds solutions
of form (2), is new compared to Imamoglu and van Hoeij (2015). So Q6 is the main new
part in this paper. It will be discussed in Section 4. Example 1.3 will illustrate to Q6.

Remark 1.2. Both algorithms are very effective in practice but they are not proven. For
completeness for Goal 1 we still need a theorem for good prime numbers. A good prime

is a prime for which reconstruction will work.

Example 1.2 (Algebraic Pullback Function). The differential operator

Linp = ∂2 +
1

4

x4 − 44 x3 + 1206 x2 − 44 x+ 1

(x2 − 34 x+ 1)
2
x2

has a 2F1-type solution in the form of (1), which is

Y (x) = exp(−1

2

∫

r dx) · 2F1

(

1

3
,
2

3
; 1; f

)

where r =

−x5 + 22 x4 − 55 x3 − 343 x2 + 58 x− 1 + 6 x
(

x2 − 7 x+ 1
)√

x2 − 34 x+ 1

x (x4 − 41 x3 + 240 x2 − 41 x+ 1) (x+ 1)

and

f =
1

2

1 + 30 x− 24 x2 + x3 −
(

x2 − 7 x+ 1
)√

x2 − 34 x+ 1

1 + 3 x+ 3 x2 + x3
.

4

Here the pullback function f is an algebraic function: Q(x, f) is an algebraic extension

of Q(x) of degree af = 2 (af is 1 if and only if f is a rational function, as in Example

1.1). Algorithm 3.1 can find this solution.

Example 1.3 (Finding Solutions in the form of (2) using an Integral Basis). Consider

the differential operator 2

Linp = ∂2 − 512 x5 + 384 x4 − 64 x3 − 88 x2 − 10 x− 1

x (4 x− 1) (4 x+ 1) (16 x3 + 24 x2 + 5 x+ 1)
∂

+
512 x5 + 64 x4 − 128 x3 − 60 x2 − 8 x− 1

x2 (4 x− 1) (4 x+ 1) (16 x3 + 24 x2 + 5 x+ 1)
.

Algorithm 3.1 can not solve Linp. We try to transform Linp to simpler operator L̃inp.

First we compute an integral basis. Then we normalize the basis at infinity and obtain

[B0, B1] where

B0 =
16 x4 − x2

(16 x3 + 24 x2 + 5 x+ 1)x
∂

+
−34359738400 x3− 51539607556 x2− 10737418241 x− 2147483648

(16 x3 + 24 x2 + 5 x+ 1)x

and

B1 =
16 x3 − x

(16 x3 + 24 x2 + 5 x+ 1)x
∂ +

−32 x2 − 4 x− 1

(16 x3 + 24 x2 + 5 x+ 1)x
.

We try to find a suitable G ∈ Q(x)[∂]/Q(x)[∂]Linp. It should be a combination of B0 and

B1. For this example, we take G = B1. This G is called a gauge transformation. It maps

solutions of Linp to solutions of

L̃inp = ∂2 +
48 x2 − 1

x (16 x2 − 1)
∂ +

16

16 x2 − 1
.

L̃inp has a solution in the form of (1),

y(x) = 2F1

(

1

2
,
1

2
; 1; 16x2

)

which is easy to find with Algorithm 3.1. Then we apply the inverse gauge transformation

and obtain a solution of Linp in the form of (2), which is

Y (x) =
(

4x3 + x2 +
x

2

)

2F1

(

1

2
,
1

2
; 1; 16x2

)

+
(

32x5 − 2x3
)

2F1

(

3

2
,
3

2
; 2; 16x2

)

.

2. Preliminaries

This section recalls the concepts needed in later sections.

2 Prof. Jean-Marie Maillard sent us this differential operator.

5

2.1. Differential Operators, Singularities, Formal Solutions

We start with some classical definitions which can be also found in Ince (1926);
van der Put and Singer (2003); Kunwar (2014); Fang (2012); Debeerst (2007); Yuan
(2012).

Definition 2.1. Let L =
∑n

i=0 Ai∂
i ∈ C(x)[∂] be an operator of order n.

(i) A point p ∈ C is called a singularity of L if it is a zero of the leading coefficient of
L or a pole of any other coefficient of L. The point p = ∞ is called a singularity if
p = 0 is a singularity of L1/x. Here L1/x is the differential operator obtained from

L via a change of variables x 7→ 1
x (note that x 7→ f sends ∂ to 1

f ′
∂).

(ii) If x = p is not a singularity, then it is called a regular point of L.

(iii) A singularity p ∈ C is called a regular singularity if (x − p)i An−i

An
is analytic at

x = p for 1 ≤ i ≤ n − 1. The point p = ∞ is a regular singularity if p = 0 is a
regular singularity of L1/x.

(iv) L is regular singular if all its singularities are regular singular.

2.2. Gauss Hypergeometric Differential Operator and 2F1 Function

Definitions also can be found in Wang and Guo (1989); Kunwar (2014); Fang (2012).
Let a1, a2, b1 ∈ Q. The operator

LB = x(1 − x)∂2 + (b1 − (a1 + a2 + 1)x)∂ − a1a2

is called Gauss hypergeometric differential operator (GHDO). The solution space of LB

in a universal extension Fang (2012) has dimension 2 because the order of LB is 2. One
of the solutions of LB at x = 0 is the Gauss hypergeometric function. It is denoted by

2F1 and defined by the Gauss hypergeometric series

2F1(a1, a2; b1;x) =

∞
∑

k=0

(a1)k(a2)k
(b1)kk!

xk.

Here (λ)k denotes the Pochammer symbol. It is defined as (λ)k = λ(λ+1) . . . (λ+ k− 1)
and (λ)0 = 1.

LB has three regular singularities at the points x = 0, x = 1, and x = ∞, with
exponents {0, 1−b1}, {0, b1−a1−a2}, and {a1, a2} respectively. We denote the exponent
differences of a GHDO as α0 = |1 − b1|, α1 = |b1 − a1 − a2|, α∞ = |a1 − a2|. We may
assume {a1, a2, b1 − a1, b1 − a2} ∩ Z = ∅, otherwise LB is reducible (it has exponential
solutions).

Let di be ∞ if αi ∈ Z, and the denominator of αi if αi ∈ Q−Z. We will only consider
a1, a2, b1 for which LB has no Liouvillian solutions. From the Schwarz list Schwarz (1873)
one finds that this is equivalent to 1

d0

+ 1
d1

+ 1
d∞

< 1.

2.3. Transformations and Singularities

We summarize properties of transformations in this section. These properties can also
be found in Kunwar (2014); Fang (2012); Debeerst (2007); Yuan (2012).

Let L1 ∈ C(x)[∂] be a differential operator of order 2, and let y be a solution of L1. We
consider the following transformations that send solutions of L1 to solutions of another
second order differential operator L2.

6

(1) Change of variables :
y(x) −→ y(f), where f ∈ Q(x).

For L1 this means substituting (x, ∂) 7→ (f, 1
f ′
∂).

Notation: L1
f−→C L2.

(2) Exp-product :
y(x) −→ exp (

∫

r dx)y(x), where r ∈ Q(x).
For L1 this means ∂ 7→ ∂ − r.
Notation: L1

r−→E L2.

(3) Gauge transformation:
y(x) −→ r0 · y(x) + r1 · y(x), where r0, r1 ∈ Q(x).
For L1 this means computing the least common left multiple of L1 and r1∂ + r0,
and right-dividing it by r1∂ + r0.

Notation: L1
r0,r1−−−→G L2.

Remark 2.1. Transformations can affect singularities and exponents.
(i) If a transformation

r−→E can send a singular point x = p to a regular point x = p,
then we call x = p a false singularity.

(ii) A singularity x = p is a false singularity Debeerst (2007) if and only if x = p is not

logarithmic and the exponent difference is 1.
(iii) If x = p is a singularity of L1 and if transformation

r−→E can send L1 to an equation
L2 for which all solutions of L2 are analytic at x = p, then we call x = p a removable

singularity.

(iv) A point x = p is removable Debeerst (2007) if and only if x = p is not logarithmic
and the exponent difference is an integer. Non-removable singularities are called
true singularities.

(v) A point x = p is a true singularity if and only if the exponent difference is not an

integer or x = p is logarithmic.

(vi) If L1
r0,r1−−−→G L2, then L1 and L2 are called gauge equivalent. If V1 and V2 are the

solution spaces of L1 and L2 respectively, then G = r1∂ + r0 maps V1 to V2, i.e.,
G(V1) = V2.

Remark 2.2. The quotient method (Remark 1.1 in Section 1) can only use true singu-
larities, otherwise, Y1

Y2

, the quotients of solutions of Linp, would only be known up to a
Möbius transformation instead of up to a constant.

Remark 2.3. At the moment, Algorithms 3.1 and 4.1 are only implemented for rational

function coefficients. However, if f, r, r0, r1 are algebraic, then the three transformations
may turn an operator with rational function coefficients into an operator with algebraic
function coefficients.

Theorem 2.1. Bostan et al. (2011) Let the GHDO LB have exponent differences α0 at

x = 0, α1 at x = 1, and α∞ at x = ∞. Let LB
f−→C Linp. If f(p) ∈ {0, 1,∞}, then Linp

has the following exponent difference at x = p:
• α0 · ep if f has a zero at x = p with multiplicity ep,
• α1 · ep if f − 1 has a zero at x = p with multiplicity ep,

• α∞ · ep if f has a pole at x = p with order ep.

7

3. Computing Solutions of a Second Order Linear Differential Operator in
the form of (1) by using Quotients of Formal Solutions

This section gives our first algorithm, which looks for solutions of the form of (1).

3.1. Problem Statement

Given a second order linear differential operator Linp ∈ Q(x)[∂], irreducible and regu-
lar singular, we want to find a 2F1-type solution of the differential equation Linp(y) = 0
of the form of (1). This is equivalent to finding transformations 1 and 2 from a GHDO
LB to Linp. Therefore, we need to find
(1) LB (i.e., find a1, a2, b1),
(2) parameters f and r of the change of variables and exp-product transformations

such that LB
f−→C

r−→E Linp.

Algorithm 3.1. General Outline of find 2f1.
INPUT: Linp ∈ Q(x)[∂] and (optional) afmax where

Linp = a second order regular singular irreducible operator,
afmax = bound for the algebraic degree af (See Example 1.2). If omitted,
then afmax = 2 which means our implementation tries af = 1 and af = 2.

OUTPUT: Solutions of Linp in the form of (1), or an empty list.

For each af ∈ {1, . . . , afmax}:
(1) Use Section 3.4 to compute candidates for LB and df . This is the combinatorial

part of the algorithm.
(2) For a candidate (LB, df), compute formal solutions of LB and Linp at a non-

removable singularity (see Remark 2.2 in Section 2.3) up to precision a ≥ 2(af +
1)(df +1)+6. Take the quotients of formal solutions and compute series expansions
for q−1 and Q which will be used to compute

f = q−1(cQ(x)) (7)

in the next step.
(3) Choose a good prime number ℓ and try to find c mod ℓ by looping c = 1, 2, . . . , ℓ−1

as in Section 3.5. For each c:
3.1. Compute f mod (xa, ℓ) from equation (7) and use it to reconstruct f mod ℓ

(the image of f in Fℓ(x)). If it fails for every c, then proceed with the next
candidate GHDO (if any) in Step 2. If no candidates remain, then return an
empty list.

3.2. If rational reconstruction in Step 3.1 succeeds for some c values, then apply
Hensel lifting (Section 3.6) to find f mod a power of ℓ. Then try rational
number reconstruction. If it does not fail for at least one c value, then we have
f . If no solution is found (see Remark 3.4 in Section 3.6.1), then proceed with
the next candidate GHDO (if any) in Step 2. If no candidates remain, then
return an empty list.

3.3. Use Section 2.3 to compute the parameter r of the exp-product transformation.
(4) Return a basis of 2F1-type solutions of Linp.

Step 2 is explained in Sections 3.2 and 3.4. Step 3 is the quotient method, see Section
3.5 for more. Steps 3.2 and 3.3 are explained in Sections 3.6 and 3.7 respectively. A Maple
implementation of Algorithm 3.1 and some examples can be found at Imamoglu (2015a).

8

3.2. Degree Bounds for Pullback Functions

Theorem 3.1 (Riemann-Hurwitz Formula). Let X and Y be two algebraic curves with

genera gX and gY respectively. If f : X −→ Y is a non-constant morphism, then

2gX − 2 = deg(f)(2gY − 2) +
∑

p∈X

(ep − 1). (8)

Here ep denotes the ramification order at p ∈ X . See Hartshorne (1977) for more details.

Let LB ∈ Q(x)[∂] be a GHDO, df := deg(f), and assume that

LB
f :P1 7−→P

1

−−−−−−→C
r−→E Linp.

Section 3.1 of Imamoglu and van Hoeij (2015) gives an a priori bound for df ,

df ≤
{

6(ntrue − 2), logarithmic case,

36
(

ntrue − 7
3

)

, non-logarithmic case.
(9)

where ntrue is the number of true singularities of Linp. Algorithm 3.1 uses this only as
an initial degree bound.

3.3. Riemann-Hurwitz Type Formula For Differential Equations

Remark 3.1. Let X be any algebraic curve and C(X) be its function field. The ring
DC(X) := C(X)[∂t] is the ring of differential operators on X . Here t ∈ C(X) \ C. An

element L ∈ DC(X) is a differential operator defined on the algebraic curve X .

Theorem 3.2. (Baldassari and Dwork, 1979, Lemma 1.5) Let X , Y be two algebraic
curves with genera gX , gY , and function fields C(X), C(Y) respectively. Let f : X −→ Y
be a non-constant morphism. The morphism f corresponds to a homomorphismC(Y) −→
C(X), which in turn corresponds to a homomorphism DC(Y) −→ DC(X). If L1 ∈ DC(Y)

with ord(L1) = 2 and L2 is the corresponding element in DC(X), then

Covol(L2, X) = deg(f) · Covol(L1, Y) (10)

where

Covol(L,X) := 2gX − 2 +
∑

p∈X

(1 −∆(L, p))

and where ∆(L, p) is the absolute value of the exponent difference of L at p.

Proof. Following Baldassari and Dwork (1979), take finite sets S ⊆ Y and T = f−1(S)
in such a way that all singularities of L1 are in S, all singularities of L2 are in T , and all
branching points in X are in T as well.

#T =
∑

p∈T

1 =
∑

p∈T

ep +
∑

p∈T

(1− ep) (11)

= deg(f) ·#S +
∑

p∈X

(1− ep) (12)

= deg(f) ·#S − (2gX − 2− deg(f)(2gY − 2)) . (13)

9

From (12) to (13) we used (8). Then,
∑

p∈X

(1−∆(L2, p)) =
∑

p∈T

(1−∆(L2, p)) (14)

=
∑

p∈T

1 −
∑

p∈T

∆(L2, p) (15)

= #T − deg(f)
∑

s∈S

∆(L1, s). (16)

Then, combine (13) and (16) and get

2gX − 2 +
∑

p∈X

(1−∆(L2, p)) = deg(f)

(

2gY − 2 +
∑

s∈Y

(1−∆(L1, s))

)

(17)

which is the same as (10). ✷

Corollary 3.1. Let X = Y = P1 and suppose that LB
f :P1→P

1

−−−−−→C
r−→E Linp where

LB ∈ C(x)[∂] is a GHDO with exponent differences [α0, α1, α∞] at {0, 1,∞}. Since an

exp-product transformation does not affect exponent differences, Theorem 3.2 gives the

following equation for Covol(Linp,P
1):

− 2 +
∑

p∈P1

(1−∆(Linp, p)) = deg(f)

−2 +
∑

i∈{0,1,∞}

(1− αi)

 . (18)

Corollary 3.2. Let LB and Linp be as in Corollary 3.1. Both have rational function

coefficients. This time, suppose that f, r in LB
f−→C

r−→E Linp are algebraic functions.

Then f : X → P1 for an algebraic curve X whose function field C(X) = C(x, f) is an

algebraic extension of both C(x) ∼= C(P1) and C(f) ∼= C(P1). Let af and df denote the

degrees of these extensions.

C(x, f)

C(x) C(f)

af df

Applying (10) to both field extensions gives:

Covol(Linp,P
1) =

df
af

−2 +
∑

i∈{0,1,∞}

(1− αi)

 . (19)

3.4. Candidate Exponent Differences

This section explains how to obtain exponent differences for candidate GHDOs.

10

Algorithm 3.2. General Outline of find expdiffs.
INPUT: einp, eapp, and af where

einp = the list of exponent differences of Linp at its true singularities,
erem = the (possibly empty) list of exponent differences of Linp at its remov-
able singularities,
af = candidate algebraic degree.

OUTPUT: A list of all lists eB = [α0, α1, α∞, d] of integers or rational numbers
where [α0, α1, α∞] is a list of candidate exponent differences and d is a candidate
degree df for f such that:
(i) For every exponent difference m in einp there exists e ∈ Q with e · af ∈

{1, . . . , d} such that m = e · αi for some i ∈ {0, 1,∞}.
(ii) The multiplicities e are consistent with (8), and their sums are compatible

with d, see the last paragraph in Step 2.
(1) Let α1, α2, α3 = α0, α1, α∞. After reordering we may assume that α1, . . . , αk ∈ Z

and αk+1, . . . , α3 /∈ Z for k ∈ {0, 1, 2, 3}. For each k ∈ {0, 1, 2, 3} we use CoverLogs
in Imamoglu (2015a) to compute candidates for α1, . . . , αk ∈ Z.
Algorithm CoverLogs computes candidates that meet these requirements:
• Logarithmic singularities are true singularities with integer exponent differ-
ences. If Linp has at least one logarithmic singularity s with exponent difference
∆(Linp, s), then a candidate LB must have at least one logarithmic singularity;
at least one of the α1, α2, α3 must be an integer that divides af ·∆(Linp, s), and
for every αi ∈ Z there must be at least one s such that αi divides af ·∆(Linp, s).

• ∆(Linp, s) = 0 for some s ⇐⇒ 0 ∈ {α1, α2, α3}.
• Theorem 2.1.
If α1 + · · ·+ αk 6= 0, then algorithm CoverLogs also computes the exact degree

df of f using Theorem 2.1 which shows that df (α1+ · · ·+αk)/af must be the sum
of the logarithmic exponent differences of Linp. Otherwise, it uses (9) to compute
a bound for df , and uses it as df to compute a candidate degree.

(2) We will explain only the case af = 1, and only k = 1, which is the case [α1, α2, α3] =
[α0, α1, α∞], where α0 ∈ Z and α1, α∞ /∈ Z.
Let k = 1. Let α0 ∈ Z be one of the candidates from algorithm CoverLogs. We
need to find candidates for α1 and α∞.
The logarithmic singularities of Linp come from the point 0. Non-integer exponent
differences of Linp must be multiples of α1 or α∞. Let SN be the set of non-
logarithmic exponent differences of Linp and SR be the set of exponent differences
of Linp at its removable singularities. Consider the set

Γ1 =

{

ΓA = {max (SN)
b : b = 1, . . . , df} if SN 6= ∅,

ΓB = {a
b : a ∈ SR ∪ {1}, b = 1, . . . , df} otherwise.

α1 (or α∞, but if so, we may interchange them) must be one of the elements of
Γ1. We loop over all elements of Γ1. Assume that a candidate for α1 is chosen. Let
Ω = SN \ α1Z. Now consider the set

Γ∞ =

{

ΓA ∪ ΓB if Ω = ∅,
{ g
b : g = gcd (Ω) : b = 1, . . . , df} otherwise.

11

Now take all pairs (α∞, d) satisfying (19), α∞ ∈ Γ∞, 1 ≤ d ≤ df , with additional
restrictions on d, as follows:
For every potential non-zero value v for one of the αi’s we pre-compute a list of
integers Nv by dividing all exponent differences of Linp by v and then selecting the
quotients that are integers. Next, let Dv be the set of all 1 ≤ d ≤ df that can be
written as the sum of a sublist of Nv. Each time a non-zero value v is taken for
one of the αi, it imposes the restriction d ∈ Dv. This means that we need not run
a loop for α∞ ∈ Γ∞, instead, we run a (generally much shorter) loop for d (taking
values in the intersection of the Dv’s so far) and then for each such d compute α∞

from (19). We also check if d ∈ Dα∞
.

(3) Return the list of candidate exponent differences with a candidate degree, the list
of lists [α0, α1, α∞, d], for candidate GHDOs.

3.5. Quotient Method

In this section, we explain a method to recover the pullback function f . We will explain
our algorithm for rational pullback functions. For algebraic pullback functions, the only
difference is the lifting algorithm, which is explained in Section 3.6. Note that we can
always compute the formal solutions of a given differential equation Linp(y) = 0 up to a
finite precision.

3.5.1. Non-logarithmic Case

Let the second order differential equation Linp(y) = 0 be given. Let LB be a GHDO

such that LB
f−→C

r−→E Linp. Let f : P1
x 7→ P1

z and L1
f−→C L2. If x = p is a singularity of

L2 and z = s is a singularity of L1, then we say that p comes from s when f(p) = s.
After a change of variables we can assume that x = 0 is a singularity of Linp that

comes from the singularity z = 0 of LB. This means f(0) = 0 and we can write f =
c0x

v0(f) (1 + . . .) where c0 ∈ C, v0(f) is the multiplicity of 0, and the dots refer to an
element in xC[[x]].

Let y1 and y2 be the formal solutions of LB at x = 0. The following diagram shows
the effects of the change of variables and exp-product transformations on the formal
solutions of LB,

yi(x)
f−→C yi(f)

r−→E Yi(x) = exp (

∫

rdx)yi(f), i ∈ {1, 2}

where Y1 and Y2 are solutions of Linp.
Let q = y1

y2

be a quotient of formal solutions of LB. The change of variables trans-

formation sends x to f , and so q to q(f). Therefore, q(f) will be a quotient of formal
solutions of Linp.

The effect of exp-product transformation disappears under taking quotients. In gen-
eral, a quotient of formal solutions of LB at a point x = p is only unique up to Möbius
transformations y1

y2

7→ αy1+βy2

γy1+ηy2

.
If x = p has a non-integer exponent difference, then we can choose q uniquely up to

a constant factor c. So if we likewise compute a quotient Q of formal solutions of Linp,
then we have q(f) = c ·Q(x) for some unknown constant c. Then

f(x) = q−1 (c ·Q(x)) . (20)

12

If we know the value of this constant c, then (20) allows us to compute an expansion for
the pullback function f from expansions of q andQ. To obtain c with a finite computation,
we take a prime number ℓ. Then, for each c ∈ {1, . . . , ℓ− 1} we try to compute f modulo
ℓ in Fℓ(x) using series-to-rational function reconstruction. If this succeeds, then we lift
f modulo a power of ℓ, and try to find f ∈ Q(x) with rational number reconstruction.
Details of lifting are in Section 3.6.

Remark 3.2. We compute formal solutions up to a precision a ≥ (af + 1)(df + 1) + 6.
This suffices to recover the correct pullback function with a few extra terms to reduce
the number of false positives.

Algorithm 3.3. General Outline of case 1: non logarithmic case.
INPUT: Linp, LB, df , af , where

Linp = input differential operator,
LB = candidate GHDO,
df = candidate degree for f ,
af = candidate algebraic degree for f .

OUTPUT: [f, r] or 0, where
f = pullback function,
r = parameter of exp-product transformation.

(1) Compute formal solutions y1, y2 of LB and Y1, Y2 of Linp up to precision a ≥
(af + 1)(df + 1) + 6.

(2) Compute q = y2

y1

, Q = Y2

Y1

, and q−1.

(3) Select a prime ℓ for which these expansions can be reduced mod ℓ.
(4) For each c0 in {1, . . . , ℓ− 1}:

4.1. Evaluate f1,c0 = q−1(c0 ·Q) ∈ Z[x]/(ℓ, xa).

4.2. If af = 1 then try rational function reconstruction for f1,c0 (the case af > 1
is explained in Section 3.6.2).

• If rational function reconstruction succeeds and produces f1,c0 , then store c0
and f1,c0 .

• If rational function reconstruction fails for every c0, then return 0.
(5) For n from 2 (see Remark 3.4 in Section 3.6.1):

For each stored c0:
5.1. Using the techniques explained in Section 3.6 lift fn−1,c0 to fn,c0 .
5.2. fn,c0 is a candidate for f mod ℓn. Try to obtain f from this with rational

number reconstruction. If this succeeds, compute M such that LB
f−→C M .

Compute r such that M
r−→E Linp, if it exists (see Section 3.7). If so, return f

and r.

3.5.2. Logarithmic Case

A logarithm may occur in one of the formal solutions of Linp at x = p if exponents at
x = p differ by an integer. We may assume that Linp has a logarithmic solution at the
singularity x = 0.

Let y1, y2 be the formal solutions of LB at x = 0. Let y1 be the non-logarithmic
solution (it is unique up to a multiplicative constant). Then y2

y1

= c1 · log(x)+ h for some

c1 ∈ C and h ∈ C[[x]]. We can choose y2 such that

c1 = 1 and constant term of h = 0. (21)

13

That makes y2

y1

unique. If h does not contain negative powers of x then define

g = exp

(

y2
y1

)

= x · (1 + . . .) (22)

where the dots refer to an element of xC[[x]].

Remark 3.3. If we choose y2 differently, then we obtain another g̃ = exp
(

y2

y1

)

that relates

to g in (22) by g̃ = c1g
c2 for some constants c1, c2. If h contains negative powers of x,

then the formula for g is slightly different (we did not implement this case, instead we
use Section 4 to transform equations.).

We do likewise for the formal solutions Y1, Y2 of Linp and denote

G = exp

(

Y2

Y1

)

= x · (1 + . . .) . (23)

Write f ∈ C(x) as c0x
v0(f) · (1 + . . .). Then g(f) = c · xv0(f) (1 + . . .). Note that g, G

are not intrinsically unique, the choices we made in (21) implies that

g(f) = c1 ·Gc2 (24)

for some constants c1, c2. Here c1 = c and c2 = v0(f).
If ∆(Linp, 0) 6= 0, then find v0(f) from ∆(LB, 0)v0(f) = ∆(Linp, 0). Otherwise we

loop over v0(f) = 1, 2, . . . , df . That leaves one unknown constant c. We address this
problem as before, choose a good prime number ℓ, try c = 1, 2, . . . , ℓ− 1. Then calculate
an expansion for f with the formula

f = g−1
(

c ·Gv0(f)
)

. (25)

Algorithm 3.4. General Outline of case 2: logarithmic case.
INPUT: Linp, LB, df , af , where

Linp = input differential operator,
LB = candidate GHDO,
df = candidate degree for f ,
af = candidate algebraic degree for f .

OUTPUT: [f, r] or 0, where
f = pullback function,
r = parameter of exp-product transformation.

(1) Compute the exponents of Linp and LB. If ∆(Linp, 0) = 0, then replace Linp with
L defined in Remark (3.3) above. Otherwise let L = Linp.

(2) Compute formal solutions y1, y2 of LB and Y1, Y2 of L up to precision a ≥ (af +
1)(df + 1) + 6.

(3) Compute q = y2

y1

, Q = Y2

Y1

. Compute g, G from (24) and (25) respectively, and g−1.

(4) Same as in Algorithm 3.3 Step 3.
(5) Compute v0(f) and search for c0 value(s) such that c could be ≡ c0 mod ℓ by

looping over c0 = 1, . . . , ℓ− 1. If ∆(Linp, 0) = 0, then also simultaneously loop over
v0(f) = 1, . . . , df to find v0(f).
For each c0 in {1, . . . , ℓ− 1}:
5.1. Evaluate f1,c0 = g−1

(

c0 ·Gv0(f)
)

∈ Z[x]/(ℓ, xa).

14

5.2. Try rational function or algebraic function reconstruction for f1,c0 as in Algo-
rithm 3.3 Step 4.2.

(6) Same as in Algorithm 3.3 Step 5.

3.6. Lifting: Recovering the Pullback Function

We explain lifting by using the formula (20) for the pullback function, which occurs
in the non-logarithmic case. The algorithm for the formula (25) in the logarithmic case
is similar.

3.6.1. Lifting for a Rational Pullback Function

By using the formula (20), which is f(x) = q−1 (c ·Q(x)), we can recover the rational
pullback function f , if we know the value of the constant c. We do not have a direct
formula for c. However, if we know c0 such that

c ≡ c0 mod ℓ

for a good prime number ℓ, then we can recover the pullback function f . This can be
done via Hensel lifting techniques.

Let ℓ be a good prime number and consider

h : Q −→ Q[x]/(xa)

h(c) ≡ q−1 (c ·Q(x)) mod xa.

By looping on c0 = 1, . . . , ℓ−1 and trying rational function reconstruction for h(c0) mod
(ℓ, xa), we can compute the image of f ∈ Fℓ(x) from its image in Fℓ[x]/(x

a). If a is high
enough, then for correct value(s) of c0, rational function reconstruction will succeed and
return a rational function A0

B0

mod ℓ. This c0 is the one satisfying c ≡ c0 mod ℓ.
Write

c ≡ c0 + ℓc1 mod ℓ2

for 0 ≤ c1 ≤ ℓ− 1. Taylor series expansion of h gives us

h(c) = h(c0 + ℓc1) ≡ h(c0) + ℓc1h
′(c0) mod (ℓ2, xa). (26)

Substitute c1 = 0, c1 = 1, respectively, in (26) and compute

h(c0) mod (ℓ2, xa), (27)

h(c0 + ℓ) ≡ h(c0) + ℓh′(c0) mod (ℓ2, xa). (28)

Subtracting (27) from (28) gives

ℓh′(c0) ≡ [h(c0 + ℓ)− h(c0)] mod (ℓ2, xa).

Let

Ec1 = h(c0) + c1ℓh
′(c0) (29)

where c1 is an unknown constant. Suppose f = A
B in characteristic 0. We do not know

what A and B are. However, from applying rational function reconstruction for h(c0),
we obtain A0, B0 with f ≡ A0

B0

mod (ℓ, xa). It follows that

f =
A

B
≡ A0

B0
≡ Ec1 mod (ℓ, xa).

15

From this equation we have

A ≡ BEc1 mod (ℓ, xa). (30)

Now let

f =
A

B
≡ A0 + ℓA1

B0 + ℓB1
mod (ℓ2, xa) (31)

where

A1 = a0 + a1x+ · · ·+ adeg(A0)x
deg(A0)

B1 = b1x+ · · ·+ bdeg(B0)x
deg(B0)

are unknown polynomials. Here we are fixing the constant term of B. We need values of
{ai, bj} to find f mod (ℓ2, xa). From (30), we have

(A0 + ℓA1) ≡ (B0 + ℓB1) ·Ec1 mod (ℓ2, xa). (32)

Now, solve the linear system (32) for unknowns {ai, bj, c1} in Fℓ. From (31) find f mod
(ℓ2, xa) and c ≡ c0 + ℓc1 mod ℓ2.

Try rational number reconstruction after each Hensel lift. If it succeeds, then check if
this rational function is the one that we are looking for as in the last step of Algorithm
3.3. If it is not, then lift f mod (ℓ2, xa) to mod (ℓ3, xa) (or (ℓ4, xa) if an implementation
for solving linear equations mod ℓn is available). After a (finite) number of steps, we can
recover the rational pullback function f .

Remark 3.4. Our implementation gives up when the prime power becomes “too high”;
(a proven bound is still lacking, but would be needed for a rigorous algorithm).

3.6.2. Lifting for an Algebraic Pullback Function

We can recover algebraic pullback functions in a similar way. However, we need to
know af = [C(x, f) : C(x)]. The idea is to recover the minimal polynomial of f .

Let df = [C(x, f) : C(f)]. Consider the polynomial in y

af
∑

j=0

Ajy
j mod (ℓ, xa) (33)

with unknown polynomials

Aj =

df
∑

i=0

ai,jx
i

where j = 0, . . . , af .
First we need to find the value of c0 such that c0 ≡ c mod ℓ. As before, by looping

on c0 = 1, . . . , ℓ − 1, we can compute the corresponding fc0 which is a candidate for f
mod (xa, ℓ) in Fℓ[x]/(x

a). The polynomial (33) should be congruent to 0 mod (ℓ, xa) if
we plug in fc0 for y. Solve the system

af
∑

j=0

Ajf
j
c0 ≡ 0 mod (ℓ, xa)

over Fℓ and find the unknown polynomials Aj mod ℓ. Then let

c ≡ c0 + ℓc1 mod ℓ2.

16

Now let Ec0 be as in (29) and consider the system

af
∑

j=0

(Aj + ℓÃj)E
j
c0 ≡ 0 mod (ℓ2, xa).

Solve it over Fℓ to find c1 and the unknown polynomials Ãj . After a finite number of
lifting steps and rational reconstruction, we will have the minimal polynomial of

∑

Ajy
j

of f in Q[x, y].

3.7. Recovering the Parameter of Exp-product

After finding f , we can compute the differential operator M , such that

LB
f−→C M

r−→E Linp.

Then we can compare the second highest terms of M and Linp to find the parameter r
of the exp-product transformation: If M = ∂2 + B1∂ + B0 and Linp = ∂2 + A1∂ + A0,
then

r =
B1 −A1

2
.

4. Computing an Integral Basis for a Linear Differential Operator

We tested Algorithm 3.1 on many examples, including from the Online Encyclope-
dia of Integer Sequences, (https://oeis.org). Another source of examples comes from
Bousquet-Melou and Mishna (2010); Bostan and Kauers (2009); Bostan et al. (in Progress)
(see Imamoglu (2015b) for these operators). Four of them have solutions in the form of
(1) and Algorithm 3.1 finds these solutions. However, Algorithm 3.1 does not solve the
other operators from that list. We know from Bousquet-Melou and Mishna (2010) and
Bostan and Kauers (2009) that these operators do have solutions in the form of (2). It
means that these operators must be gauge equivalent to operators with solutions in the
form of (1). The question is how can we find these gauge transformations? As mentioned
in the introduction the key idea is to follow Cohen and Diaz Y Diaz (1991) POLRED’s
strategy; compute an integral basis and then normalize it at infinity. Then we can select
an element with minimal valuations at infinity. This element gives us a gauge transfor-
mation.

We modified the algorithm explained in Kauers and Koutschan (2015), which is an
analogue of the algorithm in van Hoeij (1994), and implemented our own version of the
integral basis procedure for second order regular singular linear differential operators.
Our integral basis algorithm first finds local integral bases for each finite singularity of
Linp, then combines all of these local bases, and at the end normalizes the basis at infinity
in the sense of (Trager, 1984, Section 2.3) (see Section 4.2).

4.1. Integral Bases

Definition 4.1. The local parameter tp of a point p ∈ C∪{∞} is defined as tp = x−p if
p 6= ∞ and tp = 1

x otherwise. If L ∈ C(x)[∂] is regular singular, then all of the solutions
of L at a point x = p are in the form

f = tνpp

∞
∑

i=0

Pit
i
p

17

https://oeis.org

where νp ∈ C and Pi ∈ C[log (tp)] with deg (Pi) < ord(L).

Definition 4.2. Let y be a solution of L at x = 0,

y = xν0

∞
∑

i=0

Pix
i

where Pi ∈ C[log (x)]. The valuation of y at x = 0 is defined as follows:

v0(y) := ν0 + inf{i |Pi 6= 0}. (34)

We say that y is integral at x = 0 if Re(v0(y)) ≥ 0.

Definition 4.3. If p ∈ C ∪ {∞} and y is a solution of L at x = p, then the valuation of
y at x = p is defined as in (34) with x replaced by tp.

Definition 4.4. Let L ∈ C(x)[∂] and G ∈ C(x)[∂]. The operator G is called integral for
L if

∀p∈CRe(vp(G(y))) ≥ 0. (35)

We may assume that ord(G) < ord(L) because G = QL + R for some Q,R ∈ C(x)[∂]
such that ord(R) < ord(L), and we may replace G by R without changing G(y) in (35),
i.e., we may interpret G as an element of C(x)[∂]/C(x)[∂]L.

Definition 4.5. Let L ∈ C(x)[∂] and

ML = {G ∈ C(x)[∂] |G is integral for L and ord(G) < ord(L)}.
A basis of ML as C[x]-module is called an integral basis.

4.2. Normalization at Infinity

Assume that we computed an integral basis [B0, B1] for a second order regular singular
L ∈ Q(x)[∂]. One can normalize [B0, B1] at infinity as follows:

Compute the formal solutions Y1, Y2 of Linp at x = ∞. Compute the pole orders (the
pole order is the valuation as in (34) multiplied by −1) of

B0(Y1), B0(Y2), B1(Y1), B1(Y2) (36)

at the point x = ∞. Let the maximum of the pole orders be m and let it come from
Bi(Yj) where i ∈ {0, 1} and j ∈ {1, 2}. Form the ansatz

B = Bi(Yj)− C · x(m−n)Bk(Yj).

Here k ∈ {0, 1}, k 6= i, and n is the pole order of Bk(Yj) at x = ∞. For a suitable C, the
pole order ofB at x = ∞ will be less thanm. Find this C. Update Bi = Bi−C ·x(m−n)Bk.
Now we have the updated basis [B0, B1]. Compute the pole orders, for this updated basis,
as in (36). The possibilities for the updated basis [B0, B1] are
(1) one of the pole orders decreases and none of them increases,
(2) one of the other pole orders increases.

If 1 occurs, then it means that we made an improvement, we are making the pole orders
smaller. Repeat this process until there is no improvement possible (case 2). Then return
the normalized basis [B0, B1].

18

4.3. Finding a Suitable Gauge Transformation

By using an integral basis [B0, B1], which is normalized at infinity, for Linp, we

want to find a gauge transformation G such that G transforms Linp to L̃inp such that

LB
f−→C

r−→E L̃inp.We observed that for the operators coming from Bousquet-Melou and Mishna
(2010) and Bostan and Kauers (2009), one of the basis elements always gives such a gauge
transformation G. We tested our main algorithm on other examples as well and it turns
out that this approach is very effective.

Algorithm 4.1. General Outline of hypergeometricsols.
INPUT: Linp ∈ Q(x)[∂] and (optional) afmax where

Linp = a second order regular singular irreducible operator,
afmax = bound for the algebraic degree af . If omitted, then afmax = 2
which means our implementation tries af = 1 and af = 2.

OUTPUT: Solutions of Linp in the form of (2), or an empty list.
(1) Try to find solutions of Linp in the form of (1) by using the Algorithm 3.1 in Section

3. If none are found go to Step 2.
(2) Compute an integral basis [B0, B1] for Linp and normalize this basis at infinity

by using the method given in Section 4.2. Each basis element Bk, (k ∈ {0, 1}), is
a candidate gauge transformation. Transform Linp to another operator using Bk.
Try to find solutions of the new operator in the form of (1) by using Algorithm
3.1. If this new operator has solutions of type (1), then apply the inverse of the
gauge transformation to these solutions to form the solutions of Linp of type (2),
and return them. Otherwise return an empty list.

A Maple implementation of Algorithm 4.1 and examples can be found at Imamoglu
(2015b).

References

Baldassari, F., Dwork, B. 1979. On Second Order Linear Differential Equations with
Algebraic Solutions. American Journal of Mathematics 101, 42–76.

Bostan, A., Chyzak, F., Kauers, M., Pech, L., van Hoeij, M., in Progress. Explicit Differ-
entiably Finite Generating Functions of Walks with Small Steps in the Quarter Plane,
in Progress.

Bostan, A., Chyzak, F., van Hoeij, M., Pech, L., 2011. Explicit Formula for Generating
Series of Diagonal 3d Rook Paths. Seminaire Lotharingien de Combinatorie.

Bostan, A., Kauers, M., 2009. Automatic Clasification of Restricted Lattice Walks. FP-
SAC’09 Proceedings.

Bousquet-Melou, M., Mishna, M., 2010. Walks with Small Steps in the Quarter Plane.
Contemporary Mathematics 520, 1–39.

Cohen, H., Diaz Y Diaz, F., 1991. A Polynomial Reduction Algorithm. Journal de théorie
des nombres de Bordeaux, 351–360.

Debeerst, R., 2007. Solving Differential Equations in terms of Bessel Functions. Master’s
thesis, Universität Kassel.

Fang, T., 2012. Solving Linear Differential Equations in terms of Hypergeometric Func-
tions by 2-Descent. Ph.D. thesis, Florida State University.

19

Fang, T., van Hoeij, M., 2011. 2-Descent for Second Order Linear Differential Equations.
ISSAC’11 Proceedings, 107–114.

Hartshorne, R., 1977. Algebraic Geometry. Springer.
Imamoglu, E., 2015a. Implementation of find 2f1.
www.math.fsu.edu/~eimamogl/find_2f1.

Imamoglu, E., 2015b. Implementation of hypergeometricsols.
www.math.fsu.edu/~eimamogl/hypergeometricsols.

Imamoglu, E., van Hoeij, M., 2015. Computing Hypergeometric Solutions of Second
Order Linear Differential Equations using Quotients of Formal Solutions. ISSAC’15
Proceedings, 235–242.

Ince, E. L., 1926. Ordinary Differential Equations. Dover Publications, Inc., New York.
Kauers, M., Koutschan, C., 2015. Integral D-Finite Functions. ISSAC’15 Proceedings,
251–258.

Kovacic, J., 1986. An Algorithm for Solving Second Order Linear Homogeneous Equa-
tions. Journal of Symbolic Computation 2 (1), 2–43.

Kunwar, V. J., 2014. Hypergeometric Solutions of Linear Differential Equations with
Rational Function Coefficients. Ph.D. thesis, Florida State University.

Kunwar, V. J., van Hoeij, M., 2013. Second Order Differential Equations with Hyperge-
ometric Solutions of Degree Three. ISSAC’13 Proceedings, 235–242.

Schwarz, H. A., 1873. Ueber diejenigen Fälle, in welchen die Gaussische hyperge-
ometrische Reihe eine algebraische Function ihres vierten Elementes darstellt. Journal
für die Reine und Angewandte Mathematik, 292–335.

Trager, B. M., 1984. Integration of Algebraic Functions. Ph.D. thesis, Massachusetts
Institute of Technology.

van der Put, M., Singer, M. F., 2003. Galois Theory of Linear Differential Equations.
Vol. 328 of Grundlehren der mathematischen Wissenschaften. Springer.

van Hoeij, M., 1994. An Algorithm for Computing an Integral Basis in an Algebraic
Function Field. Journal of Symbolic Computation 18 (4), 353–363.

van Hoeij, M., Vidunas, R., 2015. Belyi Functions for Hyperbolic Hypergeometric-to-
Heun Transformations. Journal of Algebra 441, 609–659.

Wang, Z. X., Guo, D. R., 1989. Special Functions. World Scientific.
Yuan, Q., 2012. Finding All Bessel Type Solutions for Linear Differential Equations with
Rational Function Coefficients. Ph.D. thesis, Florida State University.

20

www.math.fsu.edu/~eimamogl/find_2f1
www.math.fsu.edu/~eimamogl/hypergeometricsols

	1 Introduction
	2 Preliminaries
	2.1 Differential Operators, Singularities, Formal Solutions
	2.2 Gauss Hypergeometric Differential Operator and 2F1 Function
	2.3 Transformations and Singularities

	3 Computing Solutions of a Second Order Linear Differential Operator in the form of (1) by using Quotients of Formal Solutions
	3.1 Problem Statement
	3.2 Degree Bounds for Pullback Functions
	3.3 Riemann-Hurwitz Type Formula For Differential Equations
	3.4 Candidate Exponent Differences
	3.5 Quotient Method
	3.6 Lifting: Recovering the Pullback Function
	3.7 Recovering the Parameter of Exp-product

	4 Computing an Integral Basis for a Linear Differential Operator
	4.1 Integral Bases
	4.2 Normalization at Infinity
	4.3 Finding a Suitable Gauge Transformation

