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Abstract

This paper contains three notes concerning Ser’s and Hasse’s series representations for the zeta-

functions. All notes are presented as theorems. The first theorem shows that the famous Hasse’s

series for the Euler–Riemann zeta-function, derived in 1930 and named after the German mathemati-

cian Helmut Hasse, is equivalent to an earlier expression given by a little-known French mathemati-

cian Joseph Ser in 1926. The second theorem provides a comparatively simple series representation

for the zeta-function in terms of the Cauchy numbers of the second kind (Nørlund numbers). This

series is complimentary to another Ser’s result and also gives rise to a new series expansion for the

Stieltjes constants and for the MacLaurin coefficients of the regularized zeta-function. In the third

theorem, previous results are generalized to the Hurwitz zeta-function and involve special polynomi-

als (close to the Bernoulli polynomials), of which Cauchy numbers of the second kind and Gregory’s

coefficients are simple particular cases. In particular, in this theorem, three series representations for

the Hurwitz zeta–function and two series representations for the zeta–functions are obtained. These

representations are complimentary to Hasse’s series (they contain the same finite differences) and

also generalize Ser’s results. These expansions lead to various series expansions for the generalized

Stieltjes constants (including series with rational terms for Euler’s constant), for the MacLaurin coeffi-

cients of the regularized Hurwitz zeta-function, for the logarithm of the gamma-function and for the

digamma function. Finally, several “unpublished” contributions of Charles Hermite related to these

results are also mentioned.

Keywords: Zeta-function, Hasse, Ser, Finite difference, Generalized Bernoulli numbers, Bernoulli

polynomials, Stirling numbers, Cauchy numbers, Norlund numbers, Gregory coefficients,

Logarithmic numbers, Stieltjes constants, Interpolation.

I. Introduction

The Euler–Riemann zeta-function

ζ(s) ≡
∞

∑
n=1

n−s =
∞

∏
n=1

(
1 − p−s

n

)−1
,

Re s > 1

pn ∈ P ≡ {2, 3, 5, 7, 11, . . .}
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and its most common generalization the Hurwitz zeta-function

ζ(s, v) ≡
∞

∑
n=0

(n + v)−s ,
Re s > 1

v 6= 0,−1,−2, . . .

ζ(s) = ζ(s, 1), are some of the most important special functions in analysis and number theory. They

were studied by many famous mathematicians, including Stirling, Euler, Malmsten, Clausen, Kinke-

lin, Riemann, Hurwitz, Lerch, Landau, and continue to receive considerable attention from modern

researchers. In 1930, the German mathematician Helmut Hasse published a paper [28], in which he

obtained and studied these globally convergent series for the ζ–functions

ζ(s) =
1

s − 1

∞

∑
n=0

1

n + 1

n

∑
k=0

(−1)k

(
n

k

)

(k + 1)1−s (1)

ζ(s, v) =
1

s − 1

∞

∑
n=0

1

n + 1

n

∑
k=0

(−1)k

(
n

k

)

(k + v)1−s (2)

containing finite differences ∆n11−s and ∆nv1−s respectively.1 Hasse also remarked2 that the first

series is quite similar to the Euler transformation of the η-function series
∞

∑
n=1

(−1)n+1n−s =
(
1 −

21−s
)

ζ(s) , Re s > 0 , i.e.

ζ(s) =
1

1 − 21−s

∞

∑
n=0

1

2n+1

n

∑
k=0

(−1)k

(
n

k

)

(k + 1)−s (3)

which also contain the finite difference ∆n11−s .1 Formulæ (1)–(2) have become widely known, and

in literature they are often referred to as Hasse’s formulæ for the ζ-functions. Moreover, some of them

were subsequently rediscovered several times throughout the following decades (e.g., by Jonathan

Sondow [58], [52], [20]). At the same time, it is much less known that 4 years earlier, a little-known

French mathematician Joseph Ser published a paper [50] containing very similar results. In particular,

he showed that

ζ(s) =
1

s − 1

∞

∑
n=0

1

n + 2

n

∑
k=0

(−1)k

(
n

k

)

(k + 1)−s (4)

as well as gave this curious series

ζ(s) =
1

s − 1
+

∞

∑
n=0

∣
∣Gn+1

∣
∣

n

∑
k=0

(−1)k

(
n

k

)

(k + 1)−s = (5)

=
1

s − 1
+

1

2
+

1

12

(
1 − 2−s

)
+

1

24

(
1 − 2 · 2−s + 3−s

)
+ . . .

1For the definition of the finite difference operator, see (28).
2Stricktly speaking, the remark was communicated to him by Konrad Knopp.
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[50, Eq. (4), p. 1076]3, [5, p. 382], to which Charles Hermite was also very close already in 1900.4

Numbers Gn appearing in the latter expansion are known as Gregory’s coefficients and may also be

called by some authors (reciprocal) logarithmic numbers, Bernoulli numbers of the second kind, normalized

generalized Bernoulli numbers B
(n−1)
n and normalized Cauchy numbers of the first kind C1,n. They are

rational and may be defined either via their generating function

z

ln(1 + z)
= 1 +

∞

∑
n=1

Gn zn, |z| < 1 , (6)

or explicitly

Gn =
C1,n

n!
= lim

s→n

−B
(s−1)
s

(s − 1) s!
=

1

n!

n

∑
l=1

S1(n, l)

l + 1
=

1

n!

1
ˆ

0

(x − n + 1)n dx , n = 1, 2, 3, . . . (7)

where (x)n ≡ x (x + 1) (x + 2) · · · (x + n− 1) stands for the Pochhammer symbol (also known as the

rising factorial), so that we have

(x − n + 1)n = x (x − 1) (x − 2) · · · (x − n + 1) =
n

∑
l=1

S1(n, l) xl , (8)

and where S1(n, l) are the signed Stirling numbers of the first kind.5 Gregory’s coefficients are alter-

nating Gn = (−1)n−1|Gn| and decreasing in absolute value; they behave as 1
n ln2 n

at n → ∞ and

may be bounded from below and from above accordingly to formulæ (55)–(56) from [6].6 The first few

coefficients are: G1 = +1/2 , G2 = −1/12 , G3 = +1/24 , G4 = −19/720 , G5 = +3/160 , G6 = −863/60 480 ,. . . 7

For more information about these important numbers, see [6, pp. 410–415], [5, p. 379], and the litera-

ture given therein (nearly 50 references).

II. On the equivalence between Ser’s and Hasse’s representations for the Euler–Riemann zeta-

function

One may readily remark that Hasse’s representation (1) and Ser’s representation (4) are very sim-

ilar, so one may question whether these expressions are equivalent or not. The paper written by Ser

[50] is much less cited than that by Hasse [28], and in the few works in which both of them are cited,

3Our formula (5) is a corrected version of the original Ser’s formula (4) [50, p. 1076] (we also gave the correct variant of this

formula in our previous work [5, p. 382]). For Ser’s formula (4), the corrections which need to be done are the following. First,

in the second line of (2) the last term should be (−1)n(n + 1)−s and not (−1)nn−s. Second, in equation (3), “(1-x((2-x)” should

read “(1-x)(2-x)”. Third, the region of convergence of formula (4), p. 1076, should be s ∈ C \{1} and not s < 1. Note also that

Ser’s pn+1 are equal to our |Gn|. We, actually, carefully examined 5 different hard copies of [50] (from the Institut Henri Poincaré,

from the École Normale Supérieure Paris, from the Université Pierre-et-Marie-Curie, from the Université de Strasbourg and from the

Bibliothèque nationale de France), and all of them contained the same misprints.
4Stricktly speaking, Charles Hermite aimed to obtain a more general expression (see, for more details, Theorem 3 and

footnote 14).
5These numbers are defined as coefficients in expansion (8). For more information about these numbers, see [6, Sect. 2] and

numerous references given therein. Here we use exactly the same definition for S1(n, l) as in the cited reference.
6For the asymptotics of Gn and its history, see [7, Sect. 3].
7Numerators and denominators of Gn may also be found in OEIS A002206 and A002207 respectively.
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these series are treated as different and with no connection between.8 However, as we come to show

later, this not true.

In one of our previous works [5, p. 382], we already noticed that these two series are, in fact,

equivalent, but this was stated in a footnote and without a proof.9 Below, we provide a rigorous

proof of this statement.

Theorem 1. Ser’s representation for the ζ–function [50, p. 1076, Eq. (7)]

ζ(s) =
1

s − 1

∞

∑
n=0

1

n + 2

n

∑
k=0

(−1)k

(
n

k

)

(k + 1)−s (9)

and Hasse’s representation for the ζ–function [28, pp. 460–461]

ζ(s) =
1

s − 1

∞

∑
n=0

1

n + 1

n

∑
k=0

(−1)k

(
n

k

)

(k + 1)1−s (10)

are equivalent in the sense that one series is a rearranged version of the other.

Proof 1. In view of the fact that

1

k + 1
·

(
n

k

)

=
1

n + 1
·

(
n + 1

k + 1

)

and that
1

(n + 2)(n + 1)
=

1

n + 1
−

1

n + 2
,

Ser’s formula (9) multiplied by (s − 1) may be written as

(s − 1)ζ(s) =
∞

∑
n=0

1

n + 2

n

∑
k=0

(−1)k

(
n

k

)

(k + 1)−s =
∞

∑
n=0

1

(n + 2)(n + 1)

n

∑
k=0

(−1)k

(
n + 1

k + 1

)

(k + 1)1−s

=
∞

∑
n=0

1

n + 1

n

∑
k=0

(−1)k

(
n + 1

k + 1

)

(k + 1)1−s −
∞

∑
n=0

1

n + 2

n

∑
k=0

(−1)k

(
n + 1

k + 1

)

(k + 1)1−s

= 1 +
∞

∑
n=1

1

n + 1

n

∑
k=0

(−1)k

(
n + 1

k + 1

)

(k + 1)1−s −
∞

∑
n=1

1

n + 1

n−1

∑
k=0

(−1)k

(
n

k + 1

)

(k + 1)1−s

= 1 +
∞

∑
n=1

(−1)n

(n + 1)s
+

∞

∑
n=1

1

n + 1

n−1

∑
k=0

(−1)k

(k + 1)s−1

{(
n + 1

k + 1

)

−

(
n

k + 1

)}

= 1 +
∞

∑
n=1

(−1)n

(n + 1)s
+

∞

∑
n=1

1

n + 1

n−1

∑
k=0

(−1)k

(k + 1)s−1

(
n

k

)

= 1 +
∞

∑
n=1

1

n + 1

n

∑
k=0

(−1)k

(k + 1)s−1

(
n

k

)

=
∞

∑
n=0

1

n + 1

n

∑
k=0

(−1)k

(k + 1)s−1

(
n

k

)

where, between the fourth and fifth lines, we resorted to the well–known recurrent property of the

binomial coefficients. The last line is identical with Hasse’s formula (10).

8A simple internet search with “Google scholar” indicates that Hasse’s paper [28] is cited more than 50 times, while Ser’s

paper [50] is cited only 12 times (including several on-line resources such as [57], as well as some incorrect items), and all the

citations are very recent. These citations mainly regard an infinite product for eγ, e.g. [53], [8], [15], [14], and we found only

two works [20], [23], where both articles [50] and [28] were cited simultaneously and in the context of series representations for

ζ(s).
9We, however, indicated that a recurrence relation for the binomial coefficients should be used for the proof.
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Corollary 1a. Series (9) and (10) are equivalent in the sense that (10) may be obtained by an appro-

priate rearrangement of terms in (9) and vice-versa. However, it is not difficult to see that their rates

of convergence differ: the rate of convergence of Ser’s series for the argument s corresponds to that of

Hasse’s series for the argument s − 1.

Corollary 1b. Series (9), (10) and (5) may be readily used to get corresponding expressions for the

Stieltjes constants γm. We recall that the latter γm , m = 0, 1, 2, . . . , are the coefficients appearing in the

regular part of the Laurent series expansion of ζ(s) about its unique pole s = 1

ζ(s) =
1

s − 1
+ γ +

∞

∑
m=1

(−1)mγm

m!
(s − 1)m , s 6= 1 , (11)

and γ0 = γ.10 Since the function ζ(s) − (s − 1)−1 is holomorphic on the entire complex s–plane,

it may be expanded into the Taylor series. The latter expansion, applied to (9), (10) and (5) in a

neighbourhood of s = 1, yields

γm = −
1

m + 1

∞

∑
n=0

1

n + 2

n

∑
k=0

(−1)k

(
n

k

)
lnm+1(k + 1)

k + 1
, m = 0, 1, 2 . . .

γm = −
1

m + 1

∞

∑
n=0

1

n + 1

n

∑
k=0

(−1)k

(
n

k

)

lnm+1(k + 1) , m = 0, 1, 2 . . .

γm =
∞

∑
n=0

∣
∣Gn+1

∣
∣

n

∑
k=0

(−1)k

(
n

k

)
lnm(k + 1)

k + 1
, m = 1, 2, 3, . . .

(12)

respectively.

Corollary 1c. Analogously to the Stieltjes constants γm, may be introduced the normalized MacLaurin

coefficients δm of ζ(s)− (s − 1)−1

ζ(s) =
1

s − 1
+

1

2
+

∞

∑
m=1

(−1)mδm

m!
sm , s 6= 1. 11 (13)

Using Ser’s formula (5), it is easy to see that δm admit the following series representation

δm =
∞

∑
n=0

∣
∣Gn+1

∣
∣

n

∑
k=0

(−1)k

(
n

k

)

lnm(k + 1) , m = 1, 2, 3, . . . (14)

III. A series for the zeta-function with the Cauchy numbers of the second kind (Nørlund numbers)

An appropriate rearrangement of terms in another series of Ser, formula (5), also leads to an inter-

esting result. In particular, one may obtain a series very similar to (5), but containing the normalized

Cauchy numbers of the second kind Cn instead of Gregory’s coefficients Gn.

The normalized Cauchy numbers of the second kind Cn, related to the ordinary Cauchy numbers

of the second kind C2,n as Cn ≡ C2,n/n! (numbers C2,n are also known as signless generalized Bernoulli

10For more information on γm , see [24, p. 166 et seq.], [6], [4], and the literature given therein.
11Numbers δm were studied by numerous authors, including some modern writers, e.g. [37], [51], [21]. They are also related

to γm; in particular: δ1 = 1
2 ln 2π − 1 , δ2 = γ1 +

1
2 γ2 − 1

2 ln22π − 1
24 π2 + 2 , and so on, see e.g. [24, p. 168 et seq.].
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numbers |B
(n)
n | and signless Nørlund numbers), appear in the series expansion of z

(1±z) ln(1±z)
and of

ln ln(1 ± z) in a neighbourhood of zero







z

(1 + z) ln(1 + z)
= 1 +

∞

∑
n=1

Cn (−z)n , |z| < 1 ,

ln ln(1 + z) = ln z +
∞

∑
n=1

Cn

n
(−z)n , |z| < 1 ,

(15)

and may be also defined explicitly

Cn ≡
C2,n

n!
=

|B
(n)
n |

n!
=

1

n!

n

∑
l=1

|S1(n, l)|

l + 1
=

1

n!

1
ˆ

0

(x)n dx , n = 1, 2, 3, . . . (16)

Numbers Cn are positive rational and always decrease with n; they behave as 1
ln n at n → ∞ and

may be bounded from below and from above accordingly to formulæ (53)–(54) from [6]. The first few

values are: C1 = 1/2 , C2 = 5/12 , C3 = 3/8 , C4 = 251/720 , C5 = 95/288 , C6 = 19 087/60 480 , . . .12 For

more information on the Cauchy numbers of the second kind, see [44, pp. 150–151], [22, p. 12], [45],

[2, vol. III, pp. 257–259], [18, pp. 293–294, no 13], [30, 1, 62, 46], [6, pp. 406, 410, 414–415, 428–430], [5].

Theorem 2. The ζ–function may be represented by the following globally convergent series

ζ(s) =
1

s − 1
+ 1 −

∞

∑
n=0

Cn+1

n

∑
k=0

(−1)k

(
n

k

)

(k + 2)−s = (17)

=
1

s − 1
+ 1 − 2−s−1 −

5

12

(
2−s − 3−s

)
−

3

8

(
2−s − 2 · 3−s + 4−s

)
− . . .

where Cn are the normalized Cauchy numbers of the second kind.

Proof 2. Using Fontana’s identity ∑ |Gn| = 1 , where the summation extends over n = [1, ∞) , see

e.g. [6, p. 410, Eq. (20)], Ser’s formula (5) takes the form

ζ(s) =
1

s − 1
+ 1 +

∞

∑
n=1

∣
∣Gn+1

∣
∣

n

∑
k=1

(−1)k

(
n

k

)

(k + 1)−s = (18)

=
1

s − 1
+ 1 +

1

12

(
− 2−s

)
+

1

24

(
− 2 · 2−s + 3−s

)
+ . . .

Now, by taking into account the joint recurrent property relating the Cauchy numbers of the second

kind to Gregory’s coefficients Cn−1 − Cn = |Gn| , see [22, p. 12, Eq. (5)], [6, pp. 429–430], and by

employing that of the binomial coefficients

(
n + 1

k

)

−

(
n

k

)

=

(
n

k − 1

)

,

12See also OEIS A002657 and A002790, which are the numerators and denominators respectively of C2,n = n! Cn.
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we find that

ζ(s)−
1

s − 1
− 1 =

∞

∑
n=1

Cn

n

∑
k=1

(−1)k

(
n

k

)

(k + 1)−s −
∞

∑
n=1

Cn+1

n

∑
k=1

(−1)k

(
n

k

)

(k + 1)−s

=
∞

∑
n=0

Cn+1

n+1

∑
k=1

(−1)k

(
n + 1

k

)

(k + 1)−s −
∞

∑
n=1

Cn+1

n

∑
k=1

(−1)k

(
n

k

)

(k + 1)−s

= −C1 2−s +
∞

∑
n=1

Cn+1

{
n+1

∑
k=1

(−1)k

(
n + 1

k

)

(k + 1)−s −
n

∑
k=1

(−1)k

(
n

k

)

(k + 1)−s

}

= −C1 2−s +
∞

∑
n=1

Cn+1

{

(−1)n+1

(n + 2)s
+

n

∑
k=1

(−1)k

(
n

k − 1

)

(k + 1)−s

}

= −C1 2−s −
∞

∑
n=1

Cn+1

n

∑
k=0

(−1)k

(
n

k

)

(k + 2)−s = −
∞

∑
n=0

Cn+1

n

∑
k=0

(−1)k

(
n

k

)

(k + 2)−s

which is identical with (17). The global convergence of (17) follows from that of (5).

Corollary 2a. Proceeding analogously to Corollary 1b, we obtain for the Stieltjes constants the follow-

ing series

γm = −
∞

∑
n=0

Cn+1

n

∑
k=0

(−1)k

(
n

k

)
lnm(k + 2)

k + 2
, m = 1, 2, 3, . . . (19)

For Euler’s constant γ, we have an expression which may be simplified thanks to the fact that (−1)n∆nx−1
∣
∣
x=2

=
1

(n+1) (n+2)

γ0 = γ = 1 −
∞

∑
n=0

Cn+1

n

∑
k=0

(−1)k

k + 2

(
n

k

)

= 1 −
∞

∑
n=0

Cn+1

(n + 1) (n + 2)
=

= 1 −
1

4
−

5

72
−

1

32
−

251

14 400
−

19

1728
−

19 087

2 540 160
− . . .

the series which we already encountered in earlier works [6, p. 380, Eq. (34)], [5, p. 429, Eq. (95)].

Corollary 2b. Similarly, from Theorem 2 it follows that

δm = −
∞

∑
n=0

Cn+1

n

∑
k=0

(−1)k

(
n

k

)

lnm(k + 2) , m = 1, 2, 3, . . . (20)

IV. Generalizations of series with Gregory’s coefficients and Cauchy numbers of the second kind

to the Hurwitz zeta–function

Theorem 3. The Hurwitz zeta–function ζ(s, v) may be represented by the following series with the finite

difference ∆nv−s

ζ(s, v) =
v1−s

s − 1
+

∞

∑
n=0

∣
∣Gn+1

∣
∣

n

∑
k=0

(−1)k

(
n

k

)

(k + v)−s =
v1−s

s − 1
+

1

2
v−s + (21)

+
1

12

[
v−s − (1 + v)−s

]
+

1

24

[
v−s − 2(1 + v)−s + (2 + v)−s

]
+ . . . , Re v > 0 ,

7



ζ(s, v) =
(v − 1)1−s

s − 1
−

∞

∑
n=0

Cn+1

n

∑
k=0

(−1)k

(
n

k

)

(k + v)−s =
(v − 1)1−s

s − 1
−

1

2
v−s − (22)

−
5

12

[
v−s − (1 + v)−s

]
−

3

8

[
v−s − 2 (1 + v)−s + (2 + v)−s)

]
− . . . , Re v > 1 ,

and

ζ(s, v) =
1

m (s − 1)

m−1

∑
n=0

(v + a + n)1−s +
1

m

∞

∑
n=0

(−1)nNn+1,m(a)
n

∑
k=0

(−1)k

(
n

k

)

(k + v)−s (23)

Re v > −Re a , Re a > −1 containing Gregory’s coefficients Gn, normalized Cauchy numbers of the second

kind Cn and polynomials

Nn,m(a) ≡
1

n!

a+m
ˆ

a

(x − n + 1)n dx = ψn+1(a + m)− ψn+1(a) ,
n, m ∈ N

Re a > −1
(24)

which may also be given via their generating function

(1 + z)a+m − (1 + z)a

ln(1 + z)
= m +

∞

∑
n=1

Nn,m(a) zn , |z| < 1 , (25)

respectively, function ψn(x) being the normalized antiderivative of the falling factorial, also known as the

Bernoulli polynomials of the second kind. All these series are complimentary to Hasse’s series (2), which

contains the same finite difference ∆nv−s.

We first prove the above expansions, and then, in Remark 1, perform a detailed study of the polynomials

Nn,m(a), which, as we come to show, are closely related to the Bernoulli polynomials of several varieties. In Re-

mark 2 we show that all these formulas may be further generalized. The latter generalization is quite theoretical,

but some results, such as, for example,

ζ(s, v) =
k−1

∑
l=1

(−1)l+1 · (k − l + 1)l

(1 − s)l
· ζ(s − l, v) +

k

∑
l=1

(−1)l · (k − l + 1)l

(1 − s)l
· vl−s + (26)

+ k
∞

∑
n=0

(−1)nG
(k)
n+1

n

∑
k=0

(−1)k

(
n

k

)

(k + v)−s , G
(k)
n ≡

1

n!

n

∑
l=1

S1(n, l)

l + k
,

with Gregory’s coefficients of higher order G
(k)
n , may be interesting.

Proof 3. First variant of proof of (21): Expanding the function ζ(s, x) into the Gregory–Newton interpo-

lation series (also known as the forward difference formula) in a neighborhood of x = v, yields

ζ(s, x + v) = ζ(s, v) +
∞

∑
n=1

(x − n + 1)n

n!
∆nζ(s, v) . (27)

where ∆n f (v) is the nth finite forward difference of f (x) at point v

∆n f (v) ≡ ∆n f (x)
∣
∣
∣
x=v

= ∆n−1 f (v + 1)− ∆n−1 f (v) = . . . (28)

. . . =
n

∑
k=0

(−1)k

(
n

k

)

f (n − k + v) = (−1)n
n

∑
k=0

(−1)k

(
n

k

)

f (v + k)

8



with ∆0 f (v) ≡ f (v) by convention13. Since the operator of finite difference ∆n is linear and because

ζ(s, v + 1) = ζ(s, v)− v−s, it follows from (28) that ∆nζ(s, v) = −∆n−1v−s . Formula (27) therefore

becomes

ζ(s, v) =
∞

∑
n=0

(x + v + n)−s +
∞

∑
n=1

(x − n + 1)n

n!
∆n−1v−s . (29)

Integrating the latter equality over x ∈ [0, 1] and accounting for the fact that

1
ˆ

0

(x + v)−sdx =
1

s − 1

{

v1−s − (v + 1)1−s
}

, (30)

as well as using (7), we have

ζ(s, v) =
1

s − 1

{
∞

∑
n=0

(v + n)1−s −
∞

∑
n=0

(v + 1 + n)1−s

}

+
∞

∑
n=1

Gn ∆n−1v−s

=
v1−s

s − 1
+

∞

∑
n=0

Gn+1 ∆nv−s , (31)

which is identical with (21), because Gn+1 = (−1)n|Gn+1| and

∆nv−s ≡ ∆nx−s
∣
∣
x=v

= (−1)n
n

∑
k=0

(−1)k

(
n

k

)

(k + v)−s . (32)

The reader may also note that if we put v = 1 in (29) and (32), then we obtain the correct variant of

Ser’s formulas (3) and (2) respectively.

Second variant of proof of (21): Consider the generating equation for the numbers Gn, formula (6).

Dividing it by z and then putting z = e−x − 1 yields

1

1 − e−x
=

1

x
+

∣
∣G1

∣
∣+

∞

∑
n=1

∣
∣Gn+1

∣
∣ (1 − e−x)n = (33)

=
1

x
+

∣
∣G1

∣
∣+

∞

∑
n=1

∣
∣Gn+1

∣
∣

n

∑
k=0

(−1)k

(
n

k

)

e−kx , x > 0 , (34)

since |Gn+1| = (−1)nGn+1 . Now, using the well–known integral representation of the Hurwitz ζ-

function

ζ(s, v) =
1

Γ(s)

∞̂

0

e−vx xs−1

1 − e−x
dx

and Euler’s formulæ

v1−s

s − 1
=

1

Γ(s)

∞̂

0

e−vx xs−2 dx , v−s =
1

Γ(s)

∞̂

0

e−vx xs−1 dx

13Note, however, that due to the fact that finite differences may be defined in slightly different ways and that there also

exist forward, central, backward and other finite differences, our definition for ∆n f (v) may not be shared by others. Thus, some

authors call the quantity (−1)n∆n f (v) the nth finite difference, see e.g. [56, p. 270, Eq. (14.17)] (we also employed the latter

definition in [6, p. 413, Eq. (39)]). For more details on the Gregory–Newton interpolation formula, see e.g. [31, § 9·02], [41,

pp. 57–59], [9, Ch. III], [27, Ch. 1 & 9], [44], [36, Ch. 3], [39, Ch. V], [34, Ch. III, pp. 184–185].
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we obtain

ζ(s, v)−
v1−s

s − 1
−

∣
∣G1

∣
∣ v−s =

1

Γ(s)

∞̂

0

e−vx xs−1

{
1

1 − e−x
−

1

x
−

∣
∣G1

∣
∣

}

dx =

=
1

Γ(s)

∞

∑
n=1

∣
∣Gn+1

∣
∣

n

∑
k=0

(−1)k

(
n

k

) ∞̂

0

e−(k+v)x xs−1 dx =
∞

∑
n=1

∣
∣Gn+1

∣
∣

n

∑
k=0

(−1)k

(
n

k

)

(k + v)−s

Remarking that
∣
∣G1

∣
∣ v−s is actually the term corresponding to n = 0 in the sum on the right yields

(21).14

First variant of proof of (22): Integrating (29) over x ∈ [−1, 0] and remarking that

1

n!

0
ˆ

−1

(x − n + 1)n dx = (−1)nCn , n = 1, 2, 3, . . . , (35)

we have

ζ(s, v) =
1

s − 1

{
∞

∑
n=0

(v − 1 + n)1−s −
∞

∑
n=0

(v + n)1−s

}

+
∞

∑
n=1

(−1)nCn ∆n−1v−s

=
(v − 1)1−s

s − 1
−

∞

∑
n=0

Cn+1 (−1)n∆nv−s , (36)

which coincide with (22) because of (32).

Second variant of proof of (22): In order to obtain (22), we also may proceed analogously to the

demonstration of Theorem 2, in which we replace (5) by (21). The unity appearing from Fontana’s

series in (17) becomes v−s and the term (k + 2)−s becomes (k + 1 + v)−s, that is to say

ζ(s, v) =
v1−s

s − 1
+ v−s −

∞

∑
n=0

Cn+1

n

∑
k=0

(−1)k

(
n

k

)

(k + v + 1)−s , Re v > 0 . (37)

Using the recurrence relation ζ(s, v) = ζ(s, v + 1) + v−s and rewriting the final result for v instead of

v + 1, we immediately obtain (22).

Proof of (23): Our method of proof, which uses the Gregory–Newton interpolation formula, may

be further generalized. By introducing polynomials Nn,m(a) accordingly to (24), and then by integrat-

ing (29) over x ∈ [a, a + m] , we have

ζ(s, v) =
1

m (s − 1)

{

ζ(s − 1, v + a)− ζ(s − 1, v + a + m)
}

+
1

m

∞

∑
n=1

Nn,m(a) ∆n−1v−s (38)

14It seems appropriate to note here that Charles Hermite in 1900 tried to use a similar method to derive a series with Gregory’s

coefficients for ζ(s, v), but his attempt was not succesfull. A carefull analysis of his derivations [29, p. 69], [54, vol. IV, p. 54],

reveals that Hermite’s errors is due to the incorrect expansion of
(
1 − e−x

)−1
into the series with ωn , which, in turn, leaded

him to an incorrect formula for R(a, s) ≡ ζ(s, a).15 These results have never been published during Hermite’s lifetime and

appeared only in epistolary exchanges with the Italian mathematician Salvatore Pincherle, who published them in [29] several

months after Hermite’s death. Later, these letters were reprinted in [54].
15On p. 69 in [29] and p. 540 in [54, vol. IV] in the expansion for

(
1 − e−x

)−1
the term ω1 should be replaced by ω2 and ωn

by ωn+1. Note that Hermite’s ωn = |Gn|.

10



Simplifying the expression in curly brackets and reindexing the latter sum immediately yields

ζ(s, v) =
1

m (s − 1)

m−1

∑
n=0

(v + a + n)1−s +
1

m

∞

∑
n=0

Nn+1,m(a) ∆nv−s (39)

which is identical with (23). Note that expansions (21)–(22) are both particular cases of (23) at m = 1.

Formula (21) is obtained by setting a = 0, while (22) corresponds to a = −1.

Remark 1, related to the polynomials Nn,m(a) Polynomials Nn,m(a) generalize many special num-

bers and have a variety of interesting properties. First of all, we remark that Nn,m(a) are polynomials

of degree n in a with rational coefficients. This may be seen from the fact that

Nn,m(a) ≡
1

n!

a+m
ˆ

a

(x − n + 1)n dx =
1

n!

n

∑
l=1

S1(n, l)

l + 1

{

(a + m)l+1 − al+1
}

(40)

=
1

n!

n

∑
l=1

S1(n, l)

l + 1

l

∑
k=0

akml+1−k

(
l + 1

k

)

,

Formula (40) is also very handy for the calculation of Nn,m(a) with the help of CAS. It is therefore

clear that for any a ∈ Q, polynomials Nn,m(a) are simply rational numbers. Some of such examples

may be of special interest

Nn,1(−1) = (−1)nCn , Nn,1(0) = Gn , N2n,1(n − 1) = M2n ,

where Mn are central difference coefficients M2 = −1/12 , M4 = +11/720 , M6 = −191/60 480 , M8 =
+2497/3 628 800 , . . . , see e.g. [49], [31, § 9·084], [41, p. 186], OEIS A002195 and A002196. Moreover,

Nn+1,1(a) = Gn+1 + aPn(a)

where Pn(a) is a polynomial of degree n in a. The derivative of Nn,m(a) is simply

∂Nn,m(a)

∂a
=

(a + m − n + 1)n − (a − n + 1)n

n!

Polynomials Nn,m(a) are related to many other similar polynomials. For instance, at a = 0 they

equal Coffey’s polynomials Pn+1(y) from Proposition 11 [17, p. 450] Nn,m(0) = Pn+1(m) and also are

close to Nemes’ polynomials cv(a) from [42, p. 601]. Much more similitudes can be found from the

generating equation for Nn,m(a), which we gave in (25) without proof. Let us prove it. Using (40) and

accounting for the absolute convergence, we have

∞

∑
n=1

Nn,m(a) zn =
∞

∑
l=1

(a + m)l+1 − al+1

l + 1

∞

∑
n=1

S1(n, l)

n!
zn

︸ ︷︷ ︸

lnl(1+z)/l!

=
1

ln(1 + z)
·

·

{
∞

∑
l=2

[
(a + m) ln(1 + z)

]l

l!
−

∞

∑
l=2

[
a ln(1 + z)

]l

l!

}

=
(1 + z)a+m − (1 + z)a

ln(1 + z)
− m

in virtue of the generation equation for the Stirling numbers of the first kind, see e.g. [6, p. 408], [5,

p. 369]. Polynomials Nn,m(a) are, therefore, close to the Stirling polynomials, to Van Veen’s poly-

nomials K
(z)
n [55], to various generalizations of the Bernoulli numbers/polynomials, including the
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so–called Nörlund polynomials [42, p. 602], which are also known as the generalized Bernoulli poly-

nomials of the second kind [13, p. 324, Eq. (2.1)], and to many other special polynomials, see e.g. [2,

Vol. III, § 19], [41, Ch. VI], [38, Vol. I, § 2.8], [12], [44], [45], [25], [26], [60] [11], [10], [47], [35], [48]. The

most close connection seems to exist with the Bernoulli polynomials of the second kind, denoted by ψn(x)

by Jordan [32], [33, Ch. 5], [13, p. 324],16 which have the following generation function17

z (z + 1)x

ln(z + 1)
=

∞

∑
n=1

ψn(x) zn , |z| < 1 , (41)

and with the Bernoulli polynomials of higher order, denoted usually by B
(s)
n (x), and defined via

zs exz

(ez − 1)s
=

∞

∑
n=0

B
(s)
n (x)

n!
zn , |z| < 2π , (42)

see e.g. [41, p. 127], [13, p. 323, Eq. (1.4)], [43], [44], [45]. Indeed, using formula (41), we have for the

left part of (25)

(1 + z)a+m − (1 + z)a

ln(1 + z)
=

∞

∑
n=1

{
ψn(a + m)− ψn(a)

}
zn−1 = m +

∞

∑
n=1

{
ψn+1(a + m)− ψn+1(a)

}
zn

since ψ1(x) = x + 1
2 . Comparing the latter expression to the right part of (25) immediately yields

Nn,m(a) = ψn+1(a + m)− ψn+1(a) , n = 1, 2, 3, . . . (43)

Another way to show it is to recall that (x
n) dx = dψn+1(x) , see e.g. [32, p. 130], [33, p. 265]. Hence,

the antiderivative of the falling factorial is, up to several constants, precisely the function ψn+1(x),

namely

ψn+1(x) =
1

n!

ˆ

(x − n + 1)n dx + fn , (44)

where fn is the constant of integration. In virtue of this important property, which is often not men-

tioned in relation to ψn+1(x), formula (43) follows immediately from the definition of Nn,m(a). Fur-

thermore, from (42) it follows that B
(n)
n (x + 1) = n! ψn(x) , see e.g. [41, pp. 129–135], [13, Eq. (2.1) &

(2.11)], whence

Nn,m(a) =
1

(n + 1)!

{

B
(n+1)
n+1 (a + m + 1)− B

(n+1)
n+1 (a + 1)

}

, n = 1, 2, 3, . . . (45)

This clearly displays a close connection between Nn,m(a) and the Bernoulli polynomials of both vari-

eties. The latter have been the object of much research by Nörlund [43], [44], [45], [41, Ch. VI], Jordan

[32], [33, Ch. 5], Carlitz [13] and some other authors. At this stage, it may also be useful to provide

explicit expression for the first few polynomials Nn,m(a)

N1,m(a) = ma +
m2

2

N2,m(a) =
6ma2 + 6am2 − 6am + 2m3 − 3m2

12

N3,m(a) =
4ma3 + 4m3a2 − 12ma2 + 6m2a + 8ma − 12m2a + m4 − 4m3 + 4m2

24

16These polynomials and/or those equivalent to them, were rediscovered in numerous works and by numerous authors (see

e.g. [40, p. 1916], [61, p. 3998], [47, § 5.3.2]), so we give here only the most frequent notations and definitions for them.
17In [33, Ch. 5, p. 279, Eq. (8)] and in [13, p. 324, Eq. (1.11)], the summation may also start at n = 1 since ψ0(a) vanishes

identically.
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and so on.

Finally, we remark that the complete asymptotics of the polynomials Nn,m(a) at large n are given

by

Nn,m(a) ∼
(−1)n

π na+1

∞

∑
l=0

1

lnl+1 n
·
[

sin πx · Γ(x)
](l)

x=a+1
,

n → ∞

Re a > −1
, (46)

where (l) stands for the lth derivative, and m is natural and finite. In particular, retaining first two

terms, we have

Nn,m(a) ∼
(−1)n+1

π na+1 ln n
·

{

sin aπ · Γ(a + 1) +
π cos πa · Γ(a + 1) + sin πa · Γ(a + 1) · Ψ(a + 1)

ln n

}

(47)

at n → ∞. Both results can be obtained without difficulty from the complete asymptotics of B
(n)
n (x)

given by Nörlund [45, p. 38]. Note that if a ∈ N0, the first term of asymptotics (46)–(47) vanishes,

and thus Nn,m(a) decreases faster. Remark also that making a → 0 and a → −1 in (46)–(47), we find

asymptotics of numbers Gn and Cn respectively.18

Remark 2, related to the generalization of our previous results. Formula (23) may be further gener-

alized. Let ρ(x) be the normalized weight such that

a+m
ˆ

a

ρ(x) dx = 1 , and let denote N
(ρ)
n,m(a) ≡

1

n!

a+m
ˆ

a

(x − n + 1)n ρ(x) dx

Performing the same procedure as in the case of (23) and assuming the uniform convergence, we

obtain

ζ(s, v) =
∞

∑
n=0

a+m
ˆ

a

ρ(x)

(v + x + n)s
dx

︸ ︷︷ ︸

Fn,m,a[ρ(x)]

+
∞

∑
n=1

N
(ρ)
n,m(a) ∆n−1v−s (48)

Albeit this generalization appears rather theoretical, it, however, may be useful if the functional

Fn,m,a[ρ(x)] admits a suitable closed–form and if the series ∑ Fn,m,a[ρ(x)] converges. Thus, if we sim-

ply put ρ(x) = 1/m, then we retrieve our formula (23). If we put ρ(x) = k xk−1, where k ∈ N, and set

a = 0, m = 1, then it is not difficult to see that

N
(kxk−1)
n,1 (0) =

k

n!

n

∑
l=1

S1(n, l)

l + k
≡ k G

(k)
n (49)

where numbers G
(k)
n , generalizing Gregory’s coefficients Gn = G

(1)
n (we call them Gregory’s coeffi-

cients of higher order), were already studied in our previous work [6, p. 414].19 Now, remarking that

18In [6, p. 414, Eq. (51)], we obtained the complete asymptotics for Cn = C2,n/n! =
∣
∣B

(n)
n

∣
∣/n! at large n. However, it seems

appropriate to notice that the equivalent result may be straightforwardly derived from Nörlund’s asymptotics of B
(n)
n (x) , since

B
(n)
n (0) = B

(n)
n , see [45, pp. 27, 38, 40].

19In the latter, we, inter alia, showed that
∣
∣G

(k)
n

∣
∣ ∼ n−1 ln−k−1 n at n → ∞ .
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the repeated integration by parts yields
ˆ

xk−1(v + x + n)−s dx =
1

k

k−1

∑
l=1

(−1)l+1(v + x + n)l−s · xk−l · (k − l + 1)l

(1 − s)l
+

+
(−1)k+1(v + x + n)k−s · (k − 1)!

(1 − s)k
, (50)

and evaluating the infinite series ∑ Fn,1,0[k xk−1], formula (48) reduces to (26). Note that we have (21)

as a particular case of (26) at k = 1. Moreover, if we put v = 1 and simplify the second sum in the first

line, then we arrive at this curious formula for the ζ–function

ζ(s) =
k−1

∑
l=1

(−1)l+1 · (k − l + 1)l

(1 − s)l
· ζ(s − l) +

k

s − k
+ k

∞

∑
n=0

(−1)nG
(k)
n+1

n

∑
k=0

(−1)k

(
n

k

)

(k + 1)−s

(51)

It is interesting that formula (48) from [6, p. 414] also contains similar shifted values of the ζ–functions.20

Corollary 3a. The Euler–Riemann ζ–function admits the following general expansions

ζ(s) =
1

m (s − 1)

m

∑
n=1

(a + n)1−s +
1

m

∞

∑
n=0

(−1)nNn+1,m(a)
n

∑
k=0

(−1)k

(
n

k

)

(k + 1)−s (52)

where a > −1, m ∈ N, and

ζ(s) = 1 +
1

m (s − 1)

m

∑
n=1

(a + 1 + n)1−s +
1

m

∞

∑
n=0

(−1)nNn+1,m(a)
n

∑
k=0

(−1)k

(
n

k

)

(k + 2)−s (53)

where a > −2, m ∈ N, containing finite differences ∆n1−s and ∆n2−s respectively. Ser’s series (5) and

our series from Theorem 2 are simple particular cases of the above expansions.21

On the one hand, setting v = 1 in (39) we immediately obtain (52). On the other hand, putting v + 1

instead of v and using the relation ζ(s, v + 1) = ζ(s, v)− v−s, equality (39) takes the form

ζ(s, v) = v−s +
1

m (s − 1)

m

∑
n=1

(v + a + n)1−s +
1

m

∞

∑
n=0

Nn+1,m(a) ∆n(v + 1)−s (54)

At point v = 1, this equality becomes (53). Continuing the process, we may also obtain similar formulas for

ζ(s) containing finite differences ∆n3−s, ∆n4−s,. . .

Corollary 4b. The generalized Stieltjes constants γm(v) , m = 0, 1, 2, . . . , v 6= 0,−1,−2, . . . , are intro-

duced analogously to the ordinary Stieltjes constants

ζ(s, v) =
1

s − 1
− Ψ(v) +

∞

∑
m=1

(−1)mγm(v)

m!
(s − 1)m , s 6= 1. (55)

with γ0(v) = −Ψ(v) , see e.g. [4, p. 541, Eq. (14)].22 Following the same line of reasoning as in Corol-

lary 2a, we conclude that the generalized Stieltjes constants admit the following series representations

γm(v) = −
lnm+1 v

m + 1
+

∞

∑
n=0

∣
∣Gn+1

∣
∣

n

∑
k=0

(−1)k

(
n

k

)
lnm(k + v)

k + v
, (56)

20Formula (48) from [6] and its proof were first released on 5 January 2015 in the 6th arXiv version of the paper. 28 September

2015, a particular case of the same formula for nonnegative integer s was also presented by Xu, Yan and Shi [59, p. 94, Theorem

2.9], who, apparently, were not aware of the arXiv preprint of our work [6] (we have not found the preprint of [59]).
21We have Ser’s formula when putting a = 0, m = 1 in (52), and our Theorem 2 if setting a = −1, m = 1 in (53).
22For more information on γm(v) , see [3], [4], and the literature given in the last reference. Note that since ζ(s, 1) = ζ(s), the

generalized Stieltjes constants γm(1) = γm.
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where Re v > 0,

γm(v) = −
lnm+1(v − 1)

m + 1
−

∞

∑
n=0

Cn+1

n

∑
k=0

(−1)k

(
n

k

)
lnm(k + v)

k + v
, (57)

where Re v > 1, and

γm(v) = −
1

r (m + 1)

r−1

∑
l=0

lnm+1(v + a + l) +
1

r

∞

∑
n=0

(−1)nNn+1,r(a)
n

∑
k=0

(−1)k

(
n

k

)
lnm(k + v)

k + v
, (58)

where r ∈ N, Re a > −1 and Re v > −Re a. Since (−1)n∆nv−1 = n!
(v)n+1

, we have for the zeroth

Stieltjes constant, and hence for the digamma function Ψ(v), the following simple expansions

Ψ(v) = ln v −
∞

∑
n=1

∣
∣Gn

∣
∣ (n − 1)!

(v)n
, Re v > 0 (59)

Ψ(v) = ln(v − 1) +
∞

∑
n=1

Cn (n − 1)!

(v)n
, Re v > 1 (60)

Ψ(v) =
1

r

r−1

∑
l=0

ln(v + a + l) +
1

r

∞

∑
n=1

(−1)n Nn,r(a) (n − 1)!

(v)n
,

r ∈ N

Re a > −1

Re v > −a

(61)

respectively. First two representations coincide with the not well-known Binet–Nørlund expansions

for the digamma function [6, pp. 428–429, Eqs. (91)–(94)],23 while the third one seems to be new. From

(59) and (60), it also immediately follows that ln(v − 1) < Ψ(v) < ln v for v > 1 , since the sums with

Gn and Cn keep their sign.24 We may also obtain series expansions for the digamma function from

(26), but the resulting expressions strongly depend on k. For instance, putting k = 2 and expanding

both sides into the Laurent series (55), we obtain the following formula

Ψ(v) = 2 ln Γ(v)− 2v ln v + 2v + 2 ln v − ln 2π + 2
∞

∑
n=1

(−1)n G
(2)
n (n − 1)!

(v)n
, Re v > 0 (62)

which relates the Γ–function to its logarithmic derivative.25 For higher k these expressions become

quite cumbersome and also imply derivatives of the ζ–function at negative integers. In particular, for

k = 3, we deduce

Ψ(v) = 3 ln Γ(v)− 6ζ ′(−1, v) + 3v2 ln v −
3

2
v2 − 6v ln(v) + (63)

+3v + 3 ln v −
3

2
ln 2π +

1

2
+ 3

∞

∑
n=1

(−1)n G
(3)
n (n − 1)!

(v)n
, Re v > 0

23Formula (60) reduces to [6, p. 429, Eq. (94), first formula] by putting v instead of v − 1 and by making use of the recurrence

relationship for the digamma function Ψ(v + 1) = Ψ(v) + v−1.
24This simple and important result is not new, but its derivation from (59) and (60) seems to be novel, and in addition, is

elementary.
25There were many attempts aiming to find possible relationships between these two functions. For instance, in 1842 Carl

Malmsten, by trying to find such a relationship, obtained a variant of Gauss’ theorem for Ψ(v) at v ∈ Q, see [3, p. 37, Eq. (23)],

[4, p. 584, Eq. (B.4)].
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Formula (62) is also interesting in that it gives series with rational terms for ln Γ(v) if v ∈ Q (we only

need to use Gauss’ digamma theorem for this [4, p. 584, Eq. (B.4)]). Note also that all series (59)–(63)

converge very rapidly for large v.

Returning to our formulas for γm, we may also mention that the particular case m = 1 of (56) was

earlier given by Coffey [16, p. 2052, Eq. (1.18)], but the general case of (56), as well as (57), seem to be

novel. Note also that formulæ (56)–(57) may be rewritten in a slightly different form by means of the

recurrent relationship for the generalized Stieltjes constants γm(v + 1) = γm(v)− v−1 lnmv .

Corollary 4c. Putting in the previous formulas for the digamma function argument v ∈ Q, we may

also obtain series with rational terms for Euler’s constant. The most simple is to put v = 1. In this

case, formula (59) reduces to the famous Fontana–Mascheroni series

Ψ(1) = −γ = −
∞

∑
n=1

∣
∣Gn

∣
∣

n
, (64)

see e.g. [4, p. 539], [6, pp. 406, 413,429–430], [5, p. 379], while (61) gives us

γ = −
1

m

m

∑
l=1

ln(a + l)−
1

m

∞

∑
n=1

(−1)n Nn,m(a)

n
,

m ∈ N

a > −1
. (65)

This series generalizes (64) to a large family of series (we have the aforementioned series at a = 0

since Gn = Nn,1(0)). For example, setting a = − 1
2 and m = 1 (the mean value between a = −1

corresponding to the coefficients Cn and a = 0 corresponding to Gn), we have the following series

γ = ln 2 − 0 −
1

48
−

1

72
−

223

23 040
−

103

14 400
−

32 119

5 806 080
−

1111

250 880
− . . . (66)

relating two fundamental constants γ and ln 2. This series, however, converges quite slowly (the

first term in (47) is maximal). A more rapidly convergent series may be obtained by setting large

integer a. At the same time, it should be noted that precisely for large a, first terms of the series may

unexpectedly grow, but after some term they decrease and the series converges. For instance, taking

a = 7, we have

γ = −3 ln 2 +
15

2
−

293

24
+

1079

72
− . . . −

8183

9 331 200
−

530 113

4 790 016 000
− (67)

Also, the pattern of the sign is not obvious. By the way, adding the series with a = − 1
2 to that with

a = 1, we eliminate ln 2 and thus get a series with rational terms only for Euler’s constant

γ =
∞

∑
n=1

(−1)n+1

2n

{

Nn,1

(
− 1

2

)
+ Nn,1(1)

}

=
3

4
−

11

96
−

1

72
−

311

46 080
−

5

1152
−

7291

2 322 432
− . . . (68)

Other choices of a are also possible in order to get series with rational terms only for γ. In fact, it is

not difficult to show that we can eliminate the logarithm by properly choosing a, namely

γ =
∞

∑
n=1

(−1)n+1

2n

{

Nn,1(a) + Nn,1

(

−
a

1 + a

)}

, a > −1 , (69)

which, at a ∈ Q , represents a huge family of series with rational terms only for Euler’s constant.

More generally, from (65) it follows that if a1, . . . , ak are chosen so that (1 + a1)m · · · (1 + ak)m = 1 ,

then

γ =
1

m k

∞

∑
n=1

(−1)n+1

n

k

∑
l=1

Nn,m(al) , a1, . . . , ak > −1 , (70)
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Furthermore, if a1, . . . , ak may be chosen so that (1+ a1)
q1
m · · · (1+ ak)

qk
m = 1 for some q1, . . . , qk , then

we have a more general formula

γ =
1

m (q1 + . . . + qk)

∞

∑
n=1

(−1)n+1

n

k

∑
l=1

ql Nn,m(al) , a1, . . . , ak > −1 , (71)

which is the most complete generalization of the Fontana–Mascheroni series (64).

It is also possible to deduce series expansions with rational terms for Euler’s constant from series

(62). Putting v = 1, we obain the following series

γ = ln 2π − 2 − 2
∞

∑
n=1

(−1)n G
(2)
n

n
= ln 2π − 2 +

2

3
+

1

24
+

7

540
+

17

2880
+

41

12 600
+ . . . (72)

converging at the same rate as ∑ n−2 ln−3 n (see footnote 19).

Lastly, the reader may easily verify that all these series are new and at the moment of writing of

this paper were not known to the OEIS.

Corollary 4d. Generalizing expansion (13) to the Hurwitz ζ–function, we may introduce δm(v) as the

coefficients in

ζ(s, v) =
1

s − 1
+

3

2
− v +

∞

∑
m=1

(−1)mδm(v)

m!
sm , s 6= 1. (73)

It is, therefore, not difficult to see that δm(v) = (−1)m
{

ζ(m)(s, v) + m!
}

. From (21)–(23), it follows

that for m = 1, 2, 3, . . . and for other parameters defined exactly as in (56)–(61), we have

δm(v) = fm(v) +
∞

∑
n=0

∣
∣Gn+1

∣
∣

n

∑
k=0

(−1)k

(
n

k

)

lnm(k + v) , (74)

δm(v) = fm(v − 1)−
∞

∑
n=0

Cn+1

n

∑
k=0

(−1)k

(
n

k

)

lnm(k + v) , (75)

δm(v) =
1

r

r−1

∑
l=0

fm(v + a + l) +
1

r

∞

∑
n=0

(−1)n Nn+1,r(a)
n

∑
k=0

(−1)k

(
n

k

)

lnm(k + v) , (76)

where we denoted

fm(v) ≡ (−1)mm!

{

1 − v − v
m

∑
k=1

(−1)k lnk v

k!

}

for brevity. Similarly to the generalized Stieltjes constants, functions δm(v) enjoy a recurrent property

δm(v + 1) = δm(v) − lnmv , which may be used to rewrite (74)–(75) in a slightly different form if

necessary. Finally, recalling that δ1(v) = − ln Γ(v) + 1
2 ln 2π − 1 and noticing that f1(v) = v − 1 −

v ln v , gives us these three series expansions

ln Γ(v) = v ln v − v +
1

2
ln 2π −

∞

∑
n=0

∣
∣Gn+1

∣
∣

n

∑
k=0

(−1)k

(
n

k

)

ln(k + v) , Re v > 0 , (77)

ln Γ(v) = (v − 1) ln(v − 1)− v + 1 +
1

2
ln 2π +

∞

∑
n=0

Cn+1

n

∑
k=0

(−1)k

(
n

k

)

ln(k + v) , Re v > 1 , (78)
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ln Γ(v) =
1

r

r−1

∑
l=0

(v + a + l) ln(v + a + l)− v − a −
r

2
+

1

2
ln 2π +

+
1

2
−

1

r

∞

∑
n=0

(−1)n Nn+1,r(a)
n

∑
k=0

(−1)k

(
n

k

)

ln(k + v) , Re v > −Re a , (79)

r = 1, 2, 3, . . . and Re > −1, for the logarithm of the Γ–function. First of these representations is

equivalent to a little-known formula for the logarithm of the Γ–function, which appears in epistolary

exchanges between Charles Hermite and Salvatore Pincherle dating back to 1900 [29, p. 63, two last

formulæ], [54, vol. IV, p. 535, third and fourth formulæ], while the second and the third representa-

tions seem to be novel. Note that the parameter a, in all the expansions in which it appears, plays the

role of the “rate of convergence”: the greater this parameter, the faster the convergence, especially if

a is integer.

Nota Bene

Finally, it may be of interest to note here that Donal Connon [20], [19], by using Hasse’s series (2)

and some other identities, obtained several expressions of a similar nature for the generalized Stieltjes

constants, for the logarithm of the Γ-function and for the digamma function:

γm(v) = −
1

m + 1

∞

∑
n=0

1

n + 1

n

∑
k=0

(−1)k

(
n

k

)

lnm+1(k + v) , m = 1, 2, 3 . . . (80)

ln Γ(v) = −v +
1

2
+

1

2
ln 2π +

∞

∑
n=0

1

n + 1

n

∑
k=0

(−1)k

(
n

k

)

(k + v) ln(k + v) (81)

Ψ(v) =
∞

∑
n=0

1

n + 1

n

∑
k=0

(−1)k

(
n

k

)

ln(k + v) (82)
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