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ON RATIONAL DYCK PATHS AND THE ENUMERATION

OF FACTOR-FREE DYCK WORDS

DANIEL BIRMAJER, JUAN B. GIL, AND MICHAEL D. WEINER

Abstract. Motivated by independent results of Bizley and Duchon, we study rational
Dyck paths and their subset of factor-free elements. On the one hand, we give a bijection
between rational Dyck paths and regular Dyck paths with ascents colored by factor-free
words. This bijection leads to a new statistic based on the reducibility level of the paths
for which we provide a corresponding formula. On the other hand, we prove an inverse
relation for certain sequences defined via partial Bell polynomials, and we use it to derive a
formula for the enumeration of factor-free words. In addition, we give alternative formulas
for various enumerative sequences that appear in the context of rational Dyck paths.

1. Introduction

In his paper [3] of 1954, Bizley proved a formula (accredited to Howard Grossman) for
the number φn of lattice paths from (0, 0) to (αn, βn) which may touch but never rise above
the line αy = βx, where n, α, and β are positive integers with gcd(α, β) = 1. Such a path

is called β
α -Dyck path of length (α+β)n. Using the notation fj =

1
(α+β)j

(

(α+β)j
αj

)

for j ∈ N,

Bizley’s formula reads

φn =
∑ fk11 fk22 · · ·

k1!k2! · · ·
, (1.1)

where the sum runs over all kj ∈ N0 such that k1 + 2k2 + · · ·+ nkn = n.
On a more recent paper, Duchon [5] studied generalized Dyck languages and discussed

the particular case of a two-letter language with alphabet {a, b}, having valuations h(a) = β
and h(b) = −α with gcd(α, β) = 1. In this case, associating the letter a with the step (1, 0)
and the letter b with the step (0, 1), the set of all Dyck words (words with total valuation

equal to 0) is in one-to-one correspondence with the set of β
α -Dyck paths.

In [5, Theorem 9], Duchon established a key connection between the set Dβ/α of general-

ized Dyck words with slope β/α and its subset of corresponding factor-free words,1 denoted

by D̃β/α. More precisely, he proved the identity

φn = [tn]Dβ/α(t) =
1

1 + (α+ β)n
[tn]D̃

1+(α+β)n
β/α (t), (1.2)

where Dβ/α(t) and D̃β/α(t) are the generating functions enumerating (by word length) the

elements of Dβ/α and D̃β/α, respectively. The identities (1.1) and (1.2) are the foundation
for the results obtained in this paper.

1A word in a language L is said to be factor-free if it has no proper factor in L.
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On the one hand, as a consequence of a result given in [1, Theorem 3.5], the right-hand
side of (1.2) also counts the elements of DΘ

n (α+ β, 0), the set of Dyck words of semilength
(α + β)n created from strings of the form “d ” and “u(α+β)jd” for j = 1, . . . , n, such that

each maximal ascent u(α+β)j may be colored in as many different ways as the number θj of
factor-free words of length (α+ β)j. In other words,

there is a bijection between the set of β
α -Dyck paths of length (α+ β)n and

the set of colored Dyck paths in D
Θ
n (α + β, 0).

In Section 2 we give an explicit bijection that reveals, in geometric terms, the factor-free
factorization of a rational Dyck path. Specifically, we use the number of peaks of a path in
D

Θ
n (α+β, 0) to define the reducibility level of the associated β

α -Dyck path. As a application,

we give a formula (Theorem 2.6) to compute the number of β
α -Dyck paths with a given

reducibility level.
On the other hand, by rewriting (1.1) and (1.2) in terms of partial Bell polynomials, and

using an interesting inverse relation that we prove in Proposition 3.4,

we obtain a formula for the number θn of factor-free β
α -Dyck words of length

(α+ β)n in terms of f1, f2, . . . in the spirit of (1.1).

Our formula, given in Theorem 4.4, appears to be new for cases other than α = 2 and
β = 3. For the case of slope 3/2, Duchon already observed (cf. [5, Prop. 10]) that there are
θn = Cn +Cn−1 factor-free Dyck words of length 5n, where Cn is the nth Catalan number.

We finish the paper with various formulas connecting the sequences (fn), (φn), and (θn)

with the related sequence (ψn) that counts the number of β
α -Dyck paths of length (α+ β)n

that never touch the line αy = βx (except at the initial and terminal points).

2. Rational Dyck paths as colored regular Dyck paths

In this paper, we will follow the terminology used in [5] for the study of generalized Dyck
words. We consider the alphabet U = {a, b} and assume the valuations h(a) = β and
h(b) = −α for positive integers α and β with gcd(α, β) = 1. A Dyck word w with slope β/α
is a string of letters from U such that h(w) = 0, and for each left factor u of w, h(u) ≥ 0.
Let Dβ/α denote the set of all such words. Note that the length |w| of a word in Dβ/α is
always a multiple of α+ β.

A word w′ ∈ Dβ/α is called a factor of w if there are words u and v (possibly empty
words) such that w = uw′v and uv ∈ Dβ/α. If u and v are both not empty words, then w′

is called a proper factor of w. A word w ∈ Dβ/α is said to be factor-free if it has no proper
factors in Dβ/α. Let ε denote the empy word.

Let φn be the number of elements in Dβ/α of length (α+ β)n, and let θn be the number
of factor-free words in Dβ/α of length (α + β)n. Applying Faà di Bruno’s formula to the
right-hand side of (1.2), we get the equivalent representation

φn =
n
∑

k=1

(

(α+ β)n

k − 1

)

(k − 1)!

n!
Bn,k(1!θ1, 2!θ2, . . . ), (2.1)

where Bn,k(x1, . . . , xn−k+1) denotes the (n, k)-th partial Bell polynomial.
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As shown in [1, Theorem 3.5], the right-hand side of (2.1) gives the number of regular
Dyck paths of semilength (α+ β)n whose ascents have length a multiple of α+ β and such
that an ascent of length (α + β)j may be colored in θj different ways. We denote this set
of Dyck paths/words by D

Θ
n (α+ β, 0). The purpose of this section is to provide an explicit

bijection between elements in Dβ/α of length (α + β)n and elements of DΘ
n (α + β, 0). To

this end, we first introduce some notation and discuss one example.
Every word w 6= ε in Dβ/α can be written, uniquely, as w = uw′v, where w′ is the

left-most, nonempty factor-free subword of w. In this case, we say that the word uv is a
reduction of w by w′ and write w →

w′

uv.

Conversely, if w and w′ are Dyck words and 1 ≤ j ≤ |w|, then we can write w = uv with
|u| = j and insert w′ between u and v to form the new word ŵ = uw′v. We call ŵ the
extension of w by w′ at the position j and write ŵ = (w ←

j
w′).

Example 2.2. Consider the word w = aabbabbaababaabbbbbb in D3/2, which represents the

following 3
2 -Dyck path of length 20:

Factor w as w = u1w
′
1v1 = aabbabbaabab(aabbb)bbb noting that w′

1 = aabbb is the left-most,
nonempty factor-free subword of w. Thus the reduction w →

w′

1

u1v1 gives

aabbabbaabab(aabbb)bbb −→
aabbb

aabbabbaababbbb.

Similarly, w′
2 = ababb is factor-free, so we can reduce aabbabba(ababb)bb −→

ababb
aabbabbabb.

Observe that w′
3 = aabbabbabb is factor-free. If we let ℓj be the length of the factor uj in the

jth reduction of w, then ℓ1 = |u1| = |aabbabbaabab| = 12 and ℓ2 = |u2| = |aabbabba| = 8.
Finally, we construct the colored Dyck path Dw associated with w as follows:

a
a

b
b
a

b
b
a

b
b

a
b
a

b
b

a
a

b
b

b

Dw = u|w
′

3
|dℓ2u|w

′

2
|dℓ1−ℓ2u|w

′

1
|d20−ℓ1 = u10d8u5d4u5d8,

where the ascents are colored (from left to right) by aabbabbabb, ababb, and aabbb.
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The above construction is reversible. Note that for a given Dyck path D of semilength 20,
colored by aabbabbabb, ababb, and aabbb, one can create a unique word wD by successively
inserting the factor-free words at positions determined by the downs of the Dyck path.

Theorem 2.3. Let α, β ∈ N with gcd(α, β) = 1. The algorithm outlined in Example 2.2

provides a bijection between the set of β
α-Dyck paths of length (α+ β)n and D

Θ
n (α+ β, 0).

Proof. Let w be a word in Dβ/α of length (α+ β)n. Without loss of generality, we assume

that the corresponding lattice path stays strongly below the line y = β
αx (except at the

endpoints). For a general path, we just look at its connected components separately.
If w is factor-free, then we define

Dw = u(α+β)nd(α+β)n

and color the ascent with w. Clearly Dw ∈ D
Θ
n (α+ β, 0).

If w is not a factor-free word, then it can be factored uniquely as w = u1w
′
1v1, where w

′
1

is a factor-free word in Dβ/α, h(u1) > 0, and h(v1) < 0. Let ℓ1 = |u1| and let u1v1 be the
reduction of w by w′

1. If u1v1 is factor-free, then we denote it by w′
2 and define

Dw = u|w
′

2
|dℓ1u|w

′

1
|d(α+β)n−ℓ1 .

Otherwise, we write u1v1 as u2w
′
2v2, where w

′
2 is the left-most factor-free word contained in

u1v1. We let ℓ2 = |u2| and look at the reduction u2v2. We continue this process inductively
until we get a factor-free reduction.

Suppose w ∈ Dβ/α is a word of length (α+ β)n such that after k − 1 reductions

w −→
w′

1

u1v1 −→
w′

2

u2v2 −→
w′

3

· · · −→
w′

k−1

uk−1vk−1

we arrive at a factor-free word w′
k = uk−1vk−1. Let ℓj = |uj| for j ≤ k − 1, and define

Dw = u|w
′

k
|dℓk−1u|w

′

k−1
|d(ℓk−2−ℓk−1) · · · u|w

′

2
|d(ℓ1−ℓ2)u|w

′

1
|d(α+β)n−ℓ1 .

By construction, there is a total of (α + β)n downs, |w′
1| + · · · + |w

′
k| = (α + β)n, and for

every j = 1, . . . , k − 1:

◦ |w′
j | ≡ 0 mod (α+ β),

◦ ℓj − ℓj+1 ≥ 1 (letting ℓk = 0),
◦ ℓj ≤ |w

′
j+1|+ · · ·+ |w

′
k|.

In other words, Dw represents a Dyck path of semilength (α + β)n. Coloring each ascent

u|w
′

j | with the factor-free word w′
j , we get an element of DΘ

n (α+ β, 0).

The above algorithm can be easily reversed. Let D be an element of DΘ
n (α + β, 0) with

k peaks, whose ascents are colored by the factor-free words w1, . . . , wk. Thus D must be of
the form

D = u|w1|dj1u|w2|dj2 · · · u|wk|djk ,

where each |wj| is a multiple of α+ β, |w1|+ · · ·+ |wk| = (α+ β)n, and for every i we have
|w1| + · · · + |wi| ≥ j1 + · · · + ji. Once again, without loss of generality, we assume that D
stays strongly above the x-axis (it has no interior touch point).

We define wD by repeated insertion of the coloring factor-free words:

wD =
(

(· · · ((w1 ←
j1
w2) ←

j1+j2
w3) · · · ) ←−

j1+···+jk−1

wk

)
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going through the ascents of D from left to right. By construction, wD is clearly a Dyck
word of length (α+ β)n with slope β/α. This finishes our bijection. �

Definition 2.4. Every word w ∈ Dβ/α has a maximal number of factor-free subwords by
which the word can be reduced. We call the number of factor-free “factors” contained in
w the reducibility level of w, and denote it by rl(w). Thus rl(w) = 1 if and only if w is a
factor-free word. For example, for w = aabbabbaababaabbbbbb as in Example 2.2, we have
rl(w) = 3. We define rl(ε) = 0.

Proposition 2.5 (Integer slope). If α = 1, then abβ is the only factor-free word in Dβ,

and every word w ∈ Dβ of length (1+β)n has reducibility level n. Conversely, if β > α and

rl(w) = n for every w ∈ Dβ/α with |w| = (α+ β)n, then α = 1.

Proof. Let w ∈ Dβ be of length (1+β)n with n > 1. By definition, h(a) = β and h(b) = −1.

Thus the right-most a in w must be followed by a string containing bβ. Hence w can be
reduced by abβ, so it is not factor-free and rl(w) = n.

In order to prove the last statement, assume α > 1 and let w = aαbβ−1abaα−1bβ. Then
we have |w| = 2(α+ β) and rl(w) = 1, which contradicts the assumption that rl(w) = 2 for
every w ∈ Dβ/α with |w| = 2(α + β). �

Remark. From the previous proposition, it is obvious that any reducibility level statistic
is only meaningful for rational Dyck paths with non-integer slopes.

Theorem 2.6. The number rn,k of β
α -Dyck paths of length (α + β)n that have reducibility

level equal to k is given by

rn,k =

(

(α+ β)n

k − 1

)

(k − 1)!

n!
Bn,k(1!θ1, 2!θ2, . . . ), (2.7)

where θj is the number of factor-free words in Dβ/α of length (α + β)j.

Proof. As a direct consequence of the bijection given in Theorem 2.3, we get that rn,k is

equal to the number of Dyck paths in D
Θ
n (α + β, 0) having exactly k peaks. Thus (2.7)

follows from [1, Theorem 3.5]. �

Example 2.8. If α = 1, then abβ is the only factor-free word in Dβ, so θ1 = 1 and θj = 0
for j 6= 1. Therefore, the number of words w of length (1+β)n with rl(w) = k is zero unless
k = n. In that case (2.7) gives

rn,n =

(

(1 + β)n

n− 1

)

(n − 1)!

n!
=

1

βn+ 1

(

(β + 1)n

n

)

,

which is, as expected, the total number of words of length (1 + β)n in Dβ .

Example 2.9. As mentioned in the introduction, for α = 2 and β = 3, the number of
factor-free words of length 5n is given by the sum of adjacent Catalan numbers Cn +Cn−1.
Thus the number of 3

2 -Dyck paths of length 5n having reducibility level k is giving by

rn,k =

(

5n

k − 1

)

(k − 1)!

n!
Bn,k(1!(C0 + C1), 2!(C1 +C2), . . . ),
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which by means of [7, Example 3.2] can be written as

rn,k =

(

5n

k − 1

) k
∑

j=0

(−1)k−j(2j − k)

nk

(

k

j

)(

2(n + j)− k − 1

n− 1

)

.

For example, among the 23 words of length 10 (n = 2) there are r2,1 = 3 factor-free words
and r2,2 = 20 words w with rl(w) = 2. And among the 377 words of length 15 there are 7
factor-free words, 90 words with rl(w) = 2, and 280 words with rl(w) = 3.

3. An inverse relation involving partial Bell polynomials

The purpose of this section is to prove an inverse relation for a family of sequences
defined through partial Bell polynomials. The main ingredients are Faà di Bruno’s formula,
expressed in terms of partial Bell polynomials as in [4, Sec. 3.4, Theorem A], together with
a substitution formula introduced by the authors in [2]. For convenience, we recall here
these results as lemmas.

Lemma 3.1 (Faà di Bruno). Let f and g be two formal power series:

f = f0 +
∞
∑

k=1

fk
uk

k!
and g =

∞
∑

ℓ=1

gℓ
tℓ

ℓ!
.

If h =
∑∞

n=0 hn
tn

n! is the formal power series of the composition f ◦ g, then the coefficients

hn are given by

h0 = f0, hn =
n
∑

k=1

fkBn,k(g1, g2, . . . ).

Lemma 3.2 ([2, Theorem 15]). Let a, b ∈ Z. Given any sequence (xn), define (yn) by

yn =

n
∑

k=1

(

an+ bk

k − 1

)

(k − 1)!

n!
Bn,k(1!x1, 2!x2, . . . )

for every n ∈ N. Then, for any λ ∈ C we have

n
∑

k=1

( λ
k−1

)

(k − 1)!Bn,k(1!y1, 2!y2, . . . ) =
n
∑

k=1

(λ+an+bk
k−1

)

(k − 1)!Bn,k(1!x1, 2!x2, . . . ).

Corollary 3.3. If yn is given by

yn =

n
∑

k=1

(

an

k − 1

)

(k − 1)!

n!
Bn,k(1!x1, 2!x2, . . . ),

then

xn =

n
∑

k=1

(

−an

k − 1

)

(k − 1)!Bn,k(1!y1, 2!y2, . . . ).

For the results in Section 4, we also need the following inverse relation.



RATIONAL DYCK PATHS AND FACTOR-FREE DYCK WORDS 7

Proposition 3.4. Let a ∈ Z. Given any sequence (xn), define (yn) by

yn =
n
∑

k=1

(

an− 1

k − 1

)

(k − 1)!

n!
Bn,k(1!x1, 2!x2, . . . ).

Then, for every n ∈ N we have

xn =

n
∑

k=1

(1− an)k−1

n!
Bn,k(1!y1, 2!y2, . . . ).

Proof. Let (zn) be the sequence defined by

zn =
n
∑

k=1

(

an

k − 1

)

(k − 1)!

n!
Bn,k(1!x1, 2!x2, . . . ).

By Lemma 3.2 with b = 0, we have
n
∑

k=1

(

λ−1
k−1

)

(k − 1)!Bn,k(1!z1, 2!z2, . . . ) =

n
∑

k=1

(

λ+an−1
k−1

)

(k − 1)!Bn,k(1!x1, 2!x2, . . . ) (3.5)

for any λ ∈ C, and

n
∑

k=1

( −1
k−1

)

(k − 1)!Bn,k(1!z1, 2!z2, . . . ) =

n
∑

k=1

(an−1
k−1

)

(k − 1)!Bn,k(1!x1, 2!x2, . . . ). (3.6)

If we denote y(t) =
∑∞

n=1 ynt
n and z(t) =

∑∞
n=1 znt

n, then (3.6) means (via Faà di Bruno’s
formula) that the generating functions y(t) and z(t) are related by the identity

y(t) = log(1 + z(t)).

Thus, if we let f1(t) = eλt and f2(t) = (1 + t)λ, then

f1(y(t)) = f1(log(1 + z(t))) = f2(z(t)),

and Faà di Bruno’s formula gives

[tn](f1 ◦ y) =

n
∑

k=1

λkBn,k(1!y1, 2!y2, . . . ), and

[tn](f2 ◦ z) =

n
∑

k=1

(λ)k Bn,k(1!z1, 2!z2, . . . ) =

n
∑

k=1

λ
(λ−1
k−1

)

(k − 1)!Bn,k(1!z1, 2!z2, . . . ).

This implies
n
∑

k=1

λkBn,k(1!y1, 2!y2, . . . ) =
n
∑

k=1

λ
(λ−1
k−1

)

(k − 1)!Bn,k(1!z1, 2!z2, . . . ).

Combining this identity with (3.5), we obtain
n
∑

k=1

λk−1Bn,k(1!y1, 2!y2, . . . ) =

n
∑

k=1

(

λ+an−1
k−1

)

(k − 1)!Bn,k(1!x1, 2!x2, . . . ).

Finally, if λ = 1−an, then most terms on the right-hand side of the equation vanish and
the sum reduces to Bn,1(1!x1, 2!x2, . . . ) = n!xn. This gives the claimed identity. �
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4. Enumeration of factor-free Dyck words

Let α and β be positive integers with gcd(α, β) = 1. As noted in the introduction, Bizley’s

formula (1.1) for the number of β
α -Dyck paths of length (α+β)n can be conveniently written

using partial Bell polynomials as

φn =

n
∑

k=1

1

n!
Bn,k(1!f1, 2!f2, . . . ),

where fj =
1

(α+β)j

((α+β)j
αj

)

for j ∈ N. Inverting the above identity, we get

fn =

n
∑

k=1

(

−1

k − 1

)

(k − 1)!

n!
Bn,k(1!φ1, 2!φ2, . . . ). (4.1)

On the other hand, as claimed in (2.1), we have the alternative representation

φn =
n
∑

k=1

(

(α+ β)n

k − 1

)

(k − 1)!

n!
Bn,k(1!θ1, 2!θ2, . . . ), (4.2)

where θj is the number of factor-free Dyck words with slope β/α and length (α+β)j. Using
Lemma 3.2 with a = α+ β, b = 0, and λ = −1, we get

n
∑

k=1

( −1
k−1

)

(k − 1)!Bn,k(1!φ1, 2!φ2, . . . ) =

n
∑

k=1

((α+β)n−1
k−1

)

(k − 1)!Bn,k(1!θ1, 2!θ2, . . . ),

which together with (4.1) gives the identity

fn =
n
∑

k=1

(

(α+ β)n − 1

k − 1

)

(k − 1)!

n!
Bn,k(1!θ1, 2!θ2, . . . ) (4.3)

for every n ∈ N.

As a consequence of the inverse relation given in Proposition 3.4, we obtain:

Theorem 4.4. For every n ∈ N, the number of factor-free Dyck words with slope β/α and

length (α+ β)n is given by

θn =

n
∑

k=1

(1− (α+ β)n)k−1

n!
Bn,k(1!f1, 2!f2, . . . ),

where fj =
1

(α+β)j

(

(α+β)j
αj

)

for every j.

This formula is easy to implement in any of the mainstream computer algebra systems.
For example, in Sage, Maple, and Mathematica, partial Bell polynomials are implemented
as bell polynomial, IncompleteBellB, and BellY, respectively. The following table shows
a few terms of the sequence (θn) for various slopes β/α.
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β/α OEIS Sequence (θn) of factor-free words with slope β/α and length (α+ β)n

3/2 A005807 2, 3, 7, 19, 56, 174, 561, 1859, 6292, 21658, 75582, 266798, . . .

5/2 A274052 3, 13, 94, 810, 7667, 76998, 805560, 8684533, 95800850, 1076159466, . . .

7/2 A274244 4, 34, 494, 8615, 165550, 3380923, 71999763, 1580990725, 35537491360, . . .

9/2 A274256 5, 70, 1696, 49493, 1593861, 54591225, 1950653202, 71889214644, . . .

4/3 A274257 5, 52, 880, 17856, 399296, 9491008, 235274240, 6014201600, . . .

5/3 A274258 7, 133, 4140, 154938, 6398717, 281086555, 12882897819, 609038885805, . . .

7/3 A274259 12, 570, 44689, 4223479, 441010458, 49014411306, 5685822210429, . . .

The other class of lattice paths considered by Bizley [3] is the set of β
α -Dyck paths that

stay strongly below the line y = β
αx. He proved that the number ψn of such paths of length

(α+ β)n is given by

ψn =
n
∑

k=1

(−1)k−1

n!
Bn,k(1!f1, 2!f2, . . . ).

Written in terms of (ψn), the sequences (fn), (φn), and (θn) show an interesting pattern.

Proposition 4.5. The following identities hold for every n ∈ N:

fn =

n
∑

k=1

(k − 1)!

n!
Bn,k(1!ψ1, 2!ψ2, . . . ), (4.6)

φn =

n
∑

k=1

k!

n!
Bn,k(1!ψ1, 2!ψ2, . . . ), (4.7)

θn =

n
∑

k=1

(

−(α+ β)n+ k

k − 1

)

(k − 1)!

n!
Bn,k(1!ψ1, 2!ψ2, . . . ). (4.8)

Note that the above expressions are instances of

n
∑

k=1

(

r + k − 1

k − 1

)

(k − 1)!

n!
Bn,k(1!ψ1, 2!ψ2, . . . )

for r = 0, 1, 1− (α+ β)n, respectively. It is worth mentioning that the sequence (φn) is the
invert transform of the sequence (ψn).

Proof of Proposition 4.5. Let f(t), φ(t), and ψ(t) be the generating functions of (fn), (φn),

and (ψn), respectively. Since ψ(t) = 1− e−f(t) and 1 + φ(t) = ef(t), we get

f(t) = − log(1− ψ(t)) and 1 + φ(t) =
1

1− ψ(t)
,

which give identities (4.6) and (4.8) via Faà di Bruno’s formula.

https://oeis.org/A005807
https://oeis.org/A274052
https://oeis.org/A274244
https://oeis.org/A274256
https://oeis.org/A274257
https://oeis.org/A274258
https://oeis.org/A274259
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Using (4.7) we now write φn as

φn =
n
∑

k=1

(

k

k − 1

)

(k − 1)!

n!
Bn,k(1!ψ1, 2!ψ2, . . . )

and use Lemma 3.2 with a = 0, b = 1, and λ = −(α+ β)n to conclude that
n
∑

k=1

(−(α+β)n
k−1

) (k−1)!
n! Bn,k(1!φ1, 2!φ2, . . . ) =

n
∑

k=1

(−(α+β)n+k
k−1

) (k−1)!
n! Bn,k(1!ψ1, 2!ψ2, . . . ).

Finally, because of the representation (4.2), Corollary 3.3 implies that the left-hand side of
the above identity is precisely θn. Thus (4.8) holds. �
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