
ON THE MONOID GENERATED BY A LUCAS SEQUENCE

CLEMENS HEUBERGER AND STEPHAN WAGNER

Abstract. A Lucas sequence is a sequence of the general form vn = (φn −
φ
n
)/(φ−φ), where φ and φ are real algebraic integers such that φ+φ and φφ

are both rational. Famous examples include the Fibonacci numbers, the Pell
numbers, and the Mersenne numbers. We study the monoid that is generated
by such a sequence; as it turns out, it is almost freely generated. We provide
an asymptotic formula for the number of positive integers ≤ x in this monoid,
and also prove Erdős-Kac type theorems for the distribution of the number
of factors, with and without multiplicity. While the limiting distribution is
Gaussian if only distinct factors are counted, this is no longer the case when
multiplicities are taken into account.

1. Introduction

Let φ and φ be real algebraic integers such that φ+φ and φφ are fixed non-zero
coprime rational integers with φ > |φ|. The Lucas numbers associated with (φ, φ)
are

vn = vn(φ, φ) =
φn − φn

φ− φ
, n = 1, 2, 3, . . . .

All these numbers are positive integers, and the sequence is strictly increasing for
n ≥ 2. Famous examples include the Fibonacci numbers (φ = 1+

√
5

2 , φ = 1−
√

5
2 ),

the Pell numbers (φ = 1 +
√

2, φ = 1 −
√

2), and the Mersenne numbers (φ = 2,
φ = 1). The multiplicative group generated by such a sequence was studied in a
recent paper by Luca et al. [15]; by definition, it consists of all quotients of products
of elements of the sequence. In [15], a near-asymptotic formula for the number of
integers in this group was given (in the specific case of the Fibonacci sequence, but
the method is more general). This continued earlier work of Luca and Porubský
[16], who considered the multiplicative group generated by a Lehmer sequence and
showed that the number of integers below x in the resulting group is O(x/(log x)δ)
for any positive number δ.

As it turns out, the group that is generated by a Lucas sequence is almost a
free group; this is due to the existence of primitive divisors. A prime number p is
a primitive divisor of vn(φ, φ) if p divides vn but does not divide v1 . . . vn−1. It is
a classical result, due to Carmichael, that almost all elements of a Lucas sequence
have primitive divisors:

Theorem (Carmichael [3, Theorem XXIII]). If n /∈ {1, 2, 6, 12}, then vn(φ, φ) has
a primitive divisor.
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See also Bilu, Hanrot and Voutier [2]. Note the slightly different definition in [2]
which does not allow a primitive divisor to divide (φ− φ)2.

Let now
F = {vn(φ, φ) | vn(φ, φ) has a primitive divisor}.

By Carmichael’s theorem, F includes all but finitely many vn. We let F0 be the
set of all vn(φ, φ) with n ≤ 12 that have a primitive divisor, so that

F = F0 ∪ {vn(φ, φ) | n ≥ 13}.
For example, in the case of the golden ratio φ = (1 +

√
5)/2, φ = (1 −

√
5)/2, we

have
F0 = {2, 3, 5, 13, 21, 34, 55, 89}

and
F = {2, 3, 5, 13, 21, 34, 55, 89, 233, 377, . . .},

which are all the Fibonacci numbers except 1, 8 and 144.
Instead of the full group that was studied in [16] and [15], we consider the free

monoid
M(F) = {m1 . . .mk | k ≥ 0,mj ∈ F}

generated by F . It is an easy consequence of the existence of primitive divisors
that every element of M(F) has a unique factorisation into elements of F : If an
element has two factorisations, consider a primitive divisor of the largest element
of F occurring in either of those factorisations. This prime number has to occur in
all factorisations, so the largest element of F occurring in any factorisation of the
element is fixed. The result follows by induction.

To give a concrete example, the elements of our monoid are

M(F) = {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 15, 16, 18, 20, 21, 24, 25, 26, 27, 30, 32, 34, . . .}
in the case of the Fibonacci numbers (cf. [17, A065108]).

Our first result describes the asymptotic number of elements in M(F) up to
a given bound, paralleling the aforementioned result of [15], but even being more
precise. All constants, implicit constants in O-terms and the Vinogradov notation
will depend on φ and φ.

Theorem 1. We have

|M(F) ∩ [1, x]| = k0(log x)k1 exp

(
π

√
2 log x

3 log φ

)(
1 +O

( 1

(log x)1/10

))
for x→∞ and suitable constants k0 and k1. Specifically,

k1 =
|F0| − 13

2
+

log(φ− φ)

2 log φ
.

Remark. An explicit expression for k0 can be given as well, but it is rather unwieldy.

Since all elements of M(F) have a unique factorisation into elements of F , it
makes sense to consider the number of factors in this factorisation and to study
its distribution. The celebrated Erdős-Kac theorem [7] states that the number
of distinct prime factors of a randomly chosen integer in [1, x] is asymptotically
normally distributed. The same is true if primes are counted with multiplicity. We
refer to Chapter 12 of [6] for a detailed discussion of the Erdős-Kac theorem and
its generalisations.

Our aim is to prove similar statements for the monoidM(F). Let n be an ele-
ment of this monoid. By ωF (n) and ΩF (n), we denote the number of factors in the
factorisation of n into elements of F without and with multiplicities, respectively.

We first prove asymptotic normality for ωF , in complete analogy with the Erdős-
Kac theorem:
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Theorem 2. Let N be a uniformly random positive integer in M(F) ∩ [1, x] and
let

a1 =
1

π

√
6

log φ
, a2 =

π2 − 6

2π3

√
6

log φ
.

The random variable ωF (N) is asymptotically normal: we have

lim
x→∞

P
(ωF (N)− a1 log1/2 x

√
a2 log1/4 x

≤ z
)

=
1√
2π

∫ z

0

e−y
2/2 dy.

However, the situation changes when multiplicities are taken into account: unlike
the arithmetic function Ω, which counts all prime factors with multiplicity, ΩF is
not normally distributed. Its limiting distribution can rather be described as a sum
of shifted exponential random variables, as the following theorem shows:

Theorem 3. Let N be a uniformly random positive integer in M(F) ∩ [1, x], let
a1 be the same constant as in the previous theorem and, with γ denoting the Euler-
Mascheroni constant,

b1 =

√
6 log φ

π

(
2γ − log(π2 log φ/6)

2 log φ
+
∑
m∈F0

1

logm
+

1

log v13(φ, φ)

+
∑
k≥1

( 1

log vk+13(φ, φ)
− 1

k log φ

))
,

b2 =

√
6 log φ

π
.

The random variable ΩF (N), suitably normalised, converges weakly to a sum of
shifted exponentially distributed random variables:

ΩF (N)− a1
2 log1/2 x log log x− b1 log1/2 x

b2 log1/2 x

(d)→
∑
m∈F

(
Xm −

1

logm

)
,

where Xm ∼ Exp(logm).

This is somewhat reminiscent of the situation for the number of parts in a parti-
tion: Goh and Schmutz [12] proved that the number of distinct parts in a random
partition of a large integer n is asymptotically normally distributed, while the total
number of parts with multiplicity was shown by Erdős and Lehner [8] to follow
a Gumbel distribution (which can also be represented as a sum of shifted expo-
nential random variables). Indeed, our results are multiplicative analogues in a
certain sense, since products turn into sums upon applying the logarithm, and
log vn(φ, φ) ∼ (log φ)n.

We remark that the monoid M(F) fits the definition of an arithmetical semi-
group as studied in abstract analytic number theory (see [13] for a general reference
on the subject). However, as Theorem 1 shows, it is very sparse, so it does not
satisfy the growth conditions that are typically imposed in this context. For arith-
metical semigroups that satisfy such growth conditions, Erdős-Kac type theorems
are known as well, see [14, Theorem 7.6.5] and [19, Theorem 3.1].

2. Proof of Theorems 1 and 2

For real u in a neighbourhood of 1, we consider the Dirichlet generating function
d(z, u) that is defined as follows:

d(z, u) :=
∑

n∈M(F)

uωF (n)

nz
,
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for all complex z for which the series converges (Lemma 2 will provide detailed
information on convergence). Within the region of convergence, we have the product
representation

(1) d(z, u) =
∏
m∈F

(1 + um−z + um−2z + · · · ) =
∏
m∈F

(
1 +

um−z

1−m−z
)
.

Set h(n) = uωF (n) if n ∈ M(F) and h(n) = 0 otherwise. We use the Mellin–
Perron summation formula in the version

(2)
∑

1≤n≤x

h(n)
(

1− n

x

)
=

1

2πi

∫ r+i∞

r−i∞

( ∞∑
n=1

h(n)

nz

)
xz

dz

z(z + 1)
,

for x > 0 where r is in the half-plane of absolute convergence of the Dirichlet series∑∞
n=1

h(n)
ns (see e.g. [1, Chapter 13] or [10, Theorem 2.1]). Thus

(3) IωF (x, u) :=
∑

n∈M(F)
n≤x

uωF (n)
(

1− n

x

)
=

1

2πi

∫ r+i∞

r−i∞

d(z, u)

z(z + 1)
xz dz.

We will use a saddle-point approach to evaluate this integral. As a first step, we
establish an estimate for d(z, u) for z = r + it, r → 0+ and small t. We start with
an auxiliary lemma for another Dirichlet generating series.

Lemma 1. Let v be a complex number such that |v| < v0, where

(4) v0 := min
{

logm
∣∣∣ m ∈ F0 or m =

φ13

φ− φ

}
and let Λ(s, v) be given by the Dirichlet series

Λ(s, v) :=
∑
m∈F

1

(logm− v)s
,

which converges for <s > 1. The function Λ(s, v) can be analytically continued to a
meromorphic function in s with a single simple pole at s = 1 with residue 1/ log φ.

We have

Λ(0, v) = |F0| −
25

2
+

log(φ− φ) + v

log φ
,(5)

∂Λ(s, v)

∂s

∣∣∣
s=0

= −
∑
m∈F

(
log
(

1− v

logm

)
+

v

logm

)
+ κ1v + κ2,

where κ1 and κ2 are constants, and κ1 is given by
(6)

κ1 :=
γ − log log φ

log φ
+
∑
m∈F0

1

logm
+

1

log v13(φ, φ)
+
∑
k≥1

( 1

log vk+13(φ, φ)
− 1

k log φ

)
.

Finally,

Λ(s, v) = O(s2)

for −3/2 ≤ <s ≤ 2 with |s− 1| ≥ 1 and |s| ≥ 1.
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Proof. Let

Λ0(s, v) :=
∑
m∈F0

1

(logm− v)s
,

Λ1(s, v) :=
∑
j≥13

((
log

φj − φj

φ− φ
− v
)−s
−
(

log
φj

φ− φ
− v
)−s)

,

α(v) := 13− log(φ− φ) + v

log φ
.

Note that our choice of v0 guarantees that each summand of Λ, Λ0 and Λ1 is
well-defined and that <α(v) > 0.

Thus

Λ(s, v) = Λ0(s, v) +
∑
j≥13

1

(j log φ− log(φ− φ)− v)s
+ Λ1(s, v)

=
1

logs φ
ζ(s, α(v)) + Λ0(s, v) + Λ1(s, v),

where ζ(s, β) =
∑
k≥0(k + β)s denotes the Hurwitz zeta function (the series con-

verges for <s > 1 if β 6∈ {0,−1,−2, . . .}, and it can be analytically continued),
cf. [5, 25.11.1].

The function Λ0(s, v) is obviously an entire function, and it is bounded for <s ≥
−3/2.

Estimating the difference occurring in Λ1(s, v), we see that

Λ1(s, v) = O

(∑
j≥13

s(|φ|/φ)j

(j log φ− log(φ− φ)− v)<s+1

)
.

Thus Λ1(s, v) is an entire function, and we have the estimate Λ1(s, v) = O(s) for
<s ≥ −3/2.

Moreover, ζ(s, α) is a meromorphic function with a single simple pole at s = 1
with residue 1, and by [20, §13.51], we have

ζ(s, α(v)) = O(s2)

in the given area, which proves the desired asymptotic estimate. It remains to
determine the values of the function and its derivative at s = 0.

Observe first that Λ0(0, v) = |F0| and Λ1(0, v) = 0. Moreover, we have

ζ(0, α(v)) =
1

2
− α(v),

cf. [5, 25.11.13]. Now we consider the first derivative. Λ0 and Λ1 are simply
differentiated term by term:
∂Λ0(s, v)

∂s

∣∣∣
s=0

= −
∑
m∈F0

log(logm− v) = −
∑
m∈F0

(
log logm+ log

(
1− v

logm

))
and

∂Λ1(s, v)

∂s

∣∣∣
s=0

= −
∑
j≥13

(
log
(

log
φj − φj

φ− φ
− v
)
− log

(
log

φj

φ− φ
− v
))

= −
∑
j≥13

(
log
(

log vj(φ, φ)− v
)
− log log φ− log(j − 13 + α(v))

)
.

Finally, it is well known (see [5, 25.11.18]) that
∂ζ(s, α)

∂s

∣∣∣
s=0

= log Γ(α)− 1

2
log(2π),

http://dlmf.nist.gov/25.11.E1
http://dlmf.nist.gov/25.11.E13
http://dlmf.nist.gov/25.11.E18
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hence
∂

∂s

1

logs φ
ζ(s, α(v))

∣∣∣
s=0

= − log log φ
(1

2
− α(v)

)
+ log Γ(α(v))− 1

2
log(2π).

Now we make use of the product representation of the Gamma function, which
yields
∂

∂s

1

logs φ
ζ(s, α(v))

∣∣∣
s=0

= − log log φ
(1

2
− α(v)

)
− 1

2
log(2π)− γα(v)− logα(v)

−
∑
k≥1

(
log(k + α(v))− log k − α(v)

k

)
.

The infinite sum can be combined with the sum in the derivative of Λ1 to give us
∂Λ(s, v)

∂s

∣∣∣
s=0

= −
∑
m∈F0

(
log logm+ log

(
1− v

logm

))
− log log φ

(1

2
− α(v)

)
− 1

2
log(2π)− γα(v)− log

(
1− v

log v13(φ, φ)

)
− log log v13(φ, φ) + log log φ

−
∑
k≥1

(
log(log vk+13(φ, φ)− v)− log log φ− log k − α(v)

k

)
,

which can finally be rewritten as
∂Λ(s, v)

∂s

∣∣∣
s=0

= −
∑
m∈F

(
log
(

1− v

logm

)
+

v

logm

)
−
∑
m∈F0

log logm+
∑
m∈F0

v

logm
+ log log φ

(27

2
− log(φ− φ) + v

log φ

)
− 1

2
log(2π)− γ

(
13− log(φ− φ) + v

log φ

)
− log log v13(φ, φ)

+
v

log v13(φ, φ)
+ v

∑
k≥1

( 1

log vk+13(φ, φ)
− 1

k log φ

)
−
∑
k≥1

(
log log vk+13(φ, φ)− log log φ− log k − 13

k
+

log(φ− φ)

k log φ

)
.

Apart from the first sum, all terms are indeed either constant or linear in v. Col-
lecting the linear terms gives the stated formula for κ1, completing our proof. �

Lemma 2. Let r > 0, z = r + it with |t| ≤ r7/5, and |1− u| < 1.
The Dirichlet series d(z, u) converges absolutely for <z > 0, and we have the

asymptotic estimates

d(z, u) = d(r, u) exp
(
− ia(u)t

r2
− a(u)t2

r3
+O(r1/5)

)
,

d(r, u) = exp
(a(u)

r
+ b log r + c(u) +O(r)

)
(7)

for r → 0+ and

a(u) =
π2/6− Li2(1− u)

log φ
,

where Li denotes the polylogarithm,

b = −|F0|+
25

2
− log(φ− φ)

log φ
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and c(u) is a function which is analytic in a complex neighbourhood of 1. The
estimates are uniform in u on compact sets.

Proof. Let

g(z, u) :=
∑
m∈F

log
(

1 +
um−z

1−m−z
)
,

which implies d(z, u) = exp(g(z, u)) by (1). For <z > 0 and fixed u, we have

log
(

1 +
um−z

1−m−z
)
∼ um−z

for m→∞. Since the elements of F follow the asymptotic formula v` = v`(φ, φ) ∼
φ`

φ−φ , the series g(z, u) converges absolutely.
We rewrite g(z, u) as

g(z, u) =
∑
m∈F

log
(

1 +
ue−z logm

1− e−z logm

)
=
∑
m∈F

f(z logm,u)

for f(z, u) = log
(
1 + ue−z

1−e−z

)
.

For <s > 1, we consider the Mellin transform g?(s, u) of the harmonic sum
g(z, u) and obtain

(8) g?(s, u) = f?(s, u)
∑
m∈F

1

(logm)s
= f?(s, u)Λ(s, 0)

with Λ as defined in Lemma 1.
We compute f?(s, u). We have

f(z, u) = log
(

1 +
ue−z

1− e−z
)

= log(1− (1− u)e−z)− log(1− e−z)

=

∞∑
j=1

1− (1− u)j

j
e−zj .

Thus the Mellin transform is

f?(s, u) =

(∑
j≥1

1− (1− u)j

j1+s

)
Γ(s) = (ζ(s+ 1)− Lis+1(1− u))Γ(s).

Note that the polylogarithm Lis+1(1− u) is an entire function in s for |1− u| < 1.
We conclude that

g?(s, u) = (ζ(s+ 1)− Lis+1(1− u))Γ(s)Λ(s, 0).

This is a meromorphic function in s with a simple pole at s = 1, a double pole
at s = 0 and at most simple poles when s is a negative integer. When s runs
along vertical lines, g?(s, u)z−s decreases exponentially for |arg(z)| < π/4 due to
the factor Γ(s). We have

Ress=1 g
?(s, u) =

π2/6− Li2(1− u)

log φ
=: a(u).

In addition, we have the singular expansion

g?(s, u) = − b

s2
+
c(u)

s
+O(1)

around 0, where b = −Λ(0, 0) and

c(u) = Λ(0, 0) log u+
∂Λ(s, 0)

∂s

∣∣∣
s=0
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is an analytic function of u for |1−u| < 1. Note that b is independent of u because
the only component of g?(s, u) depending on u is Lis+1(1 − u), which does not
contribute to the term 1/s2.

By [9, Theorem 4] (which remains valid for complex z with |arg(z)| < π/4
because of the exponential decay observed above; cf. [11]), we get

g(z, u) =
a(u)

z
+ b log z + c(u) +O(z)

for z → 0, |arg(z)| < π/4.
As the Mellin transform of z ∂g(z,u)

∂z is (−s)g?(s, u) by general properties of the
Mellin transform, we immediately deduce that

(9) z
∂g(z, u)

∂z
= −a(u)

z
+O(1)

for z → 0, |arg(z)| < π/4, because the Mellin transform now has a simple pole at
s = 0. Repeating the argument, we get

z2 ∂
2g(z, u)

∂2z
+ z

∂g(z, u)

∂z
=
a(u)

z
+O(z),(10)

z3 ∂
3g(z, u)

∂3z
+ 3z2 ∂

2g(z, u)

∂2z
+ z

∂g(z, u)

∂z
= −a(u)

z
+O(z)(11)

for z → 0, |arg(z)| < π/4. Solving the linear system consisting of (9), (10) and (11)
yields

∂g(z, u)

∂z
= −a(u)

z2
+O

(1

z

)
,

∂2g(z, u)

∂2z
=

2a(u)

z3
+O

( 1

z2

)
,

∂3g(z, u)

∂3z
= −6a(u)

z4
+O

( 1

z3

)
for z → 0, |arg(z)| < π/4.

Thus we can approximate g(z, u) by Taylor expansion around z = r as

g(z, u) = g(r, u)− ia(u)t

r2
+O

( t
r

)
− a(u)t2

r3
+O

( t2
r2

)
+O

( t3
r4

)
.

With our choice of the upper bound for t, we get

g(z, u) = g(r, u)− ia(u)t

r2
− a(u)t2

r3
+O(r1/5).

This concludes the proof of the lemma. �

As a next step, we show that |d(r + it, u)| is exponentially smaller than d(r, u)
for all t which are not too close to integer multiples of 2π/ log φ.

Lemma 3. Let r > 0 and z = r + it with |t| ≥ r7/5. Then

log d(r, u)−< log d(z, u)� 1

r1/5

for u ∈ (1/2, 3/2) and r → 0+ unless there is a non-zero integer k such that
|t− 2kπ/ log φ| < r3/4.
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Proof. Using the function g(z, u) from the beginning of the proof of Lemma 2, we
have

g(z, u) =
∑
m∈F

log
(1− (1− u)m−z

1−m−z
)

=
∑
m∈F

∑
k≥1

1− (1− u)k

k
m−kz

=
∑
m∈F

∑
k≥1

1− (1− u)k

k
m−kr(cos(kt logm)− i sin(kt logm)).

This implies that

log d(r, u)−< log d(z, u) =
∑
m∈F

∑
k≥1

1− (1− u)k

k
m−kr(1− cos(kt logm)).

Obviously, all summands are non-negative, so we take the first summand as a lower
bound and obtain

log d(r, u)−< log d(z, u) ≥ u
∑
m∈F

m−r(1− cos(t logm)).

For ` ≥ 13, we use the estimate v` = φ`−φ`

φ−φ ≤ K0φ
` for a suitable K0 > 1. In the

following, we assume that r < 1. If 13 ≤ ` ≤ 1/r, then

vr` ≤ Kr
0φ

`r ≤ K0φ.

Thus restricting the sum to those ` and the corresponding v` yields

(12) log d(r, u)−< log d(z, u)�
∑

13≤`≤1/r

(1− cos(t log v`)).

We first consider the case that |t| ≤ r/ log φ. In this case, we have

|t| log v` ≤
r

log φ
(` log φ+ logK0) ≤ 1 +

r logK0

log φ
<
π

2

for sufficiently small r. Thus we may use the inequality 1 − cos θ = 2 sin2(θ/2) ≥
(4/π2)θ2 (which is a consequence of concavity of sin) to obtain

log d(r, u)−< log d(z, u)�
∑

13≤`≤1/r

t2 log2 v` � t2
∑

13≤`≤1/r

`2 � t2

r3
≥ 1

r1/5
.

Next, we consider the case that r/ log φ ≤ |t| ≤ r1/5. Here we omit all summands
with ` > 1/(|t| log φ) in (12) and obtain

log d(r, u)−< log d(z, u)�
∑

13≤`≤1/(|t| log φ)

(1− cos(t log v`))

� t2
∑

13≤`≤1/(|t| log φ)

log2 v` �
t2

|t|3
=

1

|t|
≥ 1

r1/5

by the same arguments as above.
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Finally, we turn to the case that |t| > r1/5. We estimate the sum of the cosines
by a geometric sum:∑

13≤`≤1/r

cos(t log v`) = <
∑

13≤`≤1/r

exp(it log v`)

≤
∣∣∣∣ ∑
13≤`≤1/r

exp

(
it
(
` log φ− log(φ− φ) +O

(( |φ|
φ

)`)))∣∣∣∣
=

∣∣∣∣ ∑
13≤`≤1/r

(
exp(it` log φ) +O

(( |φ|
φ

)`))∣∣∣∣
≤ 2

|exp(it log φ)− 1|
+O(1).

Choose an integer k such that |t log φ − 2kπ| is minimal. Then |t log φ − 2kπ| ≥
r3/4 log φ in view of the assumption made on t in the statement of the lemma (if
k 6= 0) and because |t| > r1/5 (if k = 0). We therefore have |exp(it log φ)−1| � r3/4.
Combining this with (12), we conclude that

log d(r, u)−< log d(z, u)� 1

r
− 1

r3/4
� 1

r
,

as required. �

We are now able to estimate the integral in (3), choosing r appropriately.

Lemma 4. Let u ∈ (1/2, 3/2) and r =
√
a(u)/ log x. Then

(13)
1

2πi

∫ r+i∞

r−i∞

d(z, u)

z(z + 1)
xz dz =

d(r, u)xr

2π

r1/2
√
π√

a(u)
(1 +O(r1/5))

for x→∞.

Proof. We first compute the integral over

M0 = {r + it | |t| ≤ r7/5}.

For z ∈M0, we have

1

z
=

1

r

(
1 +O

( t
r

))
=

1

r
(1 +O(r2/5)),

1

z + 1
= 1 +O(r).

By Lemma 2, we have

d(z, u)xz

z(z + 1)
=
d(r, u)xr

r
exp
(
− ia(u)t

r2
− a(u)t2

r3
+ it log x+O(r1/5)

)
.

The value r =
√
a(u)/ log x has been chosen in such a way that the linear terms

vanish. Thus we get

d(z, u)xz

z(z + 1)
=
d(r, u)xr(1 +O(r1/5))

r
exp
(
−a(u)t2

r3

)
.

We have

1

2πi

∫
z∈M0

d(z, u)

z(z + 1)
xz dz =

d(r, u)xr(1 +O(r1/5))

2πr

∫ r7/5

−r7/5
exp
(
−a(u)t2

r3

)
dt

=
d(r, u)xr(1 +O(r1/5))

2πr

∫ ∞
−∞

exp
(
−a(u)t2

r3

)
dt
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because adding the tails induces an exponentially small error (note that a(u) > 0).
Computing the integral yields

(14)
1

2πi

∫
z∈M0

d(z, u)

z(z + 1)
xz dz =

d(r, u)xr

2π

r1/2
√
π√

a(u)
(1 +O(r1/5)).

Next, we compute the integral over

M1 = {r + it ∈ C | ∃k ∈ Z \ {0} : |t− 2kπ/ log φ| < r3/4}.

We use the trivial bound |d(z, u)| ≤ d(r, u), which follows from the definition of
d(z, u) as a Dirichlet series. Using the estimates |z| ≥ |=z| and |z+ 1| ≥ |=z| yields∣∣∣∣ 1

2πi

∫
z∈M1

d(z, u)

z(z + 1)
xz dz

∣∣∣∣ ≤ d(r, u)xr

2π

∑
k∈Z\{0}

2r3/4(
| 2kπ
log φ | − r3/4

)2
� d(r, u)xr

2π
r3/4.

Thus this integral can be absorbed by the error term of (14).
Finally, we compute the integral over

M2 := {r + it ∈ C} \ (M0 ∪M1).

For z ∈M2, we have

|d(z, u)| ≤ d(r, u) exp
(
− K1

r1/5

)
for a suitable positive constant K1 by Lemma 3. Thus∣∣∣∣ 1

2πi

∫
z∈M2

d(z, u)

z(z + 1)
xz dz

∣∣∣∣� d(r, u)xr exp
(
− K1

r1/5

)∫
z∈M2

1

|z(z + 1)|
d|z|

� d(r, u)xr exp
(
− K1

r1/5

)
log

1

r
.

As this integral is also absorbed by the error term of (14), we get (13). �

In view of (3), Lemma 4 immediately gives us

IωF (x, u) =
∑

n∈M(F)
n≤x

uωF (n)
(

1− n

x

)
∼ d(r, u)xr

2π

r1/2
√
π√

a(u)
.

However, we are actually interested in an expression for the sum without the addi-
tional factor (1− n

x ). This is achieved in the following lemma.

Lemma 5. We have∑
n∈M(F)
n≤x

uωF (n) =

1

2
√
π

exp
(

2
√
a(u)

√
log x− 2b+ 1

4
log log x+

2b− 1

4
log a(u) + c(u)

)
×
(

1 +O
( 1

(log x)1/10

))
for x→∞ and 1/2 < u < 3/2.

Proof. Trivially, the inequality

(15) IωF (x, u) ≤
∑

n∈M(F)
n≤x

uωF (n)
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holds for positive u. On the other hand, we also have

(16)

IωF (x log x, u)

1− 1
log x

=
1

1− 1
log x

∑
n∈M(F)
n≤x log x

uωF (n)
(

1− n

x log x

)

≥ 1

1− 1
log x

∑
n∈M(F)
n≤x

uωF (n)
(

1− n

x log x

)

≥
∑

n∈M(F)
n≤x

uωF (n)

for positive u and x > 1.
Now we choose r =

√
a(u)/ log x as in Lemma 4 and use (3) as well as Lemma 4

to obtain

IωF (x, u) =
d(r, u)xrr1/2

2
√
πa(u)

(1 +O(r1/5)).

Finally, the asymptotic formula (7) for d(r, u) gives us

IωF (x, u) =
1

2
√
π

exp
(a(u)

r
+ b log r + c(u) + r log x+

1

2
(log r − log a(u))

)
× (1 +O(r1/5))

=
1

2
√
π

exp
(

2
√
a(u)

√
log x− 2b+ 1

4
log log x+

2b− 1

4
log a(u) + c(u)

)
×
(

1 +O
( 1

(log x)1/10

))
.

If we replace x by x log x and divide by (1− 1/ log x), we obtain exactly the same
asymptotic expansion, the difference being absorbed by the error term. Combining
this with (15) and (16) yields the result. �

We are now able to prove Theorems 1 and 2.

Proof of Theorem 1. Setting u = 1 in Lemma 5 yields the result. �

Proof of Theorem 2. We consider the moment generating function

E(eωF (N)t) =

∑
n∈M(F)
n≤x

eωF (n)t∑
n∈M(F)
n≤x

1
.

Lemma 5 yields

E(eωF (N)t) = exp
(
2(
√
a(et)−

√
a(1))

√
log x+O(t)

)(
1 +O

( 1

(log x)1/10

))
for log 1

2 < t < log 3
2 . We compute the Taylor expansion of 2(

√
a(et) −

√
a(1))

around 0 as
2(
√
a(et)−

√
a(1)) = a1t+

a2

2
t2 +O(t3)

for the constants a1, a2 given in the theorem. Thus the moment generating function
of the renormalised random variable Z = (ωF (N)− a1 log1/2 x)/(

√
a2 log1/4 x) is

E(eZt) = exp
( t2

2
+O

( t3 + t

log1/4 x

))(
1 +O

( 1

(log x)1/10

))
.

For all real t, this moment generating function converges pointwise to the mo-
ment generating function et

2/2 of the standard normal distribution. By Curtiss’
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theorem [4], the random variable Z converges weakly to the standard normal dis-
tribution for x→∞. �

3. Proof of Theorem 3: Counting with Multiplicities

Let r > 0 and consider the interval U = U(r) = (exp(−v0r/2), exp(v0r/2)),
where v0 has been defined in (4).

For u ∈ U and <z > r/2, we study the Dirichlet generating function

D(z, u) =
∑

n∈M(F)

uΩF (n)

nz
,

which has a product representation

D(z, u) =
∏
m∈F

(1 + um−z + u2m−2z + · · · ) =
∏
m∈F

1

1− um−z

for all such z and u.

Lemma 6. Let r > 0, |t| ≤ r7/5 and u ∈ U . Then

D(r + it, u) = D(r, u) exp
(
− iAt
r2
− At2

r3
+O(r1/5)

)
,

D(r, u) = exp
(A
r

+B
( log u

r

)
log r + C

( log u

r

)
+O(r)

)
(17)

for A = π2/(6 log φ), B(v) = −Λ(0, v), and C(v) = ∂Λ(s,v)
∂s

∣∣∣
s=0

in a neighbourhood
of the origin.

Proof. Let <z > r/2 and v = (log u)/z. The assumption u ∈ U implies that
|v| < rv0/(2|z|) < v0.

We consider the sum

G(z, v) = −
∑
m∈F

log(1− evzm−z).

Expanding the logarithm yields

G(z, v) =
∑
m∈F

∑
k≥1

ekvzm−kz

k
=
∑
m∈F

∑
k≥1

exp(−(logm− v)kz)

k
.

Its Mellin transform is

G?(s, v) =
∑
m∈F

∑
k≥1

1

k1+s

1

(logm− v)s
Γ(s) = Γ(s)ζ(1 + s)Λ(s, v),

where Λ has been defined in Lemma 1.
Again, G?(s, v) has a simple pole at s = 1 and a double pole at s = 0. At s = 1,

the local expansion is

G?(s, v) =
A

s− 1
+O(1).

The local expansion around s = 0 is

G?(s, v) = −B(v)

s2
+
C(v)

s
+O(1),

with B(v) and C(v) as in the statement of the lemma.
The rest of the proof follows along the lines of the proof of Lemma 2. �
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Lemma 7. Let r > 0 and z = r + it with |t| ≥ r7/5. Then

logD(r, u)−< logD(z, u)� 1

r1/5

for u ∈ (exp(−v0r/2), exp(v0r/2)) and r → 0+ unless there is a non-zero integer k
such that |t− 2kπ/ log φ| < r3/4.

Proof. We have

< logD(z, u) = −<
∑
m∈F

log(1− um−z) = <
∑
m∈F

∑
k≥1

uk

k
m−kz

=
∑
m∈F

∑
k≥1

uk

k
m−kr cos(kt logm).

This implies that

logD(r, u)−< logD(z, u) =
∑
m∈F

∑
k≥1

uk

k
m−kr(1− cos(kt logm))

≥ u
∑
m∈F

m−r(1− cos(t logm)).

The remainder of the proof is exactly the same as that of Lemma 3. �

Proof of Theorem 3. We now consider asymptotic expansions for x → ∞; we set
r =

√
A/ log x. The statements and proofs of Lemmata 4 and 5 carry over (only

the range of u has to be adapted). So we have

(18)
∑

n∈M(F)
n≤x

uΩF (n)

=
1

2
√
π

exp
(

2
√
A
√

log x− 2B(v) + 1

4
log log x+

2B(v)− 1

4
logA+ C(v)

)
×
(

1 +O
( 1

(log x)1/10

))
for x→∞, u ∈ U(

√
A/ log x) and v = log u

√
log x/A.

We now consider the moment generating function

E(eΩF (N)t) =

∑
n∈M(F)
n≤x

eΩF (n)t∑
n∈M(F)
n≤x

1
.

Equation (18) yields

E(eΩF (N)t) = exp
(1

2
(log log x− logA)(B(0)−B(v)) + C(v)− C(0)

)
×
(

1 +O
( 1

(log x)1/10

))
,

where v = t
√

log x/
√
A, for all t such that |t| ≤ v0

√
A/(2

√
log x). Since B(v) =

−Λ(0, v), Equation (5) gives us B(0)−B(v) = v/ log φ. Likewise, Lemmata 6 and
1 yield

C(v)− C(0) = −
∑
m∈F

(
log
(

1− v

logm

)
+

v

logm

)
+ κ1v,
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so finally

E(eΩF (N)t) =

exp
(
t
(a1

2

√
log x log log x+ b1

√
log x

)) ∏
m∈F

e−v/(logm)
(

1− v

logm

)−1

×
(

1 +O
( 1

(log x)1/10

))
,

where b1 = A−1/2(κ1− (logA)/(2 log φ)). Since (1− v/λ)−1 is exactly the moment
generating function of an Exp(λ)-distributed random variable, Theorem 3 follows
immediately from Curtiss’s theorem in the same way as Theorem 2. �
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