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SHEDDING VERTICES OF VERTEX DECOMPOSABLE GRAPHS

JONATHAN BAKER, KEVIN N. VANDER MEULEN, AND ADAM VAN TUYL

Abstract. Let G be a vertex decomposable graph. Inspired by a conjecture of Villar-
real, we investigate when Shed(G), the set of shedding vertices of G, forms a dominating
set in the graph G. We show that this property holds for many known families of vertex
decomposable graphs. A computer search shows that this property holds for all vertex
decomposable graphs on eight or less vertices. However, there are vertex decomposable
graphs on nine or more vertices for which Shed(G) is not a dominating set. We describe
three new infinite families of vertex decomposable graphs, each with the property that
Shed(G) is not a dominating set.

1. Introduction

This paper was initially motivated by a conjecture of R. Villarreal [22] about Cohen-
Macaulay graphs. Let G = (V,E) be a finite simple graph on the vertex set V =
{x1, . . . , xn} and edge set E. Villarreal [22] introduced the notion of an edge ideal of
G, that is, in the polynomial ring R = k[x1, . . . , xn] over a field k, let I(G) denote the
square-free quadratic monomial ideal I(G) = 〈xixj | {xi, xj} ∈ E〉. A graph G is Cohen-
Macaulay if the the quotient ring R/I(G) is a Cohen-Macaulay ring, that is, the depth
of R/I(G) equals the Krull dimension of R/I(G). The goal of [22] was to determine
necessary and sufficient conditions for a graph to be Cohen-Macaulay.

Based upon computer experiments on all graphs on six or less vertices, Villarreal pro-
posed a two-part conjecture:

Conjecture 1.1 ([22, Conjectures 1 and 2]). Let G be a Cohen-Macaulay graph and let

S = {x ∈ V | G \ x is a Cohen-Macaulay graph}.

Then (i) S 6= ∅, and (ii) S is a dominating set of G.

In Conjecture 1.1, G\x denotes the graph formed from G by removing the vertex x and all
of the edges adjacent to x. A subset D ⊆ V is a dominating set if every vertex x ∈ V \D
is adjacent to a vertex of D. Notice that (ii) will not hold if (i) does not hold.
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It is known that Conjecture 1.1 (i) is false. One example is due to Terai [23, Exercise
6.2.24]. However Terai’s example depends upon the characteristic of the field k. Earl and
the last two authors [8] found an example of a circulant graph G on 16 vertices with the
property that G is Cohen-Macaulay in all characteristics, but there is no vertex x such
that G \ x is Cohen-Macaulay.

Although Conjecture 1.1 is false in general, Villarreal’s work suggests that there may
exist some nice subset of Cohen-Macaulay graphs for which the Conjecture 1.1 still holds.
Dochtermann-Engström [7] and Woodroofe [24] independently showed that many of the
algebraic questions studied by Villarreal can be answered by studying the independence
complex of G and applying the tools of combinatorial algebraic topology. The indepen-
dence complex of a graph G is the simplicial complex whose faces are the independent sets
of G. Equivalently, it is the simplicial complex associated to I(G) via the Stanley-Reisner
correspondence.

Via combinatorial algebraic topology, there are a number of families of pure simpli-
cial complexes that are known to be Cohen-Macaulay (e.g., shellable, constructible). Of
interest to this paper are the pure vertex decomposable simplicial complexes. We say a
graph G is vertex decomposable if its independence complex is a pure vertex decomposable
simplicial complex (see the next section for more details; note that we will use an equiv-
alent definition of vertex decomposable that does not require the language of simplicial
complexes). Since vertex decomposable graphs are Cohen-Macaulay, it is reasonable to
consider the following variation of Conjecture 1.1:

Question 1.2. Let G be a vertex decomposable graph, and let

Shed(G) = {x ∈ V | G \ x is a vertex decomposable graph}.

Is Shed(G) a dominating set of G?

The set Shed(G) denotes the set of all shedding vertices of G. It will follow from the
definition of vertex decomposable graphs that Shed(G) 6= ∅, so we do not need an analog
of Conjecture 1.1 (i). Technically, a vertex x is a shedding vertex of a vertex decomposable
graph G if and only if G \ x and G \N [x] (the graph with the closed neighbourhood of x
removed) are both vertex decomposable, but we explain why it suffices to only consider
G \ x (see Theorem 2.5).

The goal of this paper is to explore Question 1.2. The next result summarizes some of
our findings.

Theorem 1.3. Suppose that G is a vertex decomposable graph. If G is

(i) a bipartite graph, or

(ii) a chordal graph, or

(iii) a very well-covered graph, or

(iv) a circulant graph, or

(v) a Cameron-Walker graph, or

(vi) a clique-whiskered graph, or

(vii) a graph with girth at least five,

then Shed(G) is a dominating set.
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In particular, (i) is Corollary 4.3, (ii) is Theorem 2.12, (iii) is Theorem 4.2, (iv) is
Theorem 2.10, (v) is Corollary 3.2, (vi) is Theorem 3.3, and (vii) Theorem 5.3.

The number of positive answers to Question 1.2 initially suggested a positive answer for
all vertex decomposable graphs. However, a computer search has revealed a counterexam-
ple on nine vertices. We use this counterexample (and others) to build three new infinite
families of vertex decomposable graphs which do not currently appear in the literature.

We outline the structure of this paper. Section 2 contains the requisite background
material plus a proof that chordal and circulant vertex decomposable graphs satisfy Ques-
tion 1.2. In Section 3, we consider two constructions of vertex decomposable graphs, and
show that any vertex decomposable graph G constructed via either construction satisfies
the property that Shed(G) is a dominating set. In Section 4, we consider all the very
well-covered graphs that are vertex decomposable. In Section 5, we focus on all vertex
decomposable graphs with girth at least five. In Section 6, we describe three infinite
families of graphs where each graph G is vertex decomposable, but Shed(G) is not a dom-
inating set. In Section 7, we show how to take a graph G which is vertex decomposable
but Shed(G) is not a dominating set and duplicate a vertex to construct a larger graph
with the same properties. Section 8 complements Section 6 by describing the results of
our computer search on all graphs on 10 or less vertices. We find the smallest graph that
gives a negative answer to Question 1.2. In fact, this example also provides a minimal
counterexample to Conjecture 1.1. As part of our computer search, we also show that the
set of vertex decomposable graphs is the same as the set of Cohen-Macaulay graphs for
all the graphs on 10 vertices or less.

2. Background definitions and first results

2.1. Vertex decomposable graphs. Let G be a finite simple graph with vertex set
V = {x1, . . . , xn} and edge set E. We may sometimes write V (G), respectively E(G), for
V , respectively E, if we wish to highlight that we are discussing the vertices, respectively
edges, of G. A subset W ⊆ V is an independent set if no two vertices of W are adjacent.
An independent set W is a maximal independent set if there is no independent set U such
that W is a proper subset of U . If W ⊆ V is an independent set, then V \W is a a vertex

cover. A vertex cover C is a minimal vertex cover if V \C is a maximal independent set.
A graph is well-covered if all the maximal independent sets have the same cardinality, or
equivalently, if every minimal vertex cover has the same cardinality.

For any x ∈ V , let G \ x denote the graph G with the vertex x and incident edges
removed. The neighbours of a vertex x ∈ V in G, is the set N(x) = {y | {x, y} ∈ E}.
The closed neighbourhood of a vertex x is N [x] = N(x) ∪ {x}. For S ⊆ V , we let G \ S
denote the graph obtained by removing all the vertices of S and their incident edges.

Definition 2.1. A graph G is vertex decomposable if G is well-covered and

(i) G consists of isolated vertices, or G is empty, or
(ii) there exists a vertex x ∈ V , called a shedding vertex, such that G \x and G \N [x]

are vertex decomposable.
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Remark 2.2. Vertex decomposability was first introduced by Provan and Billera [19]
for simplicial complexes. Our definition of vertex decomposability is equivalent to the
statement that the independence complex of a graph G is a vertex decomposable simplicial
complex. The independence complex, denoted Ind(G), is the simplicial complex

Ind(G) = {W ⊆ V | W is an independent set}.

One can use [7, Lemma 2.4] to show the equivalence of definitions. Provan and Billera’s
definition required that the simplicial complex be pure (which translates in the graph case
to the condition that G is well-covered). A non-pure version of vertex decomposability
was introduced by Björner and Wachs [3]. In the literature, a graph is sometimes called
vertex decomposable if Ind(G) satisfies Björner-Wachs’s definition, that is, G need not
be well-covered. However, when we say that G is vertex decomposable, it must also be
well-covered.

To determine vertex decomposability, it is enough to consider connected components.

Lemma 2.3 ([24, Lemma 20]). Suppose G and H are disjoint graphs. Then G ∪ H is

vertex decomposable if and only if G and H are each vertex decomposable.

The following construction allows us to make vertex decomposable graphs from a given
graph. For any graph G, let S ⊆ V , and after relabeling, let S = {x1, . . . , xs}. We
let G ∪ W (S) denote the graph with the vertex set V ∪ {z1, . . . , zs} and edge set E ∪
{{xi, zi} | i = 1, . . . , s}. The graph G ∪W (S) is called the whiskered graph at S since we
are adding leaves or “whiskers” to all the vertices of S. Biermann, Francisco, Hà, and
Van Tuyl [1] showed that if we carefully choose S, the new graph G∪W (S) will be vertex
decomposable in the non-pure sense. We can adapt their result as follows:

Theorem 2.4. Let G be a graph and S ⊆ V . If the induced graph on V \S is a well-covered

chordal graph and if G ∪W (S) is well-covered, then G ∪W (S) is vertex decomposable.

Proof. The above statement is [1, Corollary 4.6], but without the adjectives “well-covered”.
However, the proofs of [1] will also work if we require all of our graphs to be well-
covered. �

2.2. Shedding vertices. If G is a vertex decomposable, then the set of shedding vertices
is denoted by:

Shed(G) = {x ∈ V | G \ x and G \N [x] are vertex decomposable}.

However, if it is known that G is vertex decomposable, to determine if x ∈ Shed(G), then
it is enough to check if G \ x is vertex decomposable.

Theorem 2.5. If G is vertex decomposable, then G \N [x] is vertex decomposable for all

x ∈ V . Consequently, Shed(G) = {x ∈ V | G \ x is vertex decomposable}.

Proof. We sketch out the main idea. The graphG\N [x] is vertex decomposable if and only
if the independence complex Ind(G \N [x]) is a vertex decomposable simplicial complex.
It can be shown that Ind(G \ N [x]) equals the simplicial complex linkInd(G)(x), the link
of the element x in Ind(G). Then one uses [19, Proposition 2.3] which shows that every
link of a vertex decomposable simplicial complex is also vertex decomposable. �
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We now provide some tools that enable us to identify some elements of Shed(G). For
any W ⊆ V , the induced graph of G on W , denoted G[W ], is the graph with vertex set
W and edge set {e ∈ E | e ⊆ W}. The complete graph on n vertices, denoted Kn, is the
graph on the vertices {x1, . . . , xn} with edge set {{xi, xj} | i 6= j}. A clique in G is an
induced subgraph of G that is isomorphic to Km for some m ≥ 1.

Definition 2.6. A vertex x ∈ V is a simplicial vertex if the induced graph on N(x) is a
clique; equivalently the vertex x appears in exactly one maximal clique of the graph. A
simplex is a clique containing at least one simplicial vertex of G. A graph G is simplicial

if every vertex of G is a simplicial vertex or adjacent to one.

Example 2.7. (i) A vertex x is a leaf if it has degree one. Since a leaf has exactly one
neighbour, which is a K1, it is a simplicial vertex.

(ii) The graph in Figure 1 is simplicial. The simplicial vertices are x1, x2, x3 and x4, and
each vertex is either a simplicial vertex or adjacent to one.

x1 x2 x3

x4
x5 x6 x7

Figure 1. A simplicial graph

Lemma 2.8. Suppose G is well-covered. If x is a simplicial vertex, then for every y ∈
N(x), the graph G \ y is also well-covered.

Proof. Let H be a maximal independent set of G \ y. Then H is also an independent
set of G. If H was not maximal in G, then H ∪ {y} must still be independent in G.
This implies (N [x] \ {y}) ∩ H = ∅. But then H ∪ {x} would be an independent set of
G \ y, contradicting the maximality of H . So H is also a maximal independent set of
G, and since G is well-covered, all the maximal independent sets of G \ y have the same
cardinality. �

Lemma 2.9. Let G be a vertex decomposable graph. If x is a simplicial vertex, then

N(x) ⊆ Shed(G).

Proof. Let x be a simplicial vertex of G and suppose y ∈ N(x). By [24, Corollary 7], y is a
shedding vertex of G, although [24] uses the non-pure definition of vertex decomposable.
However, if G is a well-covered graph, then G \ y is also well-covered by Lemma 2.8, so
G \ y is vertex decomposable. �

2.3. Circulant and chordal graphs. We end this section by giving a positive answer
to Question 1.2 for two classes of graphs, circulant graphs and chordal graphs.

Let n ≥ 1 and S ⊆ {1, . . . , ⌊n
2
⌋}. The circulant graph Cn(S) is the graph on the vertex

set {0, . . . , n− 1} with all edges {a, b} that satisfy |a− b| ∈ S or n− |a− b| ∈ S.

Theorem 2.10. Suppose G is a circulant graph. If G is vertex decomposable, then

Shed(G) is a dominating set.
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Proof. If G is vertex decomposable, then there exists some vertex i such that G \ i is
vertex decomposable. By the symmetry of the graph G \ j is isomorphic to G \ i for all
i 6= j. But then Shed(G) = V , and hence Shed(G) is a dominating set. �

A chordal graph is a graph G such that every induced cycle in G has length three. We
have the following classification of vertex decomposable chordal graphs.

Theorem 2.11. Let G be a chordal graph. Then the following are equivalent:

(i) G is vertex decomposable.

(ii) G is well-covered.

(iii) Every vertex of G belongs to exactly one simplex of G.

Proof. ((i) ⇒ (ii)) If G is vertex decomposable, then by definition, G is well-covered.

((ii) ⇒ (i)) Woodroofe ([24, Corollary 7]) (and independently by Dochtermann and
Engström [7]) showed that every chordal graph G is also vertex decomposable, in the
non-pure sense of vertex decomposable due to Björner-Wachs [3]. But if G is well-covered,
one can adapt this proof to show that G is vertex decomposable as we have defined it.

((ii) ⇔ (iii)) This is [18, Theorem 2]. �

We can now prove the following result.

Theorem 2.12. Suppose G is a chordal graph. If G is vertex decomposable, then Shed(G)
is a dominating set.

Proof. By Lemma 2.3, we can assume that G is connected and has at least two vertices.
Since G is vertex decomposable, by Theorem 2.11, the simplexes of G partition V , i.e.,
V = V1 ∪ · · · ∪ Vt where the induced graph on each Vi is a simplex. So, every Vi contains
at least one simplicial vertex.

For each i = 1, . . . , t, let xi ∈ Vi be a simplicial vertex. Note that this means that
N(xi) = Vi \ {xi} for each i. By Lemma 2.9, N(xi) ⊆ Shed(G). So N(x1)∪ · · · ∪N(xt) ⊆
Shed(G). But then Shed(G) is a dominating set. Indeed, if x 6= xi for any i, then x is a
neighbour of some xj, and so is in Shed(G). If x = xi for some i, then all of its neighbours
belong to Shed(G). �

3. Vertex Decomposable Constructions

Given a graph G, there are two known constructions (see [6, 14]) that enable one to
build a new vertex decomposable graph that contains G as an induced subgraph. We show
that the resulting graph in either construction has the property that its set of shedding
vertices is a dominating set.

3.1. Appending cliques. We first consider a construction of Hibi, Higashitani, Kimura,
and O’Keefe [14] that builds a vertex decomposable graph by appending a clique at each
vertex. More precisely, let G be a graph with vertex set V (G) = {x1, . . . , xn} and edge
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set E(G). Let k1, . . . , kn be n positive integers with ki ≥ 2 for i = 1, . . . , n. We now

construct a graph G̃ = (V (G̃), E(G̃)) with

V (G̃) = {x1,1, x1,2, . . . , x1,k1} ∪ {x2,1, . . . , x2,k2} ∪ {. . . , xn,1, . . . , xn,kn}

and edge set

E(G̃) = {{xi,1, xj,1} | {xi, xj} ∈ E(G)} ∪
n⋃

i=1

{{xi,j, xi,l} | 1 ≤ j < l ≤ ki} .

That is, G̃ is the graph obtained from G by attaching a clique of size ki at the vertex xi.

Starting from any graph G, the graph G̃ will always be a vertex decomposable graph
by [14, Theorem 1]. Moreover, any graph arising arising from this construction gives a
positive answer to Question 1.2.

Theorem 3.1. Given any graph G, the vertex decomposable graph G̃ has the property

that Shed(G̃) is a dominating set.

Proof. For any i ∈ {1, . . . , n}, xi,ki 6= xi,1 because ki ≥ 2. The vertex xi,ki is a simplicial

vertex, so by Lemma 2.9 xi,1 ∈ N(xi,ki) ⊆ Shed(G̃). Thus T = {x1,1, . . . , xn,1} ⊆ Shed(G̃),

and T is a dominating set of G̃. �

Hibi et al. [14] developed the above construction to study Cameron-Walker graphs.
A graph G is a Cameron-Walker graph if the induced matching number G equals the
matching number of G (see [14] for precise definitions). One of the main results of [14] is
the fact that a Cameron-Walker graph G is a vertex decomposable graph if and only if G =

H̃ for some graph H (with some hypotheses on the ki’s that appear in the construction

of H̃). Consequently, we can immediately deduce the following corollary.

Corollary 3.2. Suppose G is a Cameron-Walker graph. If G is vertex decomposable,

then Shed(G) is a dominating set.

3.2. Clique-whiskering. A second construction of vertex decomposable graphs is due
to Cook and Nagel [6]. Let G be a graph on the vertex set V = {x1, . . . , xn}. A clique

vertex partition of V is a set π = {W1, . . . ,Wt} of disjoint subsets that partition V such
that each induced graph G[Wi] is a clique. A clique-whiskered graph Gπ constructed
from the graph G with clique partition π = {W1, . . . ,Wt} is the graph with V (Gπ) =
{x1, . . . , xn, w1, . . . , wt} and E(Gπ) = E ∪ {{x, wi} | x ∈ Wi}. In other words, for each
clique in the partition π, we add a new vertex wi, and join wi to all the vertices in the
clique.

Note that if G̃ is the graph obtained from G by appending cliques with k1 = · · · =
kn = 2, then G̃ is isomorphic to the clique-whiskered graph Gπ using the clique partition
π = {{x1}, {x2}, . . . , {xn}}.

Cook and Nagel ([6, Theorem 3.3]) showed that for any graphG and any clique partition
π of G, the graph Gπ is always vertex decomposable. Like the previous construction, any
graph constructed via this method gives a positive answer to Question 1.2.
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Theorem 3.3. Let G be a graph with clique partition π. The vertex decomposable graph

Gπ has the property that Shed(Gπ) is a dominating set.

Proof. If π = {W1, . . . ,Wt}, then the vertex set of Gπ is {x1, . . . , xn, w1, . . . , wt}. Every
vertex xi belongs to some clique Wj . So, in Gπ, the vertex xi is adjacent to wj. By
construction, wj is adjacent only to the vertices of Wj, and since Wj is a clique, wj is a
simplicial vertex. Thus by Lemma 2.9, xi ∈ N(wj) ⊆ Shed(Gπ). Thus {x1, . . . , xn} ⊆
Shed(Gπ), and this subset forms a dominating set. �

4. Very well-covered graphs

We now show that all very well-covered vertex decomposable graphs satisfy Question
1.2. A well-covered graph is very well-covered if every maximal independent set has
cardinality |V |/2. Vertex decomposable very well-covered graphs were first classified by
Mahmoudi, Mousivand, Crupi, Rinaldo, Terai, and Yassemi [16]:

Theorem 4.1 ([16, Lemma 3.1 and Theorem 3.2]). Let G be a very well-covered graph

with 2h vertices. Then the following are equivalent:

(i) G is vertex decomposable;

(ii) There is a relabeling of the vertices V = X ∪ Y = {x1, . . . , xh} ∪ {y1, . . . , yh} such

that the following five conditions hold:

(a) X is a minimal vertex cover of G and Y is a maximal independent set of G;

(b) {x1, y1}, . . . , {xh, yh} ∈ E;

(c) if {zi, xj}, {yj, xk} ∈ E, then {zi, xk} ∈ E for distinct i, j, k and for zi ∈
{xi, yi};

(d) if {xi, yj} ∈ E, then {xi, xj} 6∈ E; and

(e) if {xi, yj} ∈ E, then i ≤ j.

Using the above structure result, we will now show the following result.

Theorem 4.2. Let G be a very well-covered graph. If G is vertex decomposable, then

Shed(G) is a dominating set.

Proof. Suppose G is a very well-covered vertex decomposable graph. We can assume that
the vertices have of G have been relabeled as V = {x1, . . . , xh, y1, . . . , yh} so that the five
conditions of Theorem 4.1 hold.

For each leaf z ∈ V , the unique neighbour of z is in Shed(G) by Lemma 2.9. So, if
S = {N(z) | z is a leaf of G}, then S ⊆ Shed(G). Note that S 6= ∅ because y1 is a leaf
because condition (a) indicates y1 is not adjacent to any of the other yj’s, condition (b)
means {y1, x1} ∈ E, and condition (e) implies {y1, xj} 6∈ E for all j = 2, . . . , h.

To finish the proof, it suffices to prove that S is a dominating set of G. Suppose not,
that is, suppose there is a vertex w that is neither in S nor adjacent to a vertex in S (in
particular, w is not a leaf). We now consider two cases.

Case 1: Suppose w ∈ X . In this case, w = xi for some i, 1 ≤ i ≤ h. Furthermore, we
can assume that i is maximal, that is, for any i < j ≤ h, xj is either in S or adjacent to



SHEDDING VERTICES OF VERTEX DECOMPOSABLE GRAPHS 9

something in S. Since xi is adjacent to yi, and w is not a leaf, there is another vertex
adjacent to w.

Suppose w is adjacent to some vertex in X , say xj with j 6= i. Both yi and yj are not
leaves; otherwise xi or xj would belong to S. Thus yi is adjacent to some xp for p < i
and yj is adjacent to some xq with q < j by condition (e). Now p 6= q, because if they
were equal, we would have {xi, xj}, {yj, xp} ∈ E implying that {xi, xp} is an edge of G
by condition (c). But this contradicts condition (d) since {xp, yi} ∈ E.

So we have {xi, xj}, {yj, xq} ∈ E, and then by condition (c), {xi, xq} ∈ E. (Note
that q 6= i because if q = i, then we would contradict condition (d).) Similarly, because
{xj , xi}, {yi, xp} ∈ E, we have {xj, xp} ∈ E. Finally, because {xq, xi}, {yi, xp} ∈ E, we
have {xq, xp} ∈ E by condition (c).

Let Xq = {xi, xj , xp, xq}. Note that xq 6∈ S since xq ∈ N(w). This means that yq is
not a leaf. Hence there exists a vertex xq1 ∈ X adjacent to yq, q1 < q. By condition (d),
xq1 6∈ N(xq) (and so q1 6∈ {p, i}). Also, q1 6= j since q1 < q < j. Thus xq1 6∈ Xq. Note also
that by condition (c), N(xq) ⊆ N(xq1) (and hence also w ∈ N(xq1)).

Let Xq1 = {xi, xj , xp, xq, xq1}. Inductively, we can see that for each positive integer
n ≥ 2, xqn−1

6∈ S and hence there exists a vertex xqn ∈ X , qn < qn−1, with xqn adjacent
to yqn−1

such that xqn 6∈ Xqn−1
= {xi, xj, xp, xq, xq1 , . . . , xqn−1

} and N(xqn−1
) ⊆ N(xqn).

But this contradicts the fact that G is a finite graph. Therefore, w is not adjacent to any
vertex in X .

Hence there exists a j > i so that w = xi is adjacent to yj. By condition (d), {xi, xj} 6∈
E. The vertex xj is not a leaf (otherwise w = xi would be adjacent to yj ∈ N(xj) ⊆ S),
so N(xj) \ {yj} 6= ∅. For any u ∈ N(xj) \ {yj}, since {u, xj}, {yj, xi} ∈ E, condition (c)
implies that {u, xi} ∈ E. In other words, N(xj) ⊆ N(xi). By our assumption on the
maximality of i, xj is either in S, or xj is adjacent to a vertex in S. If xj is adjacent to
a vertex in S, then so is xi since N(xj) ⊆ N(xi) contradicting our choice of xi. On the
other hand, xj cannot be in S since every neighbour of xj is also a neighbour of xi, that
is, every neighbour has at least degree two. So w cannot be adjacent to any vertex in Y .
Therefore w 6∈ X .

Case 2: Suppose w ∈ Y . Let i be the minimal index such that w = yi is not in S or
adjacent to a vertex in S. Note that i > 1 since we already observed that x1 ∈ S. By
Lemma 2.9, yi is not a leaf. So by (a) there is some xj adjacent to yi and j < i by (e).
By our choice of i, yj is either in S or yj is adjacent to something in S. If yj ∈ S, then yj
is adjacent to a leaf xk. By (e), k ≤ j. Further, even though {xj , yj} ∈ E, xj is not a leaf
since xj is also adjacent to yi. Hence k < j. But since we have {xk, yj}, {xj, yi} ∈ E, we
also have {xk, yi} which means that xj is not a leaf. So yj 6∈ S and hence yj is adjacent
to something in S. But then either xj ∈ S, which means that yi is adjacent to something
in S, or yj is adjacent to some xk ∈ S with k < j by (e). But then xk is also adjacent to
yi by condition (c). Therefore w 6∈ Y .

These two cases show that every vertex of G is either in S or adjacent to a vertex in S.
Therefore S is a dominating set, and so Shed(G) is a dominating set. �

Corollary 4.3. Suppose G is a bipartite graph. If G is vertex decomposable, then Shed(G)
is a dominating set.
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Proof. By Lemma 2.3, we can assume that G is connected. Suppose that G is a bipartite
graph with vertex partition V = V1 ∪ V2 = {x1, . . . , xn} ∪ {y1, . . . , ym}. The sets V1 and
V2 are independent sets. In fact, they are maximal independent sets. Indeed, if V1 is
not maximal, there is a vertex yj ∈ V2 such that V1 ∪ {yj} is independent. But since
yj is not adjacent to any vertex of V2, this means that yj is not adjacent to any vertex,
contradicting the fact that G is connected. The same proof works for V2.

If G is vertex decomposable, then G must be well-covered, So, for any maximal inde-
pendent set W , we have |W | = |V1| = |V2| = n = |V |/2. So G is very well-covered. Now
apply Theorem 4.2. �

Remark 4.4. As we showed in the previous proof, the class of very well-covered graphs
contains the family of well-covered bipartite graphs. Theorem 4.1 can be viewed as a
generalization of results first proved about well-covered bipartite graphs. Herzog and Hibi
gave a combinatorial classification of Cohen-Macaulay bipartite graphs in [13, Corollary
9.1.14] which prefigures the classification of Theorem 4.1. Van Tuyl [21] then showed that
a bipartite graph is vertex decomposable if and only if it is Cohen-Macaulay.

5. Graphs with girth at least five

We now consider all vertex decomposable graphs with girth five or larger. These graphs
were independently classified by Bıyıkoğlu and Civan [2] and Hoang, Minh, and Trung
[15]. Both of these results relied on the classification of well-covered graphs with girth
five or larger due to Finbow, Hartnell, and Nowakowski [9].

To state the required classification, we first review the relevant background. The girth

of a graph G is the number of vertices of a smallest induced cycle of G. If G has no cycles,
then we say G has infinite girth. A pendant edge is an edge that is incident to a leaf. A
matching is a subset of edges of G that do not share any common endpoints. A matching
is perfect if the set of vertices in the edges of the matching are all of the vertices.

An induced 5-cycle is said to be basic if it contains no adjacent vertices of degree three
or larger. A graph G is in the class PC if V can be partitioned into subsets V = P ∪ C
where P contains all the vertices incident with pendant edges and the pendant edges form
a perfect matching of P , and where C contains the vertices of basic 5-cycles, and these
basic 5-cycles form a partition of C.

We then have the following classification (see the cited papers for additional equivalent
statements).

Theorem 5.1 ([2, 15]). Let G be a connected graph of girth at least 5. If G is well-covered,

then the following are equivalent:

(i) G is vertex decomposable;

(ii) G is a vertex or in the class PC.

We first prove a lemma.

Lemma 5.2. Let B be a basic 5-cycle of a well-covered graph G ∈ PC. If B has a vertex

x adjacent to two vertices of B of degree two in G, then x ∈ Shed(G).
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Proof. Suppose G ∈ PC with partition V (G) = C(G)∪P (G). Let B be a basic 5-cycle of
G. Suppose E(B) = {x, x1} ∪ {x1, y1} ∪ {y1, y2} ∪ {y2, x2} ∪ {x2, x} with x1 and x2 both
of degree 2 in G.

Let H = G \ x. We first show that H is well-covered. Let W be any maximal inde-
pendent set of H ; consequently, W is also an independent set of G. If W is not maximal
in G, then W ∪ {x} is an independent set of G. In particular, W does not contain either
x1 or x2. In H , x1 and x2 are leaves, and W contains at most one of y1 and y2. But
if y1 ∈ W , then W ∪ {x2} is an independent set in H , contradicting our choice of W .
Similarly, if y2 ∈ W , then W ∪{x1} is an independent set. So, W must also be a maximal
independent set of G. Because G is well-covered, all the maximal independent sets of H
will have the same cardinality, that is, H is well-covered.

We now show H ∈ PC. Removing x from G breaks the 5-cycle B, so we have V (H) =
(C(G) \ V (B)) ∪ (P (G) ∪ {x1, x2, y1, y2}). The graph H has girth at least 5, since no
new cycles are created by removing a vertex x from G. We claim that H ∈ PC and in
particular, C(H) = C(G) \ V (B) and P (H) = P (G) ∪ {x1, x2, y1, y2}. The first equality
is due to the fact that exactly one basic cycle was destroyed in G to create H and no new
cycles were created. The second equality follows from the fact that x1 and x2 are leaves in
H so {x1, y1} and {x2, y2} are now part of a perfect matching on (V \ C(H)). Therefore
H ∈ PC.

Because H is well-covered and in PC, Theorem 5.1 implies H is vertex decomposable,
and consequently, x ∈ Shed(G). �

Theorem 5.3. Let G be a graph with girth of at least five. If G is vertex decomposable,

then Shed(G) is a dominating set.

Proof. If G is vertex decomposable, by Theorem 5.1, G is either a single vertex or G ∈ PC.
Because the statement is vacuous for a single vertex, we can assume that G ∈ PC.

Let V = P ∪ C be the corresponding partition of G. Let x ∈ V . We claim that x is
either a shedding vertex of G or adjacent to a shedding vertex of G. With this claim, we
can conclude that Shed(G) is a dominating set.

Suppose x ∈ P . Then x is either a leaf or adjacent to a leaf y. So by Lemma 2.9, x is
a shedding vertex of G or adjacent to one.

Suppose x ∈ C. Then there is a basic 5-cycle B such that x ∈ V (B). If x is adjacent
to two vertices of degree two, then x ∈ Shed(G) by Lemma 5.2. So suppose that there
exists y ∈ V (B) adjacent to x such that y has degree greater at least three. Because
B is a basic 5-cycle, y must be adjacent to two vertices of degree two. By Lemma 5.2,
y ∈ Shed(G). Hence x is adjacent to a shedding vertex. Therefore every vertex in C is a
shedding vertex of G or adjacent to one. �

6. Three new vertex decomposable graphs

In this section we will construct three infinite family of graphs. Each family will have
the property that all members are vertex decomposable, but Shed(G) is not a dominating
set, thus giving a negative answer to Question 1.2 in general.
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6.1. Construction 1. Fix m integers ki ≥ 2, and suppose that k1 + · · ·+ km = n. We
define Dn(k1, . . . , km) to be the graph on the 5n vertices

V = X ∪ Y ∪ Z = {x1, . . . , x2n} ∪ {y1, . . . , y2n} ∪ {z1, . . . , zn}

with the edge set given by the following conditions:

(i) the induced graph on Z is a complete graph Kn;
(ii) Y is an independent set, i.e., G[Y ] = K2n, where H denotes the complement of

the graph H ;
(iii) the induced graph G[X ] is Kk1,k1 ⊔ · · · ⊔ Kkm,km where the vertices of G[X ] are

labeled so that the i-th complete bipartite graph has bipartition

{x2w+1, x2w+3, . . . , x2(w+ki)−1} ∪ {x2w+2, x2w+4, . . . , x2(w+ki)}

with w =
∑i−1

ℓ=1 kℓ where w = 0 if i = 1;
(iv) {xj, yj} are edges for 1 ≤ j ≤ 2n; and
(v) {zj, y2j} and {zj , y2j−1} are edges for 1 ≤ j ≤ n.

Roughly speaking, the graph Dn(k1, . . . , km) is formed by “joining” m complete bipar-
tite graphs to a complete graph Kn by first passing through an independent set of vertices
Y . Going forward, it is useful to make the observation that the induced graph G[X ∪ Y ]
has a perfect matching given by the edges {xj, yj} for j = 1, . . . , 2n.

Example 6.1. To illustrate our construction, the graph of D5(2, 3) is given in Figure 2.

x1 x3 x5 x7 x9

x2 x4 x6 x8 x10

y1 y3 y5 y7 y9

y2 y4 y6 y8 y10

z1
z2

z3

z4

z5

Z

Y

X

Figure 2. D5(2, 3).

We now show that the graphs Dn(k1, . . . , km) are all well-covered. In what follows, we
write α(G) to denote the cardinality of a maximal independent set in G.

Lemma 6.2. Let G = Dn(k1, . . . , km) be constructed as above. Then G is well-covered.
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Proof. Let G = Dn(k1, . . . , km). It suffices to show that every maximal independent set
has the same cardinality.

We can partition V into n sets of five vertices, namely, {x2i−1, x2i, y2i−1, y2i, zi} for
1 ≤ i ≤ n. The induced graph on each such set is a five cycle. Since α(C5) = 2, it follows
that α(G) ≤ 2n. On the other hand, Y is a maximal independent set of vertices with
|Y | = 2n, so α(G) = 2n.

Let H be any maximal independent set with |H| < 2n. If H ∩ Z = ∅, then because
there are 2n edges of the form {xj , yj}, there exists an i such that neither xi nor yi belong
to H . But then H ∪ {yi} is an independent set since yi is only adjacent to a vertex in Z
and xi. This contradicts the fact that H is a maximal independent set.

So, there exists a zi ∈ H ∩ Z. Because G[Z] is a complete graph, H ∩ Z = {zi}. Thus
each edge {xj, yj} for j 6= 2i or 2i − 1 has a vertex in H , otherwise H ∪ {yj} is a larger
independent set. Because |H| ≤ 2n − 1, we have already accounted for all the vertices
in H . So, neither x2i nor x2i−1 are in H . Hence x2i, respectively x2i−1, is adjacent to
some vertex xl ∈ H , respectively xk ∈ H . Further, x2i−1, xl, x2i, xk all belong to the same
complete bipartite graph Kkr ,kr . Then l must be odd since 2i is even and k must be
even since 2i − 1 is odd. However, then xk is adjacent to xl, contradicting the fact that
xk, xl ∈ H . Thus H cannot be a maximal independent set if |H| < 2n, and so every
maximal independent set has cardinality 2n. Therefore G is well-covered. �

We now show that any graph made via our construction is vertex decomposable, and
furthermore, we determine its set of shedding vertices.

Theorem 6.3. Let G = Dn(k1, . . . , km) be constructed as above. Then G is vertex de-

composable and Shed(G) = Z.

Proof. Let G = Dn(k1, . . . , km). By Lemma 6.2, G is well-covered. We show that G is
vertex decomposable by first working through four claims.

Claim 1: For each i = 1, . . . , n, Gi = (((G \ z1) \ z2) · · · \ zi) is a well-covered graph.

Fix some i ∈ {1, . . . , n}. We will show that Gi is well-covered. Let H be any maximal
independent set of Gi. Since {x1, x2}, . . . , {x2i−1, x2i} are edges of Gi, for each j = 1, . . . , i,
H contains at most one of x2j−1 and x2j . Then H contains at least one of y2j−1 or y2j
for each j = 1, . . . , i, since H is maximal and y2j−1 and y2j are leaves in Gi. But then H
is also a maximal independent set of G since each vertex z1, . . . , zi of G is adjacent to at
least one vertex in H . Because G is well-covered, |H| = α(G). So Gi is also well-covered.

Claim 2: The graph Gn is vertex decomposable.

The graph Gn is the same as the induced graph G[X ∪ Y ]. So Gn is the graph of m
disjoint graphs, where the j-th connected component is the complete bipartite graphKkj ,kj

with whiskers at every vertex. One can use Theorem 2.4 to show that each connected
component is vertex decomposable. Indeed, to apply Theorem 2.4, take S = V (Kkj ,kj),
and note that Kkj ,kj ∪W (S) is well-covered. So Gn is vertex decomposable by Lemma 2.3.

Claim 3: For each i = 1, . . . , n, Ni = Gi−1 \N [zi] is a well-covered graph.

For a fixed i, suppose that x2i−1 and x2i appear in the complete bipartite graph Kkj ,kj .
Then the graph Ni consists of m disjoint graphs: m− 1 of these graphs are the complete
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bipartite graphs with whiskers at every vertex, and them-th graph is the graphKkj ,kj with
whiskers at every vertex except x2i−1 and x2i. Note that m−1 graphs are well-covered as
was argued in Claim 2. Them-th graph is also well-covered: let S = V (Kkj ,kj\{x2i−1, x2i})
and apply Theorem 2.4 to Kkj ,kj ∪W (S). Therefore Ni is well-covered.

Claim 4: For each i = 1, . . . , n, Ni is vertex decomposable.

As shown in the previous proof, Ni is made up of m disjoint graphs, where each graph is
either a complete bipartite graph with whiskers at every vertex, or a complete bipartite
graph with whiskers at every vertex except at two adjacent vertices. It follows from
Theorem 2.4 that in both cases, each disjoint graph is vertex decomposable. By Lemma
2.3, it then follows that Ni is vertex decomposable.

Thus we have established Claims 1–4. By definition, G is vertex decomposable if we
can show that G1 and N1 are vertex decomposable. But G1 is vertex decomposable if we
can show that G2 and N2 are vertex decomposable. Continuing in this fashion, to show
that G is vertex decomposable, it suffices to show that Gn and N1, . . . , Nn are all vertex
decomposable. But this was shown in Claims 1–4. So G is vertex decomposable.

We next observe that Shed(G) = Z. Note that to show G is vertex decomposable,
we showed that z1 ∈ Shed(G). By graph symmetry, zj ∈ Shed(G) for any zj ∈ Z. So
Z ⊆ Shed(G).

Next, we show Y ∩ Shed(G) = ∅. Let y ∈ Y . After relabeling, assume that y = y2n.
Then {y1, . . . , y2n−1, x2n} and {z1, x1, y3, . . . , y2n−2, x2n−1} are maximal independent sets,
in G \ y, of cardinality 2n and 2n− 1 respectively. Thus G \ y is not well-covered and so
y 6∈ Shed(G).

Finally, we show that X ∩Shed(G) = ∅. Again, we show that for any x ∈ X , the graph
G \ x is not well-covered. After relabeling, assume x = x1. The set Y is an independent
set of G \ x of cardinality 2n. Note that since k1 ≥ 2, the vertex x3 is adjacent to x2 and
x4. It follows that L = {z1, x3, y4, . . . , y2n} is a maximal independent set of G \ x with
2n− 1 vertices.

Thus Shed(G) = Z, as desired. �

The graphs constructed in this subsection give us the first family of graphs that fail
Question 1.2 since no vertex in X is adjacent to any vertex in Z.

Corollary 6.4. Let G = Dn(k1, . . . , km) be constructed as above. Then Shed(G) is not a
dominating set.

6.2. Construction 2. Next we construct a graph G = Pm with vertex set V = X∪Y ∪Z
with X = {x1, . . . , x2m}, Y = {y1, y2}, and Z = {z1, z2, z3} and edge set given by the
following conditions:

(i) the induced subgraph G[X ] is the m-partite graph K2,2,...,2, whose complement is
the matching with edges {x2i−1, x2i}, 1 ≤ i ≤ m;

(ii) y1 is adjacent to z1 and each x2i−1, 1 ≤ i ≤ m;
(iii) y2 is adjacent to z2 and each x2i for 1 ≤ i ≤ m; and
(iv) the induced subgraph on Z is K3.
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Note that if we let X1 = {x1, x3, . . . , x2m−1} ∪ {y1} and X2 = {x2, x4, . . . , x2m} ∪ {y2},
then G[X1] and G[X2] are both cliques isomorphic to Km+1.

Example 6.5. In Figure 3 is the graph P2, while in Figure 4 is the graph P3.

z3

z1 z2

y1 y2

x1

x3 x4

x2

Z

Y

X

Figure 3. P2.

z3

z1 z2

y1 y2

x1

x5 x6

x3 x4

x2

Z

Y

X

Figure 4. P3.

Theorem 6.6. The graph Pm is well-covered for m ≥ 2.

Proof. Note that we can partition the vertex set of G = Pm into X1, X2 and Z. Further,
G[X1], G[X2] and G[Z] are all complete graphs. Hence, any maximal independent set will
have cardinality 3 or less. Let H be an independent set of G. Suppose Z ∩H = ∅. Then
H ∪{z3} is an independent set since z3 is only adjacent to vertices in Z. Thus Z ∩H 6= ∅.
Suppose X1 ∩H = ∅. If y2 is in H or H ∩ X2 = ∅, let x = x1. Otherwise let x = x2k−1

if x2k is a vertex in H . Then H ∪ {x} is an independent set. Thus X1 ∩ H 6= ∅ and by
symmetry X2 ∩H 6= ∅.

Therefore all maximal independent sets of G must have cardinality 3, so Pm is well-
covered. �
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Lemma 6.7. Given m ≥ 2, if G = Pm, then G[X ∪ Y ] is vertex decomposable.

Proof. Since G[X ∪ Y ] is a clique-whiskered graph, it is vertex decomposable by [6, The-
orem 3.3]. �

Lemma 6.8. Given m ≥ 2, and G = Pm. Let S = X ∪ {y1}. Then G[S] is vertex

decomposable.

Proof. Let H = G[S]. Note that y1 is a simplicial vertex of H . Let x be a vertex adjacent
to y1. The graph H \NH [x] is a single isolated vertex and hence is vertex decomposable.

Note that H is well-covered with α(H) = 2. Thus H \ x is well-covered by Lemma 2.8.
Using Lemma 2.8 we can continue to remove vertices adjacent to y1 while maintaining a
well-covered graph until we obtain the graph with isolated vertex y1 and complete graph
on vertex set X2 \ y2. This resultant graph is a union of two complete graphs and hence
is vertex decomposable by Lemma 2.3. Therefore H \ x is vertex decomposable. Since
H \ NH [x] is an isolated vertex, it is vertex decomposable. Therefore x is a shedding
vertex of H and H is vertex decomposable. �

Given α = α(G), define ir to be the number of independent sets of G of cardinality r
for 1 ≤ r ≤ α with i0 = 1. Define the h-vector hG = (h0, h1, . . . , hα) by

hk =
k∑

r=0

(−1)k−r

(
α− r

k − r

)
ir .

A result of Villareal [21, Theorem 5.4.8] demonstrates that if a graph is Cohen-Macaulay,
then the h-vector is a non-negative vector.1 Since every vertex decomposable graph is
Cohen-Macaulay, we have the following restatement of Villareal’s result which we will use
to limit the cardinality of Shed(Pm).

Lemma 6.9 ([21, Theorem 5.4.8]). If G is a vertex decomposable graph, then hG is a

non-negative vector.

Theorem 6.10. For all m ≥ 2, the graph Pm is vertex decomposable and a vertex v ∈
Shed(Pm) if and only if v = z1 or z2.

Proof. We first show that if v 6∈ {z1, z2} then Pm \ v is not vertex decomposable.

Suppose that v ∈ X . By the symmetry of the graph, we can assume v = x1. Then
{y1, y2, z3} and {x2, z1} are maximal independent sets of different cardinality in Pm \ v.
Thus Pm \ v is not well-covered and hence not vertex decomposable.

Next we consider a vertex in v ∈ Y . By symmetry, assume v = y1. We will show that
Pm \ v is not vertex decomposable by showing that its h-vector has a negative entry. We
first calculate the number ir of independent sets of cardinality r in Pm \ v, for 1 ≤ r ≤ α.
Note that α(Pm \ v) = 3. There are 2m + 4 vertices in Pm \ v so i1 = 2m + 4. An
independent set of cardinality 2 can be of the form {y2, xi}, {y2, z} {z, xi} or {xi, xj}
for some xi, xj ∈ X and z ∈ Z. There are m, 2, 6m and m such different independent
sets respectively. Thus i2 = 8m + 2. An independent set of cardinality 3 must have one

1Note that the f -vector (f0, f1, . . . , fα−1) described in [21] is (i1, i2, . . . , iα) with f
−1 = 1.
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vertex in Z, one in X2 and one in X1 \ y1 since these sets partition the vertex set, and
induce complete subgraphs, of Pm \ v . There are m maximal independent sets containing
z2 and for each z ∈ Z \ z2, there are 2m maximal independent sets containing z. Thus
i3 = 5m. Therefore (i0, i1, i2, i3) = (1, 2m + 4, 8m + 2, 5m). But this implies that the
h-vector has h3 = 1 − m. Hence h3 < 0 for m > 1 and by Lemma 6.9, Pm \ v is not
vertex decomposable. Thus no vertex in Y can be a shedding vertex of Pm if Pm is vertex
decomposable.

Since {z1, x1, x2} and {y1, y2} are maximal independent sets with different cardinalities
in Pm \ z3, Pm \ z3 is not well-covered and hence not vertex decomposable.

Therefore, if Pm \ v is vertex decomposable, then v ∈ {z1, z2}.

Now suppose v = z1. We claim that Pm \ v is vertex decomposable. The graph
Pm \NPm

[z1] is the graph G[S] described in Lemma 6.8 and so it is vertex decomposable
and hence well-covered.

Next we claim that the graph G = Pm\z1 is well-covered. We can partition the vertices
of G into the sets Z \ z1 ∪ X1 ∪ X2. Since each part in the vertex partition induces a
complete graph, we can construct an independent set of cardinality at most 3. Thus
α(G) ≤ 3. Using an argument similar to Lemma 6.6, one can show that every maximal
independent set of G is of cardinality 3 and hence G = Pm \ z1 is well-covered.

We show that G = Pm \ z1 is vertex decomposable by showing that z2 is a shedding
vertex of G. First G \NPm

[z2] = Pm \NPm
[z2] since z1 is adjacent to z2, and Pm \NPm

[z2]
is isomorphic to Pm \NPm

[z1]. Thus G \NPm
[z2] is vertex decomposable. Next, G \ z2 =

Pm \ {z1, z2} has an isolated vertex z3 and a component described in Lemma 6.7 and so
is vertex decomposable by Lemma 2.3.

Therefore Pm \NPm
[z1] and Pm \ z1 are well-covered, so Pm is vertex decomposable and

it follows that z1 (and z2 by symmetry) are shedding vertices of Pm. �

Corollary 6.11. For all m ≥ 2, the set Shed(Pm) is not a dominating set.

Proof. Since each vertex in X is not adjacent to a shedding vertex of Pm, Shed(Pm) is not
a dominating set. �

6.3. Construction 3. We finish this section by describing another family of vertex de-
composable well-covered graphs whose set of shedding vertices fails to be a dominating
set. Unlike the previous constructions, for the sake of brevity, we only sketch out the
details of the proof.

Fix an integer n ≥ 1. Let

X = {x1,1, x1,2} ∪ {x2,1, x2,2} ∪ . . . ∪ {xn,1, xn,2},

Y = {y1,1, y1,2, y1,3} ∪ {y2,1, y2,2, y2,3} ∪ . . . ∪ {yn,1, yn,2, yn,3}, and

Z = {z1,1, z1,2, z1,3} ∪ . . . ∪ {zn,1, zn,2, zn,3}.

We define the graph Ln to be the graph on 8n + 1 vertices V = X ∪ Y ∪ Z ∪ {w}. with
the edge set given by the following conditions:

(i) for each i = 1, . . . , n, the induced graph on {xi,1, xi,2, yi,1, yi,2, yi,3} is a 5-cycle with
edges {yi,1, yi,2}, {yi,2, yi,3}, {y1,3, xi,2}, {xi,2, xi,1}, {xi,1, yi,1};
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(ii) {zi,1, yi,1}, {zi,2, yi,2}, and {zi,3, yi,3} are edges for i = 1, . . . , n, forming a matching
between Y and Z; and

(iii) the induced graph on Z ∪ {w} is the complete graph K3n+1.

Example 6.12. Graph L1 is given in Figure 5 and L2 in Figure 6.

x1,1 x1,2

y1,1

y1,2

y1,3

z1,1

z1,2

z1,3

w

Figure 5. The graph L1.

x1,1 x1,2

y1,1

y1,2

y1,3

x2,1 x2,2

y2,1

y2,2

y2,3

z1,1

z1,2

z1,3

z2,3

z2,2

z2,1

w

Figure 6. L2.

We then have the following theorem, whose proof we only sketch.

Theorem 6.13. For any integer n ≥ 1, the graph Ln is vertex-decomposable, but Shed(Ln)
is not a dominating set.
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Proof. Suppose G = Ln. To show that G is well-covered, show that every maximal
independent set has cardinality 2n+ 1.

To show that G is vertex decomposable, one can do induction on n. For n = 1,
one can show that G is vertex decomposable directly. For n ≥ 2, let G1 = G \ zn,1,
G2 = G1 \ zn,2 and G3 = G2 \ zn,3. Furthermore, let N1 = G \N [zn,1], N2 = G1 \N [zn,2],
and N3 = G2 \N [zn,3].

First show that all of the graphs G1, G2, G3, N1, N2 and N3 are well-covered. Then we
note that N1 = N2 = N3 consist of n connected components, where (n− 1) of these com-
ponents are five cycles, and the last is the path of four vertices. All of these components
are vertex decomposable, thus so is Ni. The graph G3 consists of two components, Ln−1

and a five cycle. By induction, these graphs are vertex decomposable. Using these facts,
we can show that G is vertex decomposable.

Note to show that G is vertex decomposable, we show that Z ⊆ Shed(G). The next
step of the proof is to show that X ∩ Shed(G) = ∅ and Y ∩ Shed(G) = ∅ by showing
that if we remove any vertex v ∈ X ∪ Y , then G \ v is not well-covered. This shows that
Shed(G) is not a dominating set since the vertices of X are only adjacent to vertices in
Y , but no vertex of Y belongs to Shed(G). �

7. Graph expansions

In this section we briefly describe a way to extend any vertex decomposable graph whose
shedding set is not a dominating set, to build a larger graph with the same property by
adding one vertex at a time. The technique involves ‘duplicating’ a vertex in the shedding
set.

Theorem 7.1. Suppose G is a vertex decomposable graph and Shed(G) is not a dom-

inating set. For any x ∈ Shed(G), let H be the graph with V (H) = V (G) ∪ {x′} and

E(H) = E(G)∪{{x′, y} | y ∈ N [x]}. Then H is vertex decomposable and Shed(H) is not
a dominating set.

To prove Theorem 7.1, we use a result of [17]. First we define a graph expansion. Let
G be a graph on the vertex set {x1, . . . , xn} and let (s1, . . . , sn) be an n-tuple of positive
integers. The graph expansion of G, denoted G(s1,...,sn), is the graph on the vertex set

{x1,1, . . . , x1,s1} ∪ {x2,1, . . . , x2,s2} ∪ . . . ∪ {xn,1, . . . , xn,sn}

with edge set {{xi,j, xk,l} | {xi, xk} ∈ E(G) or i = k}. Moradi and Khosh-Ahang [17,
Theorem 2.7] showed that vertex decomposability is invariant under graph expansion,
that is, G is vertex decomposable if and only if G(s1,...,sn) is vertex decomposable.

Proof. Suppose G is a vertex decomposable graph with V = {x1, . . . , xn} and Shed(G) is
not a dominating set of G. Suppose x ∈ Shed(G) and H is a graph with V (H) = V ∪{x′}
and E(H) = E(G)∪{{x′, y} | y ∈ N [x]}. Without loss of generality, assume x = x1. Note
that H = G(2,1,...,1) and hence H is vertex decomposable since vertex decomposability is
preserved under graph expansion.

Observe that x, x′ ∈ Shed(H), since H \ x and H \ x′ are both isomorphic to G and G
is vertex decomposable.
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Suppose y ∈ V but y 6∈ Shed(G). We claim y 6∈ Shed(H). Suppose y ∈ Shed(H).
Then H \ y is vertex decomposable. Note that H \ y is a graph expansion of (H \ y) \ x′

and hence (H \ y) \ x′ is vertex decomposable. Now, (H \ y) \ x′ is isomorphic to G \ y,
so G \ y is vertex decomposable. But this contradicts the fact that G \ y is not vertex
decomposable if y 6∈ Shed(G). Thus y 6∈ Shed(H).

In particular, Shed(H) \ {x′} ⊆ Shed(G). It follows that Shed(H) is not a dominating
set of H since a dominating set of H that includes both x and x′ would essentially be a
dominating set of G (since having both x and x′ in a dominating set is redundant). �

It may be worth noting that it is also possible to construct vertex decomposable graphs
which satisfy Question 1.2 via graph expansion. As observed in the proof above, the vertex
x that gets duplicated as well as its duplicate x′ are both in the set of shedding vertices
in the graph expansion. It follows that if every vertex is duplicated at least once on a
vertex decomposable graph, the resulting graph will be vertex decomposable with every
vertex in its shedding set. Consequently, many graph expansions satisfy Question 1.2:

Theorem 7.2. If G is any vertex decomposable graph and si ≥ 2 for 1 ≤ i ≤ n, then
G(s1,s2,...,sn) is vertex decomposable and Shed

(
G(s1,s2,...,sn)

)
is a dominating set.

8. Computational Results regarding Vertex Decomposability

In this final section, we summarize some of our computational observations while study-
ing Question 1.2. We used Macaulay2 [11] and the packages EdgeIdeals [10], Nauty [4],
and SimplicialDecomposability [5] for our computations.

For all connected graphs on 10 or less vertices, we checked whether the graph was
(a) well-covered, (b) Cohen-Macaulay, (c) vertex decomposable, and (d) if the graph was
vertex decomposable, whether the graph satisfied Question 1.2. Table 1 summarizes our
findings. The first column is the number of vertices, while the second column is the
number of connected graphs on n vertices, and the third column is the number of well-
covered graphs on n vertices. The second column is sequence A001349 in the OEIS, and
the third column is sequence A2226525 in the OEIS [20].

A graph G is Cohen-Macaulay if the ring R/I(G) is a Cohen-Macaulay ring, where I(G)
denotes the edge ideal of G. It is known that if G is vertex decomposable, then G is Cohen-
Macaulay. As part of this computer experiment, we also counted the number of Cohen-
Macaulay graphs. The fourth and fifth columns count the number of Cohen-Macaulay
graphs, respectively, the number of vertex decomposable graphs. Our computations imply
the following result:

Observation 8.1. Let G be a graph with 10 or fewer vertices. Then G is Cohen-Macaulay
if and only if G is vertex decomposable.

It is not true that all graphs that are Cohen-Macaulay are vertex decomposable (see, e.g.,
[8] for a graph on 16 vertices that is Cohen-Macaulay, but not vertex decomposable).
However, we currently do not know the smallest such example. Our computations reveal
that the minimal such example has at least 11 vertices.
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The last column counts the number of vertex decomposable graphs that do not satisfy
Question 1.2. Among the 17 graphs on 9 vertices that fail Question 1.2, we found that
the graph P2 (see Figure 3) has the least number of edges.

Although this paper has focused on Question 1.2, we return to the conjecture that
inspired this question. Specifically, our computational results imply the following result.

Observation 8.2. Conjecture 1.1 is true for all Cohen-Macaulay graphs on eight or
less vertices. However, the graph P2 on nine vertices and 13 vertices is the minimal
counterexample to Conjecture 1.1.

Proof. Let G be any Cohen-Macaulay graph and let

S = {x ∈ V | G \ x is a Cohen-Macaulay graph}.

If G is also vertex decomposable and if x ∈ Shed(G), then G \ x is vertex decomposable,
so G \ x is Cohen-Macaulay. So, we always have Shed(G) ⊆ S.

If G is a Cohen-Macaulay graph on eight or less vertices, it is also vertex decomposable
by Remark 8.1. Also, our computations imply that Shed(G) is a dominating set for all
such graphs and hence S is also a dominating set.

In our proof Theorem 6.10, we showed that P2 is a vertex decomposable graph. Further-
more, for every vertex x ∈ V (P2) \ Shed(P2), the graph P2 \ x is either not well-covered
(and thus not Cohen-Macaulay) or not Cohen-Macaulay. So, Shed(P2) = S, and thus
P2 does not satisfy Conjecture 1.1 by Corollary 6.11. The minimality in our statement
follows via our computations. �

Vertices Connected Well- Cohen- Vertex Fail
Graphs Covered Macaulay Decomposable Ques. 1.2

1 1 1 1 1 0
2 1 1 1 1 0
3 2 1 1 1 0
4 6 3 2 2 0
5 21 6 5 5 0
6 112 27 20 20 0
7 853 108 82 82 0
8 11117 788 565 565 0
9 261080 9035 5688 5688 17
10 11716571 196928 102039 102039 942

Table 1. Number of well-covered, Cohen-Macaulay, and vertex decompos-
able graphs
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