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FANO CONGRUENCES OF INDEX 3 AND ALTERNATING 3-FORMS

PIETRO DE POI, DANIELE FAENZI, EMILIA MEZZETTI, AND KRISTIAN RANESTAD

Abstract. We study congruences of lines Xω defined by a sufficiently general choice
of an alternating 3-form ω in n + 1 dimensions, as Fano manifolds of index 3 and
dimension n− 1. These congruences include the G2-variety for n = 6 and the variety
of reductions of projected P2

× P2 for n = 7.
We compute the degree of Xω as the n-th Fine number and study the Hilbert

scheme of these congruences proving that the choice of ω bijectively corresponds to
Xω except when n = 5. The fundamental locus of the congruence is also studied
together with its singular locus: these varieties include the Coble cubic for n = 8 and
the Peskine variety for n = 9.

The residual congruence Y of Xω with respect to a general linear congruence
containing Xω is analysed in terms of the quadrics containing the linear span of Xω.
We prove that Y is Cohen-Macaulay but non-Gorenstein in codimension 4. We also
examine the fundamental locus G of Y of which we determine the singularities and
the irreducible components.
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1. Introduction

Let V be an (n + 1)-dimensional K-vector space, and let G := G(2, V ) ⊂ P(
∧2 V )

be the Grassmannian of 2-dimensional K-vector subspaces of V , or, equivalently, the
Grassmannian of lines in Pn = P(V ). A congruence of lines in the projective space P(V ) is
an (n−1)-dimensional closed subvariety of G. A linear congruence is a congruence formed

by the proper intersection of G with a linear space of codimension n−1 in P(
∧2

V ). In this
paper we consider congruences of lines that are proper components of linear congruences.

A general 3-form ω ∈
∧3

V ∗ defines a linear subspace Λω := {[L] ∈ P(
∧2

V ) | ω(L) = 0}
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of codimension n+1 in P(
∧2

V ). The intersection Xω := G∩Λω is a congruence of lines,
the first main object of this paper. A general 2-dimensional subspace 〈x, y〉 ⊂ V ∗ defines

a codimension n− 1 linear subspace Λxy
ω ⊂ P(

∧2
V ), that contains Λω. The intersection

Λxy
ω ∩G = Xω ∪ Yω,x∧y

is a reducible linear congruence, with one component Xω and the other component a con-
gruence Yω,x∧y. The congruence Yω,x∧y—called the residual congruence, and sometimes
denoted by Y for simplicity—is the second main object of this paper.

The order of a congruence is the number of lines in the congruence that pass through
a general point in P(V ). More generally, the multidegree of a congruence is the sequence
of the coefficients in the expression of the congruence as a linear combination of Schubert
cycles in the Chow ring of G: the i-th multidegree i = 0, . . . ,

[

n−1
2

]

, is the number of

lines contained in a general Pn−i ⊂ Pn that intersect a general Pi contained in Pn−i, with
i < n− i. A linear congruence has order one. Since Xω and Yω,x∧y are components of a
linear congruence, one of them has order one, the other has order zero. The order is the
first component of the multidegree referred to above (i.e. the 0-th multidegree), so Xω

has order one when n is even, while Yω,x∧y has order one when n is odd.
The fundamental locus of a congruence is the locus of points in P(V ) through which

there are infinitely many lines of the congruence.
Congruences of lines of order one appear naturally in several interesting problems in

geometry, and thus motivated this study. These include the classification of varieties with
one apparent double point ([CMR04], [CR11]), the degree of irrationality of general hy-
persurfaces ([BCDeP14], [BDeP15]) and in hyperbolic conservation laws, so called Temple
systems of partial differential equations ([AF01], [DePM05])). For a survey of order one
congruences of lines, see [DePM07].

A well-known fact is that while the general linear congruence in G is a Fano variety
of index 2, the congruence Xω is a Fano variety of index 3 (Theorem 3.9). Varieties Xω

for small n have been studied by many authors, both by the construction from a 3-form
as above, and by other constructions: When n = 3, 4, 5, 6 and ω is general, then Xω is
a plane, a quadric threefold, the Segre product P

2 × P
2 and the closed orbit of the Lie

group G2 in its adjoint representation, respectively. For the next values of n there are
more recent studies by Peskine in [Pes15] in the cases n = 7, 9, by Gruson and Sam in
[GS15] in the case n = 8 and by Han in [Han15] in the case n = 9.

In this paper we present and prove general properties, some well-known and some new,
of the congruences Xω and Yω,x∧y, for sufficiently general ω, x and y. After presenting
equations 3.6, and locally free resolutions of their ideals (Theorems 3.9 and 7.2), we give
the multidegree of these congruences in the Chow ring of the Grassmannian (Propositions
3.12 and 7.8).

BothXω and Yω,x∧y are improper intersections of the Grassmannian with a linear space:
Yω,x∧y is contained in a codimension n linear space which we shall denote by Λω,x∧y (i.e.
Λω,x∧y is a hyperplane in Λxy

ω ), see Definition (2.10), Remark 2.12 and Proposition 7.5.
We give different characterisations of their linear spans. In particular we identify the
quadrics in the ideal of G—called also Plücker quadrics—that contain the linear span of
Xω (Proposition 6.3). These quadrics necessarily have a large linear singular locus. We
show (Theorem 6.7) that this singular locus is the linear span of a congruence X ′

ω′ of
dimension one less.

We study the fundamental loci of Xω and of its residual congruences, giving equa-
tions and numerical invariants of the fundamental locus Fω of Xω (Proposition 4.4) and
numerical invariants for the fundamental locus Gω,x∧y of Yω,x∧y (Theorem 7.15).

Peskine showed recently that if an irreducible congruence of lines is Cohen-Macaulay
and has order one, then the lines of the congruence are the k-secant lines to its fundamental
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locus for some k [Pes15, Theorem 3.2]. The integer k is called the secant index of the
congruence.

The congruences Xω and Yω,x∧y are both Cohen-Macaulay (Theorem 3.8 and Propos-
ition 7.2, (3)). In fact Xω is smooth, while Yω,x∧y is singular and not even Gorenstein
when n > 5 (Proposition 7.12). Moreover, we prove that both Xω and Yω,x∧y are arith-
metically Cohen-Macaulay (Corollary 3.10 and Proposition 7.10, (1)). Since Xω is also
subcanonical, it is arithmetically Gorenstein also (Corollary 3.10).

When n is odd, then Xω has order one, the fundamental locus Fω ⊂ P(V ) has codi-
mension 3 and is singular in codimension 10. The secant index of Xω is (n − 1)/2. The
congruence Yω,x∧y has order zero and the fundamental locus Gω,x∧y is a hypersurface of
degree (n− 1)/2 that contains Fω.

When n is even, then Xω has order zero, and the fundamental locus Fω is a hypersurface
of degree (n−2)/2, while Yω,x∧y has order one and the fundamental locus Gω,x∧y = Π∪G0

is the union of the codimension 2 linear space Π = {x = y = 0} ⊂ P(V ) and a codimension
3 subvariety G0 contained in Fω (Theorem 7.15). The secant index of Yω,x∧y is n/2, and
each line in the congruence is (n− 2)/2-secant to G0 and intersects Π (Theorem 7.17).

The quadrics in the ideal of G naturally correspond to elements of
∧4 V ∗, and the

quadrics in this ideal that contain the linear span Λω are naturally characterised via this
correspondence. Moreover, for these quadrics, their singular locus is the linear span of a
congruence of the same type and dimension one less (Theorem 6.7).

Therefore we introduce and present basic results on this correspondence in Section 2.
The congruence Xω is defined and introduced with basic properties in Section 3. Section
4 is devoted to the fundamental locus of Fω of Xω, while properties of the Hilbert scheme
of Xω are studied in Section 5. In Section 6 we identify the quadrics in the ideal of G
that contain the linear span of Xω. A general linear space of maximal dimension in such
a quadric contains a congruence X ′

ω or a congruence Yω′,x∧y for some 3-form ω′ and some
linear forms x, y ∈ V ∗. The final section 7 is devoted to the congruence Yω,x∧y and its
fundamental locus. Some of the main properties and invariants of the congruences Xω

and Y and their fundamental loci are collected in Tables 1 and 2 at the end of the paper.

Acknowledgements. We wish to thank Ada Boralevi, Frédéric Han and Christian
Peskine for encouragements and many interesting discussions on this topic. We would like
to thank the referee for useful remarks.

1.1. Notation. We shall work over an algebraically closed field K of characteristic zero.
Throughout the paper, V will be an (n + 1)-dimensional K-vector space, and G :=

G(2, V ) will be the Grassmannian of 2-dimensional vector subspaces of V .
First, we fix a basis (e0, . . . , en) for V . Let (x0, . . . , xn) be the dual basis in

V ∗. Then, the n-dimensional projective space defined by the lines of V is P(V ) =
Proj(K[x0 . . . , xn]) = Proj(Sym(V ∗)). We shall denote—as it is the custom—by TP(V )

and Ω1
P(V ) the tangent and cotangent bundles of P(V ), respectively. Moreover, as usual,

Ωk
P(V ) :=

∧k Ω1
P(V ), TP(V )(h) := TP(V ) ⊗OP(V )(h), etc.

We will adopt the following convention on parenthesis: SmE(t) means the twist by
O(t) of the m-th symmetric product of E , and similarly for exterior powers and any other
Schur functor of E .

We consider the Grassmannian G with its Plücker embedding: G ⊂ P(
∧2

V ), and we
fix Plücker coordinates pi,j on it: for example the point defined by pi,j = 0 if (i, j) 6= (0, 1),
i.e. the point [1, 0, . . . , 0] ∈ G, corresponds to the subspace generated by e0 and e1.

Since there is no standard notation about universal and quotient bundles on Grass-
mannians, we fix it in the following. On G we denote the universal subbundle of rank 2
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by U and the quotient bundle of rank n− 1 by Q. They fit in the following exact sequence

(1.1) 0 → U → V ⊗OG → Q → 0,

where the universal subbundle U has as its fibre over ℓ ∈ G the 2-dimensional vector
subspace L of V which corresponds to the point ℓ, while the quotient bundle Q has as its
fibre over ℓ ∈ G the quotient space V/L.

A congruence of lines in P(V ) is a family of lines of dimension n− 1. In other words,
it is a closed subvariety—not necessarily irreducible—of dimension n − 1 of G. A linear
congruence is a congruence corresponding to the proper intersection of G with a linear

subspace of P(
∧2

V ) of codimension n−1. Note that this definition of linear congruence is
more restrictive than the one given by Peskine [Pes15], who considers linear but possibly
improper sections of G of pure dimension n− 1.

The order of a congruence Γ is the number of lines of Γ passing through a general
point P ∈ P(V ). In other words it is the degree of the intersection of Γ with the Schubert
variety ΣP ⊂ G of the lines passing through P .

Finally, for x ∈ V ∗ \ {0} we denote by Vx := {x = 0} ⊂ V , the hyperplane of equation
x = 0. Moreover, for two linearly independent forms x, y ∈ V ∗, we denote by Vx∧y :=
{x = y = 0} ⊂ V the corresponding codimension 2 subspace Vx∧y = Vx ∩ Vy . As in the
introduction, its projectivisation is Π := P(Vx∧y) ⊂ P(V ).

Let ωx ∈
∧3

V ∗
x be the natural restriction of ω to Vx. If we choose a vector e ∈ V such

that x(e) = 1, then we have an identification V ∗
x ≃ e⊥ ⊂ V ∗, which induces an inclusion

∧3
V ∗
x ⊂

∧3
V ∗. Therefore we get

(1.2)

3
∧

V ∗ =

3
∧

V ∗
x ⊕

2
∧

V ∗
x ∧ 〈x〉

which induces a unique decomposition ω = ωx + βx ∧ x.
We shall often decompose ω in this way, without specifying the choice of the vector e.

2. 3-forms, 4-forms and linear spaces in quadrics defining the
Grassmannian of lines

In this section we discuss quadrics in P(
∧2

V ) defined by 4-forms on V , and in particular

by decomposable 4-forms η ∈
∧4

V ∗ that have a linear factor, i.e. η = x ∧ ω for some

x ∈ V ∗ and ω ∈
∧3

V ∗. We shall study the rank of these quadrics. In the next sections
we shall consider the intersection of maximal linear subspaces of such quadrics with the
Grassmannian G of lines in P(V ). In particular, interesting congruences of lines appear
in such intersections.

We start by recalling the well-known isomorphism between the space of 4-forms on V
and the space of quadratic forms in the ideal of G.

Recall that the ideal of the Grassmannian G ⊂ P(
∧2

V ) is generated by the quadrics
of rank 6 given by the Plücker relations. One way to obtain them is the following, see
[Muk93]: let us take a general element [L] ∈ P(

∧2 V )

[L] = [
∑

0≤i<j≤n

pi,jei ∧ ej ];

then [L] ∈ G if and only if

L ∧ L = 0;

indeed

[L ∧ L] = [(
∑

0≤i<j≤n

pi,jei ∧ ej) ∧ (
∑

0≤h<k≤n

ph,keh ∧ ek)]

= [(
∑

0≤i<j<h<k≤n

2(pi,jph,k − pi,hpj,k + pi,kpj,h)ei ∧ ej ∧ eh ∧ ek)]
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and the vanishing of the coefficients gives the Plücker relations. More intrinsically, define
the reduced square L[2] ∈

∧4 V of a bivector L =
∑

0≤i<j≤n pi,jei ∧ ej ∈
∧2 V as

L[2] :=
∑

0≤i<j<h<k≤n

Pfaff









0 pi,j pi,h pi,k
−pi,j 0 pj,h pj,k
−pi,h −pj,h 0 ph,k
−pi,k −pj,k −ph,k 0









ei ∧ ej ∧ eh ∧ ek.

Clearly we have L∧L = 2L[2] (i.e. this definition does not depend on the chosen basis of
V ), and [L] ∈ G if and only if L[2] = 0.

Recall that one can extend the definition of quadratic form to define a quadratic map

q : V1 → V2

as a map between K-vector spaces V1 and V2 such that

q(aL) = a2q(L), ∀a ∈ K, ∀L ∈ V1

and that
Bq(L,L

′) := q(L+ L′)− q(L)− q(L′)

is a bilinear map
Bq : V1 × V1 → V2.

We then have the following

Proposition 2.1. G ⊂ P(
∧2

V ) is scheme-theoretically the zero locus of the quadratic
map associated to the reduced square

q[2] :

2
∧

V →
4
∧

V

L 7→ L[2].

In other words, the affine cone of the Grassmannian, C(G), is the “kernel” (i.e. the
inverse image of zero) of q[2]:

(2.1) 0 → C(G) ∼=
(

q[2]
)−1

(0) →֒
2
∧

V
q[2]

−−→
4
∧

V.

Therefore, giving an element of the vector space I(G)2 of the quadratic forms in the ideal

of Grassmannian I(G), is equivalent to giving a 4-form in
∧4

V ∗:

Corollary 2.2. The SL(n+ 1)-equivariant map

4
∧

V ∗ → Sym2

(

2
∧

V ∗

)

η 7→ qη,

where qη is the quadratic form on
∧2 V defined by

qη :

2
∧

V → K

L 7→ η(L[2]),

is an isomorphism onto I(G)2 ⊂ Sym2
(

∧2
V ∗
)

.

Proof. We observe that qη is obtained via composition from q[2]: η 7→ qη = η ◦ q[2];
therefore the thesis follows from (2.1):

0 → C(G) →
2
∧

V
q[2]

−−→
4
∧

V
η
−→ K.

�
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Notation 2.3. We denote by Qη the quadric defined by qη in P(
∧2

V ).

The singular locus of the quadric Qη is defined by the kernel of the corresponding
bilinear form. In terms of the corresponding 4-form η we get

Sing(Qη) = {[L] ∈ P(
2
∧

V ) | η(L ∧ L′) = 0, ∀L′ ∈
2
∧

V }(2.2)

= {[L] ∈ P(

2
∧

V ) | ρη(L) = 0},

where

ρη :

2
∧

V →
2
∧

V ∗

L 7→ η(L ∧ −)

is defined by contraction. Note that ρη is the polarity associated to the quadric Qη.

Qη ⊂ P(
∧2

V ) is a cone with vertex Sing(Qη). Since
∧2

V has dimension
(

n+1
2

)

the
rank of Qη is equal to

(2.3) rank(qη) =

(

n+ 1

2

)

− dimSing(Qη)− 1 =

(

n+ 1

2

)

− dimkerρη = rank ρη.

Let ω ∈
∧i V ∗ be an i-form on V (i ≤ n+ 1), then ∀j ≤ i the contraction defines two

linear maps. The first one is

fω :

j
∧

V →

i−j
∧

V ∗

α 7→ ω(α)

and the other is its transpose (up to sign):

tfω :

i−j
∧

V →

j
∧

V ∗

β 7→ ω(β).

Definition 2.4. For an i-form ω ∈
∧i

V ∗ we define its j-rank as the rank of fω (or, which
is the same, as the rank of its transpose). If j = i− 1 we simply call it rank of ω.

Example 2.5. We shall be interested mainly in the following cases:

(1) For a 3-form ω ∈
∧3

V ∗ its rank is its 2-rank. In other words

rankω := rank(

2
∧

V → V ∗ : L 7→ ω(L))

or, which is the same,

rankω := rank(V →
2
∧

V ∗ : e 7→ ω(e)).

(2) If β ∈
∧2 V ∗, then the rank of β is its 1-rank.

(3) If η is a 4-form, by (2.3) its 2-rank coincides with the rank of the quadric Qη.

Remark 2.6. We note that Definition 2.4 of rank is different from the usual one for tensors,
which is the minimum number of summands in an expression as sum of totally decom-
posable tensors.

In particular, in the case of a 2-form β ∈
∧2 V ∗, since fβ can be identified with the

skew-symmetric matrix associated to β, the rank defined in Definition 2.4 is twice the
usual rank of tensors, i.e. β is the sum of 1

2 rankβ totally decomposable tensors.
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We shall study now the rank of the quadratic form qη, i.e. the rank of the linear map
ρη, when η is a decomposable 4-form. We need some preparation.

Recall from Section 1.1 that when x ∈ V ∗ is nonzero, then Vx := {x = 0} ⊂ V , denotes

the subspace of equation x = 0. A 3-form ω ∈
∧3

V ∗ has a decomposition ω = ωx+βx∧x,

with βx ∈
∧2 V ∗

x (see 1.1).

Lemma 2.7. Let η ∈
∧4 V ∗ \ {0}.

(1) If η is totally decomposable, i.e. η = x ∧ x′ ∧ x′′ ∧ x′′′, where x, x′, x′′, x′′′ ∈ V ∗

are linearly independent, then the 2-rank of η is rankρη = 6.
(2) If η = β∧x∧x′ 6= 0, and βx,x′ is the restriction of the 2-form β to Vx∧x′ = Vx∩Vx′ ,

then rank ρη = 2 rankβx,x′ + 2 ≤ 2n.
(3) If η = ω ∧ x, where x ∈ V ∗ \ {0} and ωx is the restriction of ω to Vx, then

rankρη = 2 rankωx ≤ 2n.

Proof. Case (1) is immediate, since the image of ρη is spanned by pairs of factors in η.

In Case (2), we may assume x = x0, x
′ = x1 and β ∈

∧2〈x2, . . . , xn〉. For L ∈
∧2

V ,

we write L = L01 + v0 ∧ e0 + v1 ∧ e1 + ce0 ∧ e1, where L01 ∈
∧2〈e2, . . . , en〉 and v0, v1 ∈

〈e2, . . . , en〉. Then

(β ∧ x0 ∧ x1)(L) = β(L01)x0 ∧ x1 − β(v0)x1 + β(v1)x0 + cβ,

so the formula follows.
In Case (3) we may assume x = x0 and write ω ∧ x0 = ωx0 ∧ x0. For L ∈

∧2
V , we

write L = L0 + v0 ∧ e0, where L0 ∈
∧2〈e1, . . . , en〉 and v0 ∈ 〈e1, . . . , en〉. Then

(ωx0 ∧ x0)(L) = ωx0(L0) ∧ x0 − ωx0(v0),

and the formula follows. �

The rank of the quadrics in the ideal of the Grassmannian G(2, 6) has been studied by

Mukai in [Muk93]. In this case
∧4

V ∗ ∼=
∧2

V ∗, so the three possible ranks of a 2-form
give three possible ranks for quadrics in the ideal of G(2, 6):

Proposition 2.8 ([Muk93, Proposition 1.4]). Let Ir ⊂ P(I(G(2, 6))2) be the set of quad-
rics of rank r in the ideal of G(2, 6). Then P(I(G(2, 6))2) = I6∪I10 ∪I15, and dim I6 = 8,
dim I10 = 13, dim I15 = 14. Moreover,

• If [q] ∈ I6, then q is a Plücker quadric.
• If [q] ∈ I10, then q is a linear combination of two Plücker quadrics.
• If [q] ∈ I15, then V (q) is smooth.

2.1. Genericity conditions on 3-forms. In this paper our key objects are defined by
“general” 3-forms. In this section, we introduce and discuss some of the relevant genericity
conditions on ω ∈

∧3 V ∗.

Definition 2.9 (Genericity conditions 1–3). Let ω ∈
∧3

V ∗. We will consider the follow-
ing conditions:

(GC1): ω is indecomposable, i.e. the multiplication map

V ∗ →
4
∧

V ∗

x 7→ ω ∧ x

is injective (the image of this map is the subspace ω ∧ V ∗ ⊂
∧4

V ∗);
(GC2): ω has rank n+ 1, i.e. the linear map

tfω :

2
∧

V → V ∗(2.4)

L 7→ ω(L)
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is surjective, or, equivalently, the linear map

fω : V →
2
∧

V ∗(2.5)

v 7→ ω(v)

is injective;
(GC3): for any v ∈ V , v 6= 0, rank fω(v) > 2.

Remark 2.10. There are dependencies among these conditions:

(1) Condition (GC2) is satisfied, i.e. the rank of ω is n + 1, only if n ≥ 4. Indeed,
when n = 3, any nonzero 3-form ω is totally decomposable so it has rank 3.

(2) Condition (GC1) is satisfied, i.e. x 7→ ω ∧ x is injective, only if n ≥ 5. Indeed,
when n ≤ 4, any 3-form is decomposable so the map x 7→ ω ∧ x is not injective,
see Example 4.10: with coordinates as in the example, x0 is in the kernel.

(3) It is immediate to observe that condition (GC3) is more restrictive than both
(GC1) and (GC2):

(GC3) =⇒ (GC1), (GC3) =⇒ (GC2).

(4) There are forms that satisfy (GC1) and not (GC2): Let v0 ∈ V be a nonzero

vector and assume ω(v0) = 0, i.e. (GC2) is not satisfied. Then ω ∈
∧3 V ∗

0 , where

V ∗
0 = {v∗ ∈ V ∗|v∗(v0) = 0}. If the multiplication map by ω: V ∗

0 →
∧4

V ∗
0 is

injective, then so is V ∗ →
∧4

V ∗ and (GC1) is satisfied.
(5) If n is even, there are forms that satisfy (GC2) and not (GC1): If ω does not

satisfy (GC1), for a suitable choice of coordinates ω = x0 ∧ β0. When n is even
and β0 is general, then rankβ0 = n, hence rankω = n and condition (GC2) holds.

(6) If n is odd, (GC2) implies (GC1): If ω does not satisfy (GC1), for a suitable choice
of coordinates ω = x0 ∧ β0. When n is odd, rankβ0 ≤ n − 1 so rankω ≤ n − 1
and condition (GC2) does not hold.

Next proposition ensures that the conditions (GC1), (GC2), (GC3) are all satisfied by
general 3-forms for n sufficiently large.

Proposition 2.11. Let ω ∈
∧3

V ∗ be general. If n > 3, then conditions (GC1) and
(GC2) hold, and if n > 5, then ω(v) has rank at least 4 for every v ∈ V , i.e. condition
(GC3) holds.

Proof. To prove the first claim, it is enough to find an example for any n. For instance
the following ones, depending on the congruence class of n modulo 3, will do the job: if
n+1 ≡ 0 mod 3 take ω = x0∧x1∧x2+ · · ·+xn−2∧xn−1∧xn, if n+1 ≡ 1 mod 3, n > 3,
take ω = x0∧x1∧x2+ · · ·+xn−3∧xn−2 ∧xn−1+xn∧x0 ∧x3, if n+1 ≡ 2 mod 3, n > 4,
take ω = x0 ∧ x1 ∧ x2 + · · ·+ xn−1 ∧ x0 ∧ x3 + xn ∧ x1 ∧ x4. To prove the second claim,
we recall that the 2-forms of rank ≤ 2 describe a Grassmannian of dimension 2(n− 1) in

P(
∧2

V ∗), hence for n > 5 the codimension is > n+ 1. �

2.2. Quadrics Qω∧x and their linear subspaces. Given a 3-form ω ∈
∧3 V ∗, the

4-forms ω ∧ x for x ∈ V ∗ define a linear space of quadrics

Qω∧x ∈ I(G)2, x ∈ V ∗.

As we shall see, they are intimately related to the variety Xω which is our main object of
study.



FANO CONGRUENCES OF INDEX 3 AND ALTERNATING 3-FORMS 9

In this section we identify linear subspaces of the quadrics Qω∧x. If ω ∈
∧3

V ∗ and

x, y ∈ V ∗, we define the following linear subspaces of P(
∧2

V ):

Λω := {[L] ∈ P(

2
∧

V ) | ω(L) = 0},(2.6)

Λx
ω := {[L] ∈ P(

2
∧

V ) | ω(L) ∧ x = 0},(2.7)

Λxy
ω := {[L] ∈ P(

2
∧

V ) | ω(L) ∧ x ∧ y = 0},(2.8)

and moreover

Λωx
:= {[L] ∈ P(

2
∧

V ) | x(L) = ω(L) ∧ x = 0},(2.9)

Λω,x∧y := {[L] ∈ P(

2
∧

V ) | (x ∧ y)(L) = ω(L) ∧ x ∧ y = 0}.(2.10)

Furthermore we denote by Pω := Λ⊥
ω ⊂ P(

∧2 V )∗ the subspace orthogonal to Λω. Note
the inclusions

Λω ⊂ Λx
ω ⊂ Λxy

ω

∪ ∪
Λωx

Λω,x∧y

and the relation
Λωx

= Λx
ω ∩ 〈G(2, Vx)〉,

where Vx is the hyperplane {x = 0} in V . Let us remark that the notation for Λωx
is

coherent with the one for Λω, because ωx denotes the restriction of ω to the hyperplane
Vx. Moreover Λω,x∧y is the intersection of Λxy

ω with the Schubert hyperplane generated
by the planes in G meeting the codimension 2 subspace Vx∧y := {x = y = 0}.

Remark 2.12. The codimension of the spaces (2.6)-(2.10) depends on the rank of ω, and
on the rank of ωx as a form on Vx.

(1)

Λω = P(ker(tfω)) ⊂ P(

2
∧

V ),

where ker(tfω) is the map defined in (2.4); therefore codimΛω = rankω.
(2) If x ∈ Im tfω ⊂ V ∗, then codimΛx

ω = rankω − 1, i.e. Λω is a hyperplane in Λx
ω.

(3) If x /∈ Im tfω ⊂ V ∗, then codimΛx
ω = rankω, i.e. Λω = Λx

ω.
(4) If 〈x, y〉 ⊂ Im tfω, then codimΛxy

ω = rankω − 2, i.e. Λx
ω is a hyperplane in Λxy

ω .
(5) codimΛωx

= n+ rankωx.
(6) If 〈x, y〉 ⊂ Im tfω, then codimΛω,x∧y = rankω − 1, i.e. Λω,x∧y is a hyperplane in

Λxy
ω .

For a general 3-form ω we immediately get:

Lemma 2.13. If ω has rank n + 1, i.e. it satisfies (GC2), then {Λx
ω | x ∈ V ∗} and

{Λxy
ω | x ∧ y ∈

∧2
V ∗} are the sets of codimension n subspaces and codimension n − 1

subspaces of P(
∧2 V ) that contain Λω, respectively.

Consider now the quadric Qω∧x ⊂ P(
∧2

V ), of equation (ω ∧ x)(L ∧ L) = 0. Notice,
first, that it depends only on the restriction ωx of ω to Vx. In fact if ω = ωx + βx ∧ x,
then ω ∧ x = ωx ∧ x.

We first find the singular locus of Qω∧x. Let Kωx
= ker fωx

⊂ Vx, and set ΛK
ωx

=

P(Kωx

∧

V ) ⊂ P(
∧2

V ).

Lemma 2.14. The singular locus of Qω∧x is the subspace 〈Λωx
∪ ΛK

ωx
〉 ⊂ P(

∧2
V ). In

particular, if ωx has rank m, then Qω∧x has rank 2m.
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Proof. The singular locus of Qω∧x is P(ker ρω∧x), where

ρω∧x :

2
∧

V →
2
∧

V ∗

L 7→ (ω ∧ x)(L),

so as in the proof of Lemma 2.7, (3), we may assume ω = ωx ∈
∧3

V ∗
x and let L =

Lx + vx ∧ e, where Lx ∈
∧2

Vx, vx ∈ Vx and x(e) = 1. Then the singular locus of Qω∧x is
spanned by classes of 2-vectors L such that

(ω ∧ x)(L) = ωx(Lx) ∧ x− ωx(vx) = 0,

which implies
ωx(Lx) = ωx(vx) = 0,

or equivalently

[Lx] ∈ Λωx
and [vx ∧ e] ∈ ΛK

ωx
.

The rank of Qω∧x equals the rank of ρω∧x, which is 2 rankωx, by Lemma 2.73. �

Remark 2.15. When fωx
: Vx →

∧2
V ∗
x is injective, i.e. ωx has rank n, then the singular

locus of Qω∧x is Λωx
and the rank of Qω∧x is 2n.

We shall study now the linear spaces in the quadrics Qω∧x, with special attention to
those containing also Λω.

Lemma 2.16. The quadric Qω∧x, for x ∈ V ∗, contains the codimension n linear subspaces

Λx
ω, Λω,x∧y for x ∧ y ∈

∧2
V ∗, and P(

∧2
Vx).

In particular, each quadric Qω∧x, x ∈ V ∗, contains Λω, and each quadric of the pencil
generated by Qω∧x and Qω∧y contains the linear subspace Λω,x∧y.

Proof. [L] ∈ Qω∧x if and only if

(ω ∧ x)(L ∧ L) = (ω(L) ∧ x− ω(x(L))(L) = −2ω(L)(x(L)) = 0,

which is equivalent to
(ω(L) ∧ x)(L) = 0.

So if ω(L)∧x = 0 or x(L) = 0, then [L] ∈ Qω∧x. Therefore Λω∧x ⊂ Qω∧x and P(
∧2

Vx) ⊂
Qω∧x.

Similarly, if x, y ∈ V ∗ and ω(L)∧x∧y = 0, then ω(L) = ax+by for some ax+by ∈ 〈x, y〉.
If furthermore (x ∧ y)(L) = 0, then

(ω(L) ∧ (cx+ dy))(L) = ((ax + by) ∧ (cx + dy))(L) = 0

so [L] ∈ Qω∧(cx+dy) for any cx+dy ∈ 〈x, y〉. Therefore the linear space Λω,x∧y is contained
in the pencil of quadrics generated by Qω∧x and Qω∧y. �

Since the quadric Qω∧x = Qω′∧x, whenever (ω
′ − ω) ∧ x = 0, the Lemma 2.16 applies

to show that
Λx
ω′ ⊂ Qω∧x

for every [ω′] in the set

(2.11) {[ω′] ∈ P(

3
∧

V ∗) | ω(L) ∧ ω′(L) = 0 when x(L) = 0}.

Likewise
Λω′,x∧y ⊂ Qω∧x

for every [ω′] and [y] 6= [x] such that

(2.12) {([ω′], [y]) ∈ P(

3
∧

V ∗)× P(V ∗
x ) | ω(L) ∧ ω

′(L) = 0 when (x ∧ y)(L) = 0}.
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When the restriction ωx ∈
∧3

V ∗
x has rank n, then the quadric Qω∧x has rank 2n,

by Lemma 2.7 (3). Hence Qω∧x contains two
(

n
2

)

-dimensional families of linear spaces of
minimal codimension n.

Theorem 2.17. Let ω ∈
∧3

V ∗ and x ∈ V ∗ and assume that the restriction ωx to Vx has
rank n. Then:

(1) The singular locus of the quadric Qω∧x is the linear space

Λωx
= {[L] ∈ P(

2
∧

V ) | x(L) = ωx(L) = 0}.

(2) The two
(

n
2

)

-dimensional spinor varieties of n-codimensional linear subspaces in

the quadric Qω∧x ⊂ P(
∧2

V ) are birationally parametrised by the sets (2.11) and
(2.12) respectively.

(3) The linear space

{[L] ∈ P(
2
∧

V ) | x(L) = 0} = 〈G(2, Vx)〉,

spanned by the subgrassmannian G(2, Vx), is contained in Qω∧x and belongs to
the spinor variety parametrised by (2.11) if n is odd, and to the spinor variety
parametrised by (2.12) if n is even.

Proof. It remains, first, to show that the two families of linear subspaces (2.11) and (2.12)

are
(

n
2

)

-dimensional. The linear spaces in Λx
ω′ in (2.11) depend on a 2-form β ∈

∧2
V ∗

such that ω′ = ωx + β ∧ e, where x(e) = 1, so this family is
(

n
2

)

-dimensional.
The linear spaces Λω′,x∧y in (2.12) depend on the choice of y and the choice of β′ ∧ y,

such that ω′ ∈ 〈ω, β′ ∧ y〉. The first choice is (n − 1)-dimensional, the second is
(

n−1
2

)

-

dimensional, so they sum to
(

n
2

)

. The second statement of the theorem follows.
For the third statement, assume x(L) = 0. Then clearly

ω(L)(x(L)) = 0

and so the linear space

{[L] | x(L) = 0}

of codimension n is also contained in Qω∧x. The intersection

{[L] | x(L) = 0} ∩ {[L] | ω(L) ∧ x = 0} = {[L] ∈ P(
2
∧

Vx) | ωx(L) = 0}

has codimension n in {[L] | x(L) = 0}, so this last linear subspace belongs to the spinor
variety parametrised by (2.11) if n is odd, and to the spinor variety parametrised by (2.12)
if n is even. �

Remark 2.18. We conclude this section observing that two maximal isotropic spaces Λx
ω′

and Λω′,x∧y of opposite families on Qω∧x, obtained from the same 3-form ω′, are both
contained in the subspace

Λxy
ω′ = {[L] ∈ P(

2
∧

V ) | ω′(L) ∧ x ∧ y = 0}

of codimension n − 1. So they intersect along a subspace having codimension 1 in both
of them. This will come in hand in Section 7.

3. The congruence

In this section we introduce the congruence Xω defined by a 3-form ω. We keep our
notation V for a fixed vector space of dimension n+ 1 and G = G(2, V ).
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3.1. The congruence as a linear section of the Grassmannian. Now, our main
object of study is the following subset of the Grassmannian G:

Xω := {[L] ∈ G | ω(L) = 0} ⊂ P(

2
∧

V ).

3.1.1. The equations of the congruence. We start by studying Xω in coordinates. Our
3-form ω reads:

(3.1) ω =
∑

0≤i<j<k≤n

ai,j,kxi ∧ xj ∧ xk ∈
3
∧

V ∗.

If we write L as

(3.2) L =
∑

0≤a<b≤n

pa,bea ∧ eb

where the pa,b’s in (3.2) satisfy the Plücker relations, then we require that

(3.3) ω(
∑

0≤a<b≤n

pa,bea ∧ eb) = 0.

More explicitly, we get

(3.4) ω(L) =
∑

i,j,k

((−1)i+j−1(ai,j,k − ai,k,j + ak,i,j))xkpi,j = 0.

Therefore, we deduce that the equations of Xω are
∑

0≤i<j≤n

((−1)i+j−1(ai,j,k − ai,k,j + ak,i,j))pi,j = 0, k = 0, . . . , n,(3.5)

i.e. we have n + 1 linear equations, together with the Plücker relations. The equations
are sometimes more convenient in the form

∑

0≤i<j≤n

((−1)i+j+k−1(ai,j,k − ai,k,j + ak,i,j))pi,j = 0, k = 0, . . . , n,(3.6)

Remark 3.1. Note that the equations (3.5) define the linear span of Xω, 〈Xω〉, which was
denoted by Λω in (2.6).

The linear space generated by equations (3.5) has a natural embedding in P(
∧2

V )∗ as
the linear subspace Pω , orthogonal to the linear span of Xω in the Plücker embedding, i.e.

(3.7) Pω := Λ⊥
ω

(see section 2.2).
By Proposition 2.11, if n ≥ 4 and the genericity condition (GC2) holds, these equations

are linearly independent, therefore dimPω = n, while if n = 3, dimPω = 2. Let us see
the embedding of Pω in coordinates: to obtain the parametric equations of Pω we simply
consider the coefficients of the pi,j ’s in ω(L) = 0, i.e. in equation (3.4):

∑

k

((−1)i+j−1(ai,j,k − ai,k,j + ak,i,j))xk;

therefore, if qi,j are the dual coordinates on P(
∧2 V )∗, the parametric equations of Pω are

given by

(3.8) qi,j =
∑

k

((−1)i+j−1(ai,j,k − ai,k,j + ak,i,j))xk.

In other words, if ω has rank n + 1, i.e. the linear map fω : V 7→
∧2

V ∗; v 7→ ω(v) is
injective (GC2), we have a linear embedding

(3.9) P(fω) : P(V ) → P(

2
∧

V )∗
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defined by (3.8). This map is represented by the following (n+1)×(n+1) skew-symmetric
matrix of linear forms on P(V ):

(3.10) Mω :=

(

∑

k

((−1)i+j−1(ai,j,k − ai,k,j + ak,i,j))xk

)

i=0,...,n
j=0,...,n

using the usual convention, in (3.8), that qi,j = −qj,i.
Summarising, if ω has rank n+ 1, then

(3.11) Λ⊥
ω = Pω = Im(P(fω)) ∼= P(V ).

Clearly, Pω = Im(P(fω)) always holds true (i.e. also if fω is not injective).

3.1.2. The tangent space of the congruence. To interpret Xω geometrically, we consider

certain linear subspaces of P(
∧3

V ∗).

Fix a decomposable tensor L ∈
∧2

V and let L∗ ∈
∧n−1

V ∗ be its dual. We shall

denote by TL ⊂ P(
∧3

V ∗) the linear span of the union of all the embedded tangent spaces
to G(3, V ∗) at the points corresponding to the 3-spaces π∗ such that L∗ contains π∗, i.e.
TL = 〈Tπ∗G(3, V ∗) | π∗ ⊂ L∗〉.

Lemma 3.2. Assume n ≥ 4, and let ω ∈
∧3 V ∗. Let L = e ∧ f ∈

∧2 V . We fix a basis
of V , e0, . . . , en, with e0 = e, e1 = f , and the dual basis x0, . . . , xn. Then the following
are equivalent:

(1) [L] ∈ Xω;
(2) ω can be uniquely written as ω = ω01 + β0 ∧ x0 + β1 ∧ x1, with β0, β1 ∈

∧2〈x2, . . . , xn〉, ω01 ∈
∧3〈x2, . . . , xn〉;

(3) [ω] ∈ TL.

Proof. [L] ∈ G has coordinates p0,1 6= 0 and pi,j = 0 if (i, j) 6= (0, 1). Therefore, from
(3.5), we deduce that a0,1,h = 0, ∀h = 0, . . . , n, and (3.1) becomes:

ω =
∑

0≤i<j<k≤n
(i,j) 6=(0,1)

ai,j,kxi ∧ xj ∧ xk = β0 ∧ x0 + β1 ∧ x1 + ω01,

where we have set

β0 := −
∑

2≤j<k≤n

a0,j,kxj ∧ xk, β1 := −
∑

2≤j<k≤n

a1,j,kxj ∧ xk,

ω01 :=
∑

2≤i<j<k≤n

ai,j,kxi ∧ xj ∧ xk.

Therefore the equivalence of (1) and (2) is proved. For the last equivalence, observe that
L∗ = x2 ∧ · · · ∧ xn, so, up to a coordinate change, a 3−space π∗ ⊂ L∗ can be expressed as

[π∗] = [xn−2 ∧ xn−1 ∧ xn] ∈ G(3, V ∗) ⊂ P(

3
∧

V ∗),

and the embedded tangent space to G(3, V ∗) at π∗ can be expressed as

Tπ∗G(3, V ∗) = 〈[(
n−2
∑

i=0

aixi) ∧ xn−1 ∧ xn],

[(

n−3
∑

i=0

bixi − bn−1xn−1) ∧ xn−2 ∧ xn], [(
n−3
∑

i=0

cixi + cnxn) ∧ xn−2 ∧ xn−1]〉

from which the last equivalence follows. �
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Corollary 3.3. Let L ⊂ V be a 2-vector subspace, with n ≥ 4; then

(3.12) dim(TL) =
n+ 3

3

(

n− 1

2

)

− 1.

Proof. It follows from the equivalence of (3) and (2) of Lemma 3.2:

dim(TL) = 2

(

n− 1

2

)

+

(

n− 1

3

)

− 1 =
n+ 3

3

(

n− 1

2

)

− 1.

�

Recall from §1.1, that a linear congruence is a congruence obtained by proper intersec-

tion of G with a linear subspace of P(
∧2

V ) of codimension n− 1, and that the order of
a congruence Γ is the number of lines of Γ passing through a general point of P(V ).

Theorem 3.4. Let ω ∈
∧3 V ∗, with n = dimP(V ) ≥ 3, be a general 3-form. Then

Xω ⊂ G has dimension n − 1, i.e. it is a congruence. Moreover, Xω is contained in a
reducible linear congruence.

Proof. We give here an elementary proof of the Theorem which works for n ≥ 6. For
n ≤ 5, see Examples 4.9, 4.10, 4.11 in Section 4.4. A different proof of the Theorem will
be given in Section 3.2.

By case (3) of Lemma 3.2 we need to find how many spaces of the form TL pass through
ω. First of all, we observe that two (general) spaces TL and TL′ are in general position;
in fact, if L = 〈e0, e1〉 and L′ = 〈e2, e3〉, then, by the equivalence of cases (2) and (3) of

Lemma 3.2, a 3-form [ω] ∈ P(
∧3

V ∗) belongs to TL ∩ TL′ if and only if we can write

ω = x0 ∧ x2 ∧ φ02 + x0 ∧ x3 ∧ φ03 + x1 ∧ x2 ∧ φ12 + x1 ∧ x3 ∧ φ13+

+ x0 ∧ β0 + x1 ∧ β1 + x2 ∧ β2 + x3 ∧ β3 + ω′,

where, as in Lemma 3.2, β0, . . . , β3 ∈
∧2 〈x4, . . . , xn〉 and ω′ ∈

∧3 〈x4, . . . , xn〉.
From this, we infer that

dim(TL ∩ TL′) + 1 = 4(n− 3) + 4

(

n− 3

2

)

+

(

n− 3

3

)

=

=
(n− 3)(n− 1)(n+ 4)

6
,

from which we deduce

dim(〈TL,TL′〉) + 1 = dim(TL) + dim(TL′)− dim(TL ∩ TL′) + 1

= 2
n+ 3

3

(

n− 1

2

)

−
(n− 3)(n− 1)(n+ 4)

6

=

(

n+ 1

3

)

,

i.e. 〈TL,TL′〉 = P(
∧3

V ∗), and TL and TL′ are in general position.
Then, we observe that there is a family of dimension dimG = 2(n−1) of TL’s, therefore,

recalling (3.12), if ω is general, the dimension of the TL’s passing through ω is equal to

dimG+ dim(TL)− dim(P(

3
∧

V ∗) = 2(n− 1) +
n+ 3

3

(

n− 1

2

)

−

(

n+ 1

3

)

= n− 1.

By (3.5), it follows that Xω is contained in a linear congruence. �



FANO CONGRUENCES OF INDEX 3 AND ALTERNATING 3-FORMS 15

3.1.3. More genericity conditions. Theorem 3.4 naturally gives rise to the following gen-
ericity conditions, which we call 4 and 5, after §2.1.

Definition 3.5. We shall consider the following conditions on a 3-form ω ∈
∧3

V ∗:

(GC4): Xω has the expected dimension n− 1;
(GC5): Xω satisfies (GC4) and it is smooth.

Remark 3.6. The condition (GC4) implies the condition (GC2) in 2.1.

(1) When ω has rank m, then the linear span of Xω has codimension m in P(
∧2 V )

and the codimension of Xω in G is at most m− 2.
(2) For n ≥ 8, the 3-form ω = x0 ∧ x1 ∧ x2 + x3 ∧ x4 ∧ x5 + x6 ∧ x7 ∧ x8, has rank 9,

while Xω has codimension 6, so (GC2) holds, while (GC4) fails for ω.

3.1.4. The order of the congruence. We compute now the order of the congruence Xω.

Proposition 3.7. If ω is general, Xω ⊂ G is a congruence of order zero if n is even and
of order one if n is odd.

Proof. Let n ≥ 6. We look at the intersection ΣP ∩Xω, where, without loss of generality,
we can suppose that P = [1, 0, · · · , 0] = [e0]. ΣP is given by the lines of type [L] = [e0∧f ],
with e0 and f linearly independent; so ΣP is defined, in the Plücker coordinates, by pi,j = 0
if i > 0.

Therefore, by (3.6), the intersection ΣP ∩Xω is defined by the n equations:

(3.13)
∑

0<j≤n

((−1)j+k−1(a0,j,k − a0,k,j))p0,j = 0

where k = 1, . . . , n, i.e. we have n linear equations in the n indeterminates p0,1, . . . , p0,n.
Let A be the matrix associated to the homogeneous linear system (3.13); then A is skew-
symmetric, and therefore, if ω is general, the system (3.13) has only the zero solution if n
is even and has a vector space of solutions of dimension one if n is odd.

If n ≤ 5, see the examples in Section 4.4.
�

3.2. The congruence Xω as a degeneracy locus. We recall now some facts about
vector bundles on Grassmannians, and we apply them to the study of the congruence Xω.
We recall the universal exact sequence (1.1) on the Grassmannian G = G(2, V ):

0 → U → V ⊗OG → Q → 0.

Recall that, for the Plücker embedding, OG(1) ∼= det(U∗) ∼= det(Q). Over G, we have
also H0(Q) = V , H0(U∗) = V ∗. We refer to [Wey03] for terminology and basic results on
homogeneous bundles.

Theorem 3.8. The congruence Xω is the zero locus of a section of Q∗(1). If ω is general
enough, Xω is smooth of the expected dimension n− 1, i.e. Xω satisfies (GC5).

Proof. We use the theorem of Borel-Bott-Weil, in particular [Wey03, Theorem 4.1.8].
Here, this gives a natural isomorphism

H0(Q∗(1)) ≃
3
∧

V ∗.

Therefore a 3-form ω on V can be interpreted as a global section of Q∗(1) and it defines
a bundle map

(3.14) OG

ϕω
−−→ Q∗(1).

The degeneracy locus of ϕω is therefore Xω, which was defined in Section 3.1 as {[L] ∈
G | ω(L) = 0}. By a Bertini type theorem, for general ω, Xω has codimension equal to
rankQ∗(1) = n− 1, and it is smooth. Moreover also dimXω = n− 1. �
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From Theorem 3.8 we deduce further global properties of Xω.

Theorem 3.9. If ω is an alternating 3-form on P(V ) that satisfies (GC4), then Xω is a
Fano variety of index 3 and dimension n−1 with Gorenstein singularities, which is smooth
if ω is general (GC5). Moreover the sheaf OXω

has the Koszul locally free resolution:

(3.15) 0 → OG(2− n) →
n−2
∧

(Q(−1)) → · · · → Q(−1)
tϕω
−−→ OG → OXω

→ 0.

Proof. We note that the Koszul complex associated with the section ϕω of Q∗(1) defining
Xω is exact. The resolution follows observing that det(Q∗(1))∗ ∼= det(Q(−1)) ∼= OG(−n+
2). Then by adjunction, the canonical sheaf ωXω

of Xω is locally free of rank 1 and has
the following expression

ωXω
∼= ωG ⊗

n−1
∧

(Q∗(1))|Xω
∼= OG(−n− 1 + n− 2)|Xω

= OXω
(−3).

�

Corollary 3.10. In the hypothesis of the preceding theorem, Xω is arithmetically Cohen-
Macaulay (aCM for short, in what follows) in its linear span Λω and arithmetically Goren-
stein (aG for short).

Proof. The first statement follows from resolution (3.15), because the exterior powers of
Q are aCM by Bott’s theorem (cf. [Wey03, Ch. 4]). Since Xω is also subcanonical by
Theorem 3.9, then it is aG by [Mig98, Proposition 4.1.1]. �

3.2.1. The cohomology class of the congruence. The cohomology class of Xω is given by
Porteous formula:

[Xω] = cn−1(Q
∗(1)) ∩ [G].

If

P 0 ⊂ P 1 ⊂ · · · ⊂ Pn−1−i ⊂ · · · ⊂ Pn−j ⊂ · · · ⊂ Pn = P(V )

is a complete flag, the cohomology ring of G has basis σi,j , i = 0, . . . , n− 1, j = 0, . . . , i,
where

σi,j ∩ [G] = [{[L] ∈ G|L ⊂ Pn−j, L ∩ Pn−1−i 6= ∅}].

Then

ci(Q) = σi := σi,0,

and therefore ci(Q∗) = (−1)iσi. As above, we write formally the Chern polynomial of Q∗

ct(Q
∗) =

n−1
∏

i=1

(1− ait),

where a1, . . . , an−1 are formal symbols. Since σ1 ∩ [G] is the class of a hyperplane section
of the Plücker embedding, we have also c1(OG(1)) = σ1, and we get

ct(Q
∗(1)) = (1 + (a1 + σ1)t) · · · (1 + (an−1 + σ1)t),

and therefore, applying [DeP03, Lemma 2.1],

cn−1(Q
∗(1)) = (a1 + σ1) · · · (an−1 + σ1) =

n−1
∑

ℓ=0

(−1)n−1−ℓσn−1−ℓσ
ℓ
1

=
n−1
∑

ℓ=0

(−1)n−1−ℓσn−1−ℓ(

[ ℓ2 ]
∑

i=0

((

ℓ

i

)

·
ℓ− 2i+ 1

ℓ− i+ 1

)

σℓ−i,i)

=:

[n−1
2 ]
∑

ℓ=0

dℓ(n)σn−1−ℓ,ℓ.
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Here the integers dℓ(n) are defined by the last equality, and their collection is called the
multidegree of Xω. By Poincaré duality

∫

[G]

σn−1−ℓ,ℓσn−1−ℓ′,ℓ′ = δℓ,ℓ′

so the multidegree of Xω is also defined by

dℓ(n) =

∫

[Xω ]

σn−1−ℓ,ℓ 0 ≤ ℓ ≤ n− 1.

Lemma 3.11. The multidegree (dℓ(n)), ℓ = 0, . . . , n− 1 satisfies the initial condition

d0(2m) = 0, d0(2m− 1) = 1, m = 2, 3, 4, . . .

and the recursion relation

dℓ(n) = dℓ−1(n− 1) + dℓ(n− 1)

when ℓ = 1, 2, . . . ,
[

n−1
2

]

.

Proof. The degree d0(n) is simply the order of the congruence Xω, so the initial condition
follows from Proposition 3.7.

Next, recall, from Schubert calculus, that σi,jσ1 = σi+1,j + σi,j+1 (when i > j). Let
ω = ωx + βx ∧ x. We choose a flag such that Pn−ℓ ⊂ P(Vx) ⊂ P(V ). If ℓ > 0, then
dℓ(n) = degXω ∩ Zℓ(n) where

Zℓ(n) = {[L]|L ⊂ Pn−ℓ, L ∩ P ℓ 6= ∅} ⊂ G(2, V ),

and has class

[Zℓ(n)] = σn−1−ℓ,ℓ ∩ [G(2, V )].

But Pn−ℓ ⊂ P(Vx), so Zℓ(n) ⊂ G(2, Vx). The class of this subvariety in G(2, Vx) is

[Zℓ(n)] = σn−2−ℓ,ℓ−1 ∩ [G(2, Vx)],

while

[Xω] ∩ [G(2, Vx)] = [{[L]|ωx(L) = βx(L) = 0}] = [Xωx
] ∩ [Hβx

] ∩ [G(2, Vx)],

where clearly Hβx
is the hyperplane defined by {βx(L) = 0}. Computing the degree of

Xω ∩ Zℓ(n) on G(2, V ) and on G(2, Vx) we get

dℓ(n) =

∫

[Xωx ]

σn−2−ℓ,ℓ−1σ1 =

∫

[Xωx ]

(σn−1−ℓ,ℓ−1 + σn−2−ℓ,ℓ)

= dℓ−1(n− 1) + dℓ(n− 1).

�

For low values of n, 3 ≤ n ≤ 9, we get the following multidegree for Xω:

(1, 0), (0, 1), (1, 1, 1), (0, 2, 2), (1, 2, 4, 2), (0, 3, 6, 6), (1, 3, 9, 12, 6).(3.16)

The recursion of Lemma 3.11, and the initial degrees of (3.16), may be displayed in a
triangle with initial entries

a(2k+1,0) = 1, a(2k,0) = 0, k = 0, 1, 2, . . .

and

a(i,j) = a(i,j−1) + a(i−1,j) i = 1, 2, . . . , and j = 1, 2, . . . , i.

The multidegree of Xω is identified as (dℓ(n)) = (a(n−1−ℓ,ℓ)), ℓ = 0, ..., n− 1.
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(3.17) (ai,j) =

1
0 0
1 1 1
0 1 2 2
1 2 4 6 6
0 2 6 12 18 18
1 3 9 21 39 57 57
0 3 12 33 72 129 186 186
1 4 16 49 121 250 436 622 622
0 4 20 69 190 440 876 1498 2120 2120

.

In fact

a(n−1−ℓ,ℓ) = dℓ(n) = dℓ−1(n− 1) + dℓ(n− 1) = a(n−1−ℓ,ℓ−1) + a(n−2−ℓ,ℓ).

3.2.2. The degree of the congruence and the Fine numbers. The Fine numbers form the
sequence 1, 0, 1, 2, 6, 18, 57, 186, . . . see [Fine, DS01].

Proposition 3.12. The degree of Xω ⊂ G is the n-th Fine number that can be read off
as the (n+ 1)-st diagonal element

degXω = a(n−1,n−1) = a(n−1,n−2) = dn(2n− 1)

in the above triangle of numbers. The multidegree of Xω is given by the antidiagonals

(d0(2m), d1(2m), . . . , dm−1(2m)) = (a(2m−1,0), a(2m−2,1), . . . , a(m,m−1))

when n = 2m and

(d0(2m− 1), d1(2m− 1), . . . , dm−1(2m− 1)) = (a(2m−2,0), a(2m−3,1), . . . , a(m−1,m−1)).

when n = 2m− 1.

Proof. It remains to show that

degXω = dm(2m− 1).

Let dimV = 2m, and let ω ∈
∧3

V ∗ be a general 3-form. Assume V ∗
0 ⊂ V ∗ is a general

subspace of dimension m+ 1, and choose xm+1, . . . , x2m−1 ⊂ V ∗ such that

V ∗ = V ∗
0 ⊕ 〈xm+1, . . . , x2m−1〉.

Then
ω = ω0 + xm+1 ∧ βm+1 + · · ·+ x2m−1 ∧ β2m−1 + α

where ω0 ∈
∧3 V ∗

0 , βi ∈
∧2 V ∗

0 , and α ∈
∧2〈xm+1, . . . , x2m−1〉 ∧ V ∗. Let Pm = {xm+1 =

· · · = x2m−1 = 0} ⊂ P(V ) and let Zm−1(2m− 1) = {[L]|L ⊂ Pm}. Then

Xω ∩ Zm−1(2m− 1) = {[L]|L ⊂ Pm, ω0(L) = βm+1(L) = · · · = β2m−1(L) = 0}

= Xω0 ∩Hβm+1 ∩ · · · ∩Hβ2m−1 .

So
degXω0 = deg(Xω ∩ Zm−1(2m− 1)) = dm(2m− 1),

and the proposition follows. �

4. The fundamental locus

Definition 4.1. The fundamental locus of a congruence X is the set of points of P(V )
belonging to infinitely many lines of X .

It is clear that if X has order zero, then its fundamental locus is simply the union of
the lines of X . We will see in a minute that the fundamental locus of the congruence Xω

has a natural structure of scheme as a suitable degeneracy locus.
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4.1. A skew symmetric matrix associated with a trilinear form. The 3-form ω ∈
∧3 V ∗ defines a natural map of vector bundles on P(V ). In this section we identify this
map and its degeneracy loci on P(V ).

The first observation is that there is a natural isomorphism:

H0(Ω2
P(V )(3))

∼=

3
∧

V ∗.

This is provided again by Borel-Bott-Weil’s theorem. Now, in view of the natural iso-
morphisms

H0(Ω2
P(V )(3)) ⊂H

0(Ω1
P(V ) ⊗ Ω1

P(V )(3))
∼= Hom(Ω1

P(V )(1)
∗,Ω1

P(V )(2))

∼=Hom(TP(V )(−1),Ω1
P(V )(2)),

the 3-form ω ∈
∧3 V ∗ determines a bundle map:

(4.1) φω : TP(V )(−1) → Ω1
P(V )(2).

Note that φω is skew-symmetric, in the sense that

φ∗ω = −φω(1),

where φ∗ω : T 1
P(V )(−2) → ΩP(V )(1) is the dual map of φω. Indeed, by the above description,

H0(Ω2
P(V )(3)) is just the skew-symmetric part of Hom(TP(V )(−1),Ω1

P(V )(2)), and the map

induced by φω on the global sections

fω : H
0(TP(V )(−1)) → H0(Ω1

P(V )(2))

is the map fω of (2.5).
We can interpret φω in more concrete terms, in the following way: from Euler sequence

twice we get the diagram

(4.2)

TP(V )(−1)
φω

−−−−→ Ω1
P(V )(2)

x









y

V ⊗OP(V )
Mω−−−−→ V ∗ ⊗OP(V )(1)

where Mω is obtained by composition, so we can think of Mω as a (n + 1) × (n + 1)
skew-symmetric matrix with linear entries on P(V ). In fact, this matrix Mω in suitable
coordinates is the matrix defined in (3.10).

Remark 4.2. Since φω is a skew-symmetric map between two bundles of rank n, Mω has
rank at most n when n is even, and n− 1 when n is odd. We will see in next Section that,
if ω is general, then these are the generic ranks of Mω.

The map φω will be considered again in Section 4.5, where we will describe its kernel
and cokernel both in the cases n even and n odd.

4.2. Degeneracy loci. Let us now study the degeneracy loci of φω (or, which is the
same, ofMω). Let us denote by Mr = {P ∈ P(V ) | rankϕω |P

≤ r} the locus of the points

where φω has rank at most r.
We endow Mr with its natural scheme structure, given by the principal Pfaffians,

(r+2)× (r+ 2) if r is even, and (r+ 1)× (r+1) if r is odd. Notice that in this last case
Mr =Mr−1. Moreover, by Remark 4.2, P(V ) =Mn if n is even and P(V ) =Mn−1 if n is
odd.

The degeneracy loci of a (twisted) skew-symmetric map of vector bundles is studied in
[HT84]: in particular, in [HT84, Theorem 10(b)] the cohomology class of each degeneracy
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locus is computed. In our setting, the class of Mr, if r is even, is

(4.3) [Mr] = det











cn−r−1 cn−r · · ·
cn−r−3 cn−r−2

...
. . .

c1











where ci = ci(Ω
1
P(V )(1)⊗

√

OP(V )(1)) and
√

OP(V )(1) has to be thought, formally, by the

squaring principle, as a line bundle such that
√

OP(V )(1)⊗
√

OP(V )(1) = OP(V )(1).
Now, ct(OP(V )(1)) = 1 + ht, where ct as usual denotes the Chern polynomial and h is

the hyperplane class, so, if we put ct(
√

OP(V )(1)) = 1 + at, where a is a formal symbol,

we have 1 + ht = (1 + 2at), which implies that ct(
√

OP(V )(1)) = 1 + h
2 t; in other words,

in expression (4.3), we can write ci = ci(Ω
1
P(V ) ⊗OP(V )(

3
2 )).

We recall, for example by the Euler sequence, that

ct(Ω
1
P(V )) = (1− ht)n+1

and therefore

ci(Ω
1
P(V )) = (−1)i

(

n+ 1

i

)

hi, i = 0, . . . , n.

On the other hand, it is easy to see, reasoning as above, that ct(OP(V )(
3
2 )) = 1 + 3

2ht.

Finally, if we write formally ct(Ω
1
P(V )) =

∏n
i=1(1 + aiht), recalling the formula for the

Chern polynomial of a tensor product, we obtain

ct(Ω
1
P(V ) ⊗OP(V )(

3

2
)) =

n
∏

i=1

(1 + (ai +
3

2
)ht

=

(

i
∑

k=0

(−1)k
3i−k(1 + k)

2i−k(n+ 1− k)

(

i+ 1

k + 1

)

)

(

n+ 1

i+ 1

)

hi.

In particular

c1 = (
n

2
− 1)h,

c2 =
n2 − 5n+ 12

8
h2,

c3 =
n3 − 9n2 + 44n− 108

48
h3, etc.

4.2.1. Even n. In this case

[Mn−2] = c1(Ω
1
P(V ) ⊗OP(V )(

3

2
)) = (

n

2
− 1)h

i. e. Mn−2 is a hypersurface of degree n
2 − 1.

By a Bertini type theorem, its singular locus is contained in Mn−4 and it is equal to
Mn−4 if ω is general, for which we have

[Mn−4] = det





c3 c4 c5
c1 c2 c3
0 1 c1



 = c1(c2c3 − c1c4 + c5)− c23

and in particular it has codimension 6 in P(V ); therefore, Mn−2 is smooth up to P4, and
we expect that it is singular of dimension 0 in P6 and of dimension 2 in P8. But, making
explicit calculations, we obtain

[Mn−4] =
(n)(n− 6)(n+ 1)(n+ 2)(n2 − 9n+ 44)

2880
h6
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and therefore Mn−2 is smooth also in P6. Actually for n = 6 we get a smooth quadric
5-fold as degeneracy locus, as we shall see in Example 4.12.

Moreover Mn−6 has codimension 15, so Mn−4 is smooth up to n = 14.

4.2.2. Odd n. In this case we have

[Mn−3] = det

(

c2 c3
1 c1

)

= c1c2 − c3 =
n3 − 6n2 + 11n+ 18

24
h3 = (

1

4

(

n− 1

3

)

+ 1)h3

(4.4)

i.e. Mn−3 is a codimension 3 subvariety of P(V ) of degree 1
4

(

n−1
3

)

+ 1.
By a Bertini type theorem, its singular locus is contained in Mn−5 and it is equal to

Mn−5 if ω is general, for which we have

[Mn−5] = det









c4 c5 c6 c7
c2 c3 c4 c5
1 c1 c2 c3
0 0 1 c1









= c2c3c5 + 2c1c4c5 − c1c3c6 − c1c2c7 − c25 + c3c7

and in particular it has codimension 10 in P(V ); therefore, Mn−3 is smooth up to P9, and
is generically singular in dimension 1 in P11. As above, we can make explicit calculations,
obtaining

[Mn−5] =
n(n− 1)(n+ 1)2(n+ 2)(n+ 3)(n4 − 26n3 + 311n2 − 1966n+ 5400)

4838400
h10.

4.3. Equations of the fundamental locus. Recall from (4.2) that the map

P(fω) : P(V ) → P(
2
∧

V )∗

P 7→ [Mω(P )] =







(

∑

k

((−1)i+j−1(ai,j,k − ai,k,j + ak,i,j))xk(P )

)

i=0,...,n
j=0,...,n






,

of (3.9) is the projectivised map on global sections of the bundle map φω : TP(V )(−1) →
Ω1

P(V )(2). The degeneracy locus Mr defined at the beginning of Section 4.2 may therefore

be interpreted as
Mr = {P ∈ P(V )| rankMω(P ) ≤ r}.

Notation 4.3. Let Fω ⊂ P(V ) denote the locus where the map φω drops rank. As a
degeneracy locus Fω has a natural scheme structure. In fact, it is a scheme structure on
the fundamental locus of Xω (see Definition 4.1):

Proposition 4.4. Let ω ∈
∧3

V ∗ be general, and let Mr ⊂ P(V ) be the degeneracy locus
where φω has rank at most r. Then Fω =Mn−2 if n is even, and Fω =Mn−3 if n is odd,
and is a scheme structure on the fundamental locus of Xω. The lines of Xω through a
point P ∈Mr \Mr−2, r even, form a star in a Pn−r.

If n is even, then Fω is a hypersurface of degree n
2 − 1, it is smooth if n ≤ 6 and it is

singular in codimension 5 if n ≥ 8. If n is odd, then Fω has codimension 3 and degree
1
4

(

n−1
3

)

+ 1, it is smooth if n ≤ 9 and it is singular in codimension 7 if n ≥ 11.

Proof. Let P ∈ P(V ). Without loss of generality we may suppose that P = [1, 0, . . . , 0] =
[e0], and evaluate the matrix Mω at the point P :

(4.5) Mω(P ) =
(

(−1)i+j−1(a0,i,j)
)

i=0,...,n
j=0,...,n

,

where we have set a0,j,i := −a0,i,j if j > i. Then, if we cut the first row and the first
column ofMω(P )—which are zero—we obtain a submatrix that coincides with the matrix
A associated to the homogeneous linear system (3.13) (proof of Proposition 3.7), whose
zeros define exactly the lines passing through P .
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On one hand, since Mω defines a map on global sections between bundles of rank n,
the rank of Mω(P ) is at most n. On the other hand, Mω(P ) is skew symmetric, so it
has even rank, so P ∈ Fω if and only if rank(Mω(P )) ≤ n − 2 when n is even, and
rank(Mω(P )) ≤ n − 3 when n is odd. Furthermore, if Mω(P ) has rank r, then there
is a linear Pn−r−1 ⊂ G parametrising lines of the congruence Xω that pass through P ,
and vice versa. The dimension, degree formulas for Fω and its singular locus follow from
Section 4.2. �

Remark 4.5. If n is odd, i.e. when the order of Xω is one, another scheme structure
on Fω is described in [DeP01]. It comes from the interpretation of Fω as branch locus
of the projection from the incidence correspondence to P(V ). With this structure Fω

is non-reduced because its codimension is 3, while from this point of view its expected
codimension would be 2.

The fundamental locus Fω of the congruence Xω has a natural interpretation in terms
of the secant varieties of the Grassmannian. Consider the natural filtration of P(

∧2 V )
by the secant varieties of the Grassmannian:

G ⊂ S1
G ⊂ · · · ⊂ Sr−1

G ⊂ Sr
G = P(

2
∧

V ),

where r = [n−1
2 ]. In the dual space P(

∧2
V )∗ there is a dual filtration. Write G′ =

G(n− 1, V ∗). Then the filtration can be interpreted in the form:

G
′ ⊂ S1

G
′ ⊂ · · · ⊂ Sr

G
′ = G

∗ ⊂ P(

2
∧

V ∗).

The last secant variety G∗ is the dual of G parametrising its tangent hyperplanes. If n is
odd, the general tangent hyperplane is tangent at one point only (corresponding to a line
of P(V )), the previous variety of the filtration parametrises hyperplanes which are tangent
along the lines of a 3-space, and so on, until the smallest one corresponds to hyperplanes
tangent along the lines of a Pn−2. If n is even, the description is similar, but the general
tangent hyperplane is tangent along the lines of a 2-plane, and so on.

Corollary 4.6. Let ω ∈
∧3

V ∗ be a 3-form such that fω : V →
∧2

V ∗ is injective (con-

dition (GC2)). If we identify P(V ) with Pω = Im(P(fω)) ⊂ P(
∧2

V ∗), i.e. the space of

linear equations defining the congruence Xω ⊂ P(
∧2

V ), then

M2k = Pω ∩ Sk
G

′, k ≥ 0.

In particular, the fundamental locus Fω is the locus of equations whose rank, as a skew-
symmetric matrix, is < n−1, and, when ω is general, the singular locus of Fω is the locus
of equations whose rank is < n− 3.

Proof. When fω is injective, P 7→ [Mω(P )] defines the identification of P(V ) with Pω, and
so the corollary follows immediately from Proposition 4.4, noting that SkG′ \ Sk−1G′ is
smooth. �

Finally, we state a theorem illustrating the geometric connection between a congruence
of order 1 and its fundamental locus.

Theorem 4.7. Let ω be a 3-form that satisfies (GC2) on P(V ), with dim(V ) = n + 1
even. Then Xω is the closure of the family of (n−1

2 )-secant lines of Fω.

Proof. Let n = 2m + 1 and consider as usual the map fω : V →
∧2

V ∗ of (2.5). Up
to a change of coordinates, a line L can be written as L = 〈e0, e1〉. We can interpret

the elements of
∧2

V ∗ as in (3.10) as (n + 1) × (n + 1) skew-symmetric matrices, and
therefore, since we are supposing (GC2), the image of L is a pencil of (n + 1) × (n + 1)
skew-symmetric matrices of the form M(s, t) = sfω(e0) + tfω(e1), and each matrix in the
pencil has rank at most n− 1 (see Remark 4.2).
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Now, if [L] ∈ Xω, then the matrices M(s, t) all contain the same 2-subspace L in their
kernel. So on the quotient space by L, the matrices are (n− 1)× (n− 1) of generic rank
n− 1. They are all skew-symmetric, so in the pencil there are (n− 1)/2 = m matrices of
smaller rank.

The same argument can be reversed. If there are m matrices M(s, t) of rank smaller
than m, the principal Pfaffians of order m of these matrices have m common zeroes.
Therefore their GCD is a non-zero homogeneous polynomial of degree m, and we conclude
that they are all proportional. So the matrices M(s, t) must have a common rank 2
subspace L in their kernel. From Lemma 3.2 it follows that [L] ∈ Xω. �

Remark 4.8. When Fω is smooth, the result also follows from [Pes15, Theorem 4.6].

4.4. Examples. When n ≤ 7 the natural group action of SL(V ∗) on
∧3

V ∗ has finitely
many orbits. In particular, there is a unique open orbit, so we list in the examples below,
for 3-forms ω of this open orbit, the congruence Xω and fundamental locus Fω of Xω. We
start considering the case n = 3 in which Lemma 3.2 does not apply.

Example 4.9. If n = 3, ω ∈
∧3 V ∗ is totally decomposable, so without loss of generality

we may assume

ω = x1 ∧ x2 ∧ x3;

the equation 3.4 reduces to

x1p23 − x2p13 + x3p12 = 0.

So Xω = {p12 = p13 = p23 = 0} ⊂ G is the α-plane of lines passing through the point
[e0] : {x1 = x2 = x3 = 0}, which is Fω in P(V ) = P3.

Example 4.10. If n = 4, there are two (non-trivial) orbits. If ω ∈
∧3

V ∗ belongs to the
open orbit it is the product of a 1-form and a general 2-form, so without loss of generality
we may assume

ω = x0 ∧ (x1 ∧ x2 + x3 ∧ x4).

The equation 3.4 reduces to

x0(p12 + p34)− x1p02 + x2p01 − x3p04 + x4p03 = 0.

So Xω = {p12 + p34 = p01 = p02 = p03 = p04 = 0} ⊂ G is a smooth quadric threefold, a
smooth hyperplane section of the Grassmannian of lines in {x0 = 0} = P(Vx0) ⊂ P(V ).
In particular, the fundamental locus Fω = P(Vx0). As a congruence of P4 Xω has order
zero and class one, i.e. it is a Schubert variety: [Xω] = σ2,1.

If instead [ω] lies in the closed orbit, it is totally decomposable, so we can suppose
ω = x1 ∧ x2 ∧ x3, and we deduce the equations p12 = p13 = p23 = 0, i.e. the condition to
be incident to the line {x1 = x2 = x3 = 0}. In this case, dim(Xω) = 4.

Example 4.11. Let n = 5 and ω ∈
∧3

V ∗. In this case there are 4 orbits. They
are described in [Seg17] (see [AOP12] and references therein for modern accounts). In
particular, it is shown that the secant variety of G(3, 6) is the whole P19, so for ω in the
open orbit, we may assume that

ω = x0 ∧ x1 ∧ x2 + x3 ∧ x4 ∧ x5

which means a0,1,2 = a3,4,5 and ai,j,k = 0 for (i, j, k) 6= (0, 1, 2), (3, 4, 5).
From (3.5) we deduce p0,1 = p0,2 = p1,2 = p3,4 = p3,5 = p4,5 = 0, so Xω is contained

in a reducible linear congruence and is given by the lines which meet the two planes
α = {x0 = x1 = x2 = 0} and β = {x3 = x4 = x5 = 0} in general position, soXω = P2×P2

and Fω = α ∪ β.
Since the Schubert cycle which represents the lines meeting a plane is σ2, by Pieri’s

formula we have that in the Chow ring of the Grassmannian, our congruence is [Xω] =
σ2
2 = σ4 + σ3,1 + σ2,2, which confirms our calculations in (3.16) that its multidegree is
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(1, 1, 1). We remark also that rank(Mω) = 4 for points of P5 not in the fundamental locus,
and rank(Mω) = 2 for the points in the fundamental locus, see also Proposition 4.4.

If ω belongs to the second largest orbit, in which case [ω] is a point on a projective
tangent space to G(3, 6), then we may assume that

ω = x0 ∧ x1 ∧ x2 + x2 ∧ x3 ∧ x4 + x4 ∧ x5 ∧ x0.

Also in this caseXω has dimension 4, while for ω in the remaining two orbits, the dimension
of Xω is > 4.

Example 4.12. Let n = 6 and ω ∈
∧3 V ∗. In this case there is an open orbit and 8 other

(non-trivial) orbits, see [Sch31] and[AOP12] for explanations and references. If ω belongs
to the open orbit, we may assume that

ω = x1 ∧ x2 ∧ x3 + x4 ∧ x5 ∧ x6 + x0 ∧ (x1 ∧ x4 + x2 ∧ x5 + x3 ∧ x6).

The stabiliser of ω is the simple Lie group G2. The congruenceXω ⊂ G is the homogeneous
variety G2 ⊂ P

13, the 5-dimensional closed orbit of the projectivised adjoint representation
of G2, a Fano manifold of index 3. This congruence has order 0, and the fundamental
locus is a smooth quadric 5-fold in P(V ) ([FH91], Ch.22, [KR13], [Muk89]). We will say
more on this example further on, cf. Example 4.20.

Example 4.13. For n = 7, there is an open orbit and 21 other non-trivial orbits ([Gu35],
[Gu64], [Oz80], [Dok83], [Ho11]). A representative of the open orbit, according to Ozeki,
is

ω = x0∧x1∧x2+x0∧x3∧x4+x1∧x3∧x5+x1∧x6∧x7+x2∧x3∧x6+x2∧x5∧x7+x4∧x5∧x6.

Doković gives a different representative:

ω = x0 ∧ (x1 + x2) ∧ x3 + x1 ∧ x4 ∧ x5 + x2 ∧ x6 ∧ x7 + x0 ∧ x4 ∧ x6 + x3 ∧ x5 ∧ x7.

The variety Xω ⊂ G(2, V ) parametrises the trisecant lines of a general projection in P7

of the Severi variety P2 × P2 ⊂ P8 ([IM05]). This projection is Fω . The computation
deg(Xω) = 57 is [IM05, Proposition 4.6].

Example 4.14. For n = 8, there are infinitely many orbits. They are described in [VE88].
It is still possible to write explicitly a general 3-form ω. Indeed, there is a continuous family
of semi-simple orbits, depending on 4 parameters, that can be explicitly described. Their

union is a Zariski-dense open subset in
∧3

V ∗. To write a 3-form ω in this family, we
introduce the following notation:

p1 = x0 ∧ x1 ∧ x2 + x3 ∧ x4 ∧ x5 + x6 ∧ x7 ∧ x8

p2 = x0 ∧ x3 ∧ x6 + x1 ∧ x4 ∧ x7 + x2 ∧ x5 ∧ x8

p3 = x0 ∧ x4 ∧ x8 + x1 ∧ x5 ∧ x6 + x2 ∧ x3 ∧ x7

p4 = x0 ∧ x5 ∧ x7 + x1 ∧ x3 ∧ x8 + x2 ∧ x4 ∧ x6

Then a general ω = λ1p1+λ2p2+λ3p3+λ4p4, where the coefficients satisfy λ1λ2λ3λ4 6= 0
and other explicit open conditions. For more details see [VE88].

The moduli space of alternating trilinear forms is related to the moduli space of curves
of genus 2, cf. [GS15, GSW13] and references therein. The fundamental locus is a Coble
cubic in P8, whose singular locus is an Abelian surface given as Jacobian of a curve of
genus 2 with a (3, 3)−polarisation. More precisely, the moduli space of alternating 3-forms

obtained as GIT quotient
∧3 V ∗ �GL(V ) contains a dense subset which is isomorphic to

the moduli space of genus 2 curves C with a marked Weierstrass point.
The topological Euler characteristic of the 7-fold Xω is 0.
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Example 4.15. The case n = 9 has been studied by Peskine. The congruence Xω is
formed by the 4-secant lines of the fundamental locus Fω , that is a smooth variety of
dimension 6 in P9, also called Peskine variety. Fω is not quadratically normal. In fact it
is on the border of Zak’s conjectures on k-normality (cf. [DePM08, Conjecture 1]). Xω

has been considered also in [DV10] in a construction of hyper-Kähler fourfolds.

Problem. Compute the Hodge numbers of Xω for general ω. The topological Euler
characteristic of Xω for n = 2t + 2 for t = 3, 4, 5, 6 equals 0, −254, −8412, −284598, so
in these cases the derived category of Xω cannot admit a full exceptional sequence. Is it
true that the same thing happens for any n ≥ 8?

4.5. Incidence varieties and projective bundles. Here we look more closely at the
relation between a congruence and its fundamental locus. This has been developed also
in [Han15, Pes15].

Consider the projective bundle X = P(U∗) over the Grassmannian G. This bundle can
be seen as the universal line over G, i.e. the point-line incidence variety in P

n × G. Let
OX (ℓ) be the tautological relatively ample line bundle on X and

λ : X → G

be the projection. It is well-known that there is a canonical isomorphism

P(Ω1
P(V )(2)) ≃ X .

Let OX (h) be the relatively ample line bundle on P(Ω1
P(V )(2)) and

µ : P(Ω1
P(V )(2)) → P(V )

be the natural projection. Then, we have

λ∗(OG(1)) ≃ OX (h), µ∗(OP(V )(1)) ≃ OX (ℓ).(4.6)

For brevity, we often denote the pull-back of a bundle E on P(V ) to X also by E omitting
the symbol µ∗, and likewise for G.

Again we see ω ∈
∧3

V ∗ as an element of H0(X ,Q∗(1)) under the isomorphism:

3
∧

V ∗ ≃ H0(G,Q∗(1)) ≃ H0(X ,Q∗(1)).

We let Iω be the zero locus of ω in this sense, i.e. the zero-locus of the pull-back of ϕω to
X . Clearly Iω ≃ P(U∗ |Xω

), i.e. Iω is the point-line incidence variety restricted to Xω.

4.5.1. Locally free resolution of the fundamental locus. The 3-form ω can be considered
as global section of Ω2(3) over P(V ), which is to say as the skew-symmetric morphism φω
of (4.1). Write Cω for the cokernel sheaf of φω . Looking back at (4.2) we may write, for
even n, the exact sequence:

(4.7) 0 → TP(V )(−1) → Ω1
P(V )(2) → Cω → 0,

and for odd n = 2m+ 1, the resolution:

(4.8) 0 → OP(V )(1−m) → TP(V )(−1) → Ω1
P(V )(2) → IFω/P(V )(m) → 0,

where we used Cω ≃ IFω/P(V )(m).

Corollary 4.16. If n is odd and ω satisfies (GC4), then the fundamental locus Fω is a
Fano variety and ωFω

≃ OFω
(−3).
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Proof. Let n = 2m+ 1. Since ω satisfies (GC4) we have the exact sequence (4.8) and Fω

is a subvariety of P(V ) of pure codimension 3. We have:

Ext2
P(V )(IFω/P(V ),OP(V )(−n− 1)) ≃ ωFω

.

On the other hand, dualising the self-dual exact sequence (4.8), we easily get :

Ext2
P(V )(IFω/P(V )(m),OP(V )) ≃ OFω

(m− 1).

Therefore:

ωFω
≃ OFω

(m− 1 +m− n− 1) ≃ OFω
(−3).

�

4.5.2. Incidence variety and projectivised cokernel sheaf. The main feature of the cokernel
sheaf Cω is that it recovers the tautological P1-bundle over Xω, the incidence variety Iω.

Proposition 4.17. There is an isomorphism:

Iω ≃ P(Cω).

Proof. We noticed that Iω is the zero-locus in X of ϕω, so our goal will be to describe
also P(Cω) this way. So first of all recall the tautological exact sequences:

0 → K → Ω1
P(V )(2ℓ) → OX (h) → 0,

0 → OX (h− ℓ) → U∗ → OX (ℓ) → 0,

where the vertical tangent bundle K is defined by the sequence. It is clear that these fit
into a commutative exact diagram:

0 // K(h− ℓ) //

��

Ω1
P(V )(ℓ+ h) //

��

OX (2h− ℓ)

��

// 0

0 // Q∗(h) // V ∗ ⊗OX (h)

��

// U∗(h)

��

// 0

OX (h+ ℓ) OX (h+ ℓ).

This shows:

Q∗(h) ≃ K(h− ℓ).

Remark that, by the sequences (4.7) and (4.8), the variety P(Cω) is cut in X ≃
P(Ω1

P(V )(2)) by TP(V )(−1) linearly on the fibres of µ, i.e. it is the zero-locus of a sec-

tion ψω : TP(V )(−ℓ) → OX (h). Notice that:

ψω ∈ H0(X ,Ω1
P(V )(h+ ℓ)) ≃ H0(P(V ),Ω1

P(V ) ⊗ Ω1
P(V )(3)).

Observe that ψω lies in the skew-symmetric part H0(P(V ),Ω2
P(V )(3)). In other words,

the image of ψω in the summand H0(P(V ), S2Ω1
P(V )(3)) is zero. Now:

H0(P(V ), S2Ω1
P(V )(3)) ≃ H0(X ,OX (2h− ℓ)),

so ψω goes to zero under the projection Ω1
P(V )(ℓ + h) → OX (2h − ℓ), i.e. it lies

in H0(X ,K(h − ℓ)) ≃ H0(X ,Q∗(h)). This is compatible with the isomorphism

H0(P(V ),Ω2
P(V )(3)) ≃

∧3
V ∗ ≃ H0(G,Q∗(1)), so that ψω agrees with ϕω. �

Let again Mr ⊂ P(V ) be the locus of points where φω has rank at most r. Then
Proposition 4.17 and the sequences 4.7 and 4.8 yield

Corollary 4.18. When n is odd, the incidence variety Iω is the blow-up of P(V ) along Fω.
When n is even, the restriction of the incidence variety Iω is a P1-bundle over Fω \Mn−4,
and a P2k−1-bundle over Mn−2k \Mn−2k−2, when k = 2, ..., (n− 2)/2.
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4.5.3. Linear sections of the fundamental locus. This framework can be further used to
study linear sections of Fω and Xω. Indeed, let M∗ ⊂ V ∗ and N∗ ⊂

∧2 V ∗ be linear
subspaces and we write Xω,N = P(N) ∩Xω and Iω,N = P(U∗|Xω,N

). Also we write IM,ω

for the fibre product of Iω and P(M) over P(V ). Assume until the end of the section that
Iω,N and IM,ω have expected dimension.

Lemma 4.19. The image in P(V ) of Iω,N is the degeneracy locus of a map N ⊗OP(V ) →
Cω. Likewise, the image in G of IM,ω is the degeneracy locus of a mapM⊗OXω

→ U∗ |Xω
.

Proof. We treat only N∗ ⊂
∧2

V ∗, the argument for M∗ ⊂ V ∗ being analogous.
By Proposition 4.17, we have P(Cω) ≃ Iω , and we know by (4.6) that OIω (h) is the pull-

back of OG(1). So, in Iω , cutting with P(N) →֒ P(
∧2

V ) corresponds to the vanishing of
a morphism N ⊗OIω → OIω (h). This vanishing locus is isomorphic to the projectivised
cokernel of the direct image in P(V ) of this map, which again by (4.6) is a morphism
N ⊗ OP(V ) → Cω. So the image in P(V ) of Iω,N is the degeneracy locus of this last
morphism. Actually for even n this map factors through N ⊗OFω

→ Cω so the image of
Iω,N is a degeneracy locus inside Fω . �

Example 4.20. For n = 4 and generic ω, Fω is P
3 ⊂ P

4 and Cω is the null correlation
bundle on P3. On the other hand, Xω is a smooth quadric threefold. The variety Iω
is the projectivisation of the null correlation bundle, which in turn is isomorphic to the
projectivised spinor bundle over the quadric threefold. In other words, Iω is the complete
flag for the Lie group Spin(5) or equivalently of Sp(4).

For n = 6 and generic ω, the variety Iω is the complete flag for the exceptional group
G2, Fω is a smooth 5-dimensional quadric and Xω is the 5-dimensional homogeneous space
G2 /P (α2) of Picard number 1. The sheaf Cω is the rank-2 stable G2-homogeneous bundle
on the quadric Fω , also called Cayley bundle (cf. [Ott90] for a description in terms of
spinor bundles).

Taking a general linear section of codimension 2 of Xω, i.e. a general subspace K2 =

N∗ ⊂
∧2

V ∗, one gets a smooth Fano threefold Xω,N of genus 10. The image in P
6 = P(V )

of the manifold P(U∗|Xω,N
) is a determinantal cubic hypersurface of Fω defined by an

injective map of the form:
O2

Fω
→ Cω.

This is a Fano variety of index 2, singular along a curve of degree 18 and arithmetic genus
10, given by the locus where the map displayed above vanishes. This curve is the image
in P6 of the Hilbert scheme of lines contained in the Fano threefold Xω,N . If L is any such
line, U∗ splits over L as OL ⊕OL(1), so that OL(h) contracts P(U

∗|L) to a plane with a
marked point, which is the point in P6 that corresponds to the given line L.

4.5.4. Further degeneracy locus for even n. Let us briefly study the further degeneracy
locus of the bundle map φω in case n is even. Set t = n/2− 1. We know that Fω ⊂ Pn is
a hypersurface of degree t, whose singular locus is, generically, F ′

ω = Mn−4, a subvariety
of codimension 6 in P

n.
Recall that the singular locus of F ′

ω is, generically, Mn−6, a subvariety of codimension
15 in Pn. All these varieties are subcanonical.

To write a locally free resolution of F ′
ω , assuming that the codimension is 6 as expected,

we use the sheafified Józefiak-Pragacz complex, cf. for instance [Wey03, §6.4.6]. We denote
by Γa,b the Schur functor associated with the Young tableau having two columns of sizes
a and b. This gives:

0 → OPn(−3t) → ∧2TPn(−2t− 3) → Γ2t+1,1TPn(−4t− 3) → S2TPn(−t− 3)⊕

⊕ S2ΩPn(−2t+ 3) → Γ2t+1,1ΩPn(t+ 3) → ∧2ΩPn(−t+ 3) → IF ′

ω/Pn → 0.
(4.9)

This resolution is self-dual up to sign and up to twisting by OPn(−3t). In particular,
dualising the resolution and using ωF ′

ω
≃ Ext5

Pn(IF ′

ω/Pn ,OPn(−n− 1)) we get:
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Corollary 4.21. If F ′
ω has expected codimension 6 in Pn, then its canonical bundle is

ωF ′

ω
≃ OF ′

ω
(t− 3).

For n ≤ 6, F ′
ω is just empty. For n = 8 i.e. t = 3, F ′

ω is an Abelian surface, actually the
Jacobian of the genus-2 curve associated with ω, embedded by the triple Riemann Theta
divisor, appearing as singular locus of the relevant Coble cubic, cf. Example 4.14.

For n = 10, i.e. t = 4 and generic ω, F ′
ω is a smooth canonical 4-fold of degree 99. For

t = 5, 6, 7, 8, 9 the degree of F ′
ω is 364, 1064, 2652, 5871, 11858.

5. Hilbert scheme

Define the open dense subset K of
∧3

V ∗ by the condition that ω belongs to K if
and only if Xω has dimension n − 1. For ω ∈ K, we let P (t) be the Hilbert polynomial
of Xω. Then we define H to be the union of the components of the Hilbert scheme

HilbP (t)(P(
∧2

V )) that contain at least one point of the form [Xω], with ω ∈ K. Sending
the proportionality class [ω] of ω to [Xω] we get a morphism:

ρ : P(K) → H.

Our goal here is to prove the following.

Theorem 5.1. Let dimV = n + 1 ≥ 6 and assume that ω ∈
∧3

V ∗ satisfies ((GC4)).
Then H is irreducible and smooth at any point [Xω] corresponding to ω ∈ K. Moreover:

(i) for n ≥ 6, ρ embeds P(K) as an open dense subset of H, so dim(H) =
(

n+1
3

)

− 1;

(ii) for n = 5, ρ is dominant with rational curves as fibres, so dim(H) =
(

n+1
3

)

− 2.

Proof. Let n ≥ 5. The algebraic map ρ is defined precisely for all ω lying in K and the
fibres of ρ consist of the forms ω′ such that Xω = Xω′ . Recall that Xω is determined
by its linear span Λω so that [ω′] lies in ρ−1([Xω]) if and only if Λω = Λω′ . On the

other hand Λω is formed by the 2-vectors L ∈ P(
∧2 V ) such that ω(L) = 0. Therefore

ρ−1([Xω]) consists of the forms [ω′] such that ω′(L) = 0 for all L ∈ Λω. Since this is a
linear condition, we see that the fibre ρ−1([Xω]) is a linear section of P(K).

Let now ω ∈ P(K) and recall that Xω is obtained as zero-locus of the global section
ϕω of Q∗(1) (see equation (3.14)). Then the normal bundle N of Xω in G is Q∗(1)|Xω

.
Taking the tensor product of Q∗(1) with the Koszul complex (3.15) we obtain then a
resolution over G:

· · · →

p
∧

Q⊗Q∗(1− p) → · · · → Q ⊗Q∗ → Q∗(1) → N → 0,

where p ranges from 2 to n− 1.

It is well-known that H0(Q⊗Q∗) ≃ K and H0(Q∗(1)) ≃
∧3

V ∗(see Section 3.2). Also
it is clear that:

Hk(Q⊗Q∗) = Hk(Q∗(1)) = 0, ∀k > 0.

Taking global sections of the rightmost part of the previous display, since the map
Q⊗Q∗ → Q∗(1) is just ϕω, we get a linear map:

ρω :

3
∧

V ∗/〈ω〉 → H0(N ),

which is nothing but the differential of ρ at [ω].
Since we already mentioned that the fibres of ρ are linear spaces, we have to check

that ρω is an isomorphism for n ≥ 6, or a surjection with 1-dimensional kernel for n = 5.
We will also check that, in both cases, Hk(N ) = 0 for k > 0. This will show that H
is irreducible (as image of P(K)) and smooth over the image of ρ. This will imply that,
for n ≥ 6, ρ−1[Xω] is a single point, whereby proving that ρ is a birational morphism,
actually an isomorphism over the image of ρ. On the other hand, if n = 5, we will deduce
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that ρ is a surjective morphism whose fibres are of the form P1∩P(K), which is a rational
(perhaps non compact) curve. Both claims on dim(H) clearly follow.

In turn, in order to prove the required properties of ρω, for n ≥ 6 it suffices to check
the following vanishing:

Hk(

p
∧

Q⊗Q∗(1− p)) = 0, p =2, . . . , n− 2, ∀k.(5.1)

On the other hand, for n = 5 we have to verify the same vanishing as (5.1) except for
p = 3 and k = 2, where we have to check:

H2(

3
∧

Q⊗Q∗(−2)) ≃ K.

To prove these facts, we rely on Borel-Bott-Weil’s theorem. Indeed,
∧p Q⊗Q∗(1−p) is

an extension of two vector bundles associated with irreducible representations of GL(V ).
More precisely, write Eλ for the homogeneous bundle associated with the weight λ of
GL(V ) and λ1, . . . , λn for the fundamental weights. Then, the homogeneous bundles
given by the irreducible representations appearing in the filtration of

∧p Q ⊗ Q∗(1 − p)
are Eλn+1−p+λ3−pλ2 and Eλn+2−p+(1−p)λ2

. Now, by Borel-Bott-Weil’s theorem, for n ≥ 6
we have:

Hk(Eλn+1−p+λ3−pλ2) = Hk(Eλn+2−p+(1−p)λ2
) = 0,

for p = 2, . . . , n− 2, and ∀k. This implies (5.1) for n ≥ 6. On the other hand, for n = 5,
again Bott’s theorem implies the same vanishing except for p = 3 and k = 2, where we
get:

H2(E2λ3−3λ2) ≃ K, H2(Eλ4−2λ2) = 0.

This implies (5.1) for n = 5 and thus concludes the proof. �

6. Quadrics containing 〈Xω〉 and congruences in linear subspaces

As usual we denote by Λω the linear span of Xω. We are interested in characterising
the quadrics in the ideal of G that contain also Λω.

First we compute the dimension of this space of quadrics.

Lemma 6.1. Let ω ∈
∧3

V ∗ be a 3-form such that Xω has dimension n−1, i.e satisfying
condition (GC4). Then h0(IΛω∪G(2)) = n+ 1.

Proof. The homogeneous ideal of Λω∪G is the intersection of the homogeneous ideals of Λω

and G, so H0(IΛω∪G(2)) is simply the homogeneous piece of degree 2 of this intersection.
Recall that Xω is the intersection of G and Λω, so that we have an equality of homo-

geneous ideals, I(Xω) = I(G) + I(Λω). Consider therefore the following exact sequence
of ideals:

0 → I(Λω) ∩ I(G) → I(Λω)⊕ I(G) → I(Xω) → 0.

Looking at the dimension of the homogeneous pieces of degree 2 we get:

dim I(Λω)2 ∩ I(G)2 = dim I(G)2 + dim I(Λω)2 − dim I(Xω)2.

Also, we have an exact sequence:

0 → IG|P(
∧

2 V ) → IXω |P(
∧

2 V ) → IXω |G → 0.

Twisting by OP(
∧2 V )(2) and taking global sections, we easily get:

dim I(Xω)2 = dim I(G)2 + h0(IXω |G(2)),

and therefore:
dim I(Λω)2 ∩ I(G)2 = dim I(Λω)2 − h0(IXω |G(2)).

To finish we have to compute the right-hand-side. On one hand, since 〈Xω〉 = Λω has

codimension n + 1 in P(
∧2

V ) = P(
n+1
2 )−1, we easily get dim I(Λω)2 = n

(

n+1
2

)

. On the
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other hand, recall that Xω is the vanishing locus of the global section ϕω of Q∗(1), so
that, when the dimension of Xω is n − 1, the Koszul complex (3.15) is a resolution of
the ideal of Xω on G. Now we twist this sequence with OG(2) and take global sections.
Applying Borel-Bott-Weil’s theorem, we get:

h0(IXω |G(2)) = h0(Q(1))− h0(

2
∧

Q) = n

(

n+ 1

2

)

− n− 1.

Putting together, we obtain the equality dim I(Λω)2 ∩ I(G)2 = n+ 1. �

We shall find a natural isomorphism

V ∗ → H0(P(

2
∧

V ), IΛω∪G(2))

parametrising this subspace in the space of quadrics defining G.

Notation 6.2. With notation as in Corollary 2.2, we denote by Qω the image of the map
V ∗ → I(G) sending x to qω∧x. These quadratic forms correspond to the quadrics Qω∧x

introduced and studied in Section 2.2.

Proposition 6.3. Assume that n ≥ 5 and that Xω has dimension n−1 (condition (GC4)).
Then

Qω = H0(P(

2
∧

V ), IΛω∪G(2)).

Furthermore, for any quadric Qω∧x ∈ Qω of rank 2n, the linear span Λω = 〈Xω〉 has
codimension one in the maximal isotropic subspace Λx

ω in Qω∧x.

Proof. The quadrics in Qω contain Λω in view of Corollary 2.16. Since Xω has dimension
n− 1, Remarks 3.6 and 2.13 imply that ω is indecomposable. Therefore V ∗ → Qω is an
isomorphism, so the first part of the proposition follows. The second part follows from
Corollary 2.19. �

We shall denote by Xωx
the congruence in G(2, Vx) defined by the restriction ωx of ω

to Vx. We recall also from 2.9, the subspace Λωx
.

Corollary 6.4. Assume that n ≥ 5 and that Xω has dimension n− 1 (condition (GC4)).
If Qω∧x ∈ Qω has rank 2n, then

Sing(Qω∧x) = Λωx
= 〈Xωx

〉.

Proof. It follows immediately from Proposition 6.3 and Theorem 2.17, (1), because
〈Xωx

〉 = {[L] | x(L) = ωx(L) = 0} = {[L] | x(L) = ω(L) ∧ x = 0}. �

Remark 6.5. If n = 3, the only quadric Qω∧x is the Grassmannian G(2, V ), which is
smooth, and also Xωx

is empty. If n = 4, the rank of Qω∧x is 6 for any choice of x, so
Sing(Qω∧x) is a P

3. On the other hand Xωx
= Λωx

is a P
2. So the conclusion of Corollary

6.4 is not true for n = 4.

Corollary 6.6. Assume that n ≥ 5 and that Xω has dimension n− 1 (condition (GC4)).
If ωx has rank at least n+2

2 for every x ∈ V ∗, then there are no 4-forms vanishing on the
linear span of Xω, i.e. on Λω. In particular, there are no quadrics in the ideal of G that
are singular along Xω.

Proof. Any 4-form η defines a quadric Qη in the ideal of G. If η vanishes on Λω, then
Xω ⊂ Sing(Qη). Now, by Proposition 6.3, the linear space Λω is in Qη only if the 4-form
η is of the form ω ∧ x for some x ∈ V ∗. Furthermore, by Lemma 2.7, the quadric Qω∧x

has rank equal to 2 rankωx. The space Λω has codimension n + 1, so it is contained in
Sing(Qω∧x) only if this rank is at most n+ 1, i.e. 2 rankωx ≤ n+ 1. �
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Note that the assumption on ωx in Corollary 6.6 is satisfied for general ω. Indeed, let
n = 2m − 1, and let V = V0 ⊕ V1 be a decomposition in m-dimensional subspaces. Let

x ∈ V ∗
1 and ω = ω0 + β ∧ x, where ω0 ∈

∧3
V ∗
0 and β ∈

∧2
V ∗
1 are generic forms. Then

ωx = ω0 and has rank m = n+1
2 . The variety Xω is contained in the singular locus of the

quadric Qω0∧x of rank 2m = n+ 1.
Similarly, when n = 2m−2, let V = V0⊕V1 be a decomposition in a (m−1)-dimensional

subspace and am-dimensional subspace. Let x ∈ V ∗
1 and ω = ω0+β∧x, where ω0 ∈

∧3
V ∗
0

and β ∈
∧2 V ∗

1 are generic forms. Then ωx = ω0 and has rank m − 1 = n
2 . The variety

Xω is contained in the singular locus of the quadric Qω0∧x of rank 2m− 2 = n.
The next Theorem gives a more precise formulation of Corollary 6.4.

Theorem 6.7. Let n ≥ 5 and assume that ω ∈
∧3

V ∗ is a 3-form such that Xω has
dimension n− 1 (condition (GC4)). Let x ∈ V ∗ be a linear form such that ωx has rank n
and ωx∧y, the restriction of ω to Vx∧y, has rank ≥ n+1

2 for every y ∈ V ∗
x . Then

Sing(Qω∧x) ∩G = Xωx
.

Conversely, if n ≥ 7, then Qω∧x is the unique quadric that contains G and is singular
along Xωx

. Furthermore, the quadric Qω∧x contains the linear span of Xω′ for any ω′

such that ω′ ∧ x = ωx ∧ x, i.e. ω′
x = ωx.

Proof. The quadric Qω∧x has rank 2n because ωx has rank n by assumption (Lemma 2.7).
The first part follows immediately from Corollary 6.4.

For the converse, a general 3-form ωx on Vx extends to 3-forms on V , which again
define a quadric singular on Xωx

. It suffices therefore identify the space of quadrics in the
ideal of G singular along Xωx

.
Again we use the correspondence between 4-forms and quadrics in the ideal of G (see

Corollary 2.2). Let Q = Qη be a quadric singular along Xωx
⊂ P(

∧2
Vx) ⊂ P(

∧2
V ),

where η is a 4-form as above. Write η = ηx + γx ∧ x for some 4-form ηx and 3-form γx on
Vx. Then Qη is singular along 〈Xωx

〉 only if η(L) = 0 for any [L] ∈ 〈Xωx
〉. But x(L) = 0

for any L ∈
∧2

Vx, so in this case η(L) = ηx(L)+γx(L)∧x = 0 only if ηx(L) = γx(L) = 0.
But if ηx(L) = 0 for any [L] ∈ 〈Xωx

〉, then ηx = 0 by Corollary 6.6. Hence η = γx ∧ x.
Furthermore, by Theorem 5.1 the spaces {[L] | γx(L) ∧ x = 0} and 〈Xωx

〉 are equal if
and only if γx is proportional to ωx. Therefore Q = Qη = Qω∧x = Qγx∧x for any γx
whose restriction to Vx is proportional to ωx. In particular, Q depends only on Xωx

, and
contains Xω in a maximal dimensional linear subspace. �

We recall that Theorem 2.17 describes the two families of maximal dimensional sub-
spaces in the quadric Qω∧x of rank 2n. One family is in bijection with all 3-forms whose
restriction to Vx coincides with ωx. The congruence Xω is contained in a unique maximal
dimensional linear subspace Λx

ω of this family in the quadric Qω∧x. We shall study now
the union and the intersection of Xω and Xωx

.

Theorem 6.8. Let ω ∈
∧3

V ∗ be a 3-form satisfying condition (GC2). Let x ∈ V ∗ be
general, let Vx be the hyperplane {x = 0}. Let e ∈ V be a fixed vector such that x(e) = 1.
Then let ω = ωx + βx ∧ x be the unique decomposition as in (1.2). Moreover, for any

L ∈
∧2 V let L = Lx + e ∧ vx be the unique expression with Lx ∈

∧2 Vx and vx ∈ Vx.
Finally let Q = Qω∧x. Then

(1) Λx
ω ∩G = Xω ∪Xωx

.
(2) If Λx

ω′ is a maximal isotropic space in Q of the same family as Λx
ω, for some

3-form ω′ such that ω′
x = ωx, then Λx

ω′ ∩G = Xω′ ∪Xωx
.

(3) Xω∩Xωx
= Xω∩G(2, Vx) is the hyperplane section of Xωx

of equation βx(Lx) = 0.

Proof. The inclusion ⊃ in (1) is clear, because Xω ⊂ Λω ⊂ Λx
ω, and Xωx

⊂ Λx
ω is contained

in the singular locus of Q. Conversely, we have to prove that, if L ∈
∧2

V satisfies the
conditions ω(L) ∧ x = L ∧ L = 0, then either ω(L) = 0 or x(L) = ωx(L) = 0.
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Note that ω(L) ∧ x = (−βx(vx) + ωx(Lx)) ∧ x = 0 implies ωx(Lx) = βx(vx). Moreover
x(L) = 0 if and only if vx = 0, so in this case [L] ∈ G(2, Vx) and ωx(Lx) = ωx(L) = 0,
and we conclude that L ∈ Xωx

.
If instead vx 6= 0, we fix a basis of V with e0 = e, e1 = vx, and x = x0, and we write ω

and L as follows: ω = ω01+x0∧β0+x1∧β1+x0∧x1∧α, L = L01+e0∧e1+e1∧v1, with
ω01 ∈

∧3〈x2, . . . , xn〉, β0, β1 ∈
∧2〈x2, . . . , xn〉, α ∈ 〈x2, . . . , xn〉, L01 ∈

∧2〈e2, . . . , en〉,
v1 ∈ 〈e2, . . . , en〉. Now one computes easily that ω(L)∧x0 = 0 is equivalent to ω01(L01)−
β1(v1)−α+β1(L01)x1 = 0, and ω(L) = 0 is equivalent to ω(L)∧x0+x0β0(L01) = 0. But
L ∧ L = 0 is equivalent to L01 ∧ L01 − 2e1 ∧ L01 ∧ v1 + 2e0 ∧ e1 ∧ L01 = 0, which implies
L01 = 0. This concludes the proof of (1).

The proof of (2) is similar. To prove (3), note that if L ∈
∧2

Vx then vx = 0, so the
condition ω(L) ∧ x = 0 is equivalent to ωx(Lx) = 0, whereas the condition ω(L) = 0 is
equivalent to ωx(Lx) + βx(Lx)x = 0. Therefore Xω ∩Xωx

is equal to the intersection of
Xωx

with the hyperplane of equation βx(Lx) = 0.
�

7. The residual congruences and their fundamental loci

As noted in Theorem 3.4, the variety Xω is contained in a reducible linear congruence,
i.e. in a proper section of the Grassmannian by a linear space of codimension n− 1.

Definition 7.1. Let Γ be a linear subspace of P(V ) of codimension n− 1, containing Xω

and such that the intersection Z = G ∩ Γ is proper. Then the congruence Y ⊂ G whose
ideal IY satisfies [IZ : IXω

] ≃ IY and [IZ : IY ] ≃ IXω
, is called the residual congruence to

Xω in G ∩ Γ. We also say that Xω and Y are linked in G ∩ Γ.

In this case, set-theoretically, we have G ∩ Γ = Xω ∪ Y . In Proposition 7.10 we shall
give a more precise description of Y in terms of ω and the choice of linear space Γ.

We first describe some general facts about the residual congruence.

Proposition 7.2. Let Y be the residual congruence to Xω in G ∩ Γ.

(1) For general Γ, Y is an irreducible congruence;
(2) Y has order 1 if n is even and order 0 if n is odd;
(3) Y is locally Cohen–Macaulay.

Proof. (1) follows from Bertini theorem. For (2) it is enough to recall Proposition 3.7 and
to note that the linear congruence Xω ∪ Y has order 1. To prove (3) we recall that the

Grassmannian G ⊂ P(
∧2

V ) is arithmetically Gorenstein (aG for short in what follows):
in fact, it is subcanonical (the canonical sheaf is ωG

∼= OG(−n− 1)) and aCM (by Bott’s
theorem, cf. [Wey03, Theorem 4.1.8]). Therefore, the linear congruence Xω ∪ Y is—by
adjunction—arithmetically Gorenstein as well (see for example [Mig98, Theorem 1.3.3]).
But then Xω and Y are geometrically (directly) G-linked (see [Mig98, Definition 5.1.1]),
and the results of [Mig98, Chapter 5] can be applied. In particular, since Xω is smooth,
Y is locally Cohen-Macaulay ([Mig98, Corollary 5.2.13]). �

The linkage will allow us to resolve the ideal of Y in G.

7.1. Resolving the ideal of the residual congruence Y . Let us recall the Koszul
resolution (3.15) of Xω in G and write down the Koszul resolution of Xω ∪ Y in G:

0 → OG(1 − n) → · · · → OG(−p)
(n−1

p ) → · · · → OG → OXω∪Y → 0.
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The surjection OXω∪Y → OXω
lifts to a morphism of complexes that reads:

(7.1) IXω/Xω∪Y

��

OG(1 − n)

��

// · · · // OG(−p)
(n−1

p )

��

// · · · // // OG
// OXω∪Y

��

OG(2 − n) // · · · //
∧p Q(−p) //// · · · // OG

// OXω

This yields a resolution of IXω/Xω∪Y of the form:

0 → OG(1−n) → · · · → OG(−p)
(n−1

p )⊕

p+1
∧

Q(−p−1) → · · · → Q(−1) → IXω/Xω∪Y → 0,

where 0 ≤ p ≤ n− 1. By linkage, taking duals and taking tensor product with OG(1−n),

we get a resolution of OY and hence of IY/G. Using the duality
∧p Q∗ ≃

∧n−1−p Q(−1),
this takes the form:

(7.2) 0 → Q∗(2−n) → · · · → OG(−p)
(n−1

p )⊕

p−1
∧

Q(−p) → · · · → OG(−1)n → IY/G → 0,

with 1 ≤ p ≤ n− 1.

Remark 7.3. The map OG(1 − n) → OG(2 − n) in diagram (7.1) defines a Schubert
hyperplane containing Y . In fact, by Lemma 2.13, if Γ ⊃ Λω is any codimension n − 1
linear space of P(

∧2 V ), then Γ = Λxy
ω (cf. the definition of Λxy

ω in (2.8)) for a 2-form

x ∧ y ∈
∧2

V ∗. In particular, if Y is residual to Xω in a linear congruence, then

Xω ∪ Y = G ∩ Λxy
ω

for some x ∧ y ∈
∧2

V ∗. The Schubert hyperplane defined by x ∧ y intersects Λxy
ω in

Λω,x∧y. We shall show in Proposition 7.5 that Y = Λω,x∧y ∩G.

Notation 7.4. We denote by Yω,x∧y the residual congruence to Xω in G∩Λxy
ω , whenever

the latter intersection is proper. It will be denoted simply by Yx∧y when ω is understood,
or Y if also x, y are understood.

The residual congruences to Xω appear naturally from quadrics of Qω. Let n ≥ 5
and assume that ω satisfies (GC4). Let us consider the quadric Q = Qω∧x for some
x ∈ V ∗. It contains G and its rank is 2n, so Q has two

(

n
2

)

-dimensional families of

maximal dimensional subspaces, i.e. subspaces of codimension n in P(
∧2

V ). These two
families were described in Theorem 2.17. The linear space Λx

ω belongs to one of these
families, and in view of Proposition 6.3, the linear span 〈Xω〉 = Λω is a hyperplane in Λx

ω.
A subspace of the other family that intersects Λx

ω in codimension one is of the form Λω,x∧y

for some y ∈ V ∗. The union Λx
ω ∪ Λω,x∧y spans the codimension n − 1 linear subspace

Λxy
ω . The restriction of Qω∧x to Λxy

ω decomposes as

Qω∧x ∩ Λxy
ω = Λx

ω ∪ Λω,x∧y,

and the subspace Λω,x∧y ⊂ Λxy
ω is the intersection of Λxy

ω with the Schubert hyperplane

{x ∧ y = 0} ⊂ P(
∧2 V ).

Therefore, when x, y ∈ V ∗ are general linear forms, the linear congruence Λxy
ω ∩ G

decomposes as

Λxy
ω ∩G = (Λx

ω ∩G) ∪ (Λω,x∧y ∩G).

By Theorem 6.8 (1), Λx
ω ∩ G = Xω ∪Xωx

and, by Theorem 6.7, Sing(Qω∧x) ∩ G = Xωx
,

so Xω ∪ Yω,x∧y = Λxy
ω ∩G implies the following lemma:
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Proposition 7.5. The residual congruence Yω,x∧y is a non-proper linear congruence.
More precisely

Yω,x∧y = Λω,x∧y ∩G,

with codimΛω,x∧y = n. In particular, the congruence Yω,x∧y is contained in the Schubert
hyperplane formed by the lines meeting {x = y = 0}. Furthermore,

Xω ∩ Yω,x∧y

is the intersection of Xω with this Schubert hyperplane and

Xω ∩ Yω,x∧y
∼= HYω,x∧y

−Xωx

as Weil divisors on Yω,x∧y.

Proof. Recalling Lemma 2.16, only the last part remains to be proven. But Λx
ω is a

hyperplane in Λxy
ω , so Λx

ω ∩ Yω,x∧y = (Xω ∩ Yω,x∧y) ∪ Xωx
is a hyperplane section of

Yω,x∧y. �

7.2. The multidegree. The multidegree of a general congruence Y = Yω,x∧y, residual to
Xω, can be computed for every n using (3.16) and the multidegree of a linear congruence.
We recall that in [DeP03, Corollary 2.3] the multidegree (e0(n), . . . , e[n−1

2 ](n)) of a linear

congruence B ⊂ G, where

eℓ(n) :=

∫

[B]

σn−1−ℓ,ℓ 0 ≤ ℓ ≤

[

n− 1

2

]

,

is given by the following closed formula

multdeg(B) =

(

1, n− 2, . . . ,

((

n− 2

i

)

−

(

n− 2

i − 2

))

, . . . ,

((

n− 2

ν

)

−

(

n− 2

ν − 2

)))

,

where ν := [n−1
2 ]. Similarly (loc. cit.)

deg(B) =

ν
∑

j=0

((

n− 2

j

)

−

(

n− 2

j − 2

))2

=
1

n− 1

(

2n− 2

n

)

.

Anyway, in order to obtain multdeg(Y ), it is useful to organise these degrees as we did
for those of Xω in Section 3.2.1. In fact, the proof of Lemma 3.11 applied to ei(n) :=
(

(

n−2
i

)

−
(

n−2
i−2

)

)

gives the following lemma:

Lemma 7.6. The multidegree (ei(n)), i = 0, . . . , n− 1, satisfies the initial condition

e0(n) = 1, n = 2, 3, 4, . . .

and the recursion relation

ei(n) = ei−1(n− 1) + ei(n− 1)

when i = 1, 2, . . . , [n−1
2 ].

Then, as we did with the multidegree (di(n)) of Xω, we may display the multidegree
(ei(n)) of B in a triangle with initial entries

bn,0 = 1, n = 0, 1, 2, . . .

and

b(i,j) = b(i,j−1) + b(i−1,j) i = 1, 2, . . . , and j = 1, 2, . . . , i.
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The multidegree of B is identified as (ei(n)) = (b(n−1−i,i)), i = 0, . . . , n− 1,

(7.3) (bi,j) =

1
1 1
1 2 2
1 3 5 5
1 4 9 14 14
1 5 14 28 42 42
1 6 20 48 90 132 132
1 7 27 75 165 297 429 429
1 8 35 110 275 572 1001 1430 1430
1 9 44 154 429 1001 2002 3432 4862 4862

for which we have, with the same proof as in Proposition 3.12:

Proposition 7.7. The degree of a linear congruence B ⊂ G(2, n + 1) is given by the
(n+ 1)-st diagonal element

degB = b(n−1,n−1) = b(n−1,n−2) = en(2n− 1)

in the above triangle of numbers. The multidegree of B is given by the antidiagonals

multdeg(B) = (e0(n), e1(n), . . . , e[n−1
2 ](n)) = (b(n−1,0), b(n−2,1), . . . , b(n−[n−1

2 ],[n−1
2 ])).

From this, we can infer the multidegree of Y ; in fact, it is enough to “subtract” triangles
(3.17) and (7.3) obtaining the following triangle

(7.4) (ci,j) =

0
1 1
0 1 1
1 2 3 3
0 2 5 8 8
1 3 8 16 24 24
0 3 11 27 51 75 75
1 4 15 42 93 168 243 243
0 4 19 61 154 322 565 808 808
1 5 24 85 239 561 1126 1934 2742 2742

,

and if we call ci,j the entries of the triangle (7.4), we have ci,j = bi,j − ai,j . Let

fℓ(n) :=

∫

[Y ]

σn−1−ℓ,ℓ 0 ≤ ℓ ≤

[

n− 1

2

]

,

then (f0(n), . . . , f[n−1
2 ](n)) is the multidegree of Y . From Propositions 3.12 and 7.7, we

obtain the following proposition:

Proposition 7.8. The degree of Y = Yω,x∧y ⊂ G is the (n+ 1)-st diagonal element

deg Y = c(n−1,n−1) = c(n−1,n−2) = fn(2n− 1)

in the above triangle of numbers. The multidegree of Y is given by the antidiagonals

(f0(2m), f1(2m), . . . , fm−1(2m)) = (c(2m−1,0), c(2m−2,1), . . . , c(m,m−1)),

when n = 2m, and

(f0(2m− 1), f1(2m− 1), . . . , fm−1(2m− 1)) = (c(2m−2,0), c(2m−3,1), . . . , c(m−1,m−1)),

when n = 2m− 1.

For 3 ≤ n ≤ 9, we get the following multidegree for Y :

(0, 1), (1, 1), (0, 2, 1), (1, 2, 3), (0, 3, 5, 3), (1, 3, 8, 8), (0, 4, 11, 16, 8).
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7.3. Divisors and singularities on the residual congruences to Xω. Recall that
Yω,x∧y = Λω,x∧y∩G and thus, by Lemma 2.13, Yω,x∧y is contained in the pencil of quadrics
generated by Qω∧x and Qω∧y. Furthermore, Yω,x∧y = Yω′,x∧y′ only if 〈x, y〉 = 〈x, y′〉,
ωx = ω′

x and ωy = ω′
y.

Proposition 7.9. There is an (n − 1)-dimensional family of congruences Xω′ that are
linked to Yω,x∧y in a linear congruence. They are defined by 3-forms ω′ = ω + α′ ∧ x ∧ y,
for some α′ ∈ V ∗.

To further analyse Yω,x∧y we consider the pencil of hyperplanes generated by P(Vx)
and P(Vy):

P(V[a:b]) = {ax+ by = 0}, [a : b] ∈ P
1

and denote by ω[a:b] the restriction of ω to V[a:b].

Proposition 7.10. Let ω ∈
∧3

V ∗ be a 3-form satisfying condition (GC4). Let x, y ∈ V ∗

be linearly independent linear forms, and let Yω,x∧y be the residual congruence to Xω in
G ∩ Λxy

ω . Then:

(1) Yω,x∧y is aCM in its linear span;
(2) Xωx

is a Weil divisor in Yω,x∧y, and Xωx
= Yω,x∧y ∩G(2, Vx);

(3) Yω,x∧y =
⋃

[a:b]∈P1 Xω[a:b]
, where

Xω[a:b]
= {[L] ∈ G(2, V[a:b]) ⊂ P(

2
∧

V[a:b]) | ω[a:b](L) = 0} ⊂ G(2, V[a:b])

varies in the pencil of divisors on Yω,x∧y generated by Xωx
and Xωy

.

Proof. The first statement follows by Gorenstein liaison, see [Mig98, Remark 5.3.2], since
Yω,x∧y is linked to Xω, which is aCM, see Corollary 3.10, and a linear congruence is aG.

For the second statement note that Λωx
⊂ Λω,x∧y, so

Xωx
= Λωx

∩G(2, Vx) ⊂ Λω,x∧y ∩G = Yω,x∧y.

But dimXωx
= dim Yω,x∧y − 1, so (2) follows. Similarly, (2) implies that Xω[a:b]

is a

Weil divisor in Yω,x∧y for any [a : b] ∈ P
1. Finally, since any [L] ∈ Yω,x∧y meets the

codimension 2 linear subspace P(Vx∧y), it lies in P(
∧2

V[a:b]) for some [a : b] ∈ P1, i.e.
[L] ∈ X[a:b]. Therefore

Yω,x∧y = ∪[a:b]∈P1Xω[a:b]
.

�

Notice that in view of Proposition 7.10, Xω[a:b]
= Yω,x∧y ∩ G(2, V[a:b]), while Xω[a:b]

∩
G(2, V[a′:b′]) has codimension at least 2 in Xω[a:b]

whenever [a′ : b′] 6= [a : b]. Since every
Xω[a:b]

is a divisor in Yω,x∧y, this will allow us to conclude that Yω,x∧y must be singular.

Lemma 7.11. For any general [a′ : b′] 6= [a : b] the intersection Xω[a:b]
∩ Xω[a′:b′]

has

codimension 4 in Yx∧y.

Proof. Without loss of generality we can take Xω[a:b]
= Xωx

and Xω[a′:b′]
= Xωy

, and we

choose coordinates so that x = x0, y = x1. With the usual conventions, we can write

ω = ω01 + γ0 ∧ x0 + γ1 ∧ x1 + α01 ∧ x0 ∧ x1,

L = L01 + w0 ∧ e0 + w1 ∧ e1 + ce0 ∧ e1.

With reference to Theorem 6.8 and the notations used in its proof, we get

ω0 = ω01 + γ1 ∧ x1, β0 = γ0 − α01 ∧ x1,

ω1 = ω01 + γ0 ∧ x0, β1 = γ1 + α01 ∧ x0,

L0 = L01 + w1 ∧ e1, v0 = w0 − ce1,

L1 = L01 + w0 ∧ e0, v1 = w1 + ce0.
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Consider the intersection

Xωx
∩Xωy

= (Xωx
∩G(2, Vx∧y) ∩ (Xωy

∩G(2, Vx∧y) ⊂ Xωxy
.

We apply Theorem 6.8 (3) to Xωx
and Xωy

, and get that Xωx
∩ G(2, Vx∧y) = Xω01 ∩

H0, where H0 is the hyperplane {γ0(w0) = 0} ⊂ P(
∧2 Vx). So Xωx

∩ G(2, Vx∧y) has
codimension two in Xωx

.
Similarly Xωy

∩ G(2, Vx∧y) = Xω01 ∩H1, where H1 is the hyperplane {γ1(w1) = 0} ⊂

P(
∧2

Vy). So Xωy
∩G(2, Vx∧y) has codimension two in Xωy

.
But the hyperplanes H0, H1 are distinct if ω is general, so Xωx

∩Xωy
= Xωxy

∩H0∩H1

has codimension three in Xωx
and hence codimension four in Yx∧y. �

The hyperplanes H0, H1 are equal if, in the expression 3.1 of ω, we have a0,i,j = a1,i,j
for any 1 < i < j. But then ω(e0 − e1) = 0, so ω has rank at most n.

Proposition 7.12. Let ω ∈
∧3

V ∗ be a 3-form satisfying condition (GC4). Let x, y ∈ V ∗

be general linearly independent linear forms, and let Yω,x∧y be the residual congruence to
Xω in G ∩ Λxy

ω . The singular locus of the congruence Yω,x∧y is

Sing(Yω,x∧y) =
⋂

[a:b]∈P1

Xω[a:b]
= {[L] ∈ G(2, Vx∧y) | ωx∧y(L) = ωx(L) = ωy(L) = 0}

= Xω ∩G(2, Vx∧y) = Xωx∧y
∩Hx ∩Hy,

where ωx∧y is the restriction of ω to Π = {x = y = 0}, and Hx and Hy are the hyperplanes
defined—using notation as in Theorem 6.8—by βx(Lx) and βy(Ly), respectively.

In particular the codimension of the singular locus of Yω,x∧y is 4.

Proof. By Bertini-Kleiman [Kl74] applied to Qω∧x\Sing(Qω∧x), Yω,x∧y is smooth outside
Yω,x∧y ∩ Sing(Qω∧x) = Yω,x∧y ∩ Λωx

= Xωx
(Proposition 7.10 (2)).

Since the same is true for any linear form ax + by, Yω,x∧y is smooth outside
∩[a:b]∈P1Xω[a:b]

. But if y ∈ ∩[a:b]∈P1Xω[a:b]
, y cannot be a smooth point on Y . If it were,

the Weil divisors Xω[a:b]
would be Cartier in a neighbourhood of y, so the intersection of

any two of them would have codimension two, contradicting Lemma 7.11.
For the third equality, a computation in coordinates shows that Xω ∩ G(2, Vx∧y) =

Xωx
∩Xωy

. For the fourth we notice that the second equality is equivalent to

Sing(Yω,x∧y) = Xωx
∩Xωy

∩Xωx∧y
;

so we conclude by Theorem 6.8, (3),

Xωx
∩Xωx∧y

= Xωx∧y
∩Hx, Xωy

∩Xωx∧y
= Xωx∧y

∩Hy.

�

Corollary 7.13. Assume ω ∈
∧3

V ∗ satisfies condition (GC4) and let x, y ∈ V ∗ be
general forms. If n ≤ 4, then Yω,x∧y is smooth.

If n ≥ 5, Yω,x∧y is not even factorial in any point y ∈
⋂

[a:b]∈P1 Xω[a:b]
. In particular,

a general congruence linked to Xω in a linear congruence is non-singular in codimension
3, but it is not Gorenstein.

The canonical divisor of Yω,x∧y can be computed.

Proposition 7.14. Let n ≤ 4 and let Y be a general residual congruence to Xω in a
linear congruence. Then

KY
∼= Xωx

− 3HY ,

as Cartier divisors.
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Proof. The union Xω ∪ Y is a linear congruence with canonical sheaf

ωXω∪Y
∼= OXω∪Y (−2).

Y is smooth so, by adjunction and Proposition 7.5,

KY
∼= −2HY −Xω ∩ Y ∼= −2HY − (HY −Xωx

) ∼= −3HY +Xωx
.

�

7.4. Fundamental locus of the residual congruence. Let Y = Yx∧y be a residual
congruence to Xω, defined by some general pencil of hyperplanes

P(V[a:b]) = {ax+ by = 0}, [a : b] ∈ P
1,

of P(V ), with base locus Π = {x = y = 0}. Let us denote by G its fundamental locus.
Our goal here is to describe G. We distinguish two cases according to whether n is even
or odd.

Theorem 7.15. Assume ω satisfies (GC4) and let Y be the residual congruence to Xω,
associated with a general pencil of hyperplanes of P(V ), with base locus Π. Then the
fundamental locus G of Y is

i) a hypersurface of degree m in P(V ) containing Π and Fω, when n = 2m+ 1;
ii) the union of Π and of a subvariety G0 of codimension 3 and degree (2m3 − 3m2 −

5m+ 12)/6 = 2
(

m+1
3

)

−
(

m+1
2

)

+ 2, contained in the degree m hypersurface Fω, when
n = 2m.

The proof occupies the rest of this section. To start with, let us consider the reducible
linear congruence R = Xω ∪ Y and the universal line P(U∗|R) over R. Following the
classical description of degeneracy loci of webs of twisted 2-forms, we write P(U∗|R) as a
reducible Palatini scroll, i. e. degeneracy locus of a morphism (cf. for instance [Ott92,
FF10]):

(7.5) On−1
P(V ) → ΩP(V )(2).

Let F be the cokernel of this map. We have P(F) ∼= P(U∗|R). Also, the map (7.5)
corresponds to the choice of n− 1 independent hyperplanes containing Xω. So it factors
through the map φω : TP(V )(−1) → ΩP(V )(2) defining Fω.

For the remaining part of the proof, we distinguish two cases as in the statement
according to the parity of n.

7.4.1. If n = 2m + 1. Recall the resolution (4.8) of Fω . Since the map in (7.5) factors
through φω, we get an exact commutative diagram:

(7.6) 0

��

0

��

On−1
P(V )

��

On−1
P(V )

��

0 // Im(φω)

��

// ΩP(V )(2) //

��

IFω/P(V )(m) // 0

0 // T //

��

F //

��

IFω/P(V )(m) // 0

0 0

The coherent sheaf T , defined by the diagram, is thus the torsion part of F . Note that the
exact sequence on the bottom line, after projectivisation, accounts for the exact sequence

0 → IXω/R → OR → OXω
→ 0
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extracted from (7.1), once taken the universal lines above R and Xω. Then the funda-
mental locus G is the support of the sheaf T , which is a hypersurface of degree m, by a
straightforward Chern class computation.

To check that G contains Π, we observe that the cokernel of the induced map On−1
P(V ) →

TP(V )(−1) is clearly IΠ/P(V )(1). So the leftmost part of the resolution (4.8), combined
with the left column of the above diagram, yields another commutative exact diagram:

0

��

0

��

On−1
P(V )

��

On−1
P(V )

��

0 // OP(V )(1−m) // TP(V )(−1) //

��

Im(φω)

��

// 0

0 // OP(V )(1−m) // IΠ/P(V )(1) //

��

T //

��

0

0 0

The bottom row shows that Π lies in the support of T , i.e. G contains Π.
To show that G contains Fω , we look back at Diagram (7.6). First note that, dualising

the middle column, we easily get ExtiX(F ,OX) = 0 for all i > 1. On the other hand, T is
supported on the hypersurface G of degree m. Therefore,

Ext1X(T ,OX) ≃ HomG(T ,OG(m))

is also supported on G. Also, since Fω is a Gorenstein subvariety of codimension 3 in
P(V ) with ωFω

≃ OFω
(−3) we have that

Ext2X(IFω/P(V )(m),OX) ≃ OFω
(m− 1).

Therefore, taking duals of the bottom row of Diagram (7.6) we end up with a surjection:

HomG(T ,OG(m)) ։ OFω
(m− 1).

In particular, Fω is contained in the support of HomG(T ,OG(m)), i.e. in G.

7.4.2. If n = 2m. We consider the resolution (7.2) of IY/G and twist withOG(1). Recalling
the setup of §4.5, we lift this resolution to the universal lines over R and Y by pulling
back via λ. Finally, we take direct image in P(V ) via µ. The universal line over Y is the
projectivisation of µ∗(λ

∗(OY (1)), cf. [Pes15].
Recall that µ∗(λ

∗(OG(1))) ∼= ΩP(V )(2) and that µ∗(λ
∗(OG)) ∼= OP(V ). The remaining

terms of the resolution of µ∗(λ
∗(OYω

(1)) are computed via Bott’s theorem, which provides
a long exact sequence:

(7.7) 0 → OP(V )(1−m) → On
P(V )

g
−→ ΩP(V )(2) → IG/P(V )(m) → 0,

where µ∗(λ
∗(OY (1)) ∼= IG/P(V )(m).

The middle map g in the above sequence is just the result of applying µ∗ ◦ λ∗ to the
map On

G
→ On

G
(1) expressing the generators of IY/G(1). By construction of the resolution

of (7.2), the map (7.5) then fits into the long exact sequence above to give the exact
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commutative diagram

0

��

0

��

On−1
P(V )

��

On−1
P(V )

��

0 // Im(g)

��

// ΩP(V )(2) //

��

IG/P(V )(m) // 0

0 // T //

��

F //

��

IG/P(V )(m) // 0

0 0

Again, T is the torsion part of F , but this time its support is just Fω . Actually from the
leftmost part of (7.7) we can see that T ∼= OFω

. Indeed, we have the diagram

0

��

0

��

On−1
P(V )

��

On−1
P(V )

��

0 // OP(V )(1−m) // On
P(V )

//

��

Im(φω)

��

// 0

0 // OP(V )(1−m) // OP(V )
//

��

T //

��

0

0 0

and the form of degree m− 1 appearing in the bottom row must define Fω . Furthermore,
recalling that the map On−1

P(V ) → ΩP(V )(2) factors through φω, i. e. through TP(V )(−1), we
get an exact sequence

0 → IΠ/P(V )(1) → F → Cω → 0,

where IΠ/P(V )(1) again appears as cokernel of On−1
P(V ) → TP(V )(−1).

Also, the torsion part OFω
of F goes to zero under composition to IG/P(V )(m), so we

finally get an exact commutative diagram:

0

��

0

��

IΠ/P(V )(1)

��

IΠ/P(V )(1)

��

0 // OFω
// F //

��

IG/P(V )(m)

��

// 0

0 // OFω
// Cω //

��

IḠ/Fω
(m) //

��

0

0 0

Here Ḡ is defined by the bottom row of the diagram as the zero locus of a global section
of Cω in Fω . The subvariety Ḡ of Fω has thus codimension 2 in Fω (and thus codimension
3 in P(V )) by a standard argument relying on the vanishing H0(Fω , Cω(−1)) = 0 and on
the fact that Pic(Fω) is generated by OFω

(1). A direct Chern class computation shows
that deg(Ḡ) = (m+ 1)(2m2 − 5m+ 6)/6.

Our goal is to describe the component G0, the closure of G \ Π. To this end, let us
use the rightmost column of the diagram to describe Ḡ in more detail. The inclusion
IΠ/P(V )(1) ⊂ IΠ/P(V )(m) factors through IG/P(V )(m) ⊂ IΠ/P(V )(m).
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On the other hand, if we write

(7.8) G1 = Π ∩ Fω

and note that G1 is a codimension 2 subvariety of Fω of degree m − 1, then there is an
obvious exact sequence:

0 → IΠ/P(V )(1) → IΠ/P(V )(m) → IG1/Fω
(m) → 0.

We are now in position to compute the degree of G0. Indeed, we have a last exact
commutative diagram:

0

��

0

��

0

��

0 // IΠ/P(V )(1) // IG/P(V )(m)

��

// IḠ/Fω
(m) //

��

0

0 // IΠ/P(V )(1) // IΠ/P(V )(m) //

��

IG1/Fω
(m) //

��

0

IΠ/G(m)

��

∼=
// IG1/G(m)

��

0 0

Since Π and G0 are irreducible components of G, the ideal IΠ/G is supported at G0 and
is torsion-free of rank 1 overG0. The isomorphism in the lower-right corner induced by the
diagram expresses Ḡ as union of two irreducible components G0 and G1, of codimension
2 in Fω . So the degree of G0 is computed by deg(G0) = deg(Ḡ) − deg(G1). Plugging in
the formula for deg(Ḡ) and deg(G1) = m− 1, we get the desired expression of deg(G0).

�

From this proof we in particular get

Corollary 7.16. The component G0 of the fundamental locus of Y is obtained as residual
in the zero-locus Ḡ of a global section of Cω over Fω with respect to G1 = Π ∩ Fω.

Finally, we can give a geometric description of the congruence Y as multisecant lines
to its fundamental locus, when n = 2m, as we did in Theorem 4.7.

Theorem 7.17. Let dim(V ) = n + 1 = 2m + 1 and assume ω ∈
∧3 V ∗ satisfies (GC4)

and let Y be the residual congruence to Xω associated with a general pencil of hyperplanes
of P(V ), with base locus Π. Then Y is the closure of the family of (n−2

2 )-secant lines of
G0 that also meet Π, where G0 ∪ Π is the fundamental locus of Y .

Proof. By Proposition 7.10, (3),

Y =
⋃

[a:b]∈P1

Xω[a:b]
,

where Xω[a:b]
⊂ G(2, V[a:b]) is defined by ω[a:b](L) = 0. But Xω[a:b]

is a congruence defined
by a 3-form on the n-dimensional vector space V[a:b] where n = 2m is even, so Theorem

4.7 applies. We deduce that the lines of Xω[a:b]
are (n−2

2 )-secants to its fundamental locus:
call it F[a:b].

Moreover, by Proposition 7.5, the lines of Y are contained in the Schubert hyperplane
of the lines meeting Π. Since Π is a hyperplane in P(V[a:b]), all the lines of Xω[a:b]

meet Π

and any line that meets Π is contained in a P(V[a:b]). We infer that




⋃

[a:b]∈P1

F[a:b]



 \Π = G0 \Π,
⋃

[a:b]∈P1

F[a:b] ⊂ G0

and that any (n−2
2 )-secant line to G0 that meets Π belongs to one of the Xω[a:b]

and is a
line of Y . �
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Remark 7.18. In the proof of the preceding theorem, we have proven that—outside Π—G0

coincides with
⋃

[a:b]∈P1 F[a:b], where, as in the proof, F[a:b] denotes the fundamental locus

of the congruence Xω[a:b]
; in other words,

(7.9) G0 =
⋃

[a:b]∈P1

F[a:b].

We can also analyse what happens to G0 in Π:

Proposition 7.19. With notations as above, if n = 2m, then

G0 ∩ Π = G1 ∩ Fωx∧y
,

where Fωx∧y
is the fundamental locus of the congruence Xωx∧y

.
In particular, G0∩Π is an improper intersection, it has codimension 2 in Π and degree

(m − 1)(m − 2), and is the complete intersection of G1 = Fω ∩ Π of degree m − 1 and
Fωx∧y

of degree m− 2.

Proof. Let P ∈ G1 ∩ Fωx∧y
; as usual, up to a change of coordinates, we can suppose that

P = [1, 0, . . . , 0] = [e0], we fix a basis (e0, . . . , en) and dual basis (x0, . . . , xn) such that
x = xn−1 and y = xn, i.e. Π

⊥ = 〈x0, . . . , xn−2〉 and we can write uniquely

ω = ωx∧y + βx ∧ x+ βy ∧ y + z ∧ x ∧ y,

where ωx∧y ∈
∧3〈x0, . . . , xn−2〉, βx, βy ∈

∧2〈x0, . . . , xn−2〉, and z ∈ 〈x0, . . . , xn−2〉.
Since—see Equation (7.8)—P ∈ G1 = F ∩Π, we have that the skew-symmetric matrix

Mω at the point P , defined as in (4.5),

Mω(P ) =
(

(−1)i+j−1(a0,i,j)
)

i=0,...,n
j=0,...,n

,

has rank (at most) n− 2. The matrix Mωx∧y
at the point P is

Mωx∧y
(P ) =

(

(−1)i+j−1(a0,i,j)
)

i=0,...,n−2
j=0,...,n−2

,

i.e. it is the submatrix of Mω(P ) obtained removing the last 2 rows and 2 columns, and,
since P ∈ Fωx∧y

, it has rank (at most) n− 4.
In other words, P ∈ G1∩Fωx∧y

if and only if rankMω(P ) ≤ n−2 and rankMωx∧y
(P ) ≤

n− 4, with rankMω(P ) = rankMωx∧y
(P ) + 2 = n− 2 (if P is general).

It is obvious, from Proposition 4.4, that degG1 ∩ Fωx∧y
= (m − 1)(m − 2) and that

G1 ∩ Fωx∧y
has codimension 2 in Π.

On the other hand, if P ∈ G0 ∩ Π, by Proposition 7.10, (3), it belongs to infinitely
many lines of the congruence Xω[a:b]

for some [a : b] ∈ P1. Up to a change of coordinates,

we can suppose that [a : b] = [1 : 0] and P = [1, 0, . . . , 0] = [e0], so by Equation (7.9) and
Theorem 7.17

Mωx
(P ) =

(

(−1)i+j−1(a0,i,j)
)

i=0,...,n−1
j=0,...,n−1

,

i.e. the submatrix of Mω(P ) without the last row and column, has rank (at most) n− 4.
If follows that Mω(P ) has rank at most n− 2 and that Mωx∧y

(P ) has at most the rank of
Mωx

(P ), which is at most n−4 therefore P ∈ G1∩Fωx∧y
. Therefore, G0∩Π ⊂ G1∩Fωx∧y

,
and they have the same dimension.

To finish the proof, it is sufficient to see that degG0 ∩ Π = degG0 − degF[a:b] =

2
(

m+1
3

)

−
(

m+1
2

)

+2− (14
(

2m−2
3

)

+1) = (m− 1)(m− 2), by Theorem 7.15 and Proposition
4.4. �

7.5. Examples. Let ω be a general 3-form, and Y a general residual congruence to Xω.

7.5.1. n=3. Y is the congruence of lines of a 2-plane G, the plane spanned by the point
Fω and the line Π. The linear congruence Xω ∪ Y is obtained intersecting G with a P3

tangent to G along a line, which is Xω ∩ Y .
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7.5.2. n=4. We recall (see Example 4.10) that Xω is a linear complex of lines in a hyper-
plane Fω ⊂ P4. A general Y is obtained by choosing a general 2-plane Π ⊂ P4, intersecting
Fω is a line G1. Then G0 is a line skew to G1, and Y , which is smooth of degree 3, is the
family of lines meeting Π and G0, i.e. Y = P

2 × P
1.

Xω ∩ Y is a Schubert hyperplane section of a linear complex of lines in P3, so it is the
linear congruence of the lines meeting two skew lines: G0 and G1 = Π ∩ Fω.

7.5.3. n=5. As explained in Example 4.11, Xω is the congruence of the lines meeting two
skew planes α, β. In this case Π is a 3-space contained in P(V ). If we identify P(V )

with Pω ⊂ P(
∧2

V ∗), it is generated by its intersection with Sing(G∗) ≃ G, which is the
union of two 2-planes, each one representing the incidence condition to a plane in P5.
The choice of Π identifies a point A ∈ α and similarly B ∈ β, and the line ℓ joining A
and B. The residual congruence Y is a fourfold of degree 8 in P9, of multidegree (0, 2, 1),
representing a family of lines contained in a quadric G. G contains the two planes α, β,
Π and all the fundamental loci F[a:b] of the pencil of congruences Xω[a:b]

, which are also
3-spaces. Therefore G is a quadric cone of rank 4 with vertex a line. The spaces F[a:b]

belong to one family, and Π belongs to the other family. The lines of Y form a subfamily
of dimension 4 of the lines contained in one of the two families of 3-spaces contained in
G. The singular locus of Y is the point representing the line ℓ, which is also the vertex
of G. The intersection Xω ∩ Y represents the lines meeting α, β and ℓ, so it is a tangent
hyperplane section of P2 × P2, and it results to be the blow up of P3 at the two points
A,B. It is embedded in P7 with the linear system of quadrics.

7.5.4. n=6. Xω is the G2-variety, representing a family of lines in a smooth quadric Fω .
Fixed Π, Y is the congruence of lines that are secant to a rational normal scroll G0 of
degree 4 and dimension 3 in P

6 and intersect the 4-space Π. G0 is smooth because it
contains pairs of skew planes, the fundamental loci F[a:b] of the congruences Xω[a:b]

. The
singular locus of Y is the intersection Xωx∧y

∩ H0 ∩ H1, where H0, H1 are hyperplanes.

But Xωx∧y
is a complex of lines in a P3 ⊂ Π, i.e. a 3-dimensional quadric. We deduce

that Sing Y is a conic, the lines of a quadric surface contained in Π. Now consider
G0 ∩Π = G0 ∩Π∩Fω = G0 ∩G1. To understand it, consider first G0 ∩P(V[a:b]): this is a
quartic surface containing the two planes whose union is F[a:b], hence (G0∩P(V[a:b])\F[a:b]

is a quadric contained in Π. Moreover G0∩Π = G0∩P(Vx)∩P(Vy) ⊂ Π∩Fω = G1. Since
the missing quadric in G0 ∩ P(V[a:b]) is G1 ∩ Fωx∧y

, it is the union of the lines of Sing Y .
Thus G0 ∩ Π is a quadric surface (cf. Proposition 7.19).

7.5.5. n=7. The lines of Y are contained in a cubic hypersurface, containing Π and a
pencil of projections of P2 × P2. The singular locus of Y is (P2 × P2) ∩ Hx ∩ Hy, a del
Pezzo surface of degree 6 in P

6.

7.5.6. n=8. For n = 8 Y is formed by the trisecant lines of a 5-dimensional variety G0 of
degree 12 that meets Π = P

6 in a 4-fold of degree 6. This 4-fold is a complete intersection
of the cubic hypersurface Fω ∩ Π and the quadric hypersurface Fωx∧y

⊂ Π.

7.5.7. n=9. Y represents a family of dimension 8 of lines in a quartic hypersurface con-
taining a P7 and a pencil of Peskine varieties. Sing Y is formed by the trisecant lines to
a del Pezzo surface of degree 6 in P6.

8. The tables

In tables 1 and 2 we collect some geometrical properties of the congruences we have
studied. The notations are as usual:

• ω is a general 3-form in n+ 1 variables;
• Xω ⊂ G is the congruence of lines where ω vanishes;
• Fω is the fundamental locus of Xω;
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• Y is the residual congruence of Xω in a general linear section of G of codimension
n− 1;

• G is the fundamental locus of Y .

In the last column of table 1 we write the dimension of
∧3 V/GL(n+ 1), the number

of moduli of our construction.

n Xω multdegXω degXω Fω moduli

3 P2 (1, 0) 1 {∗} 0

4 G(1, 3) ∩ P4 (0, 1) 2 P3 0

5 P
2 × P

2 (1, 1, 1) 6 P
2 ∪ P

2 0

6 G2 (0, 2, 2) 18 smooth quadric of P6 0

7 trisecant lines of
Fω

(1, 2, 4, 2) 57 general projection of
P2 × P2 of degree 6

0

8 7-dimensional fam-
ily of lines in Fω

(0, 3, 6, 6) 186 Coble cubic hyper-
surface in P8 singu-
lar along an Abelian
surface

3

9 four-secant lines of
Fω

(1, 3, 9, 12, 6) 622 Peskine variety of de-
gree 15

20

Table 1.
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