Note on level r consensus

Nikolay L. Poliakov

Financial University, Moscow, Russian Federation, niknikols00gmail.com

Abstract. We show that the hierarchy of level r consensus partially collapses. In particular, any profile $\pi \in \mathcal{P}$ that exhibits consensus of level (K-1)! around \succ_0 in fact exhibits consensus of level 1 around \succ_0 .

Keywords: social choice theory, level r consensus, scoring rules, Mahonian numbers

The concept of level r consensus was introduced in [1] in the context of the metric approach in social choice theory. We will mainly use the notation and definitions of [1]. Let $A = \{1, 2, ..., K\}$ be a set of K > 2 alternatives and let $N = \{1, 2, ..., n\}$ be a set of individuals. Each linear order (i.e. complete, transitive and antisymmetric binary relation) on the set A is called a *preference relation*. The set of all preference relations is denoted by \mathcal{P} . The *inversion metric* is the function $d: \mathcal{P} \times \mathcal{P} \to \mathbb{R}$ defined by

$$d(\succ,\succ') = \frac{|(\succ \setminus \succ') \cup (\succ' \setminus \succ)|}{2}$$

(since all preference relations in \mathcal{P} have the same cardinality we have also: $d(\succ, \succ') = |\succ \setminus \succ'| = |\succ' \setminus \succ |$).

Let \succ_0 be a preference relation in \mathcal{P} . A metric on \mathcal{P} allows to determine which one of any two preference relations is closer to a third one. This comparison can be extended to equal-sized sets of preferences.

Definition 1 Let C and C' be two disjoint nonempty subsets of \mathcal{P} with the same cardinality, and let $\succ_0 \in \mathcal{P}$ be a preference relation on A. We say that C is at least as close to \succ_0 as C', denoted by $C \geq_{\succ_0} C'$, if there is a one-to-one function $\phi: C \to C'$ such that for all $\succ \in C$, $d(\succ, \succ_0) \leq d(\phi(\succ), \succ_0)$. We also say that C is closer than C' to \succ_0 , denoted by $C \gg_{\succ_0} C'$, if there is a one to one function $\phi: C \to C'$ such that for all $\succ \in C$, $d(\succ, \succ_0) \leq d(\phi(\succ), \succ_0)$, with strict inequality for at least one $\succ \in C$.

Using the concept of closeness the authors define the correspondence between preference profiles $\pi \in \mathcal{P}^n$ and preference relations $\succ \in \mathcal{P}$ depending on a natural parameter r called "preference profile π exhibits consensus of level r around \succ ". For any $\pi = (\succ_1, \succ_2, \ldots, \succ_n) \in \mathcal{P}^n, \ \succ \in \mathcal{P}$, and $C \subseteq \mathcal{P}$

 $\mu_{\pi}(\succ) = |\{i \in \mathbb{N} : \succ_i = \succ\}|, \ \mu_{\pi}(C) = |\{i \in \mathbb{N} : \succ_i \in C\}|$

(obviously, $\mu_{\pi}(C) = \sum_{\succ \in C} \mu_{\pi}(\succ)$).

Definition 2 Let $r \in \{1, 2, ..., \frac{K!}{2}\}$, and let $\succ_0 \in \mathcal{P}$. A preference profile $\pi \in \mathcal{P}^n$ exhibits consensus of level r around \succ_0 if

- 1. for all disjoint subsets C, C' of \mathcal{P} with cardinality $r, C \geq_{\succ_0} C' \to \mu_{\pi}(C) \geq \mu_{\pi}(C')$
- 2. there are disjoint subsets C, C' of \mathcal{P} with cardinality r, such that $C >_{\succ_0} C'$ and $\mu_{\pi}(C) > \mu_{\pi}(C')$.

Proposition 1 of [1] states that the set of profiles that exhibit consensus of level r + 1 around \succ_0 extends the set of profiles that exhibit consensus of level r around \succ_0 . Thus, each preference relation \succ_0 determines the hierarchy of preference profiles.

Let a preference profile π exhibit consensus of level r around \succ_0 . We call \succ_0 a *level* r consensus relation of π and simply consensus relation of π if $r = \frac{K!}{2}$ (the level $\frac{K!}{2}$ is the maximum level for which this concept is nontrivial).

A level r consensus relation \succ_0 of profile π may be considered as one of probable social binary relations on the profile π . Theorem 1 of [1] states that if n is odd, then each profile π have at most one consensus relation \succ_0 and the consensus relation \succ_0 coincides with the relation M_{π} assigned by the majority rule to π . This result gives an interesting sufficient condition for transitivity of M_{π} . Furthermore, regardless of parity of n, the \succ_0 -largest element a_1 is a *Condorcet winner* on π .

For small values of r, level r consensus relations \succ_0 of profile π have some interesting additional properties. Namely, the largest element a_1 with respect \succ_0 is selected by any scoring rule. A *scoring rule* is characterized by a nonincreasing sequence $S = (S_1, S_2, \ldots, S_K)$ of non-negative real numbers for which $S_1 > S_K$. For $k = 1, 2, \ldots, K$, each individual with the preference relation \succ assigns S_k points to the k-th alternative in the linear order \succ . The scoring rule associated with S is the function $V_S : \mathcal{P}^n \to 2^A$ whose value at any profile $\pi = \{\succ_1, \succ_2, \ldots, \succ_n\}$ is the set $V_S(\pi)$ of alternatives a with the maximum total score (i.e. with the maximum sum $\sum_{1 \le i \le K} S_{k_i}$ where k_i is the rank of a in \succ_i). Theorem 2 in [1] claims that if a preference profile π exhibits consensus of level $r \le (K-1)!$ around \succ_0 , then the \succ_0 -largest element a_1 belongs to $V_S(\pi)$ for all scoring rules V_S .

However, the authors did not notice some combinatorial properties of the concepts introduced. We show that the hierarchy of preference profile partially collapses. In particular, any profile $\pi \in \mathcal{P}$ that exhibits consensus of level (K-1)! around \succ_0 in fact exhibits consensus of level 1 around \succ_0 . Thus, it would be desirable to slightly adjust the assumption of Theorem 2 of [1].

Theorem 1 For any natural number K > 2 there is a natural number $c \leq \frac{K(K-1)}{4}$ such that for any natural numbers $n \geq 1$ and $r \in \{1, 2, \ldots, \frac{K!}{2} - c\}$, any preference profile $\pi \in \mathcal{P}^n$, and any linear order $\succ_0 \in \mathcal{P}$ the following conditions are equivalent

- 1. π exhibits consensus of level r around \succ_0
- 2. π exhibits consensus of level 1 around \succ_0 .

Proof. The implication $2 \to 1$ follows from Proposition 1 of [1]. We will prove the reverse implication. Let \succ_0 be a linear order in \mathcal{P} and let

$$\mathcal{P}_k(\succ_0) = \{\succ \in \mathcal{P} : d(\succ,\succ_0) = k\}.$$

for any natural number k. Obviously, $|\mathcal{P}_k(\succ_0)|$ coincides with the number of permutations of $\{1, 2, \ldots, K\}$ with k inversions, i.e. with the Mahonian number T(K, k) (sequence A008302 in OEIS, see [2]). The set $\mathcal{P}_{\frac{K(K-1)}{2}}$ contains exactly one element. We denote this element by $\overline{\succ_0}$: $\mathcal{P}_{\frac{K(K-1)}{2}} = \{\overline{\succ_0}\}$.

Let c' be the number of k for which T(K, k) is odd:

$$c' = |\{k \in \mathbb{N} : T(K, k) \equiv 1 \pmod{2}\}|.$$

So, $c' \leq \frac{K(K-1)}{2}$ because $\frac{K(K-1)}{2}$ is the maximum distance between the linear orders in \mathcal{P} . Moreover, c' is even because

$$\sum_{0 \le k \le \frac{K(K-1)}{2}} T(K,k) = K! \equiv 0 \pmod{2}.$$

Let $c = \frac{c'}{2}$. Then the inequality $c \le \frac{K(K-1)}{4}$ holds.

Definition 3 For any natural number m a pair $(C_1, C_2) \in 2^{\mathcal{P}} \times 2^{\mathcal{P}}$ is called *m*-balanced (around \succ_0) iff

1. $C_1 \cap C_2 = \emptyset$, 2. $|C_1| = |C_2| = m$, 3. $|C_1 \cap \mathcal{P}_k(\succ_0)| = |C_2 \cap \mathcal{P}_k(\succ_0)|$ for any $k = 0, 1, \dots, \frac{K(K-1)}{2}$.

Lemma 1 Let $\succ_1, \succ_2 \in \mathcal{P} \setminus \{\succ_0, \overline{\succ}_0\}$ and $\succ_1 \neq \succ_2$. Then there is a $(\frac{K!}{2} - c)$ -balanced pair (C_1, C_2) for which $\succ_1 \in C_1$ and $\succ_2 \in C_2$.

Proof. Note that $T(K,k) \geq 2$ for any $k \in \{1, 2, \ldots, \frac{K(K-1)}{2} - 1\}$ (this follows, for example, from a recurrence formula for T(K,k), see [2]). Using this fact, for each $k \in \{k \in \mathbb{N} : T(K,k) \equiv 1 \pmod{2}\}$ choose a preference relation $\succ_{(k)} \in \mathcal{P}_k(\succ_0) \setminus \{\succ_1, \succ_2\}$. Let

$$\mathcal{P}'_{k}(\succ_{0}) = \begin{cases} \mathcal{P}_{k}(\succ_{0}) & \text{if } T(K,k) \equiv 0, \\ \mathcal{P}_{k}(\succ_{0}) \setminus \{\succ_{(k)}\} & \text{if } T(K,k) \equiv 1 \end{cases} \pmod{2}.$$

For each $k \in \{1, \ldots, \frac{K(K-1)}{2} - 1\}$ choose a set $C_{(k)}$ with properties

1. $C_{(k)} \subseteq \mathcal{P}'_{k}(\succ_{0}),$ 2. $|C_{(k)}| = \frac{|\mathcal{P}'_{k}(\succ_{0})|}{2},$ 3. $d(\succ_{1},\succ_{0}) = k \to \succ_{1} \in C_{(k)},$ 4. $\succ_{2} \notin C_{(k)}.$ 4N. L. Poliakov

Let

$$C_{1} = \bigcup_{1 \le k \le \frac{K(K-1)}{2} - 1} C_{(k)} \text{ and } C_{2} = \bigcup_{1 \le k \le \frac{K(K-1)}{2} - 1} \mathcal{P}'_{k}(\succ_{0}) \setminus C_{(k)}$$

Obviously, items 1–3 of Definition 3 hold. Lemma 2 is proved.

Lemma 2 For any natural number m and m-balanced pair (C_1, C_2) there is a one-to-one function $\phi: C_1 \to C_2$ satisfying

$$d(\succ,\succ_0) = d(\phi(\succ),\succ_0)$$

for all $\succ \in C_1$.

Proof. By item 3 of Definition 3 for any $k = 0, 1, \ldots, \frac{K(K-1)}{2}$ there is a one-to-one mappings $\phi_k : C_1 \cap \mathcal{P}_k(\succ_0) \to C_2 \cap \mathcal{P}_k(\succ_0)$ (maybe empty if $C_1 \cap \mathcal{P}_k(\succ_0) = \emptyset$). Obviously, we can put $\phi = \bigcup_{0 \le i \le \frac{K(K-1)}{2}} \phi_k$. Lemma 3 is proved.

Corollary 1 For any natural number m and m-balanced pair (C_1, C_2)

 $C_1 \geq_{\succ_0} C_2$ and $C_2 \geq_{\succ_0} C_1$.

Proof. Let ϕ be a function from Lemma 2. Then

$$d(\succ,\succ_0) = d(\phi^{-1}(\succ),\succ_0)$$

for all $\succ \in C_2$, and it remains to recall Definition 1.

Let $\pi \in \mathcal{P}^n$ and let π exhibit consensus of level $r \in \{1, 2, \dots, \frac{K!}{2} - c\}$ around \succ_0 . By Proposition 1 of [1] π exhibits consensus of level $\frac{K!}{2} - c$ around \succ_0 . Our next goal is to prove that item 1 of Definition 2 holds for the profile π and r = 1.

Lemma 3 For any different $\succ_1, \succ_2 \in \mathcal{P}$

$$d(\succ_1,\succ_0) \le d(\succ_2,\succ_0) \to \mu_{\pi}(\succ_1) \ge \mu_{\pi}(\succ_2).$$

Proof. Let $\succ_1, \succ_2 \in \mathcal{P}, \succ_1 \neq \succ_2$ and $d(\succ_1, \succ_0) \leq d(\succ_2, \succ_0)$. First, let $\{\succ_1, \succ_2\} \cap \{\succ_0, \overline{\succ}_0\} = \emptyset$. Consider a $(\frac{K!}{2} - c)$ -balanced pair (C_1, C_2) for which $\succ_2 \in C_1$ and $\succ_1 \in C_2$, and a on-to-one function $\phi : C_1 \to C_2$ satisfying

$$d(\succ,\succ_0) = d(\phi(\succ),\succ_0)$$

for all $\succ \in C_1$. By Definition 2 and Corollary 3 we have

$$\mu_{\pi}(C_1) = \mu_{\pi}(C_2). \tag{1}$$

Let $C'_1 = (C_1 \setminus \{\succ_2\}) \cup \{\succ_1\}$ and $C'_2 = (C_2 \setminus \{\succ_1\}) \cup \{\succ_2\}$. Consider the function $\phi' : C'_1 \to C'_2$ defined by

$$\phi'(\succ) = \begin{cases} \succ_2 & \text{if } \succ = \succ_1, \\ \phi(\succ_2) & \text{if } \succ = \phi^{-1}(\succ_1) \neq \succ_2, \\ \phi(\succ) & \text{otherwise.} \end{cases}$$

5

For all $\succ \in C'_1$ we have $d(\succ, \succ_0) \leq d(\phi'(\succ), \succ_0)$, so $C'_1 \geq_{\succ_0} C'_2$ by Definition 1. Hence, by Definition 2

$$\mu_{\pi}(C_1') \ge \mu_{\pi}(C_2'). \tag{2}$$

Since $(\forall C \subseteq \mathcal{P}) \mu_{\pi}(C) = \sum_{\succ \in C} \mu_{\pi}(\succ)$, we have

$$\mu_{\pi}(C_1') = \mu_{\pi}(C_1) - \mu_{\pi}(\succ_2) + \mu_{\pi}(\succ_1) \text{ and } \mu_{\pi}(C_2') = \mu_{\pi}(C_2) - \mu_{\pi}(\succ_1) + \mu_{\pi}(\succ_2).$$
(3)

Then by (1), (2) and (3)

$$\mu_{\pi}(\succ_1) - \mu_{\pi}(\succ_2) \ge \mu_{\pi}(\succ_2) - \mu_{\pi}(\succ_1),$$

and, finally,

$$\mu_{\pi}(\succ_1) \ge \mu_{\pi}(\succ_2).$$

For further discussion, note that this implies

$$d(\succ_1,\succ_0) = d(\succ_2,\succ_0) \to \mu_\pi(\succ_1) = \mu_\pi(\succ_2).$$
(4)

for all different $\succ_1, \succ_2 \in \mathcal{P}$.

Consider the remaining cases.

Let $\succ_1 = \succ_0$ and $\succ_2 \neq \overleftarrow{\succ}_0$. Then denote $C_1'' = (C_1 \setminus \{\succ_2\}) \cup \{\succ_0\}$ and $C_2'' = (C_1 \setminus \{\phi(\succ_2)\}) \cup \{\succ_2\}$. Consider the function $\phi'' : C_1'' \to C_2$ defined by

$$\phi''(\succ) = \begin{cases} \succ_2 & \text{if } \succ = \succ_0, \\ \phi(\succ) & \text{otherwise.} \end{cases}$$

For all $\succ \in C_1''$ we have $d(\succ, \succ_0) \leq d(\phi''(\succ), \succ_0)$ and, further, $C_1'' \geq_{\succ_0} C_2''$. Reasoning as before we have

$$\mu_{\pi}(\succ_0) - \mu_{\pi}(\succ_2) \ge \mu_{\pi}(\succ_2) - \mu_{\pi}(\phi(\succ_2)).$$

Since $d(\succ_2, \succ_0) = d(\phi(\succ_2), \succ_0)$, we have $\mu_{\pi}(\succ_2) = \mu_{\pi}(\phi(\succ_2))$ by (4). Finally,

$$\mu_{\pi}(\succ_0) \ge \mu_{\pi}(\succ_2)$$

In the case $\succ_2 = \overline{\succ}_0$ and $\succ_1 \neq \succ_0$, the arguments are similar.

In the latter case $\succ_1 = \succ_0$ and $\succ_2 = \overline{\succ}_0$. We can choose a preference relation $\succ^* \in \mathcal{P} \setminus \{\succ_0, \overline{\succ}_0\}$. According to the above, we have

$$\mu_{\pi}(\succ_1) \ge \mu_{\pi}(\succ^*) \ge \mu_{\pi}(\succ_2).$$

Lemma 3 is proved.

To prove the theorem it remains to show that item 2 of Definition 2 holds for the profile π and r = 1. Assume $\mu_{\pi}(\overline{\succ}_0) = \emptyset$. Then, for every preference relation \succ of profile π we have

$$d(\succ,\succ_0) > d(\overleftarrow{\succ}_0,\succ_0)$$
 and $\mu_{\pi}(\succ) > \mu_{\pi}(\overleftarrow{\succ}_0)$.

6 N. L. Poliakov

In the opposite case, assume that item 2 of Definition 2 is not hold for the profile π and r = 1. Then by Lemma 3 the profile π contains the same number of all linear orders in \mathcal{P} . Thus, π does not exhibit consensus of any level, a contradiction.

Theorem 1 is proved.

Corollary 2 Let profile π exhibit consensus of level (K-1)! around \succ_0 . Then π exhibits consensus of level 1 around \succ_0 .

Proof. Let $K \ge 4$. Then it suffices to prove the inequality

$$(K-1)! \le \frac{K!}{2} - \frac{K(K-1)}{4}.$$

This is easily by induction. For K = 3 we can use the sufficiency of inequality

$$(K-1)! \le \frac{K!}{2} - \frac{|\{k: T(K,k) = 1 \pmod{2}\}|}{2}$$

(for K = 3 we have $|\{k : T(3, k) = 1 \pmod{2}\}| = 2$).

References

- 1. Mahajne M., Nitzan S., Volij O. Levelr consensus and stable social choice // Social Choice and Welfare (2015) 45:805–817
- 2. https://oeis.org/A008302.