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Abstract

Counting the number of permutations of a given total displacement is equivalent to counting
weighted Motzkin paths of a given area (Guay-Paquet and Petersen [10]). The former combi-
natorial problem is still open. In this work we show that this connection allows to construct
efficient algorithms for counting and for sampling such permutations. These algorithms provide
a tool to better understand the original combinatorial problem. A by-product of our approach
is a different way of counting based on certain “building sequences” for Motzkin paths, which
may be of independent interest.

1 Introduction

Consider the set Sn of all permutations over n elements {1, 2, . . . , n}. Diaconis and Graham [5]
studied the disarray statistic of permutations, also called total displacement by Knuth [13, Problem
5.1.1.28], defined as follows. For any permutation π define its distance to the identity permutation
as the sum of the displacements of all elements:

D(π) :=

n∑
i=1

|i− π(i)| = 2
∑
π(i)>i

(π(i)− i).

Note that this distance is always even. The following natural question is still unresolved:

How many permutations at a given distance 2d from the identity permutation are there?

That is, one would like to know the following total displacement number:

D(n, d) := |{π ∈ Sn | D(π) = 2d}|,

that is the number of permutations of total displacement equal to 2d. So far, a closed formula for
arbitrary n is only known for fixed d up to seven (d ≤ 7) [10]. Entry A062869 [7] of the OEIS
reports values of D(n, d) for small n and d (n ≤ 30).
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Figure 1: A permutation and its Motzkin path of width 10 and area 12.

Guay-Paquet and Petersen [10] made recently significant progress in this question by showing
that these permutations are in correspondence to Motzkin paths whose area is exactly the distance
d under consideration. Their result shows that, for any Motzkin path (see below) of area d, one
can easily calculate the number of permutations that correspond to this specific path. Therefore
the problem above translates into the problem of counting weighted Motzkin paths of a given area.

A Motzkin path consists of a sequence of U (Up-right), H (Horizontal-right), and D (Down-
right) moves over the two-dimensional lattice starting at coordinate (0, 0) and such that the path
never goes below the y = 0 axis and ends on the y = 0 axis (see Figure 1 (right) for an example).
For any such path, one can consider its width and its area defined as the number of moves and the
area of the region between the y = 0 axis and the path. The permutations over n elements with
total displacement 2d map into Motzkin paths of width n and area A = d.

For instance, the permutation in Figure 1 is mapped into a Motzkin path according to the
following rule. The first element π(1) = 5 is mapped into a U because the element at position
1 goes to a higher position (right) and also the number coming into position 1 is higher than
1: π(1) > 1 < π−1(1). The fourth element is mapped into D because the opposite happens:
π(4) = 1 < 4 > 3 = π−1(4). Finally, elements 3, 5, 7, 10 are mapped into H because neither of the
previous cases apply.

Let hi denote the maximum height of the path during move i (for U : after the move, for D:
before the move, and anytime for H). Then the number ω(mz ) of permutations that map to a
certain Motzkin path mz is [10]

ω(mz ) =
n∏
i

ωi where ωi =

{
hi if mz i = U or mz i = D,

2hi + 1 if mz i = H.
(1)

We also refer to ω(mz ) as the weight of mz . In the example in Figure 1 this gives 1·2·5·2·3·2·5·2·1·1 =
1200. Note how this formula separates over the moves of the Motzkin path. This independence is
what we will exploit in this article.

Theorem 1 ([10]). For any n and d, let MZ (n,A) be the set of all Motzkin paths of width n and
area A = d. Then it holds that

D(n, d) =
∑

mz∈MZ (n,A)

ω(mz ). (2)

Corollary 1 (Appendix A). Given a Motzkin path mz of length n, we can sample uniformly at
random one of the ω(mz ) many permutations mapping into mz in time O(n).

Our contribution. In this work, we address counting and sampling of permutations from both
a combinatorial and computational point of view. Specifically:

• On the computational side, we show that the total displacement number D(n, d) can be
computed efficiently, namely, in time O(n4) and O(n3) space.
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• On the combinatorial side, we introduce sequences of certain building blocks which provide a
different perspective on the problem structure. Moreover, this is a crucial part of a Markov
chain sampling method which constitutes the third contribution of this paper.

• Finally, we consider the task of sampling permutations of a given total displacement with
uniform distribution.

To compute the number of permutations efficiently, we look at the paths from left to right.
Building on an operation introduced by Barcucci et al. [1], we can provide an elegant dynamic
programming formulation which achieves a running time of O(n4) and needs space O(n3). Conse-
quently, we can compute the sequences A062869 [7] and A129181 [3] to much higher values of n
and d than was possible before.

Considering the combinatorial aspects, we show that every Motzkin path comes from a sequence
a describing its building blocks. We provide an explicit formula for the number m(a) of paths that
these building blocks can form. The weights in Equation (1) are preserved in the sense that the
weight of a path depends only on its building sequence.

Since the exact formula seems to be currently out of reach, to achieve good estimates of D(n, d)
for very large n and d, we contribute sampling methods which can also be of independent interest.
In particular, the dynamic programming algorithm provides a sampler with the same complexity as
the algorithm itself. Further, we show that sampling sequences of building blocks with appropriate
distribution automatically gives a sampler for the permutations. One application of the latter
result is a Monte Carlo Markov chain (MCMC) method which gives an alternative approach to the
dynamic programming. The computational experiments with the MCMC method show a promising
convergence speed leading to a sampler with very high values of n and d. The experimental
results support a hypothesis that the MCMC method is faster than the method based on dynamic
programming and runs in O(n3) time.

Related Work. Different metrics on permutations have been studied, for a survey see [4]. Sam-
pling and counting of permutations of a fixed distance was studied for several metrics [12] but not
for total displacement.

The number of Motzkin paths under various conditions were also studied in a more general
frame of enumeration of lattice paths [11, 8]. Motzkin numbers play a role in many combinatorial
problems as is illustrated for example in [6]. The total area under a set of generalized Motzkin
paths, where the horizontal segments have a constant length k (k ≥ 0) have been studied in [16]
and [15]. Moreover, the author in [17] studies the moments of generalized Motzkin paths where the
first moment describes the area under a Motzkin path. Heinz [3] describes a different algorithm for
enumerating unweighted Motzkin paths with a given area, cf. Remark 4 in Section 2.1.

The use of Markov chains for sampling and counting combinatorial objects is a very active
research area (see e.g. the book [2]), and some works exploit the connection between combinatorial
structures and paths of a certain type to accomplish this task (see e.g. [9]).

Paper Organization. Section 2 describes the dynamic programming algorithm. Section 3 de-
scribes how weighted Motzkin paths can be counted via building block sequences. Section 4 provides
a Markov chain sampling algorithm as well as its experimental evaluation.
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2 Weighted Motzkin Paths using Dynamic Programming

Recall that we denote by D(n, d) the number of permutations on n elements with total displacement
2d (OEIS A062869 [7]). Let M(n,A) denote the number of Motzkin paths of width n and area A
(OEIS A129181 [3]).

2.1 Dynamic Program for Counting Weighted Motzkin Paths

Theorem 2. Computing M(n,A) and D(n, d) can be done in time O(n4) and space O(n3).

Proof. The key ingredient is a construction by Barcucci et al. [1] that produces every possible
Motzkin path through a unique sequence of insertion steps.

Let us look at the last fall of a given Motzkin path, i.e., its suffix of Down-right moves. At
one of the positions before or after any of these fall moves, we insert a new peak (a U and a D)
or we insert a new flat (an H). Repeatedly inserting peaks and flats this way along the last fall
will create our path. See Figure 2 for an example. This construction is complete and unique [1],
meaning that every Motzkin path can be created through a unique sequence of such insertions.

This allows us to derive a dynamic programming formulation for counting M(n,A). We add the
last fall length l to our state and write it asM(n,A, l). So how can we recursively expressM(n,A, l)?
We undo the last insertion step. If we inserted a flat last, then we were atM(n−1, A−l, l′) before the
insertion, for some l′ ≥ l, because the last fall was at least as long before the insert. When inserting
a peak, we might increase the last fall length by one, but not more. So M(n − 2, A − (2l − 1), l′)
for all l′ ≥ l − 1 are also possible predecessor states. Together with the base case M(0, 0, 0) = 1
this gives the recurrence

M(n,A, l) =

n/2∑
l′≥l

M(n− 1, A− l, l′) +

n/2∑
l′≥l−1

M(n− 2, A− (2l − 1), l′), (3)

which allows for O(n4) many states as A ≤ n2 and l ≤ n. Hence we immediately get an O(n5) time
algorithm with O(n4) space. We can shave off one factor of n in both time and space as follows:
We first note, that we can compute the two sums in constant time if we precompute the prefix
sums over the last variable l′. Let us denote these prefix sums as SM (n,A, l) =

∑l
l′=0M(n,A, l′) =

SM (n,A, l − 1) + M(n,A, l). This allows us to compute every value of M(n,A, l) in amortized
constant time, so in time O(n4) overall. Finally, our recurrence only relies on the last two values
of n, so when computing M(n, ·, ·) only the O(n3) many values for M(n− 1, ·, ·) and M(n− 2, ·, ·)

Figure 2: All six possible flat- and peak-extensions of the last fall of length 2.
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need to be stored. The values M(n,A) are then simply the marginals of M(n,A, l) over all last fall
lengths l.

We can extend this recurrence to the weighted case which by Corollary 1 gives rise to the total
displacement count: We distribute the factors of the weight ω(mz ) (Equation (1)) over the steps of
the dynamic program. As l denotes the height of the last flat or peak that we add, we have factors
2l + 1 or l2:

D(n, d, l) =(2l + 1)

n/2∑
l′≥l

D(n− 1, d− l, l′) + l2
n/2∑

l′≥l−1

D(n− 2, d− (2l − 1), l′).

Remark 3. The bounds in Theorem 2 assumed that basic operations have unit-cost. The numbers
involved can be exponential in n however. We can easily bound M(n,A) ≤ 3n and D(n, d) ≤ n!
showing that their bit-representations are at most of length O(n log n). Our dynamic programs only
use multiplication with small numbers of size O(log n) and addition. So one can consider a refined
analysis by multiplying both the time and space bounds of Theorem 2 by Θ(n polylog n). Finally, as
suggested by an anonymous reviewer, the space could be further improved by counting modulo small
primes and using the Chinese Reminder Theorem.

Remark 4. For computing M(n,A), the OEIS contains a dynamic program by Heinz [3]. It is
stated as a Maple code snippet without any further comment or reference. It uses a different state
and might have the same time complexity as ours. We believe that our extension to the weights of
D(n, d) can also be applied.

2.2 Sampling from the Dynamic Program

Theorem 5. After running the dynamic program from Theorem 2, we can sample (weighted)
Motzkin paths in time O(n).

Proof. Given access to a source of randomness and the filled table for M , we can randomly retrace
the steps through the dynamic programming states to sample a Motzkin path from right to left.
For the weighted paths according to D(n, d) all the steps will be exactly the same. We first sample
the last fall length by picking a random number x ∈u.a.r. {0, . . . ,M(n,A)− 1} and then finding the
smallest l such that its prefix sum SM (n,A, l) is larger than x. We continue with x−SM (n,A, l−1),
the offset within the class of paths with last fall length l. For each step, we first decide whether we
are in the flat-case or in the peak-case of the recurrence by comparing x to the left summand of (3).
We then know whether the move before the last fall was an H or a U . We increment l′ until we find
the last fall length of the previous state. We adapt x and recurse until we end at M(0, 0, 0) with
x = 0. Note that the search for the initial l takes linear time. After that, every time we compare
x to a value of M , we fix at least one move of the sampled Motzkin path, so sampling takes O(n)
time overall.

Remark 6. This sampling procedure requires the full table of the dynamic program to be stored.
Hence the memory optimization from O(n4) to O(n3) in Theorem 2 can not be used simultaneously.

Remark 7. A C++ implementation of our counting and sampling approaches by Theorems 2
and 5 is available at http: // people. inf. ethz. ch/ grafdan/ motzkin/ . With our code, we can
quickly compute for n up to 100 (and all d) the integer sequences A062869 [7] and A129181 [3]
which were only known up to n ≤ 30 and n ≤ 50 before.

http://people.inf.ethz.ch/grafdan/motzkin/
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Figure 3: The Motzkin path on the left can be obtained from its building blocks.

3 Combinatorial Structure of Motzkin Paths

In this section, we look at the combinatorial structure of Motzkin paths: There is a natural de-
composition of any Motzkin path into “building blocks”, already hinted at in the last section. For
each height i of the Motzkin path we count the number of flats fi and peaks pi.

Definition 1 (building sequence). For given positive integers n and A, a finite sequence of non-
negative integers a = (f0, p1, f1, p2, . . . , ph, fh) is a building sequence if all p-entries are non-zero,
p1, p2, . . . , ph > 0, and the following two conditions hold:

(f0 + f1 + . . .+ fh) + 2(p1 + p2 + . . .+ ph) = n, (4)

(0f0 + 1f1 + . . .+ hfh) + (1p1 + 3p2 + . . .+ (2h− 1)ph) = A. (5)

The set of all building sequences satisfying (4)-(5) is denoted as S(n,A).

Such a sequence has a natural interpretation as a set of “building blocks” that generate a
number of Motzkin paths of width n and area A (see Figure 3): We have fi flats and pi peaks of
height i which can be split into pieces of width 1 and then rearranged into a Motzkin path.

Proposition 1. For any Motzkin path mz of width n and area A there exists a unique building
sequence a(mz ) ∈ S(n,A) such that mz can be obtained by splitting and rearranging the blocks of
this sequence.

Theorem 1 gives a surjective mapping from permutations into Motzkin paths. It is easy to see
that the number of permutations ω(mz ) mapping into the same path mz , given by Equation (1),
is uniquely determined by the building block sequence a = a(mz ), since we have

perm(a) :=
∏
fi

(2i+ 1)fi
∏
pi

i2pi = ω(mz ). (6)

Hence ω(mz ) is independent of the actual Motzkin path and only depends on its combinatorial
structure. This raises the question of whether also the number of Motzkin paths which share a
common building sequence a is solely determined by a. We answer this in the positive, deriving a
formula for this number, denoted by m(a). We proceed in a top-down fashion by looking at the
number of peaks and flats in the highest level and how these can be rearranged. Once a level is
fixed, we proceed recursively by arranging the blocks one level below.

Theorem 8. For any building sequence a = (f0, p1, f1, . . . , ph, fh) ∈ S(n,A), the number of Motzkin
paths of width n and area A that can be constructed out of the building sequence a is exactly

m(a) =

(
fh + ph − 1

ph − 1

)(
ph + fh−1

fh−1

)(
ph + fh−1 + ph−1 − 1

ph−1 − 1

)(
ph−1 + fh−2

fh−2

)
· · ·

· · ·
(
p3 + f2 + p2 − 1

p2 − 1

)(
p2 + f1

f1

)(
p2 + f1 + p1 − 1

p1 − 1

)(
p1 + f0

f0

)
.

(7)
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fh
ph

fh−1

ph − 1 ph−1 − 1

f0

Figure 4: The top down construction of paths from the given sequence (1, 1, 1, 2, 2). Note that
p1 − 1 = 0, and thus no DU valley is inserted at height 1.

Proof. We start with the highest flats of the sequence a. There are fh of those flats. Two (or more)
such flats can either lie directly next to each other, or they might be separated by a Down-right
move followed at some point by an Up-right move. We call this setting a DU valley; we get such
valleys by splitting peaks of height h and reassembling them the other way round, see Figure 4. A
feasible Motzkin path has to have a U slope at the very left and a D slope at the very right of all
height h pieces. The remaining ph − 1 DU valleys can be freely placed around the fh flats, that is
we choose their places from fh + ph − 1 available positions. The number of ways to do this is(

fh + ph − 1

ph − 1

)
.

(8)

Now we continue on the second highest level h−1. Naturally, the number of times that our Motzkin
path rises above level h − 1 is exactly the number ph of peaks of height h. We can distribute our
fh−1 flats of height h − 1 around those peaks, i.e. pick from ph + fh−1 many positions, hence we
can choose from (

ph + fh−1

fh−1

)
(9)

many possibilities. After placing the flats, we will have to place new valleys down to the next lower
level around the existing ph peaks and fh−1 flats. As before, the leftmost up and down slopes
are fixed, hence the number of ways to distribute ph−1 − 1 valleys is given by the third factor in
Equation (7). Since the choices in different levels are independent, we can iterate this reasoning
until we include flats of height 0.

We conclude with a corollary of Theorems 1 and 8:

Corollary 2. There exists a surjective mapping from permutations over n elements into building
sequences satisfying the following condition: For any building sequence a ∈ S(n,A), the number of
permutations π which are at distance D(π) = 2d = 2A from the identity permutation and that are
mapped into this building sequence a is precisely

P (a) := m(a) · perm(a), (10)

where m(a) is given by Equation (7) and perm(a) by Equation (6). Therefore the total number of
permutations at distance 2d = 2A from the identity permutation satisfies

D(n, d)
(2)
=

∑
mz∈MZ (n,A)

ω(mz ) =
∑

a∈S(n,A)

P (a). (11)
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Example 1. The building blocks in Figure 3 yield
(

3
1

)(
3
1

)(
3
0

)(
2
1

)
= 18 Motzkin paths, and each path

corresponds to 1200 permutations. So, there are 1200 · 18 = 21 600 permutations mapping into the
building sequence a = (1, 1, 1, 2, 2).

Remark 9. Theorem 8 and Corollary 2 allow for a dynamic program for counting and sampling
weighted Motzkin paths, similar to Sections 2.1 and 2.2. Additionally, we can easily sample paths
with a fixed number of highest peaks and flats, at the cost of an additional O(n3)-factor in the
running time, see Appendix C.

4 Sampling Weighted Motzkin Paths by Length and Area

In this section, we consider the task of selecting (sampling) permutations with uniform distribution
over all permutations of a given total displacement. By Corollary 1 it is enough to sample Motzkin
paths with the proper weights. We have already seen in Section 2.2 that we can sample such
weighted Motzkin paths using dynamic programming at the cost of large memory consumption.

We will show in Section 4.2 an approach to sample weighted Motzkin paths based on the
building sequences introduced in Section 3 that requires only O(n) memory. In general, observe
that sampling permutations can be accomplished efficiently if we can sample building sequences
with a probability proportional to P (a) = m(a) · perm(a) in polynomial time:

Theorem 10. Every polynomial-time algorithm that samples sequences in S(n,A) with probability
π(a) ∝ P (a) can be turned into a polynomial-time algorithm for sampling permutations uniformly
at random among the permutations over n elements and of total displacement 2d = 2A.

Proof. Given a sequence a ∈ S(n,A), the sampler maps this sequence into a random Motzkin path,
and then into a random permutation as follows:

1. Pick a Motzkin path mz uniformly at random among those that can be created with a, that
is, with probability 1

m(a) .

2. Pick a permutation u.a.r. among those that map into the Motzkin path mz, that is, with
probability 1

perm(a) .

Step 1 (sequences to Motzkin paths). The top-down construction used to prove Theorem 8
suggests also how to sample one of the m(a) Motzkin paths for a given sequence a with uniform
distribution. Namely, we pick the positions of the DU valleys at height h uniformly at random
(Equation (8)), then we pick the positions of the fh−1 flats uniformly at random (Equation (9)), and
repeat this to the lower level exactly as described in the top-down construction. Since a particular
path corresponds to exactly one choice in each of these steps, by Equation (7) its probability is
precisely 1/m(a).

Step 2 (paths to permutations). This is shown in Corollary 1 above.

4.1 Preliminary definitions on Markov chains

In this section, we introduce some of the definitions on Markov chains used throughout this work
(see e.g. [14]). A Markov chain over a finite state space S is specified by a transition matrix P ,
where P (a, a′) is the probability of moving from state a to state a′ in one step. The tth power of
the transition matrix gives the probability of moving from one state to another state in t steps.
The chain studied in this work is ergodic (see below for a proof), meaning that it has a unique
stationary distribution π, that is, limt→∞ P

t(a, a′) = π(a′) for any two states a and a′.
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Reversible chains. We shall use the definition of a reversible Markov chain, also called de-
tailed balanced condition: If the transition matrix P admits a vector π such that π(a)P (a, a′) =
π(a′)P (a′, a) for all a and a′, then π is the stationary distribution of the chain with transitions P .

Total Variation Distance and Mixing Time. The total variation distance of two distributions
µ and π is

dTV (µ, π) :=
1

2
·
∑
a∈S

∣∣∣µ(a)− π(a)
∣∣∣.

The mixing time of an ergodic Markov chain with transition matrix P is defined as

tmix(ε) = min
{
t : dTV (P t(a0, ·), π) ≤ ε for all a0 ∈ S

}
.

It is common to also define the quantity tmix := tmix(1/4), which is justified by the fact that, for
any ε, tmix(ε) ≤ dlog2 1/εe · tmix. In our experiments, we shall evaluate the total variation distance
for ε = 0.05 to get better estimate.

4.2 A Markov Chain Sampler

Suppose we have a set of k possible local changes transforming any sequence a into another sequence
a′ such that all sequences can be obtained by applying a certain number of such operations. Then
the following standard Metropolis chain samples sequences with the desired distribution:

1. With probability 1
2 do nothing. Otherwise,

2. Select one of the k local operations u.a.r. If this operation cannot be applied to the current
sequence a (the new sequence is unfeasible) do nothing; Otherwise, let a′ be the sequence
obtained from a by applying this operation;

3. Accept the operation transforming a to a′ with probability

A(a, a′) := min

{
1,
P (a′)

P (a)

}
= min

{
1,
m(a′)

m(a)
· perm(a′)

perm(a)

}
, (12)

and do nothing with remaining probability 1−A(a, a′).

Local operations over the sequences We define our Metropolis chain Mblocks through four
types of operations: Peak to Flat (PF), Flat to Valley (FV), Flat to Flat (FF), and Peak into
Valley (PV). We formally define them as:

PF (i, j) :=


pi ← pi − 1

fi−1 ← fi−1 + 2

fj ← fj − 1

fj+1 ← fj+1 + 1

, FV (i, j) :=


fi ← fi − 2

pi ← pi + 1

fj ← fj − 1

fj+1 ← fj+1 + 1

FF (i, j) :=


fi ← fi − 1

fi+1 ← fi+1 + 1

fj ← fj − 1

fj−1 ← fj−1 + 1

PV (i, j) :=


pi ← pi − 1

fi−1 ← fi−1 + 2

pj ← pj − 1

fj ← fj + 2
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Figure 5: (left, middle) The canonic path for n = 12 and A = 18, resp. A = 21. (right) Building a
canonic path (red) from a given path (black) with same area.

Note that each type of operation applies to two indices i and j, and we also implicitly consider the
reversed operations which “undo” the changes. We now explain step 2 of the chainMblocks in more
detail: The Markov chain Mblocks picks two indices i and j at random, then picks one of the four
operations above, and decides with probability 1/2 whether to choose the operation or its reversed
version. As for step 3, computing the transitional probability A(a, a′) can be done in constant time
as only a few of the factors in Equations (6) and (7) change.

Theorem 11. The Markov chain Mblocks defined above is ergodic and its unique stationary distri-
bution satisfies π(a) ∝ P (a) for every a ∈ S(n,A).

Proof. The proof consists of two steps. First, we have to show that the chain is ergodic, that is,
it is aperiodic and connected (see e.g. [14]). Then we use the standard detail balance condition to
obtain the stationary distribution.

4.2.1 Connectivity of Mblocks .

To prove that the chain Mblocks is connected (from every building sequence a we can reach every
other building sequence a′ in a maximum of O(A) operations) we argue in two steps. Intuitively, we
show that we can transform any two paths into each other by some operations depicted in Figure 7.
Then it can be seen that every operation in Figure 7 corresponds to a sequence of operations in
the Markov chain Mblocks , given in Figure 6. Formally:

Every path of width n and area A ≤
⌊
n2/4

⌋
can be turned into any other path of the same

area and width by using the operations in Figure 7. To prove this we consider a canonic path
for a given width n and area A. The canonic path is the uniquely defined path mz ∈ MZ (n,A)
for which the following holds: For every i, after i steps (i.e. between x = 0 and x = i) mz has
maximum area among all paths in MZ (n,A). The possible forms of the canonic path are shown
in Figure 5. Any given path with width n and area A can be transformed into the canonic path
of the same area using the steps from Figure 7. We overlay the given path with the canonic path
and proceed in steps to the right as is schematically shown in Figure 5 with the black path being
the given path and the red path being the canonic path. There are three possibilities. Either the
paths coincide, in which case we proceed to the right, or the given path differs proceeding with a
D move or with an H move. In both cases the given path must intersect the canonic path on the
falling part because otherwise the area cannot be the same. Now we use the operations in Figure 7
in horizontal sweeps from left to right to fill-in the missing area of the canonic path. At the end
both paths must coincide because the areas are the same.

Each of these operations can be simulated by some operations on the sequences in Figure 6.
This can be seen immediately because the four cases in Figure 7 correspond directly to one or two
operations in Figure 6.
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pi fi−1

fj fj+1

(a) Peak to Flat.

fj fj+1

fi pi

(b) Flat to Valley.
fi fi−1

fj fj+1

(c) Flat to Flat.

pi fi−1

pj fj

(d) Peak into Valley.

Figure 6: The basic operations over the sequences.

or

or

or

or

or

or

(2 operations)

Figure 7: Changing the path. The shape on one side is transformed to the shape on the other side.
In some cases we need two of the operations defined in Figure 6.



4 SAMPLING WEIGHTED MOTZKIN PATHS BY LENGTH AND AREA 12

4.2.2 Stationary Distribution of Mblocks .

It is well-known that the Metropolis chains with acceptance probability A(a, a′) = min
{

1, π(a′)
π(a)

}
have stationary distribution π since the detailed balance condition is obviously satisfied: given that
the number of operations is k, we have

P (a, a′) =
A(a, a′)

2k
and P (a′, a) =

A(a′, a)

2k

and the definition ofA(·, ·) yields the detailed balance condition, that is, π(a)P (a, a′) = π(a′)P (a′, a).

4.2.3 Experimental Evaluation of Mblocks

We are interested in the required number of steps until the distribution of Mblocks is sufficiently
close to its stationary distribution. We measure the distance between two distributions by the total
variation distance. The mixing time of a Markov chain is the smallest time t such that the total
variation distance between the stationary distribution and the distribution after t steps, starting
from any state, is smaller than some small ε > 0.

We study the mixing time of Mblocks for a given area A and a given width n by running the
following experiment. We estimate the distribution after a given number of steps by repeatedly
runningMblocks with an initial state a0 defined as follows: The building block sequence consists of
one peak of height h for every h ≤ b

√
Ac and the remaining area and width is filled greedily with

flats of maximal possible height. The total variation distance of the distribution of Mblocks after
some number of steps t from its stationary distribution π is

dTV (P t(a0, ·), π) =
1

2
·
∑

a∈S(n,A)

∣∣∣P t(a0, a)− π(a)
∣∣∣.

We estimate the mixing time for a given area A and a given width w by computing the total
variation distance for increasing t until the total variation distance is below 0.05.

Figure 8 (left) illustrates the mixing time for width 8 and every area A with more than one
possible building block sequence. The maximal mixing time (400 steps) is necessary for area 9. In
fact, for every width smaller than 13, the mixing time is maximal for area A∗n = ((n − 2)/2)2 if n
is even and A∗n = ((n − 1)/2)2 otherwise. This is due to our choice of the initial state of Mblocks .
We estimate the maximal mixing time for widths larger than 12 by computing the mixing time for
A∗n only, as the number of repeats necessary to estimate the distribution of Mblocks after t steps
depends on the number of possible building block sequences, which grows exponentially depending
on n. Figure 8 (right) shows the maximal mixing time up to width 40. The plot suggests that the
number of steps necessary to approximate the stationary distribution does not grow exponentially
depending on the width n, the algorithm is probably faster than the sampler based on dynamic
programming and the results suggest that the MCMC sampler achieves the mixing time O(n3).

Conjecture 12. Mblocks mixes in time O(n3).

Remark 13. The implementation of Mblocks is available at http: // people. inf. ethz. ch/

grafdan/ motzkin/ .

http://people.inf.ethz.ch/grafdan/motzkin/
http://people.inf.ethz.ch/grafdan/motzkin/
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Figure 8: (left) Total variation for n = 8 and all A ≤ (n/2)2 with |S(8, A)| > 1. (right) Maximal
mixing time for given widths (•), mixing time for areas A∗n (+).
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Appendix

A Postponed Proofs

Corollary 1 (Appendix A). Given a Motzkin path mz of length n, we can sample uniformly at
random one of the ω(mz ) many permutations mapping into mz in time O(n).

Proof. Given a Motzkin path mz, we can sample a permutation u.a.r. among all permutations that
map into mz. For this, consider mz as a (feasible) sequence of letters U , D and H (denoting
diagonally Up-right moves, diagonally Down-right moves and Horizontal-right moves). Then do
the following:

1. Scan the sequence from left to right. When a new D is found, match it with any of the U
on the left that are not yet matched to any D (choose such a U u.a.r.). This step constructs
left-to-right edges from U to D:

DUU DU · · ·U U

2. Scan from right to left the sequence, matching a newly encountered U with any D on the
right not yet matched in this step (the matchings of the previous “left-to-right” step do not
count). This step is the symmetric of the previous one and it constructs right-to-left edges
from D to U .

3. For any H we choose a “fixed point”, a “left-to-right” or a “right-to-left” edge, meaning the
following: The number of left-to-right edges crossing this H – corresponding to a flat of height
i – is equal to the number i of right-to-left edges also crossing this H (this property is due
to the “balanced” matchings of U and D). So there are 2i + 1 options for H, where the 2i
options correspond to breaking one of the i left-to-right edges, or one of the i right-to-left
edges. The last option is to let the H map to a trivial cycle of the permutation. We choose
one of these 2i+ 1 options u.a.r.

B Experiments

We estimate the distribution after a given number of steps by repeatedly running Mblocks for an
appropriate number of steps depending on the width (cf. Table 1). To compute the total variation
distance of the distribution of Mblocks after t steps from its stationary distribution π, i.e.

dTV (P t(a0, ·), π) =
1

2
·
∑

a∈S(n,A)

∣∣∣P t(a0, a)− π(a)
∣∣∣,

we do not need to know all building block sequences in S(n,A). Let At ⊆ S(n,A) be the set of
all building block sequences reached by Mblocks after t steps in at least one run. Then, the total
variation distance after t steps is

dTV (P t(a0, ·), π) =
1

2
·
( (
D(n,A)−

∑
a∈At

(m(a) · perm(a))
)

+
∑
a∈At

∣∣∣P t(a0, a)− π(a)
∣∣∣ ).
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Figure 9: Plot of the maximal mixing time for a given width (filled circle) and mixing times for
area A∗n (cross) with a linear y-axis (left) and a logarithmic y-axis (right). The dashed line in the
right plot shows f(x) = x3.
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A ≤ (n/2)2 with |S(n,A)| > 1.
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Figure 11: Total variation for width n = 7 (left), respectively n = 8 (right), and every area
A ≤ (n/2)2 with |S(n,A)| > 1.
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Figure 12: Total variation for width n = 9 (left), respectively n = 10 (right), and every area
A ≤ (n/2)2 with |S(n,A)| > 1.
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Figure 13: Total variation for width n = 11 (left), respectively n = 12 (right), and every area
A ≤ (n/2)2 with |S(n,A)| > 1.

C Top-Down Dynamic Programming Approach

For the sake of clarity we first describe the dynamic programming procedure for counting unweighted
Motzkin paths of any given width n and area A.1 Specifically, we define the following subproblem:

M(n,A, h, p) = the number of Motzkin paths of width n,

area A, height h and with ph = p and fh = 0.

Note that we forbid flats of height h and fix the number of peaks at height h. To count the number
of paths of a given n, A and height h including flats at height h (so dropping the fh = 0 condition)
and not fixing the number of peaks at height h we can simply compute

M(n,A, h) := M(n,A, h+ 1, 0).

The number of Motzkin paths of given width and area can be obtained by summing over all h:

M(n,A) :=

n∑
h=0

M(n,A, h).

If we also sum over all possible areas, we get the classic Motzkin numbers

M(n) :=
n2∑
A=0

M(n,A).

We next show that M can be computed in polynomial time. We make use of Equation (7) in
Theorem 8 for the number m(a) of Motzkin paths that can be constructed out of building sequence
a.

1Though this task can be solved by an easier dynamic programming, our approach does extend to the weighted
case, which is our main goal.
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Theorem 14. Table M(n,A, h, p) can be computed for all the O(n5) many possible parameters in
O(n7) total time.

Proof. Recall that in M we forbid flats of height h and fix the number of peaks of height h. This
allows the following recursive counting:

Base case. If any of the parameters is equal 0 then

M(n,A, h, p) :=

{
1 if n = A = h = p = 0,

0 else if n ≤ 0 or A ≤ 0 or h ≤ 0.
(13)

Recursion. Otherwise, when all parameters are strictly positive, we have

M(n,A, h, p) :=
n∑
f=0

(
p+ f

f

)
·

 n/2∑
p′=1

(
p+ f + p′ − 1

p′ − 1

)
·M(n′, A′, h− 1, p′)

 , (14)

where n′ = n− 2p− f and A′ = A− (2h− 1)p− (h− 1)f .
In the recursive case, we enumerate all potential numbers of flats and peaks at height h− 1 so

that we can look up the corresponding subproblems. These subproblems are then weighted by the
number of possible interleavings

(
p+f
f

)(
p+f+p′−1

p′−1

)
which we derived in Equations (8) and (9). We

have thus shown that the table M(n,A, h, p) above can be computed for all the O(n5) many possible
parameter values in time O(n7) with the bottleneck being the two nested sums in Equation (14).

Let us now consider the problem of counting weighted Motzkin paths, that is, the function
D(n, d) in Equation (2). To this end, we extend the definition of M above so to count each
path mz according to its weight perm(a(mz )). The resulting table D(n, d, h, p) can be computed
recursively in a top-down fashion by incorporating into the recursion of M(n,A, h, p) the two terms
defining perm(a(mz )) in Equation (6):

D(n, d, h, p) := h2p︸︷︷︸
peak options

·
n∑
f=0

(2h− 1)f︸ ︷︷ ︸
flat options

·
(
p+ f

f

)
·

 n/2∑
p′=1

(
p+ f + p′ − 1

p′ − 1

)
·D(n′, d′, h− 1, p′)

 ,

(15)

where n′ = n−2p−f and d′ = d−(2h−1)p−(h−1)f . The base case is identical to the unweighted
case Equation (13). Again, we can drop the condition that there are no flats on the last level h:

D(n, d, h) := D(n, d, h+ 1, 0),

and count all weighted Motzkin paths of given area and width simply as

D(n, d) :=

n∑
h=0

D(n, d, h).

Both the time for computing D(n, d, h, p) and its overall space are asymptotically the same as
those used for M(n,A, h, p). We have thus proven the following:

Corollary 2. Table D(n, d, h, p) and its marginals D(n, d, h) and D(n, d) can be computed for all
O(n5) many possible parameter values in O(n7) total time.
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