
ar
X

iv
:1

60
6.

05
98

2v
1

 [c
s.

IT
]

20
 J

un
 2

01
6

1

Optimal Finite-Length and Asymptotic
Index Codes for Five or Fewer Receivers

Lawrence Ong

Abstract—Index coding models broadcast networks in which
a sender sends different messages to different receivers simulta-
neously, where each receiver may know some of the messages
a priori. The aim is to find the minimum (normalised) index
codelength that the sender sends. This paper considers unicast
index coding, where each receiver requests exactly one message,
and each message is requested by exactly one receiver. Each
unicast index-coding instances can be fully described by a
directed graph and vice versa, where each vertex corresponds to
one receiver. For any directed graph representing a unicastindex-
coding instance, we show that if a maximum acyclic induced
subgraph (MAIS) is obtained by removing two or fewer vertices
from the graph, then the minimum index codelength equals the
number of vertices in the MAIS, and linear codes are optimal
for the corresponding index-coding instance. Using this result, we
solved all unicast index-coding instances with up to five receivers,
which correspond to all graphs with up to five vertices. For 9819
non-isomorphic graphs among all graphs up to five vertices, we
obtained the minimum index codelength for all message alphabet
sizes; for the remaining 28 graphs, we obtained the minimum
index codelength if each message can be bijectively mapped to
a vector of even length. This work complements the result by
Arbabjolfaei et al. (ISIT 2013), who solved all unicast index-
coding instances with up to five receivers in the asymptotic
regime, where the message alphabet size tends to infinity.

Index Terms—Index coding, broadcast with side information,
graph theory, finite-length codes

I. Introduction

Index coding [1], [2] studies noiseless one-hop broadcast
networks, with one sender and multiple receivers. The sender
has a set of messages, and each receiver wants a message
subset, while knowing another message subset a priori. To this
end, the sender encodes the messages into an index codeword
and presents the codeword to all the receivers. The index
codeword must enable each receiver to decode its requested
message subset. In majority of the work on index coding, the
aim is to minimise the normalised index codelength. Index
coding have been receiving much attention lately, partly due
to its equivalence to network coding [3]–[5].

To date, different index code construction techniques have
been proposed [2], [6]–[11], but none are optimal in general.
Among them, composite coding [10] have been shown to
achieve the optimal (i.e., minimum) normalised codelength
asymptotically (as the message size tends to infinity) for
unicast index coding—where each receiver requests only

This research was supported under Australian Research Council’s Future
Fellowship (project number FT140100219) and Discovery Project (project
number DP150100903) funding schemes.

This paper was presented in part at the 2014 IEEE International Symposium
on Network Coding (NetCod) and the 2014 IEEE International Symposium
on Information Theory (ISIT).

one message, and each message is requested by only one
receiver—if there are five or fewer receivers. In a more
general setting (not necessarily unicast), Unal and Wagner[11]
solved all index-coding instances with three receivers in the
asymptotic regime.

In this paper, we consider unicast index coding where the
message alphabet size is finite, and derive the optimal index
codelength for all instances in this class with five or fewer
receivers. Our result uses combinatorics and is derived based
on our graph-theoretic result that shows that for any directed
graph in which no two cycles are disjoint, if the a maximum
acyclic induced subgraph (MAIS) is obtained by removing
two or fewer vertices from the graph, then there must exist a
subgraph of a certain form (see Figure 1). We incidentally
showed that linear index codes are optimal for all unicast
index-coding instances with up to and including five receivers.

The rest of the paper is organised as follows: We formally
define unicast index coding in Section II. We survey existing
results and summarise our contributions in this paper in
Section III. We present our results in two parts: Section IV for
graphs with specific MAIS values, and Section V for graphs
with five or fewer vertices.

II. Index Coding: Definition and Notation

A. Unicast index coding and information-flow graph

A unicast index-coding instance consists of a single sender
and multiple receivers [n] , {1, 2, . . . , n}. The sender has
n messages, denoted byX = [X1 X2 · · ·Xn], where Xi for
each i ∈ [n] is independent and uniformly distributed over
a finite alphabetX. For a subset of integersI = {i1, i2, . . . , i |I |}
where i1 < i2 < · · · < i |I |, let XI , [Xi1Xi2 · · ·Xi |I |]. Each
receiver i ∈ [n] has a priori knowledge ofXKi for some
Ki ⊆ [m] \ {i}, and needs to decodeXi . The sender is to
encodeX and present the coded symbols to all receivers, such
that each receiveri ∈ [n] uses the messagesXKi it already
knows to decodeXi . The aim is for the sender to minimise
its transmitted information through the channel so that each
receiver can recover its requested message. Each unicast index-
coding instance is completely defined by{Ki}

n
i=1 andX.

A unicast index-coding instance can be represented by a
directed graphG with a set of vertices,V(G) = [n], and a set
of arcs,A(G). An arc from vertexi to vertex j, denoted by (i →
j) ∈ A(G), exists if and only if receiveri knows x j a priori.
This means the side information of receiveri is Ki = N+G(i),
whereN+G(i) is the out-neighbourhood ofi in G. By definition,
there is no self loop or parallel arcs. This representation is
known as theside-information graph[2].

http://arxiv.org/abs/1606.05982v1

2

B. Index codes

Let d+G(i) denote the out-degree of the vertexi in graphG.
Definition 1: An index code (φ, {ψi}) for an index-coding

instanceG with message alphabetX consists of the following:
1) A sender encoding functionφ : Xn 7→ Yp, for some

finite alphabetY and a positive integerp ∈ Z+; and
2) A receiver decoding functionψi : Yp×Xd+G(i) 7→ X, each

for a receiveri ∈ [n],
such thatXi = ψi(φ(X), XN+G(i)).

C. Asymptotic vs finite-length index codes

Fix G and |X| = mt, for some integersm ≥ 2 and t ≥ 1.
The index codelength, in bits, for an index code (φ, {ψi})
is p log2 |Y| bits (need not be an integer); thenormalised
codelength, or commonly referred to as the broadcast rate,
is denoted as

ℓmt (G) ,
p log2 |Y|

log2 |X|
= p log|X| |Y| (1)

transmitted bits per message bit per receiver. For the rest of
this paper, unless otherwise stated, we refer to the normalised
codelength simply as codelength.

So, for a given message alphabet size|X| = mt, the
minimum1 codelength, over all possible index codes, is given
by

rmt (G) , min
φ,{ψi }

ℓmt (G). (2)

Furthermore, we define theoptimal index codelength (or the
optimal broadcast rate) for an index-coding instanceG, over
all message alphabet sizes and all index codes, as

r(G) , inf
m,t

min
φ,{ψi }

ℓmt (G) = inf
m,t

rmt (G). (3)

The optimal index codelength is also known as thebeta
capacityβ(G).

We now show that the optimal index codelength can be
obtained by taking the limit ofrmt (G) as t → ∞ for any m,
stated in the following proposition:

Proposition 1: For anym,

lim
t→∞

rmt (G) = inf
t

rmt (G) = r(G). (4)

Proof: We fix m and vary t. Denote the minimum
codelength, in bits, byrb

mt , minφ,{ψi } p log2 |Y|. Note that
rb
mt1+t2

≤ rb
mt

1
+ rb

mt2
, i.e., the sequence{rb

mt }
∞
t=1 is subadditive.2

By Fekete’s Subadditive Lemma,

lim
t→∞

rmt (G) =
1

log2 m
lim
t→∞

rb
mt (G)

t
(5a)

=
1

log2 m
inf

t

rb
mt (G)

t
(5b)

= inf
t

rmt (G), (5c)

1The minimum exists because 1≤ ℓmt (G) ≤ n, where the lower bound
follows as each receiver must decode one messageXi ∈ X (which is
independent of all its side information) from the codewordφ(X) ∈ Yp;
the upper bound is obtained by sending all messages uncodedφ(X) = X.
So, rmt (G) is obtained by minimisingℓmt (G) over |Y| ∈ {2, . . . , |X|n} and
p ∈ [⌈n log2 |X|⌉].

2To see this, we can always concatenate the index codes for theindex-
coding instances with message alphabet sizesmt1 and mt2 to get an index
code for the instance with message alphabet sizemt1+t2.

for any fixedG andm. This proves the first equality in (4).
From the definition (3), for anyǫ > 0, we can always find

somem′ andt′ such thatr(m′)t′ (G) < r(G)+ǫ, using some index

code (φ, {ψi}) with codewords onYp. This meansp log2 |Y|

t′ log2 m′ <

r(G)+ǫ. By concatenating this index codeb ∈ Z+ times, we get
codewords onYbp for the message alphabet size (m′)bt′ , with
a length of bp log2 |Y|

bt′ log2 m′ < r(G) + ǫ. Note that this concatenated
code can be used as an index code for any message alphabet of
size |X| = mt as long asmt < (m′)bt′ with zero padding, giving
an index code of lengthbplog2 |Y|

t log2 m . For any fixedm′, t′, p, and
|Y|, we can chooseany m and sufficiently large integerst
and b, such thatp log2 |Y|

t
b log2 m

−
p log2 |Y|

t′ log2 m′ , η > 0 can be made as
small as desired. Noting thatr(G) ≤ r t

m(G) by definition, and
that rmt (G) ≤ bplog2 |Y|

t log2 m < r(G) + ǫ + η for any arbitrarily small
ǫ, η > 0, we have the second equality in (4) for anym.

It follows from Proposition 1 and subadditivity of the
sequence{rb

mt }
∞
t=1 that, for anym and t,

r(G) ≤ rmt (G) ≤ rm1(G). (6)

We say thatr(G) is the (normalised) optimalasymptotic
index codelength forG, when the length of the message vector,
t, tends to infinity, andrmt (G) is the optimalfinite-lengthindex
codelength, where the messages are each a length-t vector over
an alphabet of sizem. The latter is also known as theone-shot
index codelength [12].

Remark 1: We will see in Section V-A later that choosing
|Y| = m for the finite-length case, i.e., finitet, may give a
suboptimal index codelength.

D. Linear codes

Definition 2: (Linear codes) Re-write the encoding function
as φ = [φ1φ2 · · ·φp], where φi : Xn 7→ Y, and consider the
following three cases:

1) X = Y = Fq, whereFq is a q-element finite field for
some prime powerq: If eachφi is a linear function over
the field Fq, i.e., φi(X) =

∑n
j=1 ki j X j ∈ Fq, for some

ki j ∈ Fq, the index code isscalar linear over the field
Fq.

2) X = Ft
q andY = Fq: If φi : Ftn

q 7→ Fq is a linear function
over Fq, then the index code isvector linear over the
field Fq.

3) X = Y = F , for any finite alphabetF : Without loss of
generality, letF = {0, 1, . . . , |F | − 1}. If φi : F n 7→ F

is linear, meaning thatφi(X) =
∑n

j=1 ki j X j , where the
addition and the multiplication are defined over integer
modulo-|F |, then the index code isscalar linear over
the ringF .

4) X = F t andY = F , whereF = {0, 1, . . . , |F | − 1}: If
φi : F tn 7→ F is a linear function over integer modulo-
|F |, then the index codes isvector linear over the ring
F .

III. Related Results and Main Contributions

A. Existing lower bounds

Bar-Yossef, Birk, Jayram, and Kol [2] proposed a graph-
theoretic lower bound onr2(G), by considering its acyclic

3

subgraph. Denote the number of vertices in amaximum acyclic
induced subgraph3 (MAIS) of G by mais(G). The lower bound
is readily extended to any message size, as follows:

Lemma 1: For anym and t,

mais(G) ≤ r(G) ≤ rmt (G). (7)

Let the random variables of an index codeword be defined
as [Y1Y2 · · ·Yp] = Y = φ(X). Blasiak, Kleinberg, and Lubet-
zky [13] proposed a lower bound by showing that the joint
entropies of{X,Y} must satisfy the following constraints:

1) Decodability: Consider any receiveri ∈ [n]. Know-
ing Y and XN+G(i), it can decodeXi . This means
H(Xi , XN+G(i),Y) = H(XN+G(i),Y), for eachi ∈ [n].

2) Submodularity of entropy:For two subsets of random
variablesS andT , we haveH(S)+H(T) ≥ H(S∪T)+
H(S ∩ T).

3) Non-Shannon-type information inequalities:See Zhang
and Yeung [14] for example.

By considering these (in)equalities, linear programs can be
formed to obtain lower bounds toH(Y), which in turn
lower bounds the index codelength asH(Y)/ log2 |X| ≤
∑p

i=1 H(Yi)/ log2 |X| ≤ ℓmt (G), for any index code and any
choice ofm and t.

There are infinitely many non-Shannon inequalities, and
invoking all these inequalities in the linear program gives
r(G) [15, page 37].

In fact, noting thatrmt (G′) ≤ rmt (G), for any vertex-induced
subgraphG′ of G [2, Proposition 9], the MAIS lower bound (7)
can be obtained by solving a linear program with decodability
constraints.

In this paper, we will construct MAISs and linear programs
invoking the first two types of constraints (i.e., decodability
and submodularity) to obtain lower bounds tormt (G). Non-
Shannon-type information inequalities are not required for the
class of index-coding instances considered in this paper.

B. Existing upper bounds (achievability)

By choosingY = X, and sending the messages uncoded,
we get an index code of lengthn = |V(G)|. This gives the
following trivial upper bound on the optimal index codelength:

r(G) ≤ rmt (G) ≤ n. (8)

Consider the special case where each message is a binary
bit, i.e.,X = F2. A scalar linear code can be formed by solving
a graph functionminrank. Consider a matrixA with binary
elements. We say that a binaryn-by-n matrix M fits G if

mi, j =

1, if i = j

0, if (i → j) < A(G),
(9)

wheremi, j is the element inM on thei-th row andj-th column.
The rest of the elements can be either 0 or 1. Denote the rank
of M overF2 by rk2(M), the minrank ofM overF2 is defined
as

minrk2(G) , min{rk2(M) : M fits G}. (10)

3It is defined as an induced subgraph with the largest number ofvertices.

Bar-Yossef el al. [2] proved the following lemma:
Lemma 2:

r2(G) ≤ minrk2(G). (11)

Furthermore, if we restrict the encoding functionφ(X) to be
scalar linear, then

min
φ,{ψi }:φ is scalar linear

ℓ2(G) = minrk2(G). (12)

Blasiak et al. extendedminrk2 to higher field sizes,X = Ft
q,

obtained a similar upper bound, and showed that the bound
is tight if the encoding function is restricted to be scalar or
vector linear.

Both the MAIS upper bound and the minrank lower bound
are NP-hard to compute [16], [17], and both have been shown
to be loose in some instances [2], [18]. This implies that
linear or vector-linear index codes, though having practical
advantages of simplifying encoding and decoding, are not
necessarily optimal.

There are other upper bounds obtained by finding the
number of disjoint cycles [6] and the number of cliques [1], a
special structure of interlinked cycles in the graph [8], [9], the
local chromatic number of the graph [7], and partitioning the
graph and finding the maximum out-degree in the partition [1].
Some of these approaches requireX to be a finite field of a
sufficiently large size.

Some approaches uses Shannon random coding [10] and
rate-distortion theory [11]. As expected, these approaches are
non-constructive, and requires the message alphabet size|X|

to be infinitely large. Consequently, these results are upper
bounds tor(G), and not tormt (G) for any finitem and t.

We will show that, for most cases considered in this paper,
the interlinked-cycle cover can be used to obtain optimal scalar
linear codes. Here, we briefly describe the scheme:

Definition 3: (Interlinked cycle [9]) A directed subgraph
G is an interlinked cycle if and only if we can find a vertex
subsetVI ⊆ V(G), called an inner-vertex set, such that

1) there is no directed cycle inG that contains one and
only one inner vertex, and

2) for any ordered pair of inner vertices (i, j), there is one
and only one path fromi to j, where all other vertices
in the path, if exists, are not inVI .

Definition 4: (Interlinked-cycle cover [9]) Given an inter-
linked cycle G with an inner-vertex setVI and a message
alphabetX, a scalar linear code of length|V(G)| − |VI | + 1
over a ring with|X| elements can formed as follows:

∑

i∈VI

Xi , (13)

X j +
∑

k∈N+G(j)

Xk, for each j ∈ V(G) \ VI . (14)

Note that a cycleC of lengthL, for anyL ≥ 2, with vertices
and arcsc1 → c2 → · · · → cL → c1 is a special case of
interlinked cycles, by choosing any two vertices therein tobe
the inner-vertex set. For example, by choosing{cL−1, cL} to be
the inner-vertex set, we have the following scalar linear index
code of length|V(C)| − 1 for C:

X1 + X2, X2 + X3, . . . , XL−1 + XL. (15)

4

The above code (15), also known as cyclic codes, was used
by Neely et el. [6] and Ong and Ho [19].

Also note that a cliqueQ (a subgraph in which each vertex
has an outgoing arc to every other vertex) is an interlinked cy-
cle with all its vertices in the inner-vertex set. The interlinked-
cycle cover gives an index code of length-1:

∑

i∈V(Q) Xi . This
is also known as the clique cover [2].

Recall thatN+G(i) is the out-neigbourhood ofi in G. Let
N−G(i) denote the in-neighbourhood ofi in G.

Definition 5: (Interlinked cycle with super vertices [20])
Consider a vertex setVs in a graphG satisfying the following
conditions: For all distinct pairsi, j ∈ Vs, we have
• (i → j) ∈ A(G), i.e., all vertices inVs have arcs to each

other, and
• N+G(i) \ Vs = N+G(j) \ Vs and N−G(i) \ Vs = N−G(j) \ Vs, i.e.,

all vertices inVs have the same incoming and outgoing
connection to vertices outsideVs in G.

We can define a new graphG′ by replacingVs (and all arcs
to and from these vertices) by asuper vertex, say p, with
N+G′ (p) = N+G(i)\Vs andN−G′ (p) = N−G(i)\Vs, for any arbitrarily
choseni ∈ Vs. If G′ is an interlinked cycle with an inner-vertex
setVI, wherep < VI , then we say thatG is an interlinked cycle
with an inner-vertex setVI and a super-vertex setVs. The index
code formed by the interlinked-cycle cover forG′ is an index
code (of the same length) forG with Xp replaced by

∑

i∈Vs
Xi .

C. Existing capacity results

Although there are several different approaches to comput-
ing upper bounds tor(G) andrmt (G), it is not easy to determine
when these bounds are tight (or not). We now present a few
classes of graphs where the bounds have been shown to be
tight.

Bar-Yossef et al. [2] showed that ifG is acyclic, thenr(G) =
rmt (G) = |G| = mais(G).

Consider a special class of graphsG where (i → j) ∈ A(G)
if and only if (j → i) ∈ A(G). This models index-coding
instances with symmetrical knowledge, i.e., if receiveri knows
x j , then receiverj knowsxi . Any graphG of this type can be
mapped to a corresponding undirected graphGu with the same
vertex set asG, and an edge (i, j) ∈ E(Gu) exists if and only
if (i → j) ∈ A(G). Bar-Yossef et al. [2] foundr2(Gu) for the
following classes of undirected side-information graphs:
• Gu is a perfect graph,
• Gu is an odd hole where|V(G)| ≥ 5, or
• Gu is an odd anti-hole where|V(G)| ≥ 5.
Neely, Tehrani, and Zhang [6] and Tehrani, Dimakis, and

Neely [21] showed that ifG consists of disjoint cycles, then
r(G) = rmt (G) = |V(G)| − Ncycle for all m and t, where
Ncycles is the number of cycles (all being disjoint) inG.
This is commonly known ascycle cover. Yu and Neely [22]
represented index-coding instances using bipartite graphs, and
found r(G) for all planar bipartite graphs.

It has been verified by intensive computer calculations that
composite coding [10] (derived using Shannon random-coding
arguments) is optimal for allG with |V(G)| ≤ 5, giving r(G).

Unal and Wagner [11] derived the asymptotic optimal index
codelengthr(·) for all general (in the sense that each message

can be requested by several receivers) index-coding instances
up to three receivers. Their method is based on rate-distortion
theory, which also uses Shannon random-coding arguments.

To find rmt (G) by brute force, one can form theconfusion
graph [2] of G with mtn vertices, and calculate the chromatic
number (which is NP-complete) of the confusion graph. This
method is, however, intractable as the order of the confusion
graph grows exponentially withtn.

D. Main results of this paper

The main results of this paper are as follows: We find the
optimal index codelength and the minimum message alphabet
size required to achieve the optimal index codelength for the
following classes of index-coding instances:

1) (In Section IV) For anyG that can be made acyclic after
removing two or fewer arcs: We deriver(G), and show
that r(G) = rmt (G) for all integersm≥ 2 andt ≥ 1.

2) (In Section V) For anyG of up to five vertices (there
are 9847 non-isomorphic graphs in total):

a) For 9819 non-isomorphic graphs, we deriver(G),
and show thatr(G) = rmt (G) for all integersm≥ 2
and t ≥ 1.

b) For the remaining 28 non-isomorphic graphs, we
derive rm2k(G), and show thatr(G) = rm2k(G), for
all integersm≥ 2 andk ≥ 1.

Furthermore, for all the above cases, we show that linear
index codes (over a ring) are optimal.

Recall thatr2(G) is the solution for an index-coding instance
G where each message consists of a single binary bit. The
above result ofr(G) = r2(G), together with linear codes inF2

being optimal, means that the encoding can be done bit-by-bit
without loss of optimality. The advantages are of this are that
(i) the encoding is simple (bit-wise XOR of the messages),
and that (ii) the decoding is instantaneous. For cases where
r(G) = r22(G), we can achieve the optimal broadcast rate by
encoding (and decoding) two bits of messages at a time.

IV. Optimal Index Codelength when mais(G) ≥ |V(G)| − 2

A. Main result

In this section, we show the following theorem:
Theorem 1: If mais(G) ≥ |V(G)| − 2, then

r(G) = rmt (G) = minrk2(G) = mais(G), (16)

for any integersm ≥ 2 and t ≥ 1, and the minimum index
codelength is achievable using scalar linear codes over a ring
with mt elements.

It follows from Theorem 1 that the minimum alphabet size
required to achiever(G) is |X| = 2, i.e., binary messages.

This theorem will be used to establish the result for all
graphs up to five vertices in Section V.

Remark 2: Characterising graphs having a certain
minrk2(G) value is hard. Dau et al. [23] managed to char-
acterise allundirectedgraphs whoseminrk2(Gu) is |V(Gu)| −2
or |V(Gu)| − 1, and alldirectedgraphs whoseminrk2(G) is 2
or |V(G)|. They are, however, unable to characterise directed
graphs whoseminrk2(G) is |V(G)| − 1 or |V(G)| − 2. For any

5

directed graphG whosemais(G) equals|V(G)|−1 or |V(G)|−2,
we show in this paper that linear index codes are optimal,
meaning thatmais(G) = minrk2(G). So, we have incidentally
characterised a subset of directed graphs whoseminrk2(G)
equals|V(G)| − 1 or |V(G)| − 2.

Proof of Theorem 1: As we know from Lemma 1 that
mais(G) is a lower bound onrmt (G), we only need to prove
achievability.

Without loss of generality, letX = {0, 1, . . . , |X| − 1}. We
will show that scalar linear codes over the ringX is optimal.
To this end, we chooseY = Xp, and therefore the normalised
codelength is given byℓmt (G) = p.

1) mais(G) = |V(G)|: For this case,G is acyclic. As men-
tioned in the previous section, sending all messages uncoded
(i.e., φ(X) = X, and hence we have a linear code of length
ℓmt (G) = p = |V(G)| = n) achieves the MAIS lower bound,
and we have (16).

2) mais(G) = |V(G)|−1: For this case, the directed graphG
must contain at least one cycle; otherwise,mais(G) = |V(G)|.
Let the cycle beC ⊆ G.

We send a cyclic code forC and the rest of the messages
XV(G)\V(C) uncoded, forming an index code with a codelength
of |V(G)| − 1. The cyclic code allows all receiversi ∈ V(C)
can decodeXi . In addition, all receiversj ∈ V(G) \ V(C) can
decodeX j as the messages were sent uncoded.

3) mais(G) = |V(G)| −2: There are two possibilities forG:

(3.i) There are two vertex-disjoint cycles, or
(3.ii) There are no two vertex-disjoint cycles.

For case (3.i), we code the two disjoint cycles each with a
cyclic code, and send the rest of the messages inG uncoded.
This achieves a codelength of|V(G)| − 2.4

For case (3.ii), we will derive Lemmas 3 (stated next), which
says that ifmais(G) = |V(G)| − 2 and there is no two vertex-
disjoint cycles, thenG contains a subgraphG′ of the form
depicted in Figure 1, in which each arrow represents a path.

Now, note thatG′ is an interlinked cycle with inner-vertex
set {i1, u1,w1}. Here, for pathU, we label the vertices in the
path asu1→ u2→ · · ·ulast. Using the interlinked-cycle cover,
we obtain a scalar linear codes of length|V(G′)| − 2 over the
ring X for G′. Combining this with sending the remaining
messagesXV(G\G′) uncoded gives an index code with a total
codelength of|V(G)| − 2.

Remark 3: In a conference version of this paper [24], we
presented an alternative coding scheme that constructs a scalar
linear code of length|V(G′)| − 2 for G′.

B. Existence of a special structure: Figure 1

It is easy to obtain a saving of one for each vertex-disjoint
cycle using a simple cyclic code. The main challenge of
Theorem 1 is to show that for case (3.ii), even though we
cannot find two vertex-disjoint cycles, we can achieve a saving
of two. The following lemma is a key step.

4Let the two disjoint cycles beC1 andC2. The two cyclic codes, each for
one cycle, are of length|V(C1)|−1 and|V(C2)|−1 respectively. Together with
uncoded messages with a total length|V(G)| − |V(C1)| − |V(C2)|, we get an
overall codelength of|V(G)| − 2.

U
C

W

D
I

H

B

EF

hlast = blast = u1

elast = clast = w1

dlast = flast = i1

Fig. 1. An important element in proving Theorem 1 is to show that if
mais(G) = |V(G)| − 2 and condition (3.ii) is true, thenG must contain a
subgraphG′ shown above. Here, every arrow represents a path, which is
denoted by a capital letter. The paths do not share common vertices except the
end points. Vertices in each path is denoted by the corresponding small letter,
indexed in the direction of the arcs, e.g., pathC is c1 → c2 → · · · → clast.
All paths exceptI , W, andU must contain one or more arcs.

GA GB

Fig. 2. LetGs be a set of 28 non-isomorphic five-vertex graphs, formed by
by removing any number (zero to three inclusive) of dotted arcs from GA
(this gives eight non-isomorphic graphs) and removing any number of dotted
arcs fromGB (this gives 20 non-isomorphic graphs).

Lemma 3: If mais(G) = |V(G)| − 2 , and there are no two
vertex-disjoint cycles, thenG must contain a subgraph (not
necessarily an induced subgraph) shown in Figure 1.

Proof: See Appendix A.

V. Optimal Index Codelength for All Graphs up to Five
Vertices

In this section, we use Theorem 1 to obtain the optimal
index codelength for graphs up to five vertices. First, we define
Gs to be a set of 28 non-isomorphic five-vertex subgraphs of
the two graphs in Figure 2. More specifically,Gs consist of
• all eight non-isomorphic graphs formed by removing any

number (zero to three inclusive) of dotted arcs ofGA , and
• all 20 non-isomorphic graphs formed by removing any

number (zero to five inclusive) of dotted arcs ofGB.
Also, let G1:5 be the set of all non-isomorphic graphs up to
and including five vertices.G1:5 contains 9608 non-isomorphic
graphs [25].

We now state our main results forG1:5 \ Gs and forGs.
Theorem 2: For anyG ∈ G1:5 \ Gs,

r(G) = rmt (G) = minrk2(G) = mais(G), (17)

for any integersm≥ 2 andt ≥ 1. The optimal index codelength
is achievable usingscalar linear codes over a ring withmt

elements.
It follows from Theorem 2 that for anyG ∈ G1:5 \Gs, the

minimum message alphabet size required to achiever(G) is
|X| = 2.

Theorem 3: For anyG ∈ Gs, we have that

2 = mais(G) < r(G) = 2.5. (18)

6

Number of receivers,|V(G)| 1 2 3 4 5

Number of non-isomorphicG
1 3 16 218 9608
1 3 9 7 41 177 334 (Gs) 9246

1 27
Binary messages, i.e.,m= 2, t = 1 ∗

Messages of sizemt

m≥ 3, t = 1 (28)
m≥ 2, t = 2
.
.
.

.

.

.

m≥ 2, odd t (28)
m≥ 2, event
.
.
.

.

.

.

m≥ 2, t = ∞
Note: The column width is not indicative of the number of non-isomorphic graphs.
Legend: ∗ ∗ Solved by Bar-Yossef et al. [2] ∗ Solved by Arbabjolfaei et al. [10] ∗ ∗ ∗ Solved in this paper

TABLE I
Graphs for which the optimal index codelength is found for message of size mt

In addition, if m≥ 2 andt = 2k for some integerk ≥ 1, then

r(G) = rm2k(G) = 2.5, (19)

and the optimal index codelength is achievable usingvector
linear codes over a ring withmk elements.

It follows from Theorem 3 that for anyG ∈ Gs, the
minimum message alphabet size required to achiever(G) is
|X| = 4.

Proof of Theorem 2:Note that for any graph, we must
have that

1 ≤ mais(G) ≤ |V(G)|. (20)

We now prove Theorem 2 by considering graphs of different
orders. For|V(G)| ∈ {1, 2, 3}, we have

|V(G)| − 2 ≤ 1 ≤ mais(G), (21)

where the second inequality follows from (20). Invoking
Theorem 1, we get (16) in Theorem 2.

For |V(G)| = 4, if mais(G) ∈ {2, 3, 4}, then |V(G)| −
mais(G) ≤ 2. We again use Theorem 1 to get (16) in The-
orem 2. For the remaining case wheremais(G) = 1, any two-
vertex induced subgraph is a cycle (i.e., there are arcs in both
directions between any two vertices); otherwisemais(G) ≥ 2.
In other words, each receiveri know all other messagesX[4]\{i}.
So, sending a length-1 index code,X1+X2+X3+X4 mod |X|,
satisfies all receivers’ requirements, and achieves the MAIS
lower bound. So, we get (16), where the last equality is follows
by observing that scalar linear codes are optimal.

For |V(G)| = 5, if mais(G) ∈ {3, 4, 5}, then again we have
(16) in Theorem 2. Also, ifmais(G) = 1, we can use the same
argument for|V(G)| = 4 to show that the length-1 index code
of X1+ X2+X3+ X4+X5 mod |X| is achievable and is hence
optimal.

For all the above cases, scalar linear codes over the ringX

are optimal, and the MAIS lower bound is tight. The proof of
Theorem 2 is complete with Lemma 4 below, addressing the
remaining case.

The main challenge in proving Theorem 2 is to show the
following:

Lemma 4: If |V(G)| = 5, G < Gs, andmais(G) = 2, then

r(G) = rmt (G) = minrk2(G) = mais(G), (22)

for any integersm≥ 2 andt ≥ 1. The optimal index codelength
is achievable usingscalar linear codes over a ring withmt

elements.

Proof of Lemma 4: See Appendix B.

Proof of Theorem 3:See Appendix C.

The results of Theorems 2 and 3 in comparison with existing
results are summarised in Table I. In Table I, we consider
all non-isomorphic directed graphs up to and including five
vertices. The column denotes distinct non-isomorphic graphs.
For example, there are 218 non-isomorphic graphs with four
vertices. A cell is coloured if the optimal index codelength
of the corresponding graph has been found. We have used
different colours to indicate different research groups that
found the optimal index codelength. The rows represent the
message size, given bymt.

For example, out of the 218 non-isomorphic graphs with
four vertices, Bar-Yossef et al. have found the optimal index
codelength for 41 of them, for all message sizesmt. The 41
non-isomorphic graphs consists of the following:

• The empty graph,5 which is both acyclic and perfect6.
• 30 of them that are non-empty and acyclic [26].
• 10 of them that are non-empty and perfect [27]. (Note

that if a graph is not empty, it cannot be both acyclic and
perfect)

All the yellow cells correspond to acyclic and/or perfect
graphs, except for the graph marked with an asterisk, which
correspond to the (undirected) 5-cycle. For the 5-cycle, Bar-
Yossef et al. showed thatr2(G) = 3, i.e., when the messages are
binary. The lower bound was found by a brute-force exhaustive
search.

Also shown in the table, Arbabjolfaei et al. foundr(G) =
limr→∞ rmt (G) for all graphs up to five vertices.

Theorems 2 and 3 cover all coloured cells in the table,
except the asterisked cell.

5An empty graph contains no arc.
6For a directed graph to be considered prefect (in the contextof this paper),

it must be a symmetric, and the corresponding undirected graph is a perfect
graph.

7

A. Optimal codelength forGs with binary messages via the
confusion-graph technique

Recall thatGs contains all (non-strict) subgraphs ofGA and
GB in Figure 2 with none or some dotted arcs removed. Al-
though, in Theorem 3, we have derived the optimal codelength
for all G ∈ Gs whenmt when t is any even integer, we do not
have results for oddt.

In this section, we discuss the optimal codelength for the
members ofGs specifically when each message is a binary
bit, i.e., whenm = 2 andt = 1. This corresponds to the cells
in the 28 columns markedGs and in the top coloured row in
Table I.

1) Confusion graphs:One can use a brute-force technique
of confusion graph (see Bar-Yossef et al. [2] for example) to
determine the optimal codelength. We first describe confusion
graphs:

Definition 6: For an index coding instanceG and a mes-
sage alphabetX, its undirected confusion graphGconfusion

has |X||V(G)| vertices. The vertices are labelled with distinct
realisations of the message tuples, i.e.,{[x1x2 · · · xn] ∈ Xn},
wheren = |V(G)|. An edge exists between two vertices, sayx
and x′, if and only if there exists a receiverj ∈ [n] such that

x j , x′j , (23)

and xN+G(j) = x′N+G(j). (24)

Since message tuples corresponding to adjacent vertices
cannot be mapped to the same codeword (otherwise, some
receiver j cannot decodeX j due to (23) and (24)), any proper
colouring scheme gives an index code (where the colours map
to distinct index codewords), and vice versa. Hence, the total
number of distinct codewords required for encoding equals the
number of colours in the colouring scheme. Consequently,

rmt (G) =
log2 χ(Gconfusion)

log2 |X|
, (25)

whereχ(G) denotes the chromatic number of the undirected
graphG. Note that the code here can be non-linear.

Remark 4: Using the method of confusion graph to de-
terminermt (G) is intractable when the message alphabet size
or the number of messages grows. Furthermore, this method
alone cannot be used to determiner(G).

2) 5-cycle with binary messages:If G is a 5-cycle (a
member ofGs) and the messages are binary, i.e.,|X| = 2, its
confusion graphGconfusion contains 32 vertices and 240 edges.
One can use a brute-force search to find thatχ(Gconfusion) = 8.
This givesr2(G) = 3 [2]. This corresponds to the yellow cell
marked with an asterisk in Table I. For this case, it turns out
that scalar linear codes are optimal.

3) Other members inGs: For other members inGs, we
first considerGA and GB in Figure 2. For these two graphs,
we find thatχ(Gconfusion) = 7. This meansr2(G) = 2.8074.
The optimal codelength can be achieved by non-linear codes
that map{0, 1}5 7→ {0, 1, . . . , 6}, where we choose the output
alphabet size to be|Y|p = 7.

For the rest of the members inGs, one can repeat this
procedure to calculater2(G).

4) Restricting the output alphabet to be a binary vector:
Now, if we restrict the output alphabet to be a binary vector,
we have the following:

Theorem 4: For anyG ∈ Gs,

rmt (G) ≤ 3, (26)

for any integersm≥ 2 andt ≥ 1. Furthermore, ifm= 2, t = 1,
and |Y| = 2, then

r2(G) = 3, (27)

and the optimal index codelength is achievable using binary
scalar linear codes.

Proof: (Achievability):From Theorem 3, for anyG ∈ Gs,
mais(G) = 2. We can always remove some arc(s) (dotted or
solid) from G to obtain a subgraphG− wheremais(G−) = 3
and |V(G)−| = 5. With this, we have

rmt (G) ≤ rmt (G−) = 3, (28)

for any m≥ 2, t ≥ 1. Here, the inequality is due to Lemma 5
in Appendix B, and the equality follows from Theorem 1. So,
a scalar linear code of length 3 exists forG for any m and t.

(Lower bound):We have manually found thatχ(G′confusion) =
7, whereG′confusion is the confusion graph of anyG′ ∈ {GA ,GB}

for m = 2 and t = 1. From the proof of Lemma 5 in
Appendix B, for anyG ∈ Gs with the corresponding confusion
graphGconfusion, we have that

χ(Gconfusion) ≥ χ(G′confusion) ≥ 7. (29)

By definition,

rmt (G) =
log2 χ(Gconfusion)

log2 |X|
= min

φ,{ψi }

p log2 |Y|

log2 2
, (30)

wherep is the length of the codewords.
If we restrict the codeword to be binary vectors, i.e.,|Y| = 2,

we have

p ≥ log2 χ(Gconfusion) = log2 7 = 2.8074. (31)

Sincep must be an integer, we havep ≥ 3. We complete the
proof by noting the existence of length-3 scalar linear codes.

VI. Conclusion

In this paper, we have studied unicast index coding, a special
class of index coding where each receiver requests only one
message, and each message is requested by only one receiver.
To find the optimal index codelength and optimal index codes,
we have used a graphical approach of representing each index-
coding instance by a directed graph. We first derived the opti-
mal index codelength for all graphs whose order at most two
more than that of its maximum acyclic induced subgraph. We
then use this result, combined with a combinatoric approach,
to derive the optimal index codelength for all graphs with five
or fewer vertices. We also showed that linear codes are optimal
for all graphs in these two classes. While existing results give
the optimal index codelength for all graphs with five or fewer
vertices when the message alphabet size tends to infinity, in
this work, we find the optimal codelength when the message
alphabet sizes are finite.

8

Appendix A
Proof of Lemma 3: A Special Configuration

Recall thatG must satisfy these two conditions:

• (C1) mais(G) = 2.
• (C2) There are no two disjoint cycles inG.

We first give an intuition for Lemma 3, by showing that
there must exists three joint cycles7 in G, in Subsection A-A.
In Subsections A-B to A-F, we prove that these three joint
cycles must assume the configuration in Figure 1.

A. The existence of three joint cycles

Sincemais(G) = 2, let Vr = {u, v} be the vertex set removed
from from G to get an MAIS. We first show the following:

Proposition 2: There exist three cycles inG, each contain-
ing eitheru, v, or bothu andv.

Proof: Every cycle must containu, v, or both. Otherwise,
removingu andv will not give an acyclic induced subgraph.

Suppose that there is only one cycle inG. Removing any
vertex from the cycle gives an acyclic induced subgraph.
Hence,|V(G)| −mais(G) = 1. (Contradiction)

Suppose that there are only two cycles inG. Note that these
two cycles cannot be vertex-disjoint, as per condition (C2)
above. So, these two cycles must shared at least one vertex,
and removing only this shared vertex gives an acyclic induced
subgraph, i.e.,|V(G)| −mais(G) = 1. (Contradiction)

So, there must exist at least three cycles.
We further show some properties of these three cycles:
Proposition 3: There exist three cycles inG, where

1) any two cycles must have at least one common vertex,
and

2) the three cycles do not have any common vertex.

Proof: It follows from Proposition 2 that there are at least
three cycles. As no two cycles are vertex-disjoint, we have
property 1. Arbitrarily select one cycle, sayC′. Consider every
other cycleCk , C′, and denote the set of common vertices
betweenCk andC′ asVcommon(k) , V(Ck)∩V(C′). Since every
Ck shares some vertex withC′, we haveVcommon(k) , ∅.

Now suppose that
⋂

all Ck,C′ Vcommon(k) , ∅, meaning that
some vertex is shared among all cycles. Then removing only
this vertex fromG would have resulted in an acyclic subgraph
(contradiction). So, there must exist two cycles, sayC1 and
C2, whereVcommon(1)∩ Vcommon(2) = ∅. SelectingC′, C1, and
C2 gives property 2.

Denote the subgraph formed by the three cycles in Propo-
sition 3 byGsub. We have the following:

Proposition 4: The subgraphGsub, formed by the three
cycles in Proposition 3, satisfies both conditions (C1) and
(C2).

Proof: SinceG cannot contain two vertex-disjoint cycles,
so does any of its subgraphs. We have condition (C2). Denote
by N the minimum number of vertices we need to remove to
makeGsub acyclic. From Proposition 3, there is no common
vertex among the three cycles. So, removing any one vertex

7Here, by joint cycles, we mean cycles that are not disjoint. We avoid
using the term interlinked cycles, as they refer to a specificconfiguration in
this paper (see Definition 3).

will not disconnect all three cycles simultaneously, i.e.,N ≥ 2.
On the other hand, we only need to remove two vertices,
Vr, to makeG acyclic. So, removingVr ∩ V(Gsub) from Gsub

will definitely make it acyclic, i.e.,N ≤ 2. So, we have
condition (C1).

Note that these three cycles,Gsub, capture all the constraints
we impose onG in Lemma 3.

B. The three joint cycles must assume Figure 1

We will proceed to show thatGsub must assume the
configuration in Figure 1. We will build the configuration
from a cycle, sayC1, in Gsub. We call it the centre cycle.
We re-label the vertices inGsub such that the vertices in
C1 are in ascending order in the direction of the arcs, i.e.,
1 → 2 → · · · → (|V(C1)| − 1) → |V(C1)| → 1, where the
choice of vertex 1 is arbitrary.

For any pathP that originates from vertexb and terminates
at vertexc, i.e., b→ · · · → c, we refer to all{z : z ∈ V(P) \
{b, c}} as internal vertices. Here, we allowb = c; in such a
case,P is a cycle.

We first show the following:
Proposition 5: Consider the subgraphGsub and the cycle

C1 in the subgraph. Every arc not inC1 belongs to someouter
path, defined as a path that originates from a vertex inC1 and
terminates at a vertex (which can be the same vertex) inC1,
but with all arcs and all internal vertices (if exists) not inC1.

Proof: SinceGsub is constructed by three cycles, any arc,
say (i → j), not in C1 must belong to eitherC2 or C3 (or
both). Furthermore, from Proposition 3,C2 andC3 must each
share some vertex withC1. Hence, (i → j) must belong to an
outer path that originates fromC1 and terminates atC1.

Note that the outer paths cannot form any cycle outside
C1. Otherwise, we have two vertex-disjoint cycles, and this
violates condition (C2).

It follows from Proposition 5 thatGsub consists of only a
cycleC1 and outer paths (fromC1 and back toC1). Figure 4(a)
shows an example ofGsub where C1 is marked with thick
arrows and all outer paths thin arrows.

We now prove a key proposition for proving Lemma 3.
Proposition 6: Remove vertex 1 inC1. There exists another

cycle in Gsub if and only if there is an outer path from some
b ∈ V(C1) \ {1} to somec ∈ V(C1) \ {1}, whereb ≥ c.

Proof: [The converse:] We remove vertex 1. If there is
another cycle, then there is a vertex (not vertex 1) inC1 that
has a path back to itself (this is because any cycle must share
some vertex withC1). This cannot happen if every outer path
terminates at a higher-indexed vertex (we can ignore all outer
paths that originate or terminate at vertex 1 as the vertex has
been removed). So, there must exist an outer path withb ≥ c.

[The forward part:] Clearly, ifb = c, we have another cycle
formed by the outer path. Otherwise, i.e.,b > c, the outer
path and the path alongC1 from c to b form a cycle. See
Figure 3(a) for an example.

Next, we define alooping outer path as an outer path that
originates and terminates at the same vertex inC1. The graph
Gsub can be categorised as follows:

• there exists at least one looping outer path (Case 1), or

9

1
b

c

P

looping
outer path

(a)

1
b

c

P

the sequence of vertices shared by
P and the looping outer path

(b)

1
b

c

P

d e

(c)

1
b

c

P

d
e

(d)

Fig. 3. Case 1 where there exists a looping outer path (drawn with thin solid lines) that starts and ends at vertex 1. The centre cycleC1 is drawn with thick
lines, and the second outer path (denoted asP) from b to c, dashed lines. To get another cycle after removing vertex 1,we must have that 1< c ≤ b ≤ |V(C1)|,
as shown in subfigure (a). However, there are two vertex-disjoint cycles in subfigure (a). So,P must touch the looping outer path, as shown in subfigure (b).
Taking the segment ofP from C1 to the looping outer path, and that from the looping outer path back toC1, we have subfigure (c). We can re-draw the path
from 1 to c and that frome to 1 in subfigure (c) to get subfigure (d), where we have drawn the new centre cycle with thick lines.

• there is no looping outer path (which we will further
divide into Cases 2 and 3).

We will show that in any case, we have Figure 1.

C. Case 1: There exists a looping outer path

Suppose that there exists a looping outer path from and to
vertex 1 ∈ V(C1). This incurs no loss of generality as the
choice of vertex 1 is arbitrary. Removing vertex 1 disconnects
both cycleC1 and the cycle formed by the looping outer path.
Recall that we need to remove two vertices to disconnect all
cycles inGsub. So, there must exist another cycle inGsub.

From Proposition 6, there exists another outer pathP from
b ∈ V(C1) \ {1} to c ∈ V(C1) \ {1}, whereb ≥ c. The outer
path P must share some vertex with the looping outer path;
otherwise there exist two cycles as shown in Figure 3(a).

Re-label the internal vertices of the looping outer path in
ascending order, as follows: 1→ (|V(C1)| + 1) → (|V(C1)| +
2) → · · · → (|V(C1)| + L) → 1, whereL is the number of
internal vertices. It follows that the sequence of verticesshared
by P and the looping outer path (in the order of the direction
of P) must be in ascending order (see Figure 3(b)); otherwise,
a cycle forms outsideC1.

See Figure 3(c). Consider only the following segments of
P: (i) from b to the vertex whereP first touches the looping
outer path, denoted byd; and (ii) the vertex whereP leaves the
looping outer path, denoted bye, to c. It follows that d ≤ e.
By construction, all paths in Figure 3(c) do not share internal
vertices, i.e., they touch only at end points. Finally, re-draw
Figure 3(c) to get Figure 3(d), which is isomorphic to Figure1
(where the thick lines in Figure 3(d) correspond to pathsI , H,
U, C, W, andD in Figure 1).

Note that vertices 1,b, and d must be unique. We have
shown that if there is a looping outer path, then we have the
configuration in Figure 1, where pathI has zero arc, pathsW
andU possibly have zero arc (ifb = c and/or d = e), and all
other paths must contain at least one arc.

C1

(a)

C1

coverage

(b)

C1

b

c

(c)

C1

(d)

Fig. 4. We can always drawGsub as in subfigure (a), i.e., a centre cycleC1
and outer paths fromC1 and back toC1. Subfigure (b) shows the coverage of
an outer path, i.e., vertices inC1 in the grey areaexcludingthe two end points.
Subfigure (c) shows that when multiple outer paths originatefrom one vertex,
we consider only the outer path with the largest coverage, i.e., the dotted path
from b to c. The outer paths in subfigure (d) provide full coverage.

D. No looping outer path

For a non-looping outer path from vertexb ∈ V(C1) to
c ∈ V(C1) \ {b}, we say that the vertices inC1 from b to c
(in the direction of the arcs inC1) but excludingb and c is
coveredby this outer path. See Figure 4(b) for an example.

For the purpose of this paper, we exclude outer paths with
strictly smaller coverage, or multiple outer paths with equal
coverage. Referring to Figure 4(c), consider an outer path that
originates fromb. Suppose that it has multiple paths back
to C1. We consider only the path (back toC1) that has the
largest coverage. Similarly, for any path that terminates atc,
we consider only the path (leavingC1) that has the largest
coverage. By doing this, each path that we consider has a
unique originating vertex and a unique terminating vertex.

We now show the following property:
Proposition 7: If there is no looping outer paths inGsub,

then all largest-covering outer paths must, together, provide
full coverage for the cycleC1. In other words, every vertex in
C1 must be covered by at least one outer path.

Proof: Consider any vertexa ∈ V(C1). Re-labela as
vertex 1, and other verticesV(C1) in ascending order in the
arc direction. Remove vertex 1 fromGsub. There must exist
another cycle. It follows from Proposition 6 that an outer path
P from b to c must exist, where 1< c < b ≤ |V(C1)| (c , b
since there is no looping path), meaning that this outer path

10

C1

(a)

C1

P

· · ·

(b)

C1

not required

· · ·

(c)

Fig. 5. (a) If two outer paths provide full coverage, we can always form two
disjoint cycles, one formed by the thick solid path, and the other the dashed
path. (b)Gsub with K outer paths, whereK ≥ 4, providing full coverage can
be converted toK − 2 outer paths providing full coverage. (c) If two non-
adjacent outer paths give overlapping coverage (e.g., the two dotted paths),
then the paths in between are redundant (the dashed path), i.e., K − 1 outer
paths are sufficient to give full coverage, instead ofK.

must cover vertex 1. We can safely ignore other outer paths
that provide smaller or equal coverage, because ifP does not
cover vertex 1, then none of the ignored outer paths does.
Since the choice ofa is arbitrary, we have Proposition 7.

For example, the outer paths in Figure 4(d) provide full
coverage forC1, but the outer paths in Figures 4(a)–(c) do not.
Removing one uncovered vertex fromC1 makesGsub acyclic.

Now, we considerGsub that consists of cycleC1 and all
outer paths that provide the largest coverage (i.e., we remove
all other arcs have gives smaller or equal coverage). We are
ready to proceed with Cases 2 and 3, defined as follows:
• (Case 2) There is no looping outer path, and no two outer

paths have any common internal vertex.
• (Case 3) There is no looping outer path, and there exist

two outer paths sharing the same internal vertex.

E. Case 2: No looping outer path, and all outer paths do not
share internal vertices

We will show that we can always find three outer paths that
provide full coverage.

First, note that one outer path cannot provide full coverage.
Suppose that we can find two outer paths providing full
coverage. We illustrate in Figure 5(a) that we can always form
two vertex-disjoint cycles. So, this scenario cannot happen.

Next, suppose that we can find three outer paths providing
full coverage, we have exactly Figure 1. As there is no looping
outer path, the nine paths in Figure 1 each have one or more
arcs.

Finally, we show that if we can findK ≥ 4 outer paths
providing full coverage, we can always modify the cycles such
that (K − 2) outer paths provide full coverage. We illustrate
this in Figure 5(b). We do the following:

1) Combine the dotted arrows to be the newC1.
2) Combine the two adjacent dashed paths, and the dashed

arc in C1 that connects the two dashed outer paths
(denoted byP, which can be of length 0) into a new
outer path.

3) Remove all arcs and internal vertices in the the thick
solid paths inC1. Each thick solid path must contain at
least one arc; otherwise, the outer paths cannot provide
full coverage.

Note that by doing this, the new graph still retains the structure
of a cycle with outer paths covering it. The new graph hasK−2

C1

p1
plast

q1

qlast

z

(a)

C1

p1

plast

q1

qlast

z

(b)

C1

p1

plast q1

qlast

zq′ p′

(c)

Fig. 6. The overlapping of the coverage of two outer paths, where the dark
grey lines represent the coverage of the outer pathP (p1 → · · · → plast), and
the light grey lines that of the outer pathQ (q1 → · · · → qlast)

outer paths providing full coverage. This reduction is always
possible as the coverage of two non-adjacent outer paths does
not overlap, illustrated in Figure 5(c).

By repeating this step, starting from anyK ≥ 4 outer paths,
we can find a graph withK = 2 or K = 3 outer paths. As
K = 2 is not possible, we will always get a graph withK = 3
outer paths providing full coverage, which is in the form of
Figure 1.

F. Case 3: No looping outer path and two outer paths share
some internal vertices

Let the two outer paths that share some common internal
vertex beP andQ, and one of the shared internal vertices be
z. Further, let the originating and terminating vertices ofP be
p1 and plast respectively, and those ofQ be q1 andqlast. Here,
p1 , plast andq1 , qlast as there is no looping outer path, and
p1 , q1 and plast , qlast as no two outer paths have the same
originating or terminating vertices.

Now, the coverage ofP and Q can be either (a) non-
overlapping, (b) overlapping once, or (c) overlapping twice,
as shown in Figure 6. The dark grey line shows the coverage
of P, and the light grey line that ofQ. By definition, there is
a subpath fromp1 to z alongP and another subpath fromz to
plast alongP. The two subpaths must be vertex-disjoint, except
z, as there is no cycle inP. Similarly, we have two vertex-
disjoint paths fromq1 to z, and fromz to qlast, both alongQ.
This means, there is an subpath fromp1 to qlast throughz, and
another fromq1 to plast throughz. So, p1 , qlast, q1 , plast,
as there is no looping outer path, and hencep1, plast, q1, and
qlast are distinct.

Suppose that we have Figure 6(a). The largest-covering
outer path fromp1 should terminate atqlast, and that from
q1 at plast. The outer path fromp1 to qlast and that fromq1 to
plast should have been chosen. This means the largest-covering
paths actually overlap twice, i.e., we should have Figure 6(c).

Suppose that we have Figure 6(b). The outer path fromp1

to qlast, throughz, gives the largest coverage, and it would
have been chosen.

So, we can only have the configuration in Figure 6(c), where
the coverage overlaps twice. The coverage fromp1 to qlast is
smaller than that fromp1 to plast. So, the largest-covering outer
path from p1 was correctly identified. Similarly, the largest-
covering outer path fromq1 terminates atqlast.

11

We will now show that we can always get Figure 1 from
Figure 6(c). Recall that there is a subpath fromp1 to z and
another subpath fromz to qlast, and these two subpaths are
vertex-disjoint, exceptz. Otherwise, we get a cycle disjoint
from C1. We denote the outer path fromp1 to qlast (through
z) by Z (drawn with a thick dashed line).

Next, recall that there is a subpath fromq1 to z, and another
from z to plast. So, the subpath fromq1 to z must meetZ.
Denote the vertex it first meetsZ asq′. Similarly, the subpath
from z to plast must share some common vertices withZ (at
least vertexz). Let the last shared vertex bep′. With this
construction,Z, the subpath fromq1 to q′, and the subpath
from p′ to plast are vertex-disjoint, except atp′ andq′.

We now re-draw Figure 6(c) as follows: Let the path from
qlast to p1 alongC1 (drawn with a thick solid line) plus path
Z (drawn with a thick dashed line) be the centre cycle, and let
the subpaths (drawn with dotted arrows) (i) fromp1 to qlast

alongC1, (ii) from p′ to plast, and (iii) from q1 to q′ be the
three outer paths. Note that onlyp′ andq′ can co-locate. The
resultant graph is isomorphic to Figure 1, with pathI possibly
having zero arc (ifp′ = q′ = z).

Combining the Cases 1–3, we have Lemma 3. �

Appendix B
Proof of Lemma 4

We first note the following:
Observation 1: If mais(G) = 2, then any induced subgraph

of G with three vertices must contain a cycle.8 Otherwise,
mais(G) ≥ 3 by considering the 3-vertex induced subgraph
without a cycle.

We define edges in directed graphs as follows:
Definition 7: Consider a directed graphG with vertex set

V(G) and arc setA(G). For a pair of verticesi, j ∈ V(G), we
say that there is anedgebetween these two vertices if and
only if (i → j) ∈ A(G) and (j → i) ∈ A(G). A cycle formed
by edges is called anundirected cycle.

As the proof of the lemma is rather involved, we divide
the set of all graphs to be considered in this lemma, i.e., allG
with |V(G)| = 5, G < Gs, andmais(G) = 2, into four categories
according to the number of undirected cycles inG:

1) There is no undirected cycle.
2) There exists an undirected cycle of length 3.
3) There is no undirected cycle of length 3, but there exists

an undirected cycle of length 4.
4) There is no undirected cycle of length 3 or 4, but there

exists an undirected cycle of length 5.

Note that, by definition, there cannot be any undirected
cycle of length 2 or less.

A. Two useful lemmas

We say thatG− is anarc-deletedsubgraph ofG if V(G−) =
V(G) and A(G′) ⊆ A(G), i.e., removing zero or some arc(s)
from G but retaining all the vertices.

We first prove two lemmas to be used subsequently:

8Recall that, unless stated otherwise, cycles refer to directed cycles.

1 2

3 4

Fig. 7. If there is no edge in the graph, then{1, 3, 4} cannot contain a cycle.

Lemma 5: Let G be an arc-deleted subgraph ofG+, and
G− be an arc-deleted subgraph ofG. Then,

rmt (G+) ≤ rmt (G) ≤ rmt (G−), (32)

and an index code forG− is an index code forG andG+.
Proof: Each receiver inG+ has prior messages of at least

what it has inG, and it requests the same message (i.e.,
receiveri requestsXi). So, any index code forG satisfies all
decoding requirements forG+ and hence is an index code
for G+. This provesrmt (G+) ≤ rmt (G). By repeating the same
argument, we havermt (G) ≤ rmt (G−).

Lemma 6: If |V(G)| = 5 andmais(G) = 2, then the induced
subgraph of any four vertices must contain an edge.

Proof: We will prove the lemma by contradiction. Sup-
pose that there is an induced subgraph of four vertices without
an edge. Recall that any induced subgraph of three vertices
must contain a cycle. Referring to Figure 7, there must be a
directed cycle in{1, 2, 3}. Since there is no edge, there cannot
be any 2-cycle. Without loss of generality, let the cycle be
1 → 2 → 3 → 1. Again, as there cannot be any edge, the
cycle in {2, 3, 4} must be 2→ 3→ 4→ 2. Now, for {1, 3, 4}
to contain a cycle, it must contain an an edge (contradiction).
We would have obtained the same result had we started by
choosing the cycle in{1, 2, 3} to be 1→ 3→ 2→ 1.

B. Basic ideas

We will prove Lemma 4 using the following ideas: For each
category, we will show that anyG must contain some a arc-
deleted subgraph, sayGsub. We then show that there exists
a scalar linear index code of length 2 (over the ringX) for
Gsub, thereby establishingrmt (Gsub) ≤ 2. SinceGsub = G−,
from Lemma 5, we must have thatrmt (G) ≤ 2, where the 2-bit
achievability uses the same linear code forGsub. As mais(G) =
2 is a lower bound onrmt (G), we establishrmt (G) = 2. We will
use a combinatoric approach.

C. Category 1: No undirected cycle

We start with the first category where there cannot be any
undirected cycle inG. We have the following subcategories:

1) There is one or no edge:If there is no edge or only one
edge, we can always find an induced subgraph of four vertices
with no edge. It follows from Lemma 6 thatmais(G) , 2
(contradiction). Figure 8 shows an example where the graph
G0.1 contains only one edge 1− 2, and the subgraph induced
by {2, 3, 4, 5} cannot contain any edge.

Here, we use the notation Gx.y, wherex is the length of the
shortest undirected cycle inG, andy is the number of edges.

12

1

2

34

5

G0.1
impossible

1

2

34

5

G0.2a
impossible

1

2

34

5

G0.2b
X1 + X2 + X3 + X4

X5 + X1 + X2

Fig. 8. Gsub where there is one or two edges. The first two graphs are
impossible formais(G) = 2. For G0.2b, the length-2 index code shown here
is also an index code for anyG (with five vertices) containing this graph.

1

2

34

5

G0.3a
impossible

1

2

34

5

G0.3b
contains G0.2b

1

2

34

5

G0.3c
X1 + X2 + X3

(X4 + X5) + x1

Fig. 9. Gsub where there are three edges and no undirected cycle. The first
graph is impossible formais(G) = 2, and there exists two-bit linear codes for
the second and the third graphs.

2) There are only two edges:The two edges inG can either
be connected (see G0.2a in Figure 8) or disconnected (see
G0.2b). We need to consider only non-isomorphic graphs, as
the labelling of indices are arbitrary.

For G0.2a, the subgraph induced by vertices{1, 3, 4, 5}
contains no edge. By Lemma 6, this cannot happen.

For G0.2b, since there is no edge in{1, 4, 5}, there must be a
length-3 cycle. Without loss of generality (due to symmetry),
let the cycle by 1→ 4→ 5→ 1. This necessitates the cycle
in {1, 3, 5} to be 1→ 3→ 5→ 1. The cycles in{2, 3, 5} and
{2, 4, 5} must also take the forms shown in the figure.

Note that G0.2b is an interlinked cycle withinner vertices
{1, 2, 3, 4}. The interlinked-cycle cover gives an index code of
length 2: [(X1+X2+X3+X4) (X5+X1+X2)] (see Definitions 3
and 4). Here, it is understood that the addition is performed
over the ringX.

So, anyG with 5 vertices, no undirected cycle,mais(G) =
2, and only two edges must contain an arc-deleted subgraph
isomorphic to G0.2b. By Lemma 5,rmt (G) ≤ rmt (G0.2b)≤ 2.
Since 2= mais(G) ≤ rmt (G), we havermt (G) = 2.

3) There are only three edges:Without any undirected
cycle, three edges can form only three non-isomorphic con-
figurations as depicted in Figure 9.

If the three edges form a star, we have G0.3a. By Lemma 6,
it is impossible as the induced subgraph{2, 3, 4, 5} has no edge.

If the three edges form a path, we have G0.3b. The vertex set
{1, 4, 5} must contain a cycle. Without loss of generality (due
to symmetry), let it be 1→ 4→ 5→ 1. The rest of the cycles
for subgraphs with three vertices are then fixed. Since G0.3b
contains G0.2b as an arc-deleted subgraph, invoking Lemma 5,
rmt (G0.3b)≤ rmt (G0.2b)≤ 2, and the length-2 index code for
G0.2b also an index code for G0.3b.

If one of the three edges is disjoint from the other two, we
have G0.3c. By symmetry and adding arcs to form cycles in
{1, 3, 5} and {1, 3, 4}, we have the configuration in the figure.

1

2

34

5

G0.4a
impossible

1

2

34

5

G0.4b
contains G0.2b

1

2

34

5

G0.4c

1

2

34

5

G0.4d
contains G03.c

1

2

34

5

G0.4e
X1 + X2 + X3

X1 + X4 + X5

1

2

34

5

G0.4f
X3 + X4 + X5

(X1 + X2) + X3

1

2

34

5

G0.4g or G0.4g with
some dotted arc(s) removed

(belong toGs)

Fig. 10. Gsub where there are four edges and no undirected cycle.

G0.3c is an interlinked cycle with inner vertices{1, 2, 3} and
a super-vertex set{4, 5} (see Definition 5). For an interlinked
cycle of this type, the interlinked-cycle cover gives a index
code [(X1 + X2 + X3) ((X4 + X5) + X1)] of length 2.

4) There are only four edges:Without any undirected cycle,
four edges can form only three non-isomorphic configurations
G0.4a, G0.4b, or G0.4c in Figure 10.

If the four edges form a star, i.e., G0.4a, it is an impossible
subgraph as{2, 3, 4, 5} does not contain any edge.

For configuration G0.4b, the vertex set{1, 4, 5}must contain
a length-3 cycle. Without loss of generality (due to symmetric),
let an arc in the cycle be 5→ 1, and so the cycle is 1→ 4→
5 → 1. With this, the cycles for{1, 3, 5} is also fixed. We
see that this graph contains G0.2b as an arc-deleted subgraph,
and hencermt (G0.4b)≤ rmt (G0.2b)≤ 2, and the length-2 linear
code for G0.2b is also an index code for G0.4b.

If the four edges form a path, we need to further categorise
all G that contain G0.4c. Since the positions of edges in G0.4c
are fixed, and we can only add arcs. The only positions to add
arcs are within the pairs{(1, 4), (2, 4), (2, 5)}, and we can only
add at most one arc in each pair (adding arcs in both directions
forms an edge). So, anyG in this category must satisfy either
of the following:
• If there is an additional arc within any pair in
{(1, 4), (2, 4), (2, 5)} from a larger index to a smaller index,
i.e., 4→ 1, 4→ 2, or 5→ 2, we get a graph that contains
G0.4d, G0.4e, or G0.4f, respectively, as an arc-deleted
subgraph. Note that a graph can also simultaneously
contain more than one of these graphs as subgraphs. Note
that

– G0.4d contains G0.3c as a subgraph;
– G0.4e has a length-2 index code [(X1+X2+X3) (X1+

X4 + X5)] ;
– G0.4f contains an interlinked cycle with inner ver-

tices {3, 4, 5} and a super-vertex set{1, 2}.
• Otherwise, we must get G0.4g or G0.4g with some of the

dotted arcs removed. These graphs belong toGs, and we
will deal it Theorem 3.

A length-2 linear code exists for each of G0.4d, -e, or -f.
5) There are five of more edges:This configuration is

impossible as it is known to contain an undirected cycle.

13

1

2

34

5

G3.3
X4 + X4

(X1 + X2 + X3) + X4

1

2

34

5

G3.4a
X1 + X2 + X3

X4 + X5

1

2

34

5

G3.4b
X1 + X2 + X3 + X4

X5 + X2 + X3

1

2

34

5

G3.4c
X1 + X2 + X3 + X4

X5 + X4

1

2

34

5

G3.5a
contains G0.4e

1

2

34

5

G3.5b
contains G3.4b

1

2

34

5

G3.5c
X1 + X2 + X3 + X5

X4 + X5

1

2

34

5

G3.6a
X1 + X2 + X3 + X4

X5

1

2

34

5

G3.6b
contains G3.4a

1

2

34

5

G3.6c
contains G3.4c

1

2

34

5

G3.6d
contains G3.4c

Fig. 11. Gsub where there is a length-3 undirected cycle (among vertices 1,
2, and 3; marked with continuous lines). Additional edges are marked with
dashed lines. Arcs are then added so that every three vertices must contain at
least one cycle.

So, we have shown that for anyG < Gs such that|V(G)| = 5,
mais(G) = 2, andG contains no undirected cycle, then it must
contain either G0.2b, G0.3c, G0.4e, or G0.4f as an arc-deleted
subgraph. For any case,r(G) = rmt (G) = 2 for anym and t.

D. Category 2: An undirected cycle of length 3

Without loss of generality, let the undirected cycle be 1−
2− 3− 1 (depicted as solid lines in Figure 11). First, if there
is an additional edge 4− 5 (denoted by G3.4a in Figure 11),
there exists a length-2 index code using the clique cover [(X1+

X2) (X3 + X4 + X5)].
Otherwise (i.e., no edge between 4 and 5), any additional

edge (in addition to 1− 2− 3 − 1) must be between{1, 2, 3}
and{4, 5}. For this, we have the following categories, grouped
by the number of additional edge (dashed lines in Figure 11):

1) No edge between the groups{1, 2, 3} and {4, 5}: The
only non-isomorphic graph where every three vertices contain
a cycle is depicted in G3.3. This is an interlinked cycle with
inner vertices{4, 5} and a super-vertex set{1, 2, 3}. An index
code for this graph is [(X4 + X5) ((X1 + X2 + X3) + X4)].

2) One edge between the groups:Without loss of general-
ity, let the additional edge be 1−4. Two non-isomorphic graphs
with different arc positions are possible: G3.4b and G3.4c.
They are interlinked cycles with inner vertices{1, 2, 3, 4}.

3) Two edges between the groups:If the two edges connect
four different vertices, we have G3.5a. If the two edges connect
between the same vertex in{1, 2, 3} to two different vertices
in {4, 5}, we have G3.5b. Otherwise, if the two edges connect
between different vertices in{1, 2, 3} to the same vertex in
{4, 5}, we have G3.5c, which is an interlinked cycle with inner
vertices{1, 2, 3, 5}.

1

2

34

5

G4.4
X1 + X2 + X3 + X4

X5 + X1 + X2

1

2

34

5

G4.5
contains G0.3c

1

2

34

5

G4.6
contains G4.5

Fig. 12. Gsub where there is a length-4 undirected cycle (marked with thick
solid lines) and no length-3 undirected cycle. Additional edges are marked
with dashed lines. Arcs are then added so that every three vertices must contain
at least one cycle. There are only three non-isomorphic graphs.

1

2

34

5

(a)

1

2

34

5

G5.5a= GB ∈ Gs

1

2

34

5

G5.5b
contains G0.4f

1

2

34

5

G5.5c
contains G0.4e

Fig. 13. Gsub where there is a length-5 undirected cycle (marked with thick
lines) and no length-3 or -4 undirected cycle.

4) Three edges between the groups:The three edges can
be placed in three non-isomorphic positions: (i) Between three
vertices in{1, 2, 3} and one vertex in{4, 5}, we have G3.6a; (ii)
Between three vertices in{1, 2, 3} and two vertices in{4, 5},
we have G3.6b; (iii) Between two vertices in{1, 2, 3} and two
vertices in{4, 5}, we have G3.6c and G3.6d. For G3.6a, the
clique cover gives a linear index code [(X1+X2+X3+X4) X5].

5) Four or more edges between the groups:We can show
that the graph will always contain G3.4a with vertex rela-
belling.

So, we have shown that for anyG < Gs such that|V(G)| = 5,
mais(G) = 2, andG contains an undirected cycle of length 3,
then there exists a linear index code of length 2, which can be
constructed using the interlinked-cycle cover (which includes
the clique cover as a special case).

E. Category 3: An undirected cycle of length 4 and no
undirected cycle of length 3

Next, we consider the category where there is an undirected
cycle of length 4; without loss of generality, let the cycle be
1−2−3−4−1. We find graphs when there is (i) no additional
edge, (ii) one additional edge, or (iii) two additional edges.
Note that there cannot be three additional edge, as it will create
a length-3 undirected cycle. For each graph here, there exists
a length-2 linear index code, as shown in Figure 12. Note that
F4.4 is an interlinked cycle with inner vertices{1, 2, 3, 4}.

F. Category 4: An undirected cycle of length 5 and no undi-
rected cycle of length 3 or 4

Without loss of generality, let the undirected cycle be 1−
3−5−2−4−1. With this, there cannot be any additional edge;
otherwise, we get a length-3 or -4 cycle. Also, any additional
arc must be between adjacent vertices on the “circumference”,
i.e., within any pair in{(1, 2), (2, 3), (3, 4), (4,5), (5, 1)}.

14

1

2

34

5

GA

1

2

34

5

GB

1

2

34

5

G′A

1

2

34

5

G′B

Fig. 14. GA andGB with vertices labelled.

If we add arcs in the way to obtain G5.5a, we get a graph
in Gs. We will deal with this in the next section.

We now show that for any graph in Category 4 that is
not a subgraph of G5.5a, there exists a two-bit linear index
code. First, if we add (i) zero, (ii) one, or (iii) two arcs to
Figure 13(a), we must get an isomorphic arc-deleted subgraph
of G5.5a, and they are members inGs.

If we add three arcs, the only graphs that are not isomorphic
arc-deleted subgraphs of G5.5a are G5.5b and G5.5c. By
relabelling the vertices, G5.5b contains G0.4f, and G5.5c
contains G0.4e.

If we add four arcs to Figure 13(a), they must form a string
(i.e., a path where the direction of the arcs can be arbitrary)
on the circumference (dashed lines on Figure 13(a)). The only
non-isomorphic combinations of length-4 strings along the
circumference are: (i)→→→→, (ii) →→→←, (iii) ←←←→,
(iv) →→←←, (v) ←←→→, (vi) →→←→, (vii) ←←→←,
(viii) →←←→, (ix) →←→←, and (x)←→←→. Configura-
tions (i)–(iii) each contain G5.5b, (iv)–(v) each contain G5.5c,
(iv)–(x) each are subgraphs of G5.5a (i.e., members ofGs).

Lastly, we add five arcs, i.e., one arc within any pair in
{(1, 2), (2, 3), (3, 4), (4, 5), (5, 1)}. We will now show that the
graph must be G5.5a, G5.5b+, or G5.5c+.9 We can easily show
that there must be a two adjacent arc in the same direction.
Without loss of generality, let them be 1→ 2 → 3. For
arcs between{3, 4}, {4, 5}, and{1, 5}, if any of them does not
follow the direction as that in G5.5a, we have either G5.5b+

or G5.5c+.
We have shown that for anyG < Gs such that|V(G)| =

5, mais(G) = 2, and G contains an undirected cycle of
length 5, and no undirected cycle of length 3 or 4, then it
must contain G5.5b or G5.5c as an arc-deleted subgraph. So,
r(G) = rmt (G) = 2.

This completes the proof of Lemma 4. �

Remark 5: For all graphG < Gs such that|V(G)| = 5
andmais(G) = 2, except those that contain G0.4e, an optimal
scalar linear index code of length 2 can be constructed using
the interlinked-cycle cover.

Appendix C
Proof of Theorem 3

Refer toGA andGB in Figure 2. DenoteG′A andG′B as the
subgraphs formed by removed all dotted arcs inGA andGB

respectively. Blasiak et al. [13] foundr(G) for all undirected
cycles, which include the 5-cycleG′B as a special case. Here,
we need to further findrmt (G) for all G ∈ Gs.

9Recall thatG+ containsG as an arc-deleted subgraph.

We first label the vertices ofGA , GB, G′A , and G′B as in
Figure 14.

(Achievability):Let each message be a vector of length 2,
which can be written asXi = (X(1)

i ,X(2)
i) ∈ X′ × X′, where

X′ = {0, 1, . . . ,mk − 1}. Let Y = (X′)5, φ = [φ1 · · ·φ5] such
that φi : (X′)10 7→ X′ is vector linear over the ringX′. The
codelength here is 2.5.

For the graphG′B, by time-sharing the cycle cover over the
cycles{(i, i+1 mod 5) :i ∈ [5]}, we obtain the following index
code:φ1 = X(1)

1 + X(1)
2 , φ2 = X(2)

2 + X(2)
3 , φ3 = X(1)

3 + X(1)
4 , φ4 =

X(2)
4 + X(2)

5 , φ5 = X(1)
5 + X(2)

1 , where the addition is performed
over modulo-mk.

For the graphG′A , by time-sharing the index codes for the
interlinked cycle{1, 2, 3, 5} (with inner vertices{1, 2, 3}) and
cycles{1, 2}, {3, 4}, {4, 5}, we obtain the following index code:
φ1 = X(1)

1 + X(1)
2 + X(1)

3 , φ2 = X(1)
5 + X(1)

1 , φ3 = X(2)
1 + X(2)

2 ,
φ4 = X(2)

3 + X(1)
4 , φ5 = X(2)

4 + X(2)
5 .

Note that anyG ∈ Gs must contain eitherG′A or G′B as
an arc-deleted subgraph. Invoking Lemma 5, we have that
rm2k(G) ≤ 2.5, and the upper bounds can be attained by vector
linear codes over the ringX′.

(Lower bound):While, upper bounds found forG′A andG′B
is applicable to allG ∈ Gs, for lower bounds, we need to
considerGA andGB.

We will now use the following tools to find lower bounds
for GA andGB:

1) Submodularity of entropy:Entropy is a submodular
function, i.e., for any sets of random variablesS and
T, we must have that

H(S) + H(T) ≥ H(S ∪ T) + H(S ∩ T). (33)

2) Decodability: Given G. For any vertexi ∈ V(G) with
out-neighbourhoodN+G(i), receiver i must be able to
decodeXi given the index code, denoted byY, and all
the messages it knows a priori,XN+G(i), i.e.,

H(Xi |Y, XN+G(i)) = 0 (34)

⇒ H(XN+G(i),Y) = H(X{i}∪N+G(i),Y) (35)

Note that while the submodularity inequality (33) is universal
in the sense it does not depend on specific graphs, the
decodability equality (35) does depend onG.

We now derive submodularity and decodability conditions
can be applied to bothGA andGB, which are based on those
for undirected cycles [13]. Letq = log2 |X|.

H(Y) + 2q = H(Y) + H(X{2,5}) ≥ H(X{2,5},Y) (36)

H(Y) + 2q = H(Y) + H(X{1,3}) ≥ H(X{1,3},Y) (37)

H(Y) + q = H(Y) + H(X4) ≥ H(X4,Y) (38)

H(X{1,2,5},Y) + H(X{1,2,3},Y)

≥ H(X{1,2,3,5},Y) + H(X{1,2},Y) (39)

= H(X{1,2,3,4,5},Y) + H(X{1,2},Y) (40)

H(X{1,2},Y) + H(X4,Y)

≥ H(X{1,2,4},Y) + H(Y) (41)

= H(X{1,2,4,5},Y) + H(Y) (42)

15

= H(X{1,2,3,4,5},Y) + H(Y) (43)

H(X{2,5},Y) = H(X{1,2,5},Y) (44)

H(X{1,3},Y) = H(X{1,2,3},Y) (45)

Here, inequalities (36)–(39), (41) follow from submodular-
ity of entropy, and equalities (40), (42)–(45) from decodability.

Now,

10q = 2H(X[5]) = 2H(X[5] ,Y)

≤ (H(X{1,2,5},Y) + H(X{1,2,3},Y) − H(X{1,2},Y))

+ (H(X{1,2},Y) + H(X4,Y) − H(Y)) (46a)

= H(X{2,5},Y) + H(X{1,3},Y) + H(X4,Y) − H(Y) (46b)

≤ H(Y) + 2q+ H(Y) + 2q+ H(Y) + q+ −H(Y), (46c)

where [5], {1, 2, . . . , 5}, (46a) follows from (40)–(43); (46b)
follows from (44)–(45); (46c) follows from (36)–(38). This
gives

p log2 |Y| ≥ H(Y) ≥ 2.5q = 2.5 log2 |X|, (47)

for any index codeC, and hencerm2k(GA) ≥ 2.5, and
rm2k(GB) ≥ 2.5.

Note that anyG ∈ Gs must be eitherGA or GB, or its arc-
deleted subgraph. Invoking Lemma 5, we have thatrm2k(G) ≥
2.5.

Combining this lower bound and the achievability results,
we haverm2k(G) = 2.5 for all m andk, and hencer(G) = 2.5.

Now, note thatmais(G) ≤ mais(G−), as removing arcs can
only reduce the number of cycles. We can manually verify
that mais(GA) = mais(GB) = mais(G′A) = mais(G′B) = 2.
Since anyG ∈ Gs must satisfy (i)G = (GA)− or G = (GB)−,
and (ii) G = (G′A)+ or G = (G′B)+, we havemais(G) = 2.

This completes the proof of Theorem 3. �

References

[1] Y. Birk and T. Kol, “Coding on demand by an informed source(ISCOD)
for efficient broadcast of different supplemental data to caching clients,”
IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2825–2830, June 2006.

[2] Z. Bar-Yossef, Y. Birk, T. S. Jayram, and T. Kol, “Index coding with side
information,” IEEE Trans. Inf. Theory, vol. 57, no. 3, pp. 1479–1494,
Mar. 2011.

[3] S. El Rouayheb, A. Sprintson, and C. Georghiades, “On theindex coding
problem and its relation to network coding and matroid theory,” IEEE
Trans. Inf. Theory, vol. 56, no. 7, pp. 3187–3195, July 2010.

[4] M. Effros, S. El Rouayheb, and M. Langberg, “An equivalence between
network coding and index coding,” inProc. IEEE Int. Symp. Inf. Theory
(ISIT), Istanbul, Turkey, July 7–12 2013, pp. 967–971.

[5] M. F. Wong, M. Langberg, and M. Effros, “On a capacity equivalence
between network and index coding and the edge removal problem,” in
Proc. IEEE Int. Symp. Inf. Theory (ISIT), Istanbul, Turkey, July 7–12
2013, pp. 972–976.

[6] M. J. Neely, A. S. Tehrani, and Z. Zhang, “Dynamic index coding
for wireless broadcast networks,” inProc. 31st IEEE Conf. Comput.
Commun. (INFOCOM), Orlando, USA, Mar. 25–30 2012, pp. 316–324.

[7] K. Shanmugam, A. G. Dimakis, and M. Langberg, “Local graph coloring
and index coding,” inProc. IEEE Int. Symp. Inf. Theory (ISIT), Istanbul,
Turkey, July 7–12 2013, pp. 1152–1156.

[8] C. Thapa, L. Ong, and S. J. Johnson, “A new index coding scheme
exploiting interlinked cycles,” inProc. IEEE Int. Symp. Inf. Theory
(ISIT), Hong Kong, China, June 14–19 2015, pp. 1024–1028.

[9] ——, “Generalized interlinked cycle cover for index coding,” in Proc.
IEEE Inf. Theory Workshop (ITW), Jeju, Korea, Oct. 11–15 2015, pp.
4–8.

[10] F. Arbabjolfaei, B. Bandemer, Y.-H. Kim, E. Şaşoğlu, and L. Wang,
“On the capacity region for index coding,” inProc. IEEE Int. Symp. Inf.
Theory (ISIT), Istanbul, Turkey, July 7–12 2013, pp. 962–966.

[11] S. Unal and A. B. Wagner, “General index coding with sideinformation:
Three decoder case,” inProc. IEEE Int. Symp. Inf. Theory (ISIT),
Istanbul, Turkey, July 7–12 2013, pp. 1137–1141.

[12] M. Tahmasbi, A. Shahrasbi, and A. Gohari, “Critical graphs in index
coding,” IEEE J. Sel. Areas Commun., vol. 33, no. 2, pp. 225–235, Feb.
2015.

[13] A. Blasiak, R. Kleinberg, and E. Lubetzky, “Broadcasting with side
information: Bounding and approximating the broadcast rate,” IEEE
Trans. Inf. Theory, vol. 59, no. 9, pp. 292–298, Sept. 2013.

[14] Z. Zhang and R. W. Yeung, “A non-shannon-type conditional inequality
of information quantities,”IEEE Trans. Inf. Theory, vol. 43, no. 6, pp.
1982–1986, Nov. 1997.

[15] A. Blasiak, “Infora graph-theoretic approach to network coding,” Ph.D.
dissertation, Cornell Univ., USA, Aud. 2013.

[16] R. M. Karp, “Reducibility among combinatorial problems,” in Complex-
ity of Computer Computations, R. E. Miller and J. W. Thatcher, Eds.
Plenum Press, New York-London, 1972, pp. 85–104.

[17] R. Peeters, “Orthogonal representations over finite fields and the chro-
matic number of graphs,”Combinatorica, vol. 16, no. 3, pp. 417–431,
Sept. 1996.

[18] E. Lubetzky and U. Stav, “Nonlinear index coding outperforming the
linear optimum,” IEEE Trans. Inf. Theory, vol. 55, no. 8, pp. 3544–
3551, Aug. 2009.

[19] L. Ong and C. K. Ho, “Optimal index codes for a class of multicast
networks with receiver side information,” inProc. IEEE Int. Conf.
Commun. (ICC), Ottawa, Canada, June 10–15 2012, pp. 2223–2228.

[20] C. Thapa, L. Ong, and S. J. Johnson. (2016, Feb. 29) Interlinked cycles
for index coding: Generalizing cycles and cliques. [Online]. Available:
http://arxiv.org/abs/1603.00092v1

[21] A. S. Tehrani, A. G. Dimakis, and M. J. Neely, “Bipartiteindex coding,”
in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Cambridge, USA, July 1–6
2012, pp. 2256–2260.

[22] H. Yu and M. J. Neely, “Duality codes and the integralitygap bound for
index coding,” inProc. 51st Allerton Conf. Commun. Control Comput.
(Allerton Conf.), Monticello, USA, Oct. 2–4 2013.

[23] S. H. Dau, V. Skachek, and Y. M. Chee, “Optimal index codes with near-
extreme rates,” inProc. IEEE Int. Symp. Inf. Theory (ISIT), Cambridge,
USA, July 1–6 2012, pp. 2241–2245.

[24] L. Ong, “A new class of index coding instances where linear coding
is optimal,” in Proc. Int. Symp. on Netw. Coding (NetCod), Aalborg,
Denmark, June 27–28 2014.

[25] N. J. A. Sloane, “Number of directed graphs (or digraphs) with n
nodes,” in The On-Line Encyclopedia of Integer Sequences, 2010.
[Online]. Available: http://oeis.org/A000273

[26] ——, “Number of acyclic digraphs withn unlabeled nodes,” inThe
On-Line Encyclopedia of Integer Sequences, 2010. [Online]. Available:
http://oeis.org/A003087

[27] ——, “Number of strongly perfect perfect graphs onn nodes,” inThe
On-Line Encyclopedia of Integer Sequences, 2010. [Online]. Available:
http://oeis.org/A123461

http://arxiv.org/abs/1603.00092v1
http://oeis.org/A000273
http://oeis.org/A003087
http://oeis.org/A123461

	I Introduction
	II Index Coding: Definition and Notation
	II-A Unicast index coding and information-flow graph
	II-B Index codes
	II-C Asymptotic vs finite-length index codes
	II-D Linear codes

	III Related Results and Main Contributions
	III-A Existing lower bounds
	III-B Existing upper bounds (achievability)
	III-C Existing capacity results
	III-D Main results of this paper

	IV Optimal Index Codelength when mais(G) |V(G)| - 2
	IV-A Main result
	IV-A1 mais(G) = |V(G)|
	IV-A2 mais(G) = |V(G)|-1
	IV-A3 mais(G) = |V(G)| - 2

	IV-B Existence of a special structure: Figure ??

	V Optimal Index Codelength for All Graphs up to Five Vertices
	V-A Optimal codelength for Gs with binary messages via the confusion-graph technique
	V-A1 Confusion graphs
	V-A2 5-cycle with binary messages
	V-A3 Other members in Gs
	V-A4 Restricting the output alphabet to be a binary vector

	VI Conclusion
	Appendix A: Proof of Lemma ??: A Special Configuration
	A-A The existence of three joint cycles
	A-B The three joint cycles must assume Figure ??
	A-C Case 1: There exists a looping outer path
	A-D No looping outer path
	A-E Case 2: No looping outer path, and all outer paths do not share internal vertices
	A-F Case 3: No looping outer path and two outer paths share some internal vertices

	Appendix B: Proof of Lemma ??
	B-A Two useful lemmas
	B-B Basic ideas
	B-C Category 1: No undirected cycle
	B-C1 There is one or no edge
	B-C2 There are only two edges
	B-C3 There are only three edges
	B-C4 There are only four edges
	B-C5 There are five of more edges

	B-D Category 2: An undirected cycle of length 3
	B-D1 No edge between the groups {1,2,3} and {4,5}
	B-D2 One edge between the groups
	B-D3 Two edges between the groups
	B-D4 Three edges between the groups
	B-D5 Four or more edges between the groups

	B-E Category 3: An undirected cycle of length 4 and no undirected cycle of length 3
	B-F Category 4: An undirected cycle of length 5 and no undirected cycle of length 3 or 4

	Appendix C: Proof of Theorem ??
	References

