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Optimal Finite-Length and Asymptotic
Index Codes for Five or Fewer Receivers

Lawrence Ong

Abstract—Index coding models broadcast networks in which one message, and each message is requested by only one
a sender sends dferent messages to @ferent receivers simulta- receiver—if there are five or fewer receivers. In a more
neously, where each receiver may know some of the messageaenera“ setting (not necessarily unicast), Unal and Wajdrigr

a priori. The aim is to find the minimum (normalised) index . R . . ,
codelength that the sender sends. This paper considers unit solved all index-coding instances with three receivershia t

index coding, where each receiver requests exactly one mage, asymptotic regime.
and each message is requested by exactly one receiver. Each In this paper, we consider unicast index coding where the

unicast index-coding instances can be fully described by a message alphabet size is finite, and derive the optimal index
directed graph and vice versa, where each vertex corresposdo .,y jangth for all instances in this class with five or fewer

one receiver. For any directed graph representing a unicashdex- . . . . .
coding instance, we show that if a maximum acyclic induced '€Ceivers. Our result uses combinatorics and is deriveddbas

subgraph (MAIS) is obtained by removing two or fewer vertices 0N our graph-theoretic result that shows that for any débct
from the graph, then the minimum index codelength equals the graph in which no two cycles are disjoint, if the a maximum
number of vertices in the MAIS, and linear codes are optimal acyclic induced subgraph (MAIS) is obtained by removing
for the corresponding index-coding instance. Using this reult, we 1, o fewver vertices from the graph, then there must exist a
solved all unicast index-coding instances with up to five regvers, . . .

which correspond to all graphs with up to five vertices. For 989 Subgraph of a certain form (see Figite 1). We incidentally
non-isomorphic graphs among all graphs up to five vertices, w Showed that linear index codes are optimal for all unicast
obtained the minimum index codelength for all message alplizet index-coding instances with up to and including five receive
sizes; for the remaining 28 graphs, we obtained the minimum  The rest of the paper is organised as follows: We formally

index codelength if each message can be bijectively mapped t . . . L . -
a vector of even length. This work complements the result by define unicast index coding in Sectibh II. We survey existing

Arbabjolfaei et al. (ISIT 2013), who solved all unicast inde- resu!ts and summarise our cont.ributions in this paper in
coding instances with up to five receivers in the asymptotic Sectior[1ll. We present our results in two parts: SediiohdV f
regime, where the message alphabet size tends to infinity. graphs with specific MAIS values, and Sect[ch V for graphs

Index Terms—Index coding, broadcast with side information, with five or fewer vertices.
graph theory, finite-length codes

Il. InpEXx CopING: DEFINITION AND NOTATION
|. INTRODUCTION

Index coding [[1], [2] studies noiseless one-hop broadceét
networks, with one sender and multiple receivers. The gendeA unicast index-coding instance consists of a single sender
has a set of messages, and each receiver wants a messagemultiple receiversn] 2 {1,2,...,n}. The sender has
subset, while knowing another message subset a priori.iSo th messages, denoted by = [X; X5 ---X,], where X; for
end, the sender encodes the messages into an index codewatthi € [n] is independent and uniformly distributed over
and presents the codeword to all the receivers. The indgXinite alphabeX. For a subset of integeis= {i1, iz, ..., i}
codeword must enable each receiver to decode its requestégrei; < ip < --- < iy, let X; 2 [X, X, - X,]. Each
message subset. In majority of the work on index coding, tiheceiveri € [n] has a priori knowledge ofXx, for some
aim is to minimise the normalised index codelength. Indeg; c [m] \ {i}, and needs to decod§. The sender is to
coding have been receiving much attention lately, partlg dencodeX and present the coded symbols to all receivers, such
to its equivalence to network coding [3]+-[5]. that each receiver € [n] uses the message¥, it already

To date, diferent index code construction techniques hawows to decodeX;. The aim is for the sender to minimise
been proposed [2]/ [6]=[11], but none are optimal in generdls transmitted information through the channel so thatheac
Among them, composite coding [10] have been shown teceiver can recover its requested message. Each unidastin
achieve the optimal (i.e., minimum) normalised codelengtibding instance is completely defined {¢}" , and X.
asymptotically (as the message size tends to infinity) for A unicast index-coding instance can be represented by a
unicast index coding—where each receiver requests on@jrected graptG with a set of verticesy(G) = [n], and a set

_ _ of arcs,A(G). An arc from vertex to vertexj, denoted byi(—
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number DP150100903) funding schemes. This means the side information of receiveis K; = NXi),
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B. Index codes

Let d{(i) denote the out-degree of the vertex graphG.
Definition 1: An index code 4, {i}) for an index-coding
instanceG with message alphabat consists of the following:
1) A sender encoding function : X" — YP, for some
finite alphabety and a positive integep € Z*; and
2) A receiver decoding functios; : YP x X% - X, each
for a receiver € [n],
such thatX; = ¢i(¢(X), XNg(i))-

C. Asymptotic vs finite-length index codes

Fix G and|X| = mt, for some integersn > 2 andt > 1.
The index codelength, in bits, for an index codg {(;})
is plog,|Y| bits (need not be an integer); thrmalised

codelength, or commonly referred to as the broadcast raégy > 0, we have the second equality [d (4) for amy

is denoted as

. Pblog, Y|

i (G) = log, IX] = plog,y, 1Yl 1)

for any fixedG andm. This proves the first equality ifl(4).
From the definition[(B), for any > 0, we can always find

soment andt’ such tha’r(m)y (G) < r(G)+¢, using some index

code ¢, {¢i}) with codewords onYP. This meansﬂ%ﬁ%‘ <

r(G)+e. By concatenating this index cotbe= Z* times, we get
codewords ony°P for the message alphabet size ', with

a length of Es'lzgi'ny,r‘ < r(G) + e. Note that this concatenated

code can be used as an index code for any message alphabet of

size|X| = m as long asn' < (n7)°" with zero padding, giving
an index code of Iengtﬁﬂ%;r'ny‘. For any fixedm',t’, p, and
|Y|, we can chooseny m and sificiently large integerg
and b, such that%)'j%ﬂ - tpll%i'ny,r‘ 2 n > 0 can be made as
small as desired. Noting thatG) < r!,(G) by definition, and
thatry(G) < %g:'my‘ < 1(G) + € + n for any arbitrarily small
]
It follows from Proposition[ll and subadditivity of the

sequencer%};’il that, for anym andt,

r(G) < rm(G) < rmi(G). (6)

transmitted bits per message bit per receiver. For the ffest o

this paper, unless otherwise stated, we refer to the nosethli

codelength simply as codelength.
So, for a given message alphabet si& = nt, the

We say thatr(G) is the (normalised) optimahsymptotic
index codelength foG, when the length of the message vector,
t, tends to infinity, and;(G) is the optimalffinite-lengthindex

minimunt] codelength, over all possible index codes, is givetPdelength, where the messages are each a levetttor over

by
(2

rm(G) = ﬂiﬂ tm (G).

an alphabet of sizen. The latter is also known as tltome-shot
index codelength [12].
Remark 1: We will see in Sectiofl V-A later that choosing

Furthermore, we define ttaptimalindex codelength (or the || = m for the finite-length case, i.e., finite may give a

optimal broadcast rate) for an index-coding insta@geover

all message alphabet sizes and all index codes, as
r(G) £ 'n'%lf qr}rm tm(G) = 'n'%lf rm(G).

®3)

The optimal index codelength is also known as theta
capacitys(G).

We now show that the optimal index codelength can be

obtained by taking the limit of(G) ast — o for any m,
stated in the following proposition:
Proposition 1: For anym,

tlm r(G) = iqf It (G) = r(G). 4)

Proof: We fix m and varyt. Denote the minimum
codelength, in bits, byr?, £ min,, plog,|Y|. Note that
2oy, < rgﬁ +10, i.e., the sequencg? ), is subadditivél
By Fekete’s Subadditive Lemma,

. 1 rh(G)
im i (G) = oo im = (52)
e (G
IS m(©) (5b)
log,m t t
= inf o (G), (5¢)

1The minimum exists because 4 £+(G) < n, where the lower bound
follows as each receiver must decode one mess§ge= X (which is
independent of all its side information) from the codewat(X) € YP;
the upper bound is obtained by sending all messages unap@ed= X.
So, rt(G) is obtained by minimising/t(G) over |Y| € {2,..., X"} and
p € [[nlog, [X[1].

2To see this, we can always concatenate the index codes fandes-
coding instances with message alphabet sipésand m2 to get an index
code for the instance with message alphabet sizé®2,

suboptimal index codelength.

D. Linear codes

Definition 2: (Linear codes) Re-write the encoding function
as¢ = [¢192- - ¢pl, Whereg; : X" — Y, and consider the
following three cases:

1) X = Y = Fq, whereF is a g-element finite field for
some prime poweg: If each¢; is a linear function over
the field Fq, i.e., ¢i(X) = XI_1kjX; € Fq, for some
kij € Fq, the index code iscalar linear over the field
Fy.

X =Fyandy =TFq: If ¢ : Fy' = Fq is a linear function
over Fy, then the index code isector linear over the
field Fy.

X =Y =F, for any finite alphabef: Without loss of
generality, letF = {0,1,...,|F| -1} If ¢ : F" > F

is linear, meaning tha#;(X) = Z?:l kijX;j, where the
addition and the multiplication are defined over integer
modulo{¥], then the index code iscalar linear over
the ring .

X=7F'andY = ¥, whereF ={0,1,...,|F| - 1}): If

¢i . F" > F is a linear function over integer modulo-
|71, then the index codes igector linear over the ring
¥

2)

3)

4)

Il. ReLateDp Resurrs AND MAIN CONTRIBUTIONS

A. Existing lower bounds

Bar-Yossef, Birk, Jayram, and Kall[2] proposed a graph-

theoretic lower bound om,(G), by considering its acyclic



subgraph. Denote the number of vertices maximum acyclic  Bar-Yossef el al.[]2] proved the following lemma:
induced subgra;ﬂw(MAlS) of G by mais(G). The lower bound Lemma 2:
is readily extended to any message size, as follows: r2(G) < minrky(G). (12)

Lemma 1: For anym andt, Furthermore, if we restrict the encoding functig(X) to be

mais(G) < r(G) < rpx(G). (7) scalar linear, then

Let the random variables of an index codeword be defined s min - (2(G) = minrkz(G). (12)
as [YiYz---Yp] = Y = ¢(X). Blasiak, Kleinberg, and Lubet- ’

zky [13] proposed a lower bound by showing that the joint Blasiak et al. extendeuhinrk, to higher field sizesX = Fa,
entropies of(X, Y} must satisfy the following constraints; ~ obtained a similar upper bound, and showed that the bound

1) Decodability: Consider any receiver € [n]. Know- is tight if the encoding function is restricted to be scalar o

: . . vector linear.
ing Y and Xng), it can decodeX;. This means .
HX. X V) =GH(XNg(i),Y), for eachi < [n]. Both the MAIS upper bound and the minrank lower bound

2) Submodularity of entropyfor two subsets of random 2'€ NP-hard to compute [16[. [117], and both have been shown

variablesS and 7, we haveH(S) + H(T) > H(SUT) + It_o be loose in T_ome [nztancesd [21, r[118]. th?1ls _mphe;bthat
H(S N 7). inear or vector-linear index codes, though having prattic

3) Non-Shannon-type information inequaliticee Zhang advantages of simplifying encoding and decoding, are not

necessarily optimal.
and Yeung|l1#] for example. There are other upper bounds obtained by finding the

By considering these (in)equalities, linear programs cen Bmper of disjoint cycle< 6] and the number of cliqués [1], a
formed to obtain lower bounds téi(Y), which in tumn  gnecial structure of interlinked cycles in the graph [8], [Be
I0\‘/)ver bounds the index codelength a(Y)/log|X| < |ocal chromatic number of the graph [7], and partitioning th
2i- H()/l0g, IX| < £ni(G), for any index code and any granh and finding the maximum out-degree in the partifion [1]
choice ofm andt. _ B Some of these approaches requifdo be a finite field of a
There are infinitely many non-Shannon inequalities, a@ﬂfﬁciently large size.
invoking all these inequalities in the linear program gives gome approaches uses Shannon random cofiifg [10] and
r(G) [15, page 37]. _ rate-distortion theory [11]. As expected, these approaene
In fact, noting thary(G) < rw(G), for any vertex-induced non_constructive, and requires the message alphabetXize
subgraplG’ of G [2, Proposition 9], the MAIS lower bounlll(7) {5 pe infinitely large. Consequently, these results are uppe
can be pbtamed by solving a linear program with decodgbiliygnds tor(G), and not tory (G) for any finite m andt.
constraints. We will show that, for most cases considered in this paper,
In this paper, we will construct MAISs and linear programge interlinked-cycle cover can be used to obtain optimalesc
invoking the first two types of constraints (i.e., decod&pil |inear codes. Here, we briefly describe the scheme:
and submodularity) to obtain lower bounds tg(G). Non-  pefinition 3: (Interlinked cycle [[9]) A directed subgraph
Shannon-type information inequalities are not requiredtie G is an interlinked cycle if and only if we can find a vertex
class of index-coding instances considered in this paper. subsetV; C V(G), called an inner-vertex set, such that
1) there is no directed cycle i@ that contains one and
B. Existing upper bounds (achievability) only one inner vertex, and
2) for any ordered pair of inner vertices ), there is one
and only one path fronmh to j, where all other vertices
in the path, if exists, are not .

Definition 4: (Interlinked-cycle cover([9]) Given an inter-
r(G) <rm(G) <n. (8) linked cycle G with an inner-vertex se¥, and a message

. . . . alphabetX, a scalar linear code of lengiv(G)| — V|| + 1
Consider the special case where each message is a binar . . i
L . ._over a ring with|X| elements can formed as follows:
bit, i.e.,X = F,. A scalar linear code can be formed by solving

By choosingY = X, and sending the messages uncoded,
we get an index code of length = |V(G)|. This gives the
following trivial upper bound on the optimal index codelémg

a graph functionrminrank Consider a matrixA with binary in, (13)
elements. We say that a binamyby-n matrix M fits G if iev;
Loz X; + Z Xy, for eachj e V(G)\ V.. (14)
m.j = o 9) keNg(j)
0, if (i—j)¢ AG),

) ) ) _ Note that a cycle€ of lengthL, for anyL > 2, with vertices
wherem ; is the element iM on thei-th row andj-th column.  gng aresc; —» ¢, —» --- — ¢ — ¢ is a special case of

The rest of the elements can be either 0 or 1. Denote the rapferiinked cycles, by choosing any two vertices thereitbéo

of M overF; by rky(M), the minrank ofM overF; is defined the inner-vertex set. For example, by choosfiags, ¢} to be

as the inner-vertex set, we have the following scalar lineaein
minrkz(G) £ min{rko(M) : M fits G}. (10)  code of lengthiV(C)| - 1 for C:

St is defined as an induced subgraph with the largest numbeentites. X1+ Xo, Xo+ Xz, ..., X-1+ XL. (15)



The above codd (15), also known as cyclic codes, was usmh be requested by several receivers) index-coding icessan
by Neely et el.[[6] and Ong and HG_[19]. up to three receivers. Their method is based on rate-distort
Also note that a cliqué&) (a subgraph in which each vertextheory, which also uses Shannon random-coding arguments.
has an outgoing arc to every other vertex) is an interlinked ¢ To find ry(G) by brute force, one can form theonfusion
cle with all its vertices in the inner-vertex set. The intekkd- graph[2] of G with m" vertices, and calculate the chromatic
cycle cover gives an index code of length3li.yq X%i. This  number (which is NP-complete) of the confusion graph. This
is also known as the clique coveér [2]. method is, however, intractable as the order of the confusio
Recall thatN{(i) is the out-neigbourhood of in G. Let graph grows exponentially wittn.
Ng (i) denote the in-neighbourhood bfn G.
Deflnltlon 5: (Interlmked cycle Wlth. super vertices [20])D_ Main results of this paper
Consider a vertex safs in a graphG satisfying the following
conditions: For all distinct pairg j € Vs, we have
o (i > j) € A(G), i.e., all vertices inVs have arcs to each
other, and
o NE()\ Vs = N3(j) \ Vs and Ng(i) \ Ve = Ng(j) \ Vs, ie.,
all vertices inVs have the same incoming and outgoing
connection to vertices outsidg in G.
We can define a new grag® by replacingVs (and all arcs
to and from these vertices) by super vertex say p, with
N& (p) = N&(1) \ Vs andNg, (p) = N5 (i) \ Vs, for any arbitrarily

The main results of this paper are as follows: We find the
optimal index codelength and the minimum message alphabet
size required to achieve the optimal index codelength fer th
following classes of index-coding instances:

1) (In Sectior 1Y) For anyG that can be made acyclic after
removing two or fewer arcs: We derivgG), and show
thatr(G) = ry(G) for all integersm> 2 andt > 1.

2) (In Sectior[¥) For anyG of up to five vertices (there
are 9847 non-isomorphic graphs in total):

choseri € Vs, If G’ is an interlinked cycle with an inner-vertex a) For 9819 non-isomorphic graphs, we dem@),
setV;, wherep ¢ V|, then we say thab is an interlinked cycle and show that(G) = rm(G) for all integersm > 2
with an inner-vertex se¢, and a super-vertex s&t. The index andt > 1. . i .

code formed by the interlinked-cycle cover f8f is an index b) For the remaining 28 non-isomorphic graphs, we
code (of the same length) f@ with X, replaced byyicy, X derive ryp(G), and show that(G) = ry(G), for

all integersm> 2 andk > 1.

Furthermore, for all the above cases, we show that linear

C. Existing capacity results _ ; .
Althouah th \rent hes t t|ndex codes (over a ring) are optimal.
ough Ihere aré severalligrent approaches 1o Compul- pecq)l thatr,(G) is the solution for an index-coding instance

ing upper bounds to(G) anplrm:(G), itis not easy 1o determineG where each message consists of a single binary bit. The
when these bounds are tight (or not). We now present a fg ove result of (G) = r»(G), together with linear codes ify

c_Iasses of graphs where the bounds have been shown tq, fﬁg optimal, means that the encoding can be done bit4y-bi

tight. ) _ without loss of optimality. The advantages are of this agt th
Bar-Yossef et "?‘I' [2] showed that@ is acyclic, therr(G) = (i) the encoding is simple (bit-wise XOR of the messages),

i (G) - IGI = mals(_G). _ and that (ii) the decoding is instantaneous. For cases where
Consider a special class of grapBsvhere (- J) € AG) () _ r.,(G), we can achieve the optimal broadcast rate by

?f and only_if (-1 < AG). This m_odel_s inde_x-coding encoding (and decoding) two bits of messages at a time.
instances with symmetrical knowledge, i.e., if receivMenows

Xj, then receivefj knowsx. Any graphG of this type can be
mapped to a corresponding undirected gr&gltwith the same _
vertex set a3, and an edgei(j) € E(G,) exists if and only A. Main result

IV. OpmiMAL INDEX CopELENGTH WHEN Mmais(G) > [V(G)| - 2

if (i — ) € A(G). Bar-Yossef et al.[[2] foundx(Gy) for the  In this section, we show the following theorem:
following classes of undirected side-information graphs: Theorem 1: If mais(G) > |[V(G)| - 2, then

« Gy is a perfect graph, B o .

. G, is an odd hole wherg/(G)| > 5, or r(G) = rn(G) = minrks(G) = mais(G), (16)

+ Gy is an odd anti-hole wher®/(G)| > 5. for any integersm > 2 andt > 1, and the minimum index

Neely, Tehrani, and Zhan@l[6] and Tehrani, Dimakis, ancbdelength is achievable using scalar linear codes overe ri
Neely [21] showed that iz consists of disjoint cycles, thenwith m' elements.
rG) = ri(G) = IV(G)| — Ngyee for all m and t, where It follows from Theorenil that the minimum alphabet size
Neycles is the number of cycles (all being disjoint) i@. required to achieve(G) is |X| = 2, i.e., binary messages.
This is commonly known asycle cover Yu and Neely[[22]  This theorem will be used to establish the result for all
represented index-coding instances using bipartite gragoid graphs up to five vertices in Sectibd V.
foundr(G) for all planar bipartite graphs. Remark 2: Characterising graphs having a certain
It has been verified by intensive computer calculations thainrk,(G) value is hard. Dau et all [23] managed to char-
composite codind [10] (derived using Shannon random-apdiacterise allundirectedgraphs whoseninrkz(Gy) is [V(Gy)| - 2
arguments) is optimal for alb with |V(G)| < 5, givingr(G). or [V(Gy)| — 1, and alldirected graphs whoseninrk,(G) is 2
Unal and Wagner [11] derived the asymptotic optimal indear |V(G)|. They are, however, unable to characterise directed
codelengthr(-) for all general (in the sense that each messageaphs whoseninrk,(G) is |V(G)| — 1 or [V(G)| — 2. For any



directed grapl whosemais(G) equalgV(G)|-1 or |V(G)|-2,
we show in this paper that linear index codes are optimal, Ohast = Fast = i1
meaning thamais(G) = minrky(G). So, we have incidentally Plast = biast = Uy
characterised a subset of directed graphs whosek,(G) ‘
equals|V(G)| - 1 or [V(G)| — 2.
Proof of Theoreni]l: As we know from Lemmall that

mais(G) is a lower bound om(G), we only need to prove
achievability. Qast = Gast = Wi N

Without loss of generality, leX = {0,1,...,|X] — 1}. We
will show that scalar linear codes over the riXgis optimal. Fig. 1. An important element in proving Theordth 1 is to showt tif

To this end, we choos¥ = XP, and therefore the normalisedmais(G) = [V(G)| — 2 and condition (3.ii) is true, the® must contain a
. . subgraphG’ shown above. Here, every arrow represents a path, which is
codelength is given by (G) = p
mt =D

) ) ) denoted by a capital letter. The paths do not share commdinegexcept the
1) mais(G) = |V(G)|: For this case( is acyclic. As men- end points. Vertices in each path is denoted by the correipgrsmall letter,

tioned in the previous section, sending all messages udco%’exiﬁ in the ﬁ"f/stiondotfj the arcs, ed. PAINS € — C2 — +++ = Cpast.
(i.e., #(X) = X, and hence we have a linear code of length paihs exceptl, T, and’ must contain one or more ares.
{m(G) = p = |V(G)| = n) achieves the MAIS lower bound,
and we havel{16). O/ N\ e

2) mais(G) = |[V(G)|-1: For this case, the directed gra@h < % O\:
must contain at least one cycle; otherwis®is(G) = [V(G)|. \XO/ T
Let the cycle beC C G. O O

We send a cyclic code fa€ and the rest of the messages Ga
Xve)v(c) uncoded, forming an index code with a codelength
of |V(G)| - 1. The cyclic code allows all receiveise V(C) Fig. 2. Letgs be a set of 28 non-isomorphic five-vertex graphs, formed by

L. . . by removing any number (zero to three inclusive) of dottecs d&rom Ga

can decode;. In addition, all receverg € V(G) \ V(C) can (this gives eight non-isomorphic graphs) and removing amylver of dotted
decodeX; as the messages were sent uncoded. arcs fromGg (this gives 20 non-isomorphic graphs).

3) mais(G) = [V(G)| - 2: There are two possibilities fdb:

(3.)) There are two vertex-disjoint cycles, or Lemma 3: If mais(G) = [V(G)| - 2 , and there are no two
(3.ii) There are no two vertex-disjoint cycles. vertex-disjoint cycles, the® must contain a subgraph (not
For case (3.i), we code the two disjoint cycles each with @ecessarily an induced subgraph) shown in Figlire 1.
cyclic code, and send the rest of the messagés imcoded. Proof: See Appendik’A. [ |
This achieves a codelength pf(G)| — 20
For case (3.ii), we will derive Lemmas 3 (stated next), which V. OprmvaL INpeEx CopELENGTH FOR ALL GRAPHS UP TO FIVE
says that ifmais(G) = |V(G)| — 2 and there is no two vertex- VERTICES

disjoint cycles, therG contains a subgrap’ of the form | this section, we use Theorelh 1 to obtain the optimal

depicted in FlgurE,]1., in which each arrow represents a patfygex codelength for graphs up to five vertices. First, wendefi
Now, note thatG" is an interlinked cycle with inner-vertex o 14 pe a set of 28 non-isomorphic five-vertex subgraphs of

set{i1, us, w1}. Here, for pathU, we label the vertices in the ihe two graphs in Figurl 2. More specificallys consist of

path asty — Uz — - - Uast. Using the interlinked-cycle cover, eight non-isomorphic graphs formed by removing any

we obtain a /scalar Iir!egr COO.IeS qf IenMG’N —2 over t.he_z number (zero to three inclusive) of dotted arc&af, and
ring X for G’. Combining this with sending the remaining all 20 non-isomorphic graphs formed by removing any

messagexXyv\e) uncoded gives an index code with a total number (zero to five inclusive) of dotted arcs®.

codelength ofV(G)| - 2. Iso. let be th t of all . hi h ¢
Remark 3: In a conference version of this paper]24], WéA sdo_, eI 5.1:5 f_e € ts_e ota ncin.-|sog:3%r§ IC graphs UE. 0

presented an alternative coding scheme that constructdax s@nd InCUdIng five ver iceg1:5 contains non-isomorphic

X Nl , graphs|[[25].
linear code of lengthv(G)| - 2 for G We now state our main results f6t;5 \ Gs and for Gs.

Theorem 2: For anyG € G1:5\ Gs,
r(G) = re(G) = minrky(G) = mais(G), a7

Ggp

B. Existence of a special structure: Figure 1

It is easy to obtain a saving of one for each vertex-disjoigt . 2 andt > 1. Th imalind del h
cycle using a simple cyclic code. The main challenge gr any integersn = 2 andt > 1. The optimalindex codelengt

i i i i it
Theorem[L is to show that for case (3.ii), even though v\}% achievable usingcalar linear codes over a ring witim

. S . . ts.
cannot find two vertex-disjoint cycles, we can achieve angawe emen
of two. The following lemma is a key step. It follows from Theoreni P that for ang € G5\ Gg, the

minimum message alphabet size required to achi¢@? is

“4Let the two disjoint cycles b&; andC,. The two cyclic codes, each for X = 2.
one cycle, are of lengtfv(Cy)|—1 and|V(Cy)|- 1 respectively. Together with ~ Theorem 3: For anyG € G, we have that
uncoded messages with a total lengt{G)| — [V(C1)| — [V(C2)|, we get an
overall codelength ofV(G)| - 2. 2 =mais(G) < r(G) = 25. (18)



Number of receivers)V(G)| 1]2 3 4 5
113 16 218 9608
Number of non-isomorphi& 1T3[9 7][41 177 334 Gy 9246
1] 27
Binary messages, i.em=2,t=1 *
m>3t=1 (28)
m>2t=2
Messages of sizet | m> 2, oddt (28)
m> 2, event
ﬁ] >2,t=0c0
Note: The column width is not indicative of the number of risamorphic graphs.
Legend: x Solved by Bar-Yossef et al.|[2] Solved by Arbabjolfaei et al[ [10] Solved in this paper
TABLE |

GRAPHS FOR WHICH THE OPTIMAL INDEX CODELENGTH IS FOUND FOR MESSAGE OF SIZE I'T'\t

In addition, if m> 2 andt = 2k for some integek > 1, then for any integersn > 2 andt > 1. The optimal index codelength
: : ; . i s
((G) = r,a(G) = 25. (19) is achievable usingcalar linear codes over a ring witim

elements.
and the optimal index codelength is achievable usiagtor Proof of Lemmd&4: See AppendikxB. ]
linear codes over a ring with elements. Proof of Theorenil3: See AppendiXT. m

It follows from Theorem[B that for any\G € Gs, the

minimum message alphabet size required o achié@ is The results of Theoreri$ 2 and 3 in comparison with existing

results are summarised in Talie I. In Table |, we consider

1X] = 4. r C . e
Proof of Theorenl]2: Note that for any graph, we mustaII non isomorphic directed graph_s up to .and mclqdmg five
have that vertices. The column denotes distinct non-isomorphic lgsap

. For example, there are 218 non-isomorphic graphs with four
1 < mais(G) < IV(G)I (20) vertices. A cell is coloured if the optimal index codelength
We now prove Theorernl 2 by considering graphs dfedent of the corresponding graph has been found. We have used
orders. ForV(G)| € {1, 2, 3}, we have different colours to indicate fiierent research groups that
found the optimal index codelength. The rows represent the
message size, given by
where the second inequality follows fromh {20). Invoking For example, out of the 218 non-isomorphic graphs with
Theorentl, we gef(16) in Theordr 2. four vertices, Bar-Yossef et al. have found the optimal inde
For |[V(G)| = 4, if mais(G) € {2,3,4}, then |V(G)| — codelength for 41 of them, for all message sirés The 41
mais(G) < 2. We again use Theoref 1 to gEtl(16) in Theron-isomorphic graphs consists of the following:
orem[2. For the remaining case whenais(G) = 1, any two-
vertex induced subgraph is a cycle (i.e., there are arcstim bo
directions between any two vertices); otherwisais(G) > 2.
In other words, each receivieknow all other message§ay,;-
So, sending a length-1 index codg,+ Xz + X3+ X4 mod|X],
satisfies all receivers’ requirements, and achieves the SVIAI
lower bound. So, we g€ (IL6), where the last equality isvadlo All the yellow cells correspond to acyclic afwd perfect
by observing that scalar linear codes are optimal. graphs, except for the graph marked with an asterisk, which
For [V(G)| = 5, if mais(G) € {3,4,5}, then again we have correspond to the (undirected) 5-cycle. For the 5-cycle; Ba
(d8) in TheoreniR. Also, ifnais(G) = 1, we can use the sameYossef et al. showed tha#(G) = 3, i.e., when the messages are

argument forV(G)| = 4 to show that the length-1 index codepinary. The lower bound was found by a brute-force exhaestiv
of X1+ Xz + X3+ X4+ Xs mod|X] is achievable and is hencesearch.

optimal. . _ Also shown in the table, Arbabjolfaei et al. foum@G) =
For all the above cases, scalar linear codes over the«‘c‘lnqimHoo ri(G) for all graphs up to five vertices.

are optimal, and the MAIS lower bound is tight. The proof of Theorem< 2 andl3 cover all coloured cells in the table,

Theo_re_nDZ is complete with Lemnia 4 below, addressing tr&cept the asterisked cell.
remaining case. [

The main challenge in proving Theordrh 2 is to show the

following: . 5An empty graph contains no arc.
Lemma 4: If [V(G)| =5, G ¢ Gs, andmais(G) = 2, then 8For a directed graph to be considered prefect (in the confetkis paper),
it must be a symmetric, and the corresponding undirectephgima perfect

r(G) = r(G) = minrky(G) = mais(G), (22) graph.

IV(G)| - 2 < 1 < mais(G), (21)

. The empty grapl,which is both acyclic and perféct

« 30 of them that are non-empty and acyclic|[26].

« 10 of them that are non-empty and perfectl[27]. (Note
that if a graph is not empty, it cannot be both acyclic and
perfect)



A. Optimal codelength fogs with binary messages via the 4) Restricting the output alphabet to be a binary vector:
confusion-graph technique Now, if we restrict the output alphabet to be a binary vector,
we have the following:

Recall thatgs contains all (non-strict) subgraphs @ and Theorem 4: For anyG < Gs,

Gg in Figure[2 with none or some dotted arcs removed. Al-
though, in Theorern]3, we have derived the optimal codelength ri(G) < 3, (26)
for all G € Gs whenm! whent is any even integer, we do not
have results for oddl

In this section, we discuss the optimal codelength for tk?@d Wi =
members ofGs specifically when each message is a binary r2(G) =3, (27)
bit, i.e., whenm = 2 andt = 1. This corresponds to the cellsand the optimal index codelength is achievable using binary
in the 28 columns marked@s and in the top coloured row in scalar linear codes.

Table[l. Proof: (Achievability):From Theoreni13, for ang € Gs,

1) Confusion graphsOne can use a brute-force techniguenais(G) = 2. We can always remove some arc(s) (dotted or
of confusion graph (see Bar-Yossef et al. [2] for example) &plid) from G to obtain a subgrapts~ wheremais(G~) = 3
determine the optimal codelength. We first describe coafusiand|V(G)~| = 5. With this, we have
graphs: _

Definition 6: For an index coding instand® and a mes- rm(G) < rm(G7) =3, (28)
sage alphabeX, its undirected confusion grapBconfusion for anym> 2, t > 1. Here, the inequality is due to Lemrh 5
has |X|V©) vertices. The vertices are labelled with distincin AppendixB, and the equality follows from Theorém 1. So,
realisations of the message tuples, igxix>--- %3] € X"}, a scalar linear code of length 3 exists f8rfor any m andt.
wheren = [V(G)|. An edge exists between two vertices, say  (Lower bound)We have manually found tha (G, rusion) =
andx’, if and only if there exists a receivgre [n] such that 7, whereG’ is the confusion graph of any’ € {Ga, Gg}

confusion .
for m = 2 andt = 1. From the proof of Lemmal5 in

for any integersn > 2 andt > 1. Furthermore, im=2,t =1,
2, then

Xj # X,i’ (23) AppendiXB, for anyG € Gs with the corresponding confusion
and XNg(j) = X;\lg(j)' (24) graphGeonfusion We have that
Since message tuples corresponding to adjacent vertices X(Geonfusion = X(Ggontusion = 7- (29)

cannot be mapped to the same codeword (otherwise, somgy, gefinition,

receiverj cannot decod; due to [ZB) and(24)), any proper | G _ log, |/
colouring scheme gives an index code (where the colours map rmi(G) = M = mi &2", (30)
to distinct index codewords), and vice versa. Hence, tha tot log, X] owil log, 2

number of distinct codewords required for encoding equsds twhere p is the length of the codewords.

number of colours in the colouring scheme. Consequently, If we restrict the codeword to be binary vectors, i|,= 2,

h

ri(G) = log, x (Geonfusion (25) we have

m log, |X| p > 109, x(Geonfusion) = 10g, 7 = 2.8074 (31)
where y(G) denotes the chromatic number of the undirectegince p must be an integer, we haye> 3. We complete the
graphG. Note that the code here can be non-linear. proof by noting the existence of length-3 scalar linear sode

Remark 4: Using the method of confusion graph to de- u

terminerq(G) is intractable when the message alphabet size
or the number of messages grows. Furthermore, this method VI. ConcLusioN
alone cannot be used to determi{6). In this paper, we have studied unicast index coding, a specia

2) 5-cycle with binary messagedf G is a 5-cycle (a class of index coding where each receiver requests only one
member ofgs) and the messages are binary, il&),= 2, its message, and each message is requested by only one receiver.
confusion graplGcontusion cONtains 32 vertices and 240 edgesyo find the optimal index codelength and optimal index codes,
One can use a brute-force search to find #(&contusion = 8.  we have used a graphical approach of representing each-index
This givesrz(G) = 3 [2]. This corresponds to the yellow cellcoding instance by a directed graph. We first derived the opti
marked with an asterisk in Table I. For this case, it turns ontal index codelength for all graphs whose order at most two
that scalar linear codes are optimal. more than that of its maximum acyclic induced subgraph. We

3) Other members ings: For other members iGs, we then use this result, combined with a combinatoric apprpach
first considerGa and Gg in Figure[2. For these two graphs;o derive the optimal index codelength for all graphs witle fiv
we find thaty(Geonfusion = 7. This meang»(G) = 2.8074. or fewer vertices. We also showed that linear codes are aptim
The optimal codelength can be achieved by non-linear codes all graphs in these two classes. While existing restiits g
that map{0,1}°® — {0,1,...,6}, where we choose the outputthe optimal index codelength for all graphs with five or fewer
alphabet size to be¥|P = 7. vertices when the message alphabet size tends to infinity, in

For the rest of the members i@, one can repeat this this work, we find the optimal codelength when the message
procedure to calculate(G). alphabet sizes are finite.



APPENDIX A will not disconnect all three cycles simultaneously, i > 2.

Proor oF LEmMa [3: A SpeciaL CONFIGURATION On the other hand, we only need to remove two vertices,
Recall thatG must satisfy these two conditions: Vi, to makeG acyclic. So, removing/; N V(Gsup) from Gsup
(C1) mais(G) = 2 will definitely make it acyclic, i.e.,N < 2. So, we have
) - condition C1). (]

(C?) Th_ere are_no _tYVO disjoint cycles ) Note that these three cycl&Ss,, capture all the constraints
We first give an intuition for Lemmal3, by showing that, . impose orG in Lemmal3.

there must exists three joint cydlei® G, in Subsectiof A=A.
In Subsection§”A-B td_AJF, we prove that these three joint

cycles must assume the configuration in Figtre 1. B. The three joint cycles must assume Fidure 1
We will proceed to show thatGg,, must assume the
A. The existence of three joint cycles configuration in Figurd]l. We will build the configuration

from a cycle, sayCy, in Ggyp We call it the centre cycle

. Slnfcema|s(G) =2, letVr = {u,v} ?,e thehverte;]x sfet”remov.edWe re-label the vertices ifGg,, such that the vertices in
rom from G to get an MAIS. We first show the following: 1 are in ascending order in the direction of the arcs, i.e.,

Proposition 2: There exist three cycles i@, each contain- {*_, 5 _, = _| (V(C))l - 1) — V(C1)| — 1, where the
ing eitheru, v, or bothu andv.

Proof: Every cycle must contain, v, or both. Otherwise,
removingu andv will not give an acyclic induced subgraph.
Suppose that there is only one cycle@ Removing any
vertex from the cycle gives an acyclic induced subgrap

Hence,|V(G)| — mais(G) = 1. (Contradiction) We first show the following:
Suppose that there are only two cyclesGnNote that these Proposition 5: Consider the subgrapBsu, and the cycle

two cycles cannot be vertex-disjoint, as per conditi@2)( C1 in the subgraph. Every arc not @ belongs to someuter
above. So,_ these twq cycles must sha_red at least one Verekn defined as a path that originates from a verte€irand
and removing only this shared vertex gives gn_acychc '”duc?erminates at a vertex (which can be the same vertegin
subgraph, i.e [V(G)| - mais(G) = 1. (Contradiction) but with all arcs and all internal vertices (if exists) notGx.

So, there must exist at least three cycles. Proof: SinceGsy is constructed by three cycles, any arc,

We furtlh.er show some propertles of the_se three cycles: say { — j), not in C; must belong to eithe€, or Cz (or

Proposition 3: There exist three cycles i@, where both). Furthermore, from Propositibh @, andCs must each

1) any two cycles must have at least one common vert&hare some vertex witB;. Hence, ( — j) must belong to an

and outer path that originates fro@; and terminates a;. =

2) the three cycles do not have any common vertex. Note that the outer paths cannot form any cycle outside

Proof: It follows from Propositio R that there are at leas€;. Otherwise, we have two vertex-disjoint cycles, and this
three cycles. As no two cycles are vertex-disjoint, we hawéolates condition €2).
property 1. Arbitrarily select one cycle, s&y. Consider every It follows from Propositio b thaGgy, consists of only a
other cycleCy # C’, and denote the set of common verticesycleC; and outer paths (fror€; and back tcC,). Figure4(a)
betweernCy andC’ asVeommodK) = V(Ck)NV(C’). Since every shows an example oBsy, where C; is marked with thick
Ck shares some vertex wili’, we haveVeommodK) # 0. arrows and all outer paths thin arrows.

Now suppose thafy ¢ :c' VeommodK) # 0, meaning that ~ We now prove a key proposition for proving Lemia 3.
some vertex is shared among all cycles. Then removing onlyProposition 6: Remove vertex 1 ii€;. There exists another
this vertex fromG would have resulted in an acyclic subgrapkycle in Ggyp if and only if there is an outer path from some
(contradiction). So, there must exist two cycles, €ayand b e V(Cy)\ {1} to somec € V(Cy) \ {1}, whereb > c.

C,, whereVeommod1) N Veommor2) = 0. SelectingC’, Cq, and Proof: [The converse:] We remove vertex 1. If there is
C, gives property 2. B another cycle, then there is a vertex (not vertex 1Linthat

Denote the subgraph formed by the three cycles in Propuas a path back to itself (this is because any cycle must share
sition[3 by Ggu» We have the following: some vertex withC;). This cannot happen if every outer path

Proposition 4: The subgraphGsy, formed by the three terminates at a higher-indexed vertex (we can ignore a#trout
cycles in Propositioni 13, satisfies both conditioi&lY and paths that originate or terminate at vertex 1 as the vertex ha
(C2). been removed). So, there must exist an outer path bvitit.

Proof: SinceG cannot contain two vertex-disjoint cycles, [The forward part:] Clearly, ib = ¢, we have another cycle
so does any of its subgraphs. We have conditio2)(Denote formed by the outer path. Otherwise, i.b.,> ¢, the outer
by N the minimum number of vertices we need to remove foath and the path alonG,; from c to b form a cycle. See
make Ggyp acyclic. From Propositioh]3, there is no commoifFigure[3(a) for an example. [ |
vertex among the three cycles. So, removing any one verteNext, we define dooping outer path as an outer path that

originates and terminates at the same verte€{inThe graph

"Here, by joint cycles, we mean cycles that are not disjoine &Void

using the term interlinked cycles, as they refer to a speciigfiguration in Gsub Can be (_:ategorlsed as fOIIOW_S'
this paper (see Definitiofl 3). . there exists at least one looping outer path (Case 1), or

choice of vertex 1 is arbitrary.

For any pathP that originates from vertek and terminates
at vertexc, i.e.,b — --- - ¢, we refer to all{z: ze V(P) \
b, c}} asinternal vertices Here, we allowb = c; in such a
ase,P is a cycle.



looping the sequence of vertices shared by

outer path P and the looping outer path

Seo

@ (b) © @

Fig. 3. Case 1 where there exists a looping outer path (draitimthin solid lines) that starts and ends at vertex 1. ThdreecycleC; is drawn with thick
lines, and the second outer path (denoted)asom b to c, dashed lines. To get another cycle after removing vertexelmust have that & c < b < |V(Cy)|,

as shown in subfigure (a). However, there are two vertexidispycles in subfigure (a). S® must touch the looping outer path, as shown in subfigure (b).
Taking the segment d? from C; to the looping outer path, and that from the looping outeh fiick toC;, we have subfigure (c). We can re-draw the path
from 1 to c and that frome to 1 in subfigure (c) to get subfigure (d), where we have drawenngw centre cycle with thick lines.

. there is no looping outer path (which we will further “_ coverage

divide into Cases 2 and 3). A
We will show that in any case, we have Figlie 1. \C_J

C. Case 1: There exists a looping outer path @ (©) © @

Suppose that there exists a looping outer path from andRe. 4. We can always dra@sup as in subfigure (a), i.e., a centre cy€le

vertex 1 e V(Cl). This incurs no loss of generality as th@nd outer paths fr0|ﬁ21_and bapk tdC;. Subfigure (b)'shows the coverage of
. . . . ; an outer path, i.e., vertices @y in the grey are&xcludingthe two end points.

choice of vertex 1 is arbitrary. Removing vertex 1 disconsieCsypfigure (c) shows that when multiple outer paths origifiae one vertex,
both cycleC; and the cycle formed by the looping outer pathve consider only the outer path with the largest coverage, the dotted path
Recall that we need to remove two vertices to disconnect 4™ P to ¢. The outer paths in subfigure (d) provide full coverage.
cycles inGgyp SO, there must exist another cycle@y,y,

From Propositiof 6, there exists another outer gafilom D. No looping outer path
be V(Cy) \ {1} to ¢ € V(Cy) \ {1}, whereb > c. The outer _For a non-looping outer path from vertdx € V(Cy) to
path P _must share.some vertex with the Io.op|r}g outer path; . V(C1) \ (b}, we say that the vertices i@ from b to ¢
otherwise there exist two cycles as shown in Fidure 3(a). (i the direction of the arcs 1) but excludingb andc is

Re-label the internal vertices of the looping outer path Boveredby this outer path. See Figuré 4(b) for an example.
ascending order, as follows: 3 ([V(Cy)| + 1) — (IV(Cy)| + For the purpose of this paper, we exclude outer paths with
2) » -+ = (V(Cy)l + L) — 1, whereL is the number of gictly smaller coverage, or multiple outer paths with aqu
internal vertices. It follows that the sequence of vertisiesred coverage. Referring to Figu@ 4(c), consider an outer pah t
by P and the looping outer path (in the order of the directiogriginates fromb. Suppose that it has multiple paths back
of P) must be in ascending order (see Figure 3(b)); otherwigg, c,. We consider only the path (back @) that has the
a cycle forms outsid€;. largest coverageSimilarly, for any path that terminates at

See Figurd13(c). Consider only the following segments gfe consider only the path (leavin@,) that has the largest
P: (i) from b to the vertex where first touches the looping coverage. By doing this, each path that we consider has a
outer path, denoted ly; and (ii) the vertex wher® leaves the unique originating vertex and a unique terminating vertex.
looping outer path, denoted kg to c. It follows thatd < e. We now show the following property:

By construction, all paths in Figuté 3(c) do not share iraérn Proposition 7: If there is no looping outer paths Bsyp,
vertices, i.e., they touch only at end points. Finally, ravd then all largest-covering outer paths must, together, igeov
Figure[3(c) to get Figuriel 3(d), which is isomorphic to Fidiire full coverage for the cycl€;. In other words, every vertex in
(where the thick lines in Figufd 3(d) correspond to pdthd, C; must be covered by at least one outer path.

U, C, W, andD in Figure[1). Proof: Consider any vertexa € V(C;). Re-labela as

Note that vertices 1b, andd must be unique. We havevertex 1, and other verticeg(C;) in ascending order in the
shown that if there is a looping outer path, then we have tlaec direction. Remove vertex 1 fro@s,, There must exist
configuration in Figur€]l, where pathhas zero arc, pati&/ another cycle. It follows from Propositidni 6 that an outethpa
and U possibly have zero arc (i = c andor d = €), and all P from b to ¢ must exist, where k c < b < |[V(Cy)| (c# b
other paths must contain at least one arc. since there is no looping path), meaning that this outer path
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Fig. 5. (@) If two outer paths provide full coverage, we canagls form two
disjoint cycles, one formed by the thick solid path, and theeothe dashed
path. (b)Gsyp with K outer paths, wher& > 4, providing full coverage can
be converted tK — 2 outer paths providing full coverage. (c) If two non-
adjacent outer paths give overlapping coverage (e.g.,vbedotted paths), Fig. 6. The overlapping of the coverage of two outer pathsgretihe dark
then the paths in between are redundant (the dashed pathX i- 1 outer grey lines represent the coverage of the outer Bafipy — --- — plasy, and
paths are dficient to give full coverage, instead &f. the light grey lines that of the outer pa@ (q1 — -+ — Qast)

must cover vertex 1. We can safely ignore other outer patbster paths providing full coverage. This reduction is alsva

that provide smaller or equal coverage, becaudedbes not possible as the coverage of two non-adjacent outer paths doe

cover vertex 1, then none of the ignored outer paths doet overlap, illustrated in Figurg 5(c).

Since the choice o# is arbitrary, we have Proposition 71 By repeating this step, starting from aKy> 4 outer paths,
For example, the outer paths in Figure 4(d) provide fullle can find a graph witlk = 2 or K = 3 outer paths. As

coverage foCy, but the outer paths in Figures 4(a)—(c) do noK = 2 is not possible, we will always get a graph wkh= 3

Removing one uncovered vertex frd makesGgy, acyclic. outer paths providing full coverage, which is in the form of
Now, we consideiGgy, that consists of cycl€C; and all Figure[d.

outer paths that provide the largest coverage (i.e., we vemo

all other arcs have gives smaller or equal coverage). We @€cgse 3: No looping outer path and two outer paths share
ready to proceed with Cases 2 and 3, defined as follows: ¢yme internal vertices

» (Case 2) There is no looping outer path, and no two OuterLet the two outer paths that share some common internal

paths have any common ".“ema' vertex. v%rtex beP andQ, and one of the shared internal vertices be
« (Case 3) There is no looping outer path, and there exis L L .
. . Z Further, let the originating and terminating verticesPolbe
two outer paths sharing the same internal vertex.

p1 and piast respectively, and those @ be g; andq.s. Here,
] . # Past aNd ;1 # Qast @S there is no looping outer path, and
E. Ca§e 2: No Ioo_pmg outer path, and all outer paths do n%ti 4 1 and Past # Jast @ NO two Outer paths have the same
share internal vertices originating or terminating vertices.
We will show that we can always find three outer paths that Now, the coverage of and Q can be either (a) non-
provide full coverage. overlapping, (b) overlapping once, or (c) overlapping ®yic
First, note that one outer path cannot provide full coveraggs shown in FigurEl6. The dark grey line shows the coverage
Suppose that we can find two outer paths providing fuf p, and the light grey line that of. By definition, there is
coverage. We illustrate in Figuié 5(a) that we can alwaysifora subpath fronp;, to z alongP and another subpath froeto
two vertex-disjoint cycles. So, this scenario cannot happe .., alongP. The two subpaths must be vertex-disjoint, except
Next, suppose that we can find three outer paths providiagas there is no cycle ifP. Similarly, we have two vertex-
full coverage, we have exactly Figurk 1. As there is no |09pirdisjoint paths fromo to z and fromz to gas;, both alongQ.
outer path, the nine paths in Figdre 1 each have one or mat§s means, there is an subpath fremto gas: throughz, and
arcs. another fromq; to piast throughz So, p1 # Qast 1 # Plast
Finally, we show that if we can fin&k > 4 outer paths z5 there is no looping outer path, and hepgepias, Gz, and
providing full coverage, we can always modify the cycleshsuqqlast are distinct.
that K — 2) outer paths provide full coverage. We illustrate Suppose that we have Figufé 6(a). The largest-covering
this in Figure[5(b). We do the following: outer path fromp; should terminate atj.s; and that from
1) Combine the dotted arrows to be the néw g: at past. The outer path fronp; to giast and that fromg, to
2) Combine the two adjacent dashed paths, and the daskgd should have been chosen. This means the largest-covering
arc in C; that connects the two dashed outer pathsaths actually overlap twice, i.e., we should have Fifuig.6(
(denoted byP, which can be of length 0) into a new Suppose that we have Figure 6(b). The outer path fpam
outer path. to quasy throughz gives the largest coverage, and it would
3) Remove all arcs and internal vertices in the the thidkave been chosen.
solid paths inC;. Each thick solid path must contain at  So, we can only have the configuration in Figlre 6(c), where
least one arc; otherwise, the outer paths cannot provigie coverage overlaps twice. The coverage fiomo Qs is
full coverage. smaller than that fronp; to past. S0, the largest-covering outer
Note that by doing this, the new graph still retains the stmec path from p; was correctly identified. Similarly, the largest-
of a cycle with outer paths covering it. The new graphKa® covering outer path frona; terminates afjast
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We will now show that we can always get Figlide 1 from
Figure[®(c). Recall that there is a subpath frgmto z and
another subpath fromz to qas, and these two subpaths are
vertex-disjoint, except. Otherwise, we get a cycle disjoint
from C1. We denote the outer path from to Gast (through Fig. 7. If there is no edge in the graph, thgin3, 4} cannot contain a cycle.
2) by Z (drawn with a thick dashed line).

Next, recall that there is a subpath framto z, and another
from z to past. SO, the subpath frony; to z must meetZ.
Denote the vertex it first meeBasq’. Similarly, the subpath
from z to past Must share some common vertices withat
least vertexz). Let the last shared vertex bg. With this
construction,Z, the subpath frong; to ¢, and the subpath

from P’ 10 Prast are vgrtex—d|310|nt, except ‘ﬂ andg’. Proof: Each receiver itG* has prior messages of at least
We now re-draw Figurél6(c) as follows: Let the path frorﬂ/hat it has inG, and it requests the same message (i.e.,

Gast 10 p1 alongCy (drawn with a thick solid line) plus pathr ceiveri requestsX;). So, any index code fo& satisfies all
Z (drawn with a thick da_shed line) be the centre cycle, and Ig coding rgquiremg.nts fdﬁ*yand hence is an index code
the subpaths (drawrl with dotted arrows) (i) frqm, © Gast  for G+, This proves(G*) < rm(G). By repeating the same
along Cy, (ii) from p’ to piast, and (iii) from q; to g be the argument, we haven (G) < rm(G-) m

/, ’ [} SIm .
three outer paths._Note thaf[ onpy gndq can co-Iocate._The Lemma 6: If [V(G)| = 5 andmais(G) = 2, then the induced
resultant graph is isomorphic to Figlide 1, with pathossibly subgraph of any four vertices must contin an edge.

having zero arc (ifp’ = g = 2).
g (i = g ) Proof: We will prove the lemma by contradiction. Sup-

<]

Lemma 5: Let G be an arc-deleted subgraph @f, and
G~ be an arc-deleted subgraph®f Then,

rmi(G”) < rm(G) < rm(G"), (32)

and an index code faB~ is an index code foG andG™.

Combining the Cases 1-3, we have Lenirha 3. " pose that there is an induced subgraph of four vertices witho
an edge. Recall that any induced subgraph of three vertices
Appenpix B must contain a cycle. Referring to Figure 7, there must be a

Proor o Lemma 4 directed cycle in1, 2, 3}. Since there is no edge, there cannot

We first note the following: be any 2-cycle. Without loss of generality, let the cycle be

Observation 1: If mais(G) = 2, then any induced subgraphl — 2 — 3 — 1. Again, as there cannot be any edge, the
of G with three vertices must contain a cyBletherwise, cycle in{2,3,4} must be 2— 3 — 4 — 2. Now, for {1,3,4}
mais(G) > 3 by considering the 3-vertex induced subgrapl@ contain a cycle, it must contain an an edge (contradiktion
without a cycle. We would have obtained the same result had we started by

We define edges in directed graphs as follows: choosing the cycle i11,2,3} to be 15352 - 1. =

Definition 7: Consider a directed grap@ with vertex set
V(G) and arc sefA(G). For a pair of vertices, j € V(G), we
say that there is aedgebetween these two vertices if andB. Basic ideas

only if (i — J) € A(G) and ( — i) € A(G). A cycle formed  \ye il prove Lemmd¥ using the following ideas: For each
by edges is called anndirected cycle ___category, we will show that ang must contain some a arc-
As the proof of the lemma is rather involved, we dividyg|eted”subgraph, sags, We then show that there exists
the set of all graphs to be considered in this lemma, i.eGally <.qar linear index code of length 2 (over the rikip for
with [V(G)| = 5, G ¢ Gs, andmais(G) = 2, into four categories Geun thereby establishing(Gsuy) < 2. SinceGew, = G-,

according to the number of undirected cyclesGn from Lemmd, we must have thag(G) < 2, where the 2-bit
1) There is no undirected cycle. achievability uses the same linear code@gy, As mais(G) =
2) There exists an undirected cycle of length 3. 2 is a lower bound ony;(G), we establish;(G) = 2. We will

3) There is no undirected cycle of length 3, but there exis{§e a combinatoric approach.

an undirected cycle of length 4.
4) There is no undirected cycle of length 3 or 4, but there

exists an undirected cycle of length 5. C. Category 1: No undirected cycle
Note that, by definition, there cannot be any undirected

cycle of length 2 or less. We start with the first category where there cannot be any

undirected cycle irG. We have the following subcategories:
1) There is one or no edgdf there is no edge or only one
A. Two useful lemmas edge, we can always find an induced subgraph of four vertices

We say thaG- is anarc-deletedsubgraph ofs if V(G™) = With no _edge. It _follows from Lemm@l 6 thahais(G) # 2
V(G) and A(G’) € A(G), i.e., removing zero or some arC(S)(contradlc'uon). Figur&l8 shows an example where the graph
from G but retaining all the vertices. GO0.1 contains only one edgejz, and the subgraph induced

We first prove two lemmas to be used subsequently: ~ PY {2,3,4,5} cannot contain any edge.

Here, we use the notationx§, wherex is the length of the
8Recall that, unless stated otherwise, cycles refer to witecycles. shortest undirected cycle i8, andy is the number of edges.
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1 1

S \/2 5\@/2 //\\ S\ﬁf 5\4&\\3/2

4 3 4 3 4—3 3 4—3
GO0.4a G0.4b G0.4c
- GOl - GO0.2a G0.2b impossible contains G0.2b
impossible impossible X1+ Xo+ X3+ Xy ‘
X5 + Xl + Xz l l l l
1 1 1 1
Fig. 8. Ggup Where there is one or two edges. The first two graphs ar%/ \2 5/ \2 5/ \2 5/ \2
impossible formais(G) = 2. For G0.2b, the length-2 index code shown here i .
is also an index code for ang (with five vertices) containing this graph. \ / \ / \\ / \\ /
4—3 4—3 4—3 4—13
G0.4d GO0.4e GO0.4f GO0.4g or G0.4g with

1

1 1 .
contains G03.c X1+ Xo + X3 X3+ X4+ Xs some dotted arc(s) removed
5 /\\ 2 5 ﬁ 5 5 /VA\\ 2 X1+ Xa + Xs (X + X2) + Xs (belong toGy)
4 3 4+——3

Fig. 10. Ggup Where there are four edges and no undirected cycle.

4=—3
G0.3a G0.3b G0.3¢
impossible contains G0.2b (;2+§2)+ X3 GO0.3c is an interlinked cycle with inner vertic¢s 2, 3} and
+ Xs) + X1

a super-vertex sdt, 5} (see Definitiori b). For an interlinked

Fig. 9. Gsup Where there are three edges and no undirected cycle. The fi%{de of this type, the mterlmked-cyde COVer gives a bde
graph is impossible fomais(G) = 2, and there exists two-bit linear codes forcode [X1 + Xz + X3) ((X4 + Xs) + X1)] of length 2.
the second and the third graphs. 4) There are only four edgedVithout any undirected cycle,

four edges can form only three non-isomorphic configuration

i . . G0.4a, G0.4b, or G0.4c in Figukel10.
2) There are only two edgedhe two edges iG can either If the four edges form a star, i.e., G0.4a, it is an impossible

be connected (see GO0.2a in Figlide 8) or disconnected ( (El%graph a$2. 3,4, 5) does not contain any edge

G0.2b). We need to consider only non-isomorphic graphs, ASor configuration G0.4b, the vertex &t 4, 5} must contain

thT:Iabglgng oftlhndmeT) are 2rt_)|t:jary. db fidds3. 4.5 a length-3 cycle. Without loss of generality (due to symiagtr
or 28, the subgraph induced by vertiddss, 4,5} let an arc in the cycle be 5> 1, and so the cycle is & 4 —

contains no edge. By Lemnia 6, this cannot happen. . : . '
. . 5 — 1. With this, the cycles fofl, 3,5} is also fixed. We
For GO0.2b, since there is no edge{in4, 5, there must be a see that this graph contains G0.2b as an arc-deleted suihgrap

length-3 cycle. Without loss of generality (due to symmgtry ol
let the cycle by 1» 4 — 5 — 1. This necessitates the cycleand hence(GO.4b)< rm (G0.2b)< 2, and the length-2 finear

. . code for G0.2b is also an index code for G0.4h.
in {1,3,5} to be 1 3 = 5 - 1. The cyc_les |n[2? 3,5} and If the four edges form a path, we need to further categorise
{2,4,5} must also take the forms shown in the figure.

Note that GO.2b is an interlinked cycle withner vertices all G that contain G0.4c. Since the positions of edges in G0.4c

(1.2.3.4). The interlinked-cycle cover gives an index code c)zre fixed, and we can only add arcs. The only positions to add

) - rcs are within the pairg1,4), (2, 4), (2,5)}, and we can only
length 2: [X1+Xp+ X5+ Xa) (Xs+ X1+ Xo)] (see DefinitionsB 4 5 st one arc in each pair (adding arcs in both direstion
and[4). Here, it is understood that the addition is perform

over the ringX. §6rms an edge). So, ary in this category must satisfy either

So, anyG with 5 vertices, no undirected cyclmais(G) = of th; f(t)rlllowmg: dditional ithi o
2, and only two edges must contain an arc-deleted subgraph ere 1S an additional arc Wwithin -any pair n

isomorphic to G0.2b. By Lemnd 5,:(G) < rn(G0.2b)< 2. {(1, 4),(2,4),(2,5)} from a larger index to a smaller inde_zx,
Since 2= mais(G) < I (G), we havery(G) = 2. ie.,4—1,4— 2, or5— 2, we get a graph that contains

3) There are only three edgesiithout any undirected GO0.4d, GO0.4e, or GO0.4f, respectively, as an arc-deleted

cycle, three edges can form only three non-isomorphic con- subgr_aph. Note that a graph can also simultaneously
figurations as depicted in Figufé 9. contain more than one of these graphs as subgraphs. Note

If the three edges form a star, we have G0.3a. By Lefmma 6, that )
it is impossible as the induced subgrg@hs, 4, 5} has no edge. — G0.4d contains G0.3c as a subgraph;

If the three edges form a path, we have G0.3b. The vertexset — G0.4e has a length-2 index cod&{f- Xo + X3) (X1 +
{1,4,5) must contain a cycle. Without loss of generality (due Xa+Xs)] 5 o o
to symmetry), let it be > 4 — 5 — 1. The rest of the cycles - QO.4f contains an interlinked cycle with inner ver-
for subgraphs with three vertices are then fixed. Since G0.3b tices{3,4,5} and a super-vertex s¢t, 2}.

contains G0.2b as an arc-deleted subgraph, invoking Lethma 5 Otherwise, we must get G0.4g or G0.4g with some of the
rmi(G0.3b)< r(G0.2b)< 2, and the length-2 index code for ~ dotted arcs removed. These graphs belonggoand we
G0.2b also an index code for G0.3b. will deal it Theoren{B.

If one of the three edges is disjoint from the other two, we A length-2 linear code exists for each of G0.4d, -e, or -f.
have G0.3c. By symmetry and adding arcs to form cycles in5) There are five of more edgesthis configuration is
{1, 3,5} and {1, 3,4}, we have the configuration in the figureimpossible as it is known to contain an undirected cycle.
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AN 1N /1\\ PN
5+ 2 5 2 5 2 50.1-0-"2
AV VSV AV VAV

4+—3 — — 4—3 4—3 4—3
G3.3 G3.4a G3.4b G3.4c Ga.4 G4.5 G4.6
X4+ Xy X1+ Xo + Xa X1+ Xo + Xa + Xag X1+ Xo + Xg + Xa X1+ Xo+ Xz + Xa contains G0.3c contains G4.5
(X + Xo + X3) + Xq X4+ Xs X5+ Xo + X3 X5+ X4 Xs + X1 + Xz
R ! N\ ,o\.l N\ R ! N\ Fig. 12. Gsup Where there is a length-4 undirected cycle (marked withkthic
57 2 55 2 5lacai-- 2 solid lines) and no length-3 undirected cycle. Additiondbes are marked
\ / \ '. / \\ / with dashed lines. Arcs are then added so that every thréeegmust contain
v at least one cycle. There are only three non-isomorphichgrap
4----3 43 4+—3
G3.5a G3.5b G3.5¢ 1 1 1 1
contains G0.4e  contains G3.4b Xy + Xy + X3 + X5 // \\ / \\ W
X4+ Xs 5 2 5 2 5 2 5 2
Y N D S Y
5 :. ‘2 5° ‘2 52-/-\22 AN 4 3 4—3 4+—3 4 3
;. / . / N/ / \ /.- / (@ G5.5a= Gg € Gs G5.5b G5.5¢
PR PR PR PR contains G0.4f  contains G0.4e
G3.6a G3.6b G3.6¢ G3.6d Fig. 13. Gsup Where there is a length-5 undirected cycle (marked withkthic
X1+ X+ X3+ X4  contains G3.4a  contains G3.4c  contains G3.4c  lines) and no length-3 or -4 undirected cycle.
Xs

Fig. 11. Ggyp Where there is a length-3 undirected cycle (among vertices 1 4) Three edges between the grouphe three edges can

2, and 3; marked with continuous lines). Additional edges rmarked with
dashed lines. Arcs are then added so that every three \&ertiost contain at

least one cycle.

be placed in three non-isomorphic positions: (i) Betweeadh
vertices in{1, 2, 3} and one vertex if4, 5}, we have G3.6a; (ii)

Between three vertices ifll, 2, 3} and two vertices in4, 5},
we have G3.6b; (iii) Between two vertices {if, 2, 3} and two
S{/ertices in{4,5}, we have G3.6¢ and G3.6d. For G3.6a, the
{:quue cover gives a linear index codé&f(+ Xo + X3+ X4) Xg].
5) Four or more edges between the group§e can show
that the graph will always contain G3.4a with vertex rela-
) : belling.

D. (?ategory 2: An und|re(-:ted cycle of Igngth 3 So, we have shown that for /¢ G such thafV/(G)| = 5.
Without loss of generality, let the undirected cycle be 1 .\ i) — 2, andG contains an undirected cycle of length 3,
2~-3-1 (depicted as solid lines in Figuiel11). First, if therg, o here exists a linear index code of length 2, which can be

IS an ad_dltlonal edge 45 (denoted b_y G3.4a_|n F'gu@n)’constructed using the interlinked-cycle cover (which umigls
there exists a length-2 index code using the clique covar( the clique cover as a special case).
X2) (X3 + Xq + Xs)].
Otherwise (i.e., no edge between 4 and 5), any additional
edge (in addition to + 2— 3 — 1) must be betweef, 2,3} E. Category 3: An undirected cycle of length 4 and no
and{4, 5. For this, we have the following categories, groupedndirected cycle of length 3
by the number of additional edge (dashed lines in Figute 11):Next, we consider the category where there is an undirected
1) No edge between the groupk 2,3} and {4,5}: The cycle of length 4; without loss of generality, let the cycle b
only non-isomorphic graph where every three vertices d¢ontay 2 _3-4—1. We find graphs when there is (i) no additional
a cycle is depicted in G3.3. This is an interlinked cycle witedge, (ii) one additional edge, or (iii) two additional edge
inner vertices(4, 5} and a super-vertex s¢t, 2,3}. An index Note that there cannot be three additional edge, as it velter
code for this graph is Ka + Xs) ((X1 + Xz + X3) + X4)]. a length-3 undirected cycle. For each graph here, therésexis
2) One edge between the groupsfithout loss of general- 5 |ength-2 linear index code, as shown in Figlre 12. Note that

ity, let the additional edge be-#. Two non-isomorphic graphsF4 4 is an interlinked cycle with inner verticék 2, 3, 4}.
with different arc positions are possible: G3.4b and G3.4c.

They are interlinked cycles with inner verticg€k 2, 3, 4. . .
3) Two edges between the groupkthe two edges connect F. Category 4: An undirected cycle of length 5 and no undi-
four different vertices, we have G3.5a. If the two edges conndgfted cycle of length 3 or 4
between the same vertex {d, 2, 3} to two different vertices  Without loss of generality, let the undirected cycle be 1
in {4,5}, we have G3.5b. Otherwise, if the two edges conne8t5-2-4-1. With this, there cannot be any additional edge;
between dierent vertices in{1, 2,3} to the same vertex in otherwise, we get a length-3 or -4 cycle. Also, any additiona
{4, 5}, we have G3.5c, which is an interlinked cycle with innearc must be between adjacent vertices on the “circumfefence
vertices{1, 2, 3,5}. i.e., within any pair in{(1, 2), (2, 3), (3,4), (4,5), (5, 1)}.

So, we have shown that for a®/¢ Gs such thatV(G)| = 5,
mais(G) = 2, andG contains no undirected cycle, then it mu
contain either G0.2b, G0.3c, G0.4e, or G0.4f as an arceltle
subgraph. For any casgG) = rm(G) = 2 for anym andt.
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1 1 1 1 We first label the vertices oBa, Gg, G, andGg as in
/4 ;\ /4 ‘\ / \ / \ FI urem
5 2 5 g .

»\:\ '/ \: 'f \,\ / \, f (Achievability): Let each message be a vector of length 2,
423 43 4«3 4«3 which can be written as$ = (Xi(l), XP) e X' x X', where
G G’ X/ = {0,1,...,mk—1}. Lety = (X/)é, ¢ = [¢1'¢5] SUCh

Ga Gg B

that ¢ : (X)) — X’ is vector linear over the ringk’. The
_ _ ‘ codelength here is 2.5.
Fig. 14. G andGg with vertices labelled. For the graptG}, by time-sharing the cycle cover over the
cycles((i, i+11 mod15) e [5]%, we ozbtain the flollowilng index
Fﬁ?dechl: X 4+ XD, 5 = XP 4+ X9, g3 = X+ XD, ¢4 =
X
4

If we add arcs in the way to obtain G5.5a, we get a grapfy, ™" ", ' 20 I
+ X7, ¢5 = Xg + X7, where the addition is performed

in Gs. We will deal with this in the next section.

We now show that for any graph in Category 4 that iSV€' modulorr. ) _ , ,
not a subgraph of G5.5a, there exists a two-bit linear index0r the grapt,, by time-sharing the index codes for the

code. First, if we add (i) zero, (i) one, or (iii) two arcs tolNterlinked cycle{1, 2, 3,5} (with inner vertices{1, 2,3}) and
Figure[IB(a), we must get an isomorphic arc-deleted subgra?( cI:es>{( %17)21 5’(1)41 {;('21?}’ we:obtz(all)n:h)t(a( 1f)0||0W£19Xlg§iiX )?(%dei
of G5.5a, and they are membersgn. 1 ( 0 3 *(2)‘152 (2))(5 1 ¢3 1 2
If we add three arcs, the only graphs that are not isomorpli¢ = Xg + X7 ds = X7+ X5
arc-deleted subgraphs of G5.5a are G5.5b and G5.5¢c. ByNote that anyG € Gs must contain eitheG), or Gy as
relabelling the vertices, G5.5b contains GO.4f, and G5.8% arc-deleted subgraph. Invoking Lemiia 5, we have that
contains GO.4e. rmz(G) < 2.5, and the upper bounds can be attained by vector
If we add four arcs to Figurfe13(a), they must form a stringnear codes over the ring’.
(i.e., a path where the direction of the arcs can be arbjtrary (Lower bound):While, upper bounds found fdg), andGj
on the circumference (dashed lines on Fidure 13(a)). The o applicable to allG € gs, for lower bounds, we need to
non-isomorphic combinations of length-4 strings along tHe@nsiderGa andGe.

circumference are: (p———, (i) 5> -, (i) ————>, We will now use the following tools to find lower bounds
(iv) 5o, (V) o>, (Vi) Doe—, (Vi) o, for Ga andGg:

(Vii) >, (iX) »——>«, and (X) «—«—. Configura- 1) Submodularity of entropyEntropy is a submodular
tions (i)—(iii) each contain G5.5b, (iv)—(v) each contaib.6c, function, i.e., for any sets of random variabl8sand
(iv)—(x) each are subgraphs of G5.5a (i.e., membergHf T, we must have that

Lastly, we add five arcs, i.e., one arc within any pair in
1(1,2),(2,3), (3,4), (4,5), (5,1)}. We will now show that the HE)+HM 2HEUT)+HENT).  (33)
graph must be G5.5a, G5.5tor G5.5¢ We can easily show ) pecodability: Given G. For any vertexi € V(G) with
that there must be a two adjacent arc in the same direction. out-neighbourhoodN(i), receiveri must be able to

Without loss of generality, let them be & 2 — 3. For decodeX; given the index code, denoted by and all

arcs between3, 4}, {4,5}, and{1, 5}, if any of them does not the messages it knows a prioy., i.e.,

follow the direction as that in G5.5a, we have either G5.5b ¢

or G5.5¢. HXIY, Xngi) = 0 (34)
We have shown that for ang ¢ Gs such that|V(G)| = N H(Xngiy V) = H(Xjjungg» ) (35)

5, mais(G) = 2, and G contains an undirected cycle of
length 5, and no undirected cycle of length 3 or 4, then Note that while the submodularity inequalify {33) is uniedr
must contain G5.5b or G5.5¢c as an arc-deleted subgraph. Hothe sense it does not depend on specific graphs, the
r(G) = rni(G) = 2. decodability equality[(35) does depend Gn
This completes the proof of Lemma 4. - We now derive submodularity and decodability conditions
Remark 5: For all graphG ¢ Gs such that|V(G)| = 5 ¢an be applied to bot®, andGg, which are based on those
andmais(G) = 2, except those that contain G0.4e, an optim#pr undirected cycles [13]. Leg = log, |X].
scalar linear index code of length 2 can be constructed using

the interlinked-cycle cover. H(Y) + 20 = H(Y) + H(X25) > H(X25,, Y) (36)
A H(Y) + 29 = H(Y) + H(X(1,3) = H(X{23, Y) (37)

pPENDIX C
H(Y) + g =H(Y) + H(X4) > H(X4, Y) (38)

Proor oF THEOREM 3

Refer toGa andGg in Figure[2. Denotés, andGy, as the H(Xi1.25. Y) + H(X123. Y)

subgraphs formed by removed all dotted arcs3in and Gg > H(X1235, Y) + H(X(22,, Y) (39)
respectively. Blasiak et al._[13] foundG) for all undirected = H(Xj12345 Y) + H(X{1.2;, Y) (40)
cycles, which include the 5-cyclg; as a special case. Here, H(Xi12,Y) + H(Xs,Y)

we need to further find(G) for all G € Gs. > H(X Y) + H(Y) (41)
= {1,2,4}5

9Recall thatG* containsG as an arc-deleted subgraph. = H(X{1.245, Y) + H(Y) (42)



= H(X{12345, Y) + H(Y) (43) 11
H(Xi25), Y) = H(X(125), Y) (44)
H(X13,Y) = H(X123). Y) (45) 02

Here, inequalities (36)E(B9)._(#1) follow from submodular[13]
ity of entropy, and equalitie§ (#0), (42)—{45) from decatigb
Now,
10q = 2H(X51) = 2H(X}51, Y)
< (HXw255 Y) + H(X(123, Y) = H(X(12,, Y))

(14]

[15]

+ (H(X(121 Y) + H(XG, Y) = H(Y)) (462) 4
= H(X25, Y) + H(X(1.3;, Y) + H(X4, Y) = H(Y) (46b)
< H(®Y) + 2g+ H(Y) + 29 + H(Y) + g + —H(Y), (46¢c) (17

where [5]£ {1,2,...,5}, (464) follows from [[4D)-E(43){46b)
follows from (42)-{4b); [(46c) follows from[(36)=(B8). This 18l
gives

plog, Y| = H(Y) > 2.5q = 2.5l0g, |X|, 47) 119

for any index codeC, and hencer,x«(Ga) > 25, and
re(Gg) > 2.5.

Note that anyG € G5 must be eitheGy or Gg, or its arc-
deleted subgraph. Invoking Lemrh 5, we have tha{(G) >
2.5.

Combining this lower bound and the achievability result$z2]
we haver,x«(G) = 2.5 for all m andk, and hence (G) = 2.5.

Now, note thatmais(G) < mais(G~), as removing arcs can 23]
only reduce the number of cycles. We can manually veri#y
that mais(Ga) = mais(Gg) = mais(G,) = mais(Gg) = 2.
Since anyG € Gs must satisfy ()G = (Ga)~ or G = (Gg),
and (i) G = (G,)* or G = (Gg)*, we havemais(G) = 2.

This completes the proof of Theordrh 3. |
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