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Independence and matching numbers of some token
graphs

Hernán de Alba∗‡ Walter Carballosa† Jesús Leaños‡

Luis Manuel Rivera‡

Abstract

Let G be a simple graph of order n and let k be an integer such that
1 ≤ k ≤ n − 1. The k-token graph Fk(G) of G, or the k-th symmetric power
of G, is defined as the graph with vertex set all k-subsets of V (G), where
two vertices are adjacent in Fk(G) whenever their symmetric difference is an
edge of G. Here we study the independence and matching numbers of Fk(G).
We start by giving a tight lower bound for the matching number ν(Fk(G))
of Fk(G) for the case in which G has either a perfect matching or an almost
perfect matching. Using this result, we estimate the independence number
for a large class of bipartite k-token graphs, and determine the exact value of
β(F2(Km,n)), β(F2(Cn)) and β(Fk(G)) for G ∈ {Pm,K1,m,Km,m,Km,m+1} and
1 ≤ k ≤ |G| − 1.

Keywords: Token graphs; Matchings; Independence number.
AMS Subject Classification Numbers: 05C10; 05C69.

1 Introduction

All the graphs under consideration in this paper are simple and finite. Let G be a
graph of order n and let k be an integer such that 1 ≤ k ≤ n − 1. The k-token
graph Fk(G) of G is the graph whose vertices are all the k-subsets of V (G) and two
k-subsets are adjacent if their symmetric difference is an edge of G. In particular,
observe that F1(G) and G are isomorphic, which, as usual, is denoted by F1(G) ≃ G.
Moreover, note also that Fk(G) ≃ Fn−k(G) for any admissible k (i.e., 1 ≤ k ≤ n− 1).
Often, throughout this paper, we simply write token graph instead of k-token graph.
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1.1 Token graphs

The origins of the notion of token graphs can be dated back at least to 2002 when
Terry Rudolph [21] used Fk(G) to study the graph isomorphism problem. In such a
work Rudolph gave examples of non-isomorphic graphs G andH which are cospectral,
but with F2(G) and F2(H) non-cospectral. He emphasized this fact by saying the
following about the eigenvalues of F2(G): “then the eigenvalues of this larger matrix
are a graph invariant, and in fact are a more powerful invariant than those of the
original matrix G”. Five years later, this notion was extended by Audenaert et al.
in [4] to any integer k such that 1 ≤ k ≤ |G| − 1, calling to Fk(G) the symmetric
k-th power of G. In [4] was proved that the 2-token graphs of strongly regular graphs
with the same parameters are cospectral and some connections with generic exchange
Hamiltonians in quantum mechanics were also discussed. Following Rudolph’s study,
Barghi and Ponomarenko [6] and Alzaga et al. [2] proved, independently, that for a
given positive integer k there exists infinitely many pairs of non-isomorphic graphs
with cospectral k-token graphs.

In 2012 Ruy Fabila-Monroy et al. [13] reintroduced, independently, the concept
of k-token graphs “as a model in which k indistinguishable tokens move from ver-
tex to vertex along the edges of a graph” and began the systematic study of the
combinatorial parameters of Fk(G). In particular, the investigation presented in [13]
includes the study of connectivity, diameter, cliques, chromatic number, Hamiltonian
paths, and Cartesian products of token graphs. Following this line of research, in
2015, Fabila-Monroy and three of the authors of this paper presented results about
the planarity and the regularity of token graphs [10].

From the model of Fk(G) proposed in [13] it is clear that the k-token graphs can
be considered as part of several models of swapping in the literature [14, 26] that are
part of reconfiguration problems (see e.g. [9, 19]). For instance, the pebble motion
(PM) problem of determining if an arrangement A of 1 < k < |G| distinct pebbles
numbered 1, . . . , k and placed on k distinct vertices of G can be transformed into
another given arrangement B by moving the pebbles along edges of G provided that
at any given time at most one pebble is traveling along an edge and each vertex of G
contains at most one pebble, has been studied in [5] and [17] from the algorithmic
point of view. Also, in such papers several applications of the PM problem have
been mentioned, which include the management of memory in totally distributed
computing systems and problems in robot motion planning. On the other hand,
note that the PM problem is a variant of the problem of determining the diameter
of Fk(G) (the only difference is that in the PM problem, the pebbles or tokens are
distiguishable).

The k-token graphs also are a generalization of Johnson graphs: if G is the com-
plete graph of order n, then Fk(G) is isomorphic to the Johnson graph J(n, k). The
Johnson graphs have been studied from several approaches, see for example [1, 20, 23].
In particular, the determination of the exact value of the independence number
β(J(n, k)) of the Johnson graph, as far as we know, remains open in its general-
ity, albeit it has been widely studied [7, 8, 12, 15, 18]. Possibly, the last effort to
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determine β(J(n, k)) was made by K. G. Mirajkar et al. in 2016 [18]. In such a work
they presented an exact formula for β(J(n, k)), which is unfortunately wrong: the
independence number of J(7, 3) is 7 because it is equal to the distance-4 constant
wight code A(7, 4, 3) [7], but the formula in [18] gives 6.

1.2 Main results

The graph parameters of interest in this paper are the independence number and the
matching number. A set I of vertices in a graph G is an independent set if no two
vertices in I are adjacent; a maximal independent set is an independent set such that
it is not a proper subset of any independent set in G. The independence number β(G)
of G is the number of vertices in a largest independent set in G, and its computation
is NP-hard [16].

On the other hand, recall that the matching number ν(G) of G is the number of
edges of any largest matching in G. A matching M of G is called perfect matching
(respectively almost perfect matching) if |M | = n (respectively |M | = n − 1). Note
that ν(G) = |G|/2 if and only if G has a perfect matching. Similarly, ν(G) =
(|G| − 1)/2 if and only if G has an almost perfect matching. In this case, Jack
Edmonds proved in 1965 that the matching number of a graph can be determined in
polynomial time [11].

Our main results in this paper are Theorems 1.1, 1.2 and 1.3.
In our attempt to estimate the independence number of the token graphs of certain

families of bipartite graphs, we meet the following natural question:
Question 1. If ν(G) = ⌊|G|/2⌋, what can we say about ν(Fk(G))?
In Theorem 1.1 we answer Question 1 by providing a lower bound for ν(Fk(G))

and exhibiting some graphs for which such a bound is tight.

Theorem 1.1. Let G be a graph of order n and let k be an integer with 1 ≤ k ≤ n−1.
If ν(G) = ⌊n/2⌋, then

(1) ν(Fk(G)) =
(

n
k

)

/2, if n is even and k is odd.

(2) ν(Fk(G)) ≥
((

n
k

)

−
(

n/2
k/2

))

/2, if n is even and k is even.

(3) ν(Fk(G)) ≥
((

n
k

)

−
(

(n−1)/2
⌊k/2⌋

))

/2, if n is odd.

Moreover, when G is a perfect matching (respectively, almost perfect matching),
the bound (2) (respectively, (3)) is tight.

The proof of Theorem 1.1 is given in Section 2. Sections 3, 4, and 5 are mostly
devoted to the determination of the exact value of the independence numbers of the
token graphs of certain common families of graphs. Our main results in this direction
are the following results.

Theorem 1.2. If G is the complete bipartite graph Km,n, then

β(F2(G)) = max{mn,

(

m+ n

2

)

−mn}.
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In Section 3 we present some results which will be used in the proof of Theo-
rem 1.2 and also help to determine some of the exact values of β(Fk(G)) for G ∈
{Pm, C2m, K1,m, Km,m, Km,m+1} and 2 ≤ k ≤ |G| − 2. The proof of Theorem 1.2 is
given in Section 4.

Theorem 1.3. If p is a nonnegative integer and Cp is the cycle of length p, then
β (F2(Cp)) = ⌊p⌊p/2⌋/2⌋.

This formula for β(F2(Cp))p≥3 produces the sequence A189889 in OEIS [22], which
counts the maximum number of non-attacking kings on an p× p toroidal board (see,
e.g., [25, Theorem 11.1, p. 194]). In Section 5 we show Theorem 1.3.

2 Proof of Theorem 1.1

First we state a couple of lemmas.

Lemma 2.1. Let G be a graph of order n ≥ 6 and let k be an integer with 3 ≤ k ≤
n − 3. Let e = [v, w] be an edge of G and let H := G − {v, w}. If N and L are
matchings (possibly empty) of Fk(H) and Fk−2(H), respectively, then Fk(G) has a
matching of order |N |+ |L|+ 2

(

n−2
k−1

)

.

Proof. Let G,H,N, L, n, k, e, v, w be as in the statement of the lemma. Since N is
also a matching of Fk(G), it is enough to exhibit a matching N ′, disjoint from N ,
of order |L| + 2

(

n−2
k−1

)

. We construct N ′ as follows: the edge [{v} ∪ A, {w} ∪ A], will
belong to N ′, whenever |A| = k − 1 and {v, w} ∩ A = ∅. For every [B,B′] ∈ L, we
add to N ′ the edge [{v, w} ∪ B, {v, w} ∪ B′]. Then N ∪ N ′ is the required matching
of Fk(G).

Lemma 2.2. Let G be a perfect matching or an almost perfect matching of order
n ≥ 3. Then

2ν(F2(G)) =

(

n

2

)

− ⌊n/2⌋.

Proof. The case n = 3 is easy to check, so we may assume that n ≥ 4. Let m := ⌊n/2⌋
and s := n− 2m. Suppose that {A,B} is a bipartition of G with A = {a1, . . . , am},
B = {b1, . . . , bm, bm+s} and that E(G) = {[a1, b1], . . . , [am, bm]}. Since {ai, bi} ∈
V (F2(G)) is an isolated vertex for every i ∈ {1, . . . , m}, then

2ν(F2(G)) ≤

(

n

2

)

−m.

Now, consider the following sets of edges in F2(G).

M1 = {[{ai, aj}, {aj, bi}] : 1 ≤ i < j ≤ m},

M2 = {[{bi, bj}, {ai, bj}] : 1 ≤ i < j ≤ m+ s}.

It is easy to check that M1 ∪ M2 is a set of
(

m
2

)

+
(

m+s
2

)

independent edges. As

s ∈ {0, 1} then 2
(

m
2

)

+2
(

m+s
2

)

=
(

2m+s
2

)

−m. Therefore 2ν(F2(G)) ≥
(

2m+s
2

)

−m.
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Proof of Theorem 1.1. We proceed by induction on n and analyze the three cases
separately.
Proof of (1). We claim that the assertion follows easily for n = 2 and n = 4. Indeed,
(i) if n = 2, then the only possible value for k is 1, and in such a case Fk(G) ≃ G.
Similarly, (ii) if n = 4, then k = 1 or k = 3 and in all these cases Fk(G) ≃ G.

For the inductive step, we suppose that there is an even n ≥ 6 such that the
assertion holds for all even m such that 0 < m < n. In other words, we will assume
that the assertion is true for any Fk(G) whenever m = |G| < n, and k be an odd
integer such that 1 ≤ k ≤ m− 1.

Let G be a graph of order n containing a perfect matching M . Let e = [v, w] be
an edge of M and let H := G− {v, w}. Then M − e is a perfect matching of H , and
by induction, Fk−2(H) and Fk(H) have perfect matchings, say L and N , respectively.
Then, by Lemma 2.1, Fk(G) has a matching of order

(

n−2
k−2

)

+
(

n−2
k

)

+ 2
(

n−2
k−1

)

=
(

n
k

)

.
Proof of (2). Assume that n = 4 and thatM is a perfect matching ofG. Then the only
possible value for k in Fk(G) is 2. By applying Lemma 2.2 to F2(M) and considering
that F2(M) is a subgraph of F2(G), we have the base case for the induction:

2ν(F2(G)) ≥ 2ν(F2(M)) ≥

(

n

2

)

−

(

2

1

)

.

For the inductive step, we suppose that there is an even n ≥ 6 such that the
assertion is true for any Fk(H) whenever m = |H| < n, and k be an even integer
such that 2 ≤ k ≤ m − 2. Since the assertion holds for k = 2 by Lemma 2.2 and
F2(G) ≃ Fn−2(G), we may assume that 4 ≤ k ≤ n− 4.

Let e = [v, w] be an edge of M and let G′ := G−{v, w}. Then M − e is a perfect
matching of G′, and by induction, Fk(G

′) and Fk−2(G
′) contain matchings N and L,

respectively, such that |N | ≥
(

n−2
k

)

−
(

n/2−1
k/2

)

and |L| ≥
(

n−2
k−2

)

−
(

n/2−1
k/2−1

)

.

Then, by Lemma 2.1, Fk(G) has a matching of order
(

n− 2

k

)

−

(

n/2− 1

k/2

)

+

(

n− 2

k − 2

)

−

(

n/2− 1

k/2− 1

)

+ 2

(

n− 2

k − 1

)

=

(

n

k

)

−

(

n/2

k/2

)

.

Finally, suppose that G is a perfect matching (i.e., G is a set of n/2 independent
edges). Note that if M is a set of k/2 edges of G, then V (M) is an isolated vertex
of Fk(G). Then Fk(G) has exactly

(

n/2
k/2

)

isolated vertices, and hence ν(Fk(G)) ≤
((

n
k

)

−
(

n/2
k/2

))

/2.

Proof of (3). We take n = 3 and n = 5 as the base case. If n = 3, then the only
possible values for k are 1 and 2, and in such cases Fk(G) ≃ G. For n = 5, we have
that 1, 2, 3 and 4 are the admissible values of k. Since Fk(G) ≃ G for k = 1, 4; and
F2(G) ≃ F3(G), then, in order to establish the base case of the induction, we need
only check the assertion for F2(G).

Let M be an almost perfect matching of G. By applying Lemma 2.2 to F2(M)
and considering that F2(M) is a subgraph of F2(G), we have the base case:

2ν(F2(G)) ≥ 2ν(F2(M)) =

(

3

2

)

− 1 = 2.
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For the inductive step, we suppose that there is an odd n ≥ 7 such that the
assertion holds for all odd m such that 2 < m < n. In other words, we will assume
that the assertion is true for any Fk(G) whenever m = |G| < n, and k be an integer
such that 1 ≤ k ≤ m− 1.

Let G be a graph of order n containing an almost perfect matching M . Since
F1(G) ≃ Fn−1(G) ≃ G, the assertion is trivial for k = 1 and k = n−1. So we assume
that 3 ≤ k ≤ n− 3. Let e = [v, w] be an edge of M and let H := G− {v, w}. Then
M − e is an almost perfect matching of H , and by induction, Fk(H) and Fk−2(H)
contain matchings N and L, respectively, such that |N | ≥

(

n−2
k

)

−
(

(n−3)/2
⌊k/2⌋

)

and

|L| ≥
(

n−2
k−2

)

−
(

(n−3)/2
⌊(k−2)/2⌋

)

. Then, by Lemma 2.1, Fk(G) has a matching of order

(

n− 2

k

)

−

(

(n− 3)/2

⌊k/2⌋

)

+

(

n− 2

k − 2

)

−

(

(n− 3)/2

⌊(k − 2)/2⌋

)

+2

(

n− 2

k − 1

)

=

(

n

k

)

−

(

(n− 1)/2

⌊k/2⌋

)

.

Now suppose that G is an almost perfect matching (i.e., G is a set of (n − 1)/2
independent edges plus an isolated vertex v). Let M be a set of ⌊k/2⌋ edges of G.
Note that if k is even (respectively odd), then V (M) (respectively V (M) ∪ {v}) is
an isolated vertex of Fk(G). Then Fk(G) has exactly

(

(n−1)/2
⌊k/2⌋

)

isolated vertices, and
hence

2ν(F2(G)) ≤

(

n

k

)

−

(

(n− 1)/2

⌊k/2⌋

)

.

�

The converse of Theorem 1.1 (1) is false in general. For example, F3(K1,5) has a
perfect matching (the set of red edges in Figure 1) but K1,5 does not have it. On the
other hand, it is easy to find counterexamples to Theorem 1.1 (1) when we relax some
of its hypothesis. For example, (a) if we assume the existence of an almost perfect
matching instead of a perfect matching, then the path G = P5 and k = 3 provide a
counterexample (Figure 2). Similarly, (b) if n is not odd, then the graphM consisting
of two independent edges, and k = 2 do.

Next corollary states that 2ν(Fk(G)) → |V (Fk(G))| when |G| → ∞.

Corollary 2.3. Let G be a graph of order n. If ν(G) = ⌊n/2⌋, then

(1) ν(Fk(G)) ≥
(nk)−(

n/2
k/2)

2(nk)
≥

(

1−
(

k
n

)k/2 )
/2, for n even.

(2) ν(Fk(G)) ≥
(nk)−(

(n−1)/2
⌊k/2⌋ )

2(nk)
≥

(

1−
(

k
n

)⌊k/2⌋ )
/2, for n odd.

3 Estimation of β(Fk(G)) for G bipartite

This section is devoted to the study of the independence number of the k-token graphs
of some common bipartite graphs. As we will see, most of the results stated in this
section will be used, directly or indirectly, in the proof of Theorem 1.2.
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Figure 1: A perfect matching (the red
edges) in the 3-token graph of K1,5.

Figure 2: The 3-token graph of P5.

3.1 Notation and auxiliary results

Let G be a bipartite graph with bipartition {B,R}. Let m := |B| ≥ 1, n := |R| ≥ 1,
and let k be an integer such that 1 ≤ k ≤ m+ n− 1. Let

R := {A ⊂ V (G) : |A| = k, |R ∩ A| is odd},

and let
B := {A ⊂ V (G) : |A| = k, |R ∩A| is even}.

From Proposition 12 in [13] we know that Fk(G) is a bipartite graph. It is not
difficult to check that {R,B} is a bipartition of Fk(G). Without loss of generality we
can assume that m ≤ n.

Remark 3.1. Unless otherwise stated, from now on we will assume that G,B,R,B,R, m, n
and k are as above.

Recall that a matching of B into R is a matching M in G such that every vertex
in B is incident with an edge in M [3]. Now we recall the classical Hall’s Theorem.

Theorem 3.2. The bipartite graph G has a matching of B into R if and only if
|N(S)| ≥ |S| for every S ⊆ B.

Lemma 3.3. If there exists a matching of B into R, then β(G) = |R|.

Proof. Since G contains a matching M of B into R, it follows that |R| ≥ |B|. Then
β(G) ≥ |R|, because R is an independent set of G.

Now we show that β(G) ≤ |R|. Let X be any independent set of G. If X ⊆ B
or X ⊆ R we are done. So we may assume that B′ := X ∩ B 6= ∅ and that
R′ := X ∩ R 6= ∅. Let M ′ be the set of edges in M that have one endvertex in
B′, and let R′′ be the set of endvertices of M ′ in R. Thus V (M ′) = B′ ∪ R′′, and
|B′| = |R′′|. Since X is an independent set, then R′ ∩ R′′ = ∅, and hence R′ ∪ R′′ is
also an independent set of G with |R′ ∪ R′′| = |X|.

7



Proposition 3.4. Let G,B,R,B,R, m, n and k as in Remark 3.1. Then

β
(

Fk(G)
)

≥ max

{

r,

(

n +m

k

)

− r

}

,

where

r =

⌈k/2⌉
∑

i=1

(

n

2i− 1

)(

m

k − 2i+ 1

)

.

Proof. For i = 1, . . . , ⌈k/2⌉, let Ri be the subset of R defined by

Ri := {A ⊂ V (G) : |A| = k, |R ∩A| = 2i− 1}.

Since |Ri| =
(

n
2i−1

)(

m
k−2i+1

)

, the desired result it follows by observing that |R| = r

and |B| =
(

n+m
k

)

− r.

The bound for β(Fk(G)) given in Proposition 3.4 is not always attained: for
instance, it is not difficult to see that the graph G in Figure 3 has β(F2(G)) = 12
and max{|R|, |B|} = 11. Note that F2(G), shown in Figure 4, does not satisfy Hall’s
condition for A = {13, 14, 15, 16, 17, 23}, i.e., |N(A)| < |A|.

Figure 3: A bipartite graph G with bipar-
tition {B,R}, and |B| = 2, |R| = 5.

Figure 4: This is F2(G) for the
graph G on the left. Note that
{13, 14, 15, 16, 17, 23, 45, 46, 47, 56, 57, 67}
is an independent set.

Proposition 3.5. If k = 2, then |B| ≥ |R| if and only if n−m ≥ 1+
√
1+8m
2

.

Proof. From the hypothesis k = 2 and Proposition 3.4 it follows that F2(G) has
bipartition {R,B} with |R| = (m+s)m and |B| =

(

2m+s
2

)

−(m+s)m, where s := n−m.
Thus |B| − |R| =

(

s
2

)

− m. This equality implies that |B| ≥ |R| if and only if
s2 − s − 2m ≥ 0. The result it follows by solving the last inequality for s, and
considering that s ≥ 0.

8



3.2 Exact values for β(Fk(G)) for some G bipartite

Our aim in this subsection is to determine the exact independence number of the
k-token graphs of some common bipartite graphs.

Next result is a consequence of our Theorem 1.1 (1) and Corollary 1.3 in [24]
which in turn is a consequence of a Theorem of König and a Theorem of Gallai.

Theorem 3.6. If G has a perfect matching and k is odd, then β(Fk(G)) =
(

m+n
k

)

/2.

Proof. From Theorem 1.1 (1) it follows that Fk(G) has a perfect matching. This and
the fact that Fk(G) is a bipartite graph implies that β(Fk(G)) =

(

m+n
k

)

/2.

Corollary 3.7. For G ∈ {P2n, C2n, Kn,n} and k odd, β(Fk(G)) =
(

2n
k

)

/2.

We noted that for 0 ≤ m < n, T (n,m) :=
(

2n
2m+1

)

/2 is a formula for the sequence
A091044 in the “On-line Encyclopedia of Integer Sequences” (OEIS) [22], and so
Corollary 3.7 provides a new interpretation for such a sequence.

As we will see, most of the results in the rest of the section exhibit families of
graphs for which the bound for β(Fk(G)) given in Proposition 3.4 is attained.

Proposition 3.8. Let G = Km,n, with m = 1 and n ≥ 1 (i.e., G is the star of order
n+ 1). Then

β(Fk(K1,n)) =

{
(

n
k

)

k ≤ (n+ 1)/2,
(

n
k−1

)

k > (n+ 1)/2.

Proof. Let V (G) = {v1, . . . , vn+1} and let v1 be the central vertex of G. Since β(G) =
n, the assertion holds for k ∈ {1, n}. So we assume that 2 ≤ k ≤ n− 1. In this proof
we take R = {v1} and B = {v2, . . . , vn+1}. Thus, the bipartition {R,B} of Fk(G) is
given by R = {A ∈ V (Fk(G)) : v1 ∈ A} and B = V (Fk(G)) \ R. Thus |R| =

(

n
k−1

)

and |B| =
(

n
k

)

. Note that Fk(G) is biregular: d(A) = n + 1 − k for every A ∈ R and
d(B) = k for every B ∈ B.

Suppose that k ≤ (n + 1)/2. Then |B| ≥ |R|. Now we show that |N(A)| ≥ |A|
for any A ⊆ R. Since N(A) = ∪A∈AN(A) ⊆ B and every vertex of B has degree k,
then every vertex in N(A) appears at most k times in the disjoint union

⊎

A∈AN(A).
Therefore |N(A)| ≥ (n + 1 − k)|A|/k ≥ |A|, because n + 1 − k ≥ k. From Hall’s
Theorem and Lemma 3.3 we have β(Fk(G)) = |B| =

(

n
k

)

, as desired.
The case k > (n+ 1)/2 can be verified by a totally analogous argument.

The number β(F2(K1,n−1)) is equal to A000217(n− 2), for n ≥ 4, where A000217
is the sequence of triangular numbers [22].

Proposition 3.9. Let G,B,R,B,R and k be as in Remark 3.1. If β(Fk(G)) is equal
to max{|R|, |B|} and G′ is a bipartite supergraph of G with bipartition {R,B}, then
β(Fk(G

′)) = max{|R|, |B|}.
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Proof. The equality V (G) = V (G′) implies V (Fk(G)) = V (Fk(G
′)) and E(Fk(G)) ⊆

E(Fk(G
′). From Proposition 3.4 it follows β(Fk(G

′)) ≥ max{|R|, |B|}. On the other
hand, since every independent set of Fk(G

′) is an independent set of Fk(G), we have
β(Fk(G

′)) ≤ β(Fk(G)) = max{|R|, |B|}.

Theorem 3.10. If G′ is a bipartite supergraph of G with bipartition {R,B}, and
G has either a perfect matching or an almost perfect matching, then β(Fk(G

′)) =
max{|R|, |B|}.

Proof. In view of Proposition 3.9, it is enough to show that if G is either a perfect
matching or an almost perfect matching, then β(Fk(G)) = max{|R|, |B|}.

Suppose that G is a perfect matching. Then n = m and |G| = 2m. If k is odd,
then, by Theorem 1.1 (1), Fk(G) has a perfect matching. This fact together with
Lemma 3.3 imply β(Fk(G)) = max{|R|, |B|}. For k even, Theorem 1.1 (2) implies:
(i) that the set S of isolated vertices of Fk(G) has exactly

(

m
k/2

)

elements (see the last

paragraph of the proof of Theorem 1.1 (2)), and (ii) the existence of a matching M
of Fk(G) such that V (M) = V (Fk(G)) \ S. Now, from the definition of R it follows
that if k/2 is odd, then S ⊆ R, and if k/2 is even, then S ⊆ B. Therefore, we have
that either M is a matching of R into B or M is a matching of B into R. In any
case, Lemma 3.3 implies β(Fk(G)) = max{R,B}.

Now suppose that G is an almost perfect matching. Then |E(G)| = |B| = m =
n − 1 and G has exactly an isolated vertex in R, say u. From Theorem 1.1 (3) it
follows: (i) that the set S of isolated vertices of Fk(G) has exactly

(

m
⌊k/2⌋

)

elements

(see the last paragraph of the proof of Theorem 1.1 (3)), and (ii) the existence of a
matching M of Fk(G) such that V (M) = V (Fk(G)) \ S. Again, it is easy to see that
either S ⊆ R or S ⊆ B. Then either M is a matching of R into B or M is a matching
of B into R. In any case, Lemma 3.3 implies β(Fk(G)) = max{|R|, |B|}.

Our next result is an immediate consequence of Proposition 3.4 and Theorem 3.10.

Corollary 3.11. Let t be a positive integer. If G ∈ {Pt, Kt,t, Kt,t+1} and k is an
integer such that 1 ≤ k ≤ |G| − 1, then

β(Fk(G)) = max{r,

(

p

k

)

− r},

where p := |G| and r :=
∑⌈k/2⌉

i=1

(⌈p/2⌉
2i−1

)( ⌊p/2⌋
k−2i+1

)

.

It is a routine exercise to check that the sequence {β(F2(Pt))}t≥0 coincides with
A002620 in the OEIS [22].

The following conjecture has been motivated by the results of Corollary 3.11 for
β(Kt,t) and β(Kt,t+1), and experimental results. Our aim in the next section is to
show Conjecture 3.12 for k = 2.

Conjecture 3.12. If G is a complete bipartite graph with partition {R,B}, then
β(Fk(G)) = max{|R|, |B|}.
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4 Proof of Theorem 1.2

First of all we need some additional notation and a couple of technical lemmas.
For t a nonnegative integer, we use [t] to denote the set {1, . . . , t}, and for X a

finite set, we use CX
2 to denote the set of all 2-sets of X . If s0 := 1+

√
1+8m
2

we have
that 2 ≤ s < s0 if and only if m >

(

s
2

)

and hence we can define an injective function

from C
[s]
2 to [m].

Lemma 4.1. Let G be a bipartite graph with bipartition {R,B}, where B = {b1, . . . , bm},
R = {r1, . . . , rm, . . . , rm+s}, and with edges as follows: (i) bi ∼ ri for every i ∈ [m],

(ii) if 2 ≤ s < s0, bφ({i,j}) ∼ rm+i and bφ({i,j}) ∼ rm+j, for any {i, j} ∈ C
[s]
2 , where φ

is a fixed injective function from C
[s]
2 to [m]. Then β(F2(G)) = |R|.

Proof. If m = 1, then s0 = 2 and either s = 0 or s = 1. If s = 0, we are done,
since |R| = 1 and F2(G) ≃ K1. Similarly, if s = 1, then B = {b1}, R = {r1, r2}
and E(G) = {[b1, r1]}. Note that in this case F2(G) ≃ G, β(G) = 2 and |R| = 2, as
desired. So we may assume that m ≥ 2, and hence that s0 > 2.

As s < s0 and Proposition 3.5 we have |R| > |B|. Thus, by Lemma 3.3 and Hall’s
Theorem, it is enough to show that |N(X)| ≥ |X| for all X ⊆ B.

Since k = 2, R and B are given by

R = {{b, r} : b ∈ B, r ∈ R} ,

B = CB
2 ∪ CR

2 .

Note that the pair B2,B3 with

B2 := {{ri, rj} : 1 ≤ i ≤ m, i < j ≤ m+ s},

B3 := {{rm+i, rm+j} : {i, j} ∈ C
[s]
2 }

form a partition of CR
2 . Then {B1,B2,B3}, with B1 := CB

2 , is a partition of B. For
X ⊆ B, let Xq := X ∩ Bq for q = 1, 2, 3, and let

X ′
1 := {{bi, rj} : {bi, bj} ∈ X1, 1 ≤ j < i ≤ m} ,

X ′
2 := {{bi, rj} : {ri, rj} ∈ X2, 1 ≤ i ≤ m, and i < j ≤ m+ s} , and

X ′
3 :=

{

{bφ({i,j}), rm+j} : {rm+i, rm+j} ∈ X3, 1 ≤ i < j ≤ s
}

.

Note that X ′
1∩X ′

2 = ∅ and X ′
1∩X ′

3 = ∅. From (i) and (ii) it follows that X ′
q ⊆ N(Xq)

for every q, and hence X ′
1 ∪X ′

2 ∪X ′
3 ⊆ N(X). Also note that |X ′

q| = |Xq| for every
q (for q = 3 take into account that φ is injective). If s ∈ {0, 1}, then X3 = ∅ and
|N(X)| ≥ |X ′

1 ∪ X ′
2| ≥ |X|. Similarly, if s ≥ 2 and X ′

2 ∩ X ′
3 = ∅, then |N(X)| ≥

|X ′
1 ∪X ′

2 ∪X ′
3| ≥ |X|. Finally, suppose that s ≥ 2 and X ′

2 ∩X ′
3 6= ∅. Let

X2,3 :=
{

{bφ({i,j}), rφ({i,j})} : {bφ({i,j}), rm+j} ∈ X ′
2 ∩X ′

3

}

.

First we show thatX2,3 ⊆ N(X2). Let {bφ({i,j}), rφ({i,j})} ∈ X2,3, then {bφ({i,j}), rm+j} ∈
X ′

2 and {rφ({i,j}), rm+j} ∈ X2 by definition of X ′
2. The result follows because

[

{bφ({i,j}), rφ({i,j})}, {rφ({i,j}), rm+j}
]

∈ E (F2(G)) .
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It is clear that X2,3 ∩ X ′
q = ∅ for every q. Since φ is injective, the equality

{bφ({i,j}), rφ({i,j})} = {bφ({l,m}), rφ({l,m})}, with i < j and l < m, implies that i = l and
j = m, and hence |X2,3| = |X ′

2 ∩X ′
3|. Therefore, by the inclusion-exclusion principle

we have

|N(X)| ≥ |X ′
1 ∪X ′

2 ∪X ′
3 ∪X2,3| = |X ′

1|+ |X ′
2|+ |X ′

3|+ |X2,3| − |X ′
2 ∩X ′

3| = |X|.

If s ≥ s0 then m ≤
(

s
2

)

and hence we can define an injective function from [m] to
D := {(i, j) : 1 ≤ i < j ≤ s}.

Lemma 4.2. Let G be a bipartite graph with bipartition {R,B}, where B = {b1, . . . , bm},
R = {r1, . . . , rm, . . . , rm+s}, s ≥ s0, and with edges as follows: (i) bi ∼ ri, for every
i ∈ [m], and (ii) bi ∼ rm+i1 and bi ∼ rm+i2, for any i ∈ [m], where (i1, i2) = φ(i),
with φ a fixed injective function from [m] to D. Then β(F2(G)) = |B|.

Proof. We proceed similarly as in Lemma 4.1. As s ≥ s0 and by Proposition 3.5 we
have |B| ≥ |R|. Thus, by Lemma 3.3 and Hall’s Theorem, it is enough to show that
|N(X)| ≥ |X| for all X ⊆ R. Note that R1,R2 and R3 with

R1 := {{bi, rj} : 1 ≤ j < i ≤ m} ,

R2 := {{bi, rj} : 1 ≤ i ≤ m, i < j ≤ m+ s} and

R3 := {{bi, ri} : 1 ≤ i ≤ m}

form a partition of R. For X ⊆ R, let Xq := X ∩Rq for q ∈ {1, 2, 3}, and let

X ′
1 := {{bi, bj} : {bi, rj} ∈ X1} ,

X ′
2 := {{ri, rj} : {bi, rj} ∈ X2, 1 ≤ i < j ≤ m} ,

X ′′
2 := {{rm+i1 , rm+i2} : {bi, rm+i1} ∈ X2, 1 ≤ i1 < i2 ≤ s, φ(i) = (i1, i2)} ,

X ′
3 := {{ri, rm+i1} : {bi, ri} ∈ X3, φ(i) = (i1, i2)} .

From (i) and (ii) it follows that X ′
1∪X

′
2∪X

′′
2 ∪X

′
3 ⊆ N(X) ⊆ B. Note that X ′

1, X
′
2, X

′′
2

and X ′
3 are pairwise disjoint. Since |X ′

q| = |Xq| for q ∈ {1, 3} and |X2| = |X ′
2 ∪X ′′

2 |
(because φ is injective), then, by the inclusion-exclusion principle:

N(X) ≥ |X ′
1|+ |X ′

2 ∪X ′′
2 |+ |X ′

3| = |X1|+ |X2|+ |X3| = |X|.

Proof of Theorem 1.2. From Proposition 3.9 we know that β(F2(G
′)) = max{|R|, |B|}

for any bipartite supergraph G′ of graph G in Lemma 4.1 or in Lemma 4.2 with
bipartition {R,B}. �
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5 Proof of Theorem 1.3

Again, we first need to give some preliminar results and notation. We start by stating
recursive inequalities for β(Fk(G)).

Lemma 5.1. Let G be a graph of order n. For 2 ≤ k ≤ n− 1, we have

max
v∈V (G)

{β (Fk−1(G− v)) + β (Fk (G−N [v]))} ≤ β
(

Fk(G)
)

≤
1

k

∑

v∈V (G)

β
(

Fk−1(G−v)
)

.

(1)

Proof. We begin by proving the right inequality of (1). Let I be an independent set of
vertices in Fk(G) with maximum cardinality. For v ∈ V (G), let Iv be the set formed
by all the elements of I containing v. Since every vertex of I is a k-set of V (G), then
k|I| =

∑

v∈V (G) |Iv|. Furthermore, note that the collection {A \ {v} : A ∈ Iv} is an

independent set of Fk−1(G−v), and so |Iv| ≤ β
(

Fk−1(G−v)
)

for every v ∈ V (G). The
desired inequality it follows from previous relations and the fact that β

(

Fk(G)
)

= |I|.
Now we show the right inequality. For v ∈ V (G), let I¬v (respectively J¬v) be an

independent set in Fk−1(G−v) (respectively Fk(G−N [v])) with maximum cardinality.
Then |I¬v| = β(Fk−1(G− v)) and |J¬v| = β(Fk(G−N [v])). Let Iv be the collection
of sets {A ∪ {v} : A ∈ I¬v}. From the construction of Iv and J¬v it is easy to see
that Iv ∩ J¬v = ∅, and that Iv ∪ J¬v form an independent set of Fk(G). Since the
last two statements hold for every v ∈ V (G), the required inequality follows.

Remark 5.2. The bounds for β(Fk(G)) in (1) are best possible: for instance, the left
(respectively right) hand side of (1) is reached when G ≃ K1,3 and k = 2 (respectively
G ≃ Kn and k = 2).

Corollary 5.3. Let G be a vertex-transitive graph of order n and let w be any vertex
in G. For 2 ≤ k ≤ n− 2, we have

β
(

Fk(G)
)

≤ min

{

n

k
β
(

Fk−1(G− w)
)

,
n

n− k
β
(

Fk(G− w)
)

}

.

Proof. Since G is vertex-transitive, then β(Fk−1(G − w)) = β(Fk−1(G − u)) for any
u ∈ V (G). From this and Theorem 5.1 it follows that

β(Fk(G)) ≤
n

k
β(Fk−1(G− w)).

In a similar way we can deduce that

β(Fn−k(G)) ≤
n

n− k
β(Fn−k−1(G− w)).

The desired inequality it follows from the previous inequality and considering that
Fk(G) ≃ Fn−k(G), and that Fk(G− w) ≃ F(n−1)−k(G− w).

Applying Lemma 5.1 and Corollary 5.3 to G ≃ Cn and G ≃ Kn, we have the
following corollary (we remark that equation (3) is in fact a theorem of Johnson [15]):
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Corollary 5.4. For 2 ≤ k ≤ n− 2 we have

β
(

Fk−1(Pn−1)
)

+β
(

Fk(Pn−3)
)

≤ β
(

Fk(Cn)
)

≤ min

{

n

k
β
(

Fk−1(Pn−1)
)

,
n

n− k
β
(

Fk(Pn−1)
)

}

(2)
and

β
(

J(n−1, k−1)
)

≤ β
(

J(n, k)
)

≤ min

{

n

k
β
(

J(n− 1, k − 1)
)

,
n

n− k
β
(

J(n− 1, k)
)

}

.

(3)

Since the exact value of β(F2(Cp)) for p even is given by Corollary 3.7 and the
case p = 1 is trivial, for the rest of this section, we assume that p ≥ 3 is an odd
integer.

Let V (Cp) := {1, . . . , p} and E(Cp) := {[i, i+ 1] : i = 1, . . . , p − 1} ∪ {[p, 1]}. If
A,B ⊆ V (Cp), we say that A and B are linked in Cp if and only if Cp contains an
edge [a, b] such that a ∈ A and b ∈ B. We use A ≈ B to denote that A and B
are linked in Cp. Recall that for A,B ∈ V (F2(Cp)), A ∼ B if and only if either
A△B = {t, t+ 1} for 1 ≤ t ≤ p − 1, or A△B = {1, p}. For i = 1, . . . , p − 1, let
Li := {{j, p− (i− j)} : 1 ≤ j ≤ i} ⊆ V (F2(Cp)) (see Figure 5). Each assertion in
the following observation it follows easily from the definition of Li.

Figure 5: Here is shown F2(C5). Note that F2(P5) ≃ F2(C5) \ {e1, e2, e3} and that L1 =
{{1, 5}}, . . . , L4 = {{1, 2}, {2, 3}, {3, 4}, {4, 5}}.

Observation 5.5. For p and Li as above, we have that:

1. Li ≈ Li+1 for i ∈ {1, . . . , p− 2}.

2. Li ≈ Lp−i+1 and the underlying edge is of the form [{1, i}, {i, p}], for i ∈
{2, . . . , p− 1}.

3. All the links between members of {L1, . . . , Lp−1} are given by (1)-(2).
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Proof of Theorem 1.3. It is easy to see that β(F2(C3)) = 1. Thus we only need to
prove the case when p = 2t+1 for t ≥ 2. First, we show that β(F2(Cp)) ≤ ⌊p⌊p/2⌋/2⌋.

By Corollary 5.4 and Corollary 3.11, we have that

β(F2(Cp)) ≤ min
{

p/2⌈(p− 1)/2⌉, p/(p− 2)⌊(p− 1)2/4⌋
}

.

and hence
β(F2(Cp)) ≤ (p/2)⌈(p− 1)/2⌉ = pt/2.

Thus β(F2(Cp)) ≤ ⌊pt/2⌋ = ⌊p⌊p/2⌋/2⌋, because t = ⌊p/2⌋.

Now we show that β(F2(Cp)) ≥ ⌊p⌊p/2⌋/2⌋. Note that Lq is an independent set
of F2(Cp) whenever q 6= t+ 1. We split the rest of the proof depending on whether t
is odd or even.

Case 2.1. t is odd. From Observation 5.5 it follows that

{L1, L3, . . . , Lt, Lt+3, Lt+5, . . . , Lp−1}

is a collection of pairwise non-linked independent sets. Then,

I = L1 ∪ L3 ∪ · · · ∪ Lt ∪ Lt+3 ∪ Lt+5 ∪ · · · ∪ Lp−1

is an independent set in F2(Cp). But

|I| = (1 + 3 + · · ·+ t) + ((t+ 3) + (t+ 5) + · · ·+ (p− 1)) =
1

2
(tp− 1) = ⌊p⌊p/2⌋/2⌋.

Case 2.2. t is even. Similarly, {L1, L3, . . . , Lt−1, Lt+2, Lt+4, . . . , Lp−1} is a collec-
tion of pairwise non-linked independent sets, and hence

I = L1 ∪ L3 ∪ · · · ∪ Lt−1 ∪ Lt+2 ∪ Lt+4 ∪ · · · ∪ Lp−1

is an independent set in F2(Cp). In this case we have that

|I| = (1 + 3 + · · ·+ t− 1) + ((t + 2) + (t+ 4) + · · ·+ p− 1) =
1

2
tp = ⌊p⌊p/2⌋/2⌋. �
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