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Abstract

In this paper we establish a general asymptotic formula for the sum of the first n prime numbers,
which leads to a generalization of the most accurate asymptotic formula given by Massias and Robin.
Further we prove a series of results concerning Mandl’s inequality on the sum of the first n prime
numbers. We use these results to find new explicit estimates for the sum of the first n prime numbers,
which improve the currently best known estimates.

1 Introduction

In this paper, we study the sum of the first n prime numbers. At the beginning of the 20th century,
Landau [12] showed that

n2
Zpkrv?logn (n — 00).
k<n

Using a result of Robin [16], Massias and Robin [I5, p. 217] found the more accurate asymptotic formula

Bi+1(loglogn n2(loglog n)m+t!
Zpk——<1ogn+z k1(loglog )>+O<—( gmfli )

= log" n log

where m € IN and the polynomials are given by the formulas By(z) = 1 and

Bji1(z) = By(2) — (k — 1) By(). (1.1)
Further, they gave
2 3  logl —5/2 2(log1 2
S = logn + loglogn — > 4 108108 = 5/2) | n<0g720gn> _ (12)
2 2 logn log”n

k<n

Unfortunately, the formula (IT]) does not yields any of the polynomials By, ..., Byt1. So, the asymptotic
formula given in (2) is currently the most accurate for the sum of the first n primes. Our first goal in
this paper is to derive the following general asymptotic formula for the sum of the first n primes.

Theorem 1.1 (See Corollary [Z8). There exist unique monic polynomials Ts € Q[x], where 1 < s < m
and deg(Ts) = s, such that

m s+1
Z Pk = <1ogn +loglogn — = + Z T (loglog n)) + O(ncp(n)).

slog®n
k<n g

The polynomials Ts can be computed explicitly. In particular, T1(x) = x—5/2 and To(x) = 2% —Tx+29/2.

The motivation for this paper is an inequality conjectured by Mandl concerning an upper bound for the
sum of the first n prime numbers, namely that

”p" > (1.1)

k<n
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for every n > 9, where p,, is the nth prime number. This inequality originally appeared in a paper of
Rosser and Schoenfeld [19] p. 1] from 1975 without proof. In his thesis, Dusart [7] used the identity

n

> " pr=npn —/ m(z) da,

k<n

where 7(z) denotes the number of primes < x, and explicit estimates for 7(z) to prove that (II)) holds
for every n > 9. One of the goals of this paper is to study the sequence (By,),en with

np
=5
k<n
more detailed (see also [22]). For this purpose, we derive the following asymptotic formula for B,.

Theorem 1.2 (see Corollary B2)). There exist uniquely determined polynomials Va, ..., V,, € Qx] with
deg(Vs) = s — 1 and positive leading coefficient, so that

n2 2 i 1)tV (loglogn) Lo (n2(1oglogn)m+1) .

B, =
i 410gn slog®n log™ ' n

L+
2

s=2
The polynomials Vs can be computed explicitly. In particular, Va(z) = x — 7/2.
Since it is still difficult to compute B, for large n, we are interested in explicit estimates for B,. By
(1), we get that B, > 0 for every n > 9. Hassani [11, Corollary 1.5] found that the inequality

n2

12

holds for every n > 10. Up to now, the sharpest lower bound for B, is due to Sun [23]. In 2012, he
proved that

B, >

n2

B, > — 1.2
> (12)

for every n > 417. According to Theorem [[.2] we improve the inequality (L2) by showing the following
Theorem 1.3 (see Corollary .8). If n > 348247, then

B, > n? N n’ TLQ(lOglOg;L* 2.1).
4 4logn 4log™n

Theorem [[2 yields that for each € > 0 there exists an ng(e) € IN, so that

2 n*  n’(loglogn — (7/2 +¢))

n
B, < —
4 Jr410gn 4log*n

(1.3)

for every n > ng(e). In view of ([I3]), we give the following explicit estimate for B,,, which improves the
only known upper bound for B,, given by Hassani [I1], Corollary 1.5], namely that for every n > 2,

on?

B, < —. 14
< (1.4

Theorem 1.4 (See Corollary ILTTl). If n > 26220, then

B, < n_2 n n? B n2(log10g7;b - 5.22).
4  4logn 4log"n

Since it is still difficult to compute the sum of the first n primes for large n, we are interested in explicit
estimates for this sum. In 1989, Massias, Nicolas and Robin |14, Lemma 4] showed that the upper bounds

’ 1.866 log]
Zpk <L (10gn+loglogn 3 + M)
k<n 2 2 logn



and
Zpk < — 1ogn+1og10gn — 1.4416)
k<n

hold for every n > 3688. Massias and Robin [I5, Théoréme D(vi)] improved these inequalities by showing

that
3  1.805 loglogn)

n2
ZPkS— logn + loglogn — = +
= 2 2 logn

for every n > 18 and that
2
Z P < %(logn + loglogn — 1.463)
k<n

for every n > 779. Further, Massias and Robin [15, Théoréme A(vi)] proved under the assumption that
the Riemann hypothesis is true that

(1.3)

log1 - 1.8
P <n <logn+loglogn 1+ M)

logn
for every n > 27076 und deduced [15, Théoréme D(viii)] under the assumption of (I3]), that the inequality

2 log 1 —2.2
Zpkgn— logn+1oglogn7§+—og oen ) (1.4)
= 2 2 logn

holds for every n > 10134. In 1998, Dusart [7, Théorome 1.7] proved that (L3]) holds unconditionally for
every n > 27076, which implies that the inequality (L4) holds for every n > 10134. In this paper, we
find the following improvement of (4.

Theorem 1.5 (See Corollary 5.2)). For every n > 355147, we have
ZP - n? ( 3 loglogn —5/2 (loglogn)? — Tloglogn + 12. 373)
p < _

logn + loglogn — = +

k<n 2 logn 21og” n

According to lower bounds for the sum of the first n primes, Massias and Robin [I5, Théoreme C(vii)]
proved that the inequality
2
Zpk > %(logn + loglogn — 1.5034)
k<n
holds for every n > 127042 and that

n? 3 3.568
Zp > — | logn +loglogn — — —
= 2 2  logn

for every n > 2. Further, they found that

2 3
Zpk > % <logn+loglogn —> (1.5)

2
k<n

for every 305494 < n < €%9, Under the assumption that the Riemann hypothesis is true, they the
inequality (LB) holds for every n > 305494. In 1998, Dusart [7, Lemme 1.7] proved that the inequality
(LH) holds unconditionally for every n > 305494. We improve this inequality by showing the following

Theorem 1.6 (See Corollary B.H). For every n > 2, we have

2 log1 —5/2 log1 log1 1
Zpk>n—<logn+loglogn§+ oglogn —5/2  (log ogn)? — Tloglogn + 7067>
k<n 2 2 logn 21log*n

In the last section we derive new explicit estimates for the step function
z) =Y p,
p<z

which improve the currently best known estimates for this step function.



2 An asymptotic formula for ), _ i

To prove a general asymptotic formula for the sum of the first n primes, we introduce the following
definition.

Definition. Let s,1,j,7 € INg with j > r. We define the integers b, ; j,» € Z as follows:

o If j =r =0, then

bei00 = 1. (2.1)
o If j > 1, then
bs,ijj = bsjij—1,-1 (=i +7—1). (2:2)
and
bs,i,j,O = bs,i,jfl,O . (S +] — 1) (23)
o If j >r >1, then
bs,ijor = bsij—1r-(s+7—1)+bsij 1,1 (—i+7r—1). (2.4)
Proposition 2.1. Ifr > i, then
bs,i,jr = 0.
Proof. Let r > 4. From (2.2, it follows that
bs,ii+1,i+1 =0 (2.5)
and hence
beipi =0 (2.6)

for every k > i+ 1. We use ([24) repeatedly and [2.5]) to get
bsikit1 =bsjiit1iv1-(s+k—1)-...(s+(i+2)—1)=0
for every k > i + 2. By using (2.3, it follows that
bsiki+1 =0 (2.7)
for every k > i + 1. Next, we prove by induction that
bsikiqn =0 (2.8)

for every n € IN and every k > i +n. If k =i+ n, then b, ; xi1n = 0 by ([26]). So, it suffices to prove
238) for every n € IN and every k > i+ n+ 1. If n = 1, the claim follows from (27). Now we write
k =i+ n+t with an arbitrary ¢t € IN. By (Z4) and the induction hypothesis, we obtain

bs,it+itn,itn = bsiitnyitn (ST E+n+i)—=1)-...-(s+(i+n+1)-1).
Since b itn,i+n = 0 by Z0), we get bs i k.itn = 0 and the result follows. O

Let m € IN. To prove a more accurate asymptoic formula for the sum of the first n primes, we first note
a result of Cipolla [5] from 1902 concerning an asymptotic formula for the nth prime number.

Lemma 2.2 (Cipolla, [5]). There exist uniquely determined computable rational numbers a;s € Q with
ass = 1 for every 1 < s < m, such that

(1)t G , <n(10glogn)m+1)
w=n{logn+loglogn —1+ S 2S¢, (loglogn)’ | + 0 (082087 )
p < g glog ; TTog n;) (loglog n) oz T



Corollary 2.3. There exist uniquely determined monic polynomials Ry, . .., Ry, € Qx] with deg(Ry) = k,
so that

1)*+1 Ry (log logn)> L0 <n(1oglogn)m+1)

klog® n Al

pnn<logn+loglogn1+z 0
og n

k=1
The polynomials Ry can be computed explicitly. In particular, Ri(z) = x — 2 and Ra(x) = 22 — 62 + 11.

The next two lemmata include the logarithmic integral li(z) defined for every real z > 2 by

x 1—e T T
li(z) = ﬂzlim{/ ﬂ—|—/ ﬂ}%/ i—|—1.04516....
o logt =0 J, logt 14e logt 5 logt

Lemma 2.4. For every x > 1 and every n € IN, we have

-2 o ()
logz log"ta )’

Jj=1
Proof. Integration by parts. [l

Lemma 2.5. Let x,a € R be such that x > a > 2. Then

T otdt
. logt

= li(z?) — li(a?).
Proof. See Dusart [7, Lemme 1.6]. O

In the following lemma, we compare the integral of a function with its partial sum.

Lemma 2.6. Let k, kg € IN be such that k > ko and let f be a continuous function on [ko,00) which is
non-negativ and increasing on [k, o0). Then

n

> )= knf(:c) dz + O(f(n)).

j=ko
Proof. We estimate the integral by upper and lower sums. O
Now, we set o
m
() = OB

and 3
g(n) =logn + loglogn — 7

Further, let

TG -1)!
Z(]

= 21 log n’
Then, the following theorem yields a general asymptotic formula for the sum of the first n primes.

Theorem 2.7. For every n € N,

n? - - s minded) bs.i..r(log 1og n)i="r
Zpk =5 g(n) — Z Qis Z 71 + O(nem(n)).
k<n =1 1=0 7=0 r=0 Og n



Proof. We set
1)s+1 S
T(x) =2 [ logx + loglogz — 1 + Z m Zau loglogz)® | .

By Lemma 2.2 we obtain
Pk = 7(k) + O(cm(k)).

Using 7(n) ~ nlogn as n — oo and Lemma [Z6] we get
S = Z )+ O(nem(n)) = / (2) dz + O(nem(n)). (2.9)
k<n k=3 3

First, we integrate the first three terms of 7(x). We have

n?logn  3n?

/Bn(xlogzx)dx - — +0(1).

2 4

Next, using integration by parts, Lemma 2.4 and Lemma 23] we get

2 2

" n?loglogn n n
loglogz de = 088" _ ", ),
/3 xloglog x dx 5 5 (n)+0<1ogm+1n>

Hence, by (2.9),

n’ -1 " x(loglog x)*
S o= (gt~ b))+ TS / wloslog )’ 4y Olnem(n).  (2.10)

k<n s=1 s =0 1Og z
Now let 1 < s <m and 0 <17 < s. We prove by induction that for every ¢t € Ny,

¢ min{ij}

/ z(loglog x)* Z Z bs,i,j.rn?(loglogn)="
3 log® x = 2i+110g*t n
n min{i,t+1} Pi—
bsit+1,r2(loglogx) "
/ Z 27 log 5 dz +O0(1). (2.11)

Integration by parts gives

/" z(loglg)gx)i dr — n2(1oglcs)gn)i B 1/" z(loglt?glz)i’l o+ f/” x(loglolgx)i dz +0(1),
3 log® x 2log”n 2 /3 log*t! z 2J); log"lx

o ([2I0)) holds for ¢ = 0. By induction hypothesis, we get

t—1 min{4,j} _r mm{z t} _r

z(loglog ) bs,i,;,rn?(loglogn)’ / s.i.t.r2(loglog )’
_ E E E O(1).
/3 log® = — 25+1 log*t n 2tlog**' & dz -+ O)

Using integration by parts of the integral on the right hand side, we obtain

t min{s, j}

/ z(loglog x)* Z Z bs,i.;.rn?(log 1og n)
3 log® z - 2i+1]og®t

" ““““ D beinn((s + ) (loglog z)i~ — (i — r)(log log )i~ V)z
2t+1]og* T 4

-Tr

dx

(2.12)



Since

min{i,t}
> beisr((s+t)(loglogz)™" — (i — r)(loglogz)"~" ")
r=0
min{i,t} | |
= Z (bs,i,tﬂ‘(s + t) - bs,i,t,’r—l(i - (T - 1)))(10g 10g x)Z_T -+ bs,i,t,O(S + t)(log 1Og$)1
r=1

- bs,i,t,min{i,t} (Z - min{iv t})(lOg 10g z)i—(min{i,t}—i—l)’

we can use (23)) and (24)) to get

min{i,t}
> bainr((s +t)(loglogz)' ™" — (i — r)(loglogz)" ")
r=0
min{s,t} ' | B
Z bs,i,t+1,r(loglogz) ™" — bs,i,t,min{i,t} (i — min{i, t})(loglog x)z_(m‘“{z’t}‘*‘l)_ (2.13)
r=0

It is easy to see that
_bs,i,t,min{i,t}(i - min{ia t}) = bs,i,tJrl,min{i,t}Jrl-
Hence, by (2I3), we obtain

min{i,t} min{i,t}+1
Z beitr((s+t)(loglogz)™" — (i — r)(loglogx)™""1) = Z beitr1.r(loglogz)™".
r=0 r=0
Since b j t+1,.41 = 0 for ¢ > i by Proposition 2] it follows that
min{i,t} . - min{i,t+1} -
Z bs.itr((s+t)(loglogz) ™" — (i — r)(loglogz)"~ ") = Z bsit+1,r(loglogx) ™.
r=0 r=0

Using (Z12]), we obtain (211]). Now we choose t = m — s in (211 and we get
m—s min{i,j}

x(log log x)* bs,i,;,rn?(loglogn)=" <n2(log log n)l)
208 08 2) 4o (losloan) )
/3 log® x Z TZ 2i+1log*t log™ ' n

We substitute this in (2.I0) to obtain

m m—s min{z, j}

2 s+1 5 bs 4,3,7 1 1
S = ot ) + 3 S Y P

k<n s=1

1)t & n?(loglogn)®
+0 <Z 2 gty + O(nem(n))

-Tr

and our theorem is proved. [l

The following corollary generalizes the asymptotic formula (L2]).

Corollary 2.8. There exist uniquely determined monic polynomials Ts € Q[x], where 1 < s < m and
deg(Ts) = s, such that

= (—1)**1T,(log]1
Zpk = <1ogn+1oglogn— = —I—Z D) 5(sog ogn)) + O(nep,(n)).

slog®n
k<n g

The polynomials Ts can be computed explicitly. In particular, Ty (z) = x—5/2 and Te(z) = 2® —Tx+29/2.

Proof. Since ass = 1 and bs 50,0 = 1, the first claim follows from Theorem 2.7 Let m = 2. By Cipolla
[B], we have ag1 = —2,a11 = 1,a02 = 11,a12 = —6 and ags = 1. Further, we use the formulas [21I)—(24)
to compute the integers by ; ;. Then, using Theorem [Z7] we obtain the polynomials T; and T5. O

Remark. The first part of Corollary 2.8 was already proved by Sinha [20, Theorem 2.3] in 2010. Due to
a calculation error, he gave the polynomials T} (z) = x — 3 and Ty (z) = 22 — Tz + 27/2.



3 An asymptotic formula for B,

Let m € IN. We obtain the following asymptotic formula for the sum of the first n prime numbers.

Theorem 3.1. We have

O UNE S Ve I 3 il ST U )
= — + — — Qs nem(n)).
4 Qézlsogn oo 27 log’ n

Proof. First we multiply the asymptotic formula in Lemma with n/2 and then we subtract the
asymptotic formula in Theorem 2.7 to get

n2 n2 n2 " ( )5+ & m- smm{”} bsijr loglogn)i_r
B, = z—l——h —l—;; slog - Zoau (loglogn)’ Z Tz: 2oz 1 +0(nem(n)).
Since
m—smin{ij} b loglogn)i_r mogmin{i} be.ijr 1og10gn)i_r
(loglogn)’ Z Tz: 2 log’ n Z TZ 2 log’ n ’
our theorem is proved. [l

Using Corollary and .8 we obtain the following corollary.

Corollary 3.2. There exist uniquely determined polynomials Va, ...,V € Q[z] with deg(Vs) = s—1 and
positive leading coefficient, so that

2 2

n L " (—=1)5F1V, (loglogn)
B, =2 n O(nem(n)).
4 * 4logn 2 Sz:; slog®n +Onem(n)

The polynomials Vs can be computed explicitly. In particular, Va(z) = x — 7/2.

Remark. Based on two calculation errors, Sinha [20, Lemma 3.1] gave the polynomial Va(z) = z — 49/2.

4 Explicit estimates for B,

In this section we give some explicit estimates for B,,.

4.1 Some auxiliaries lemmata

In order to find new explicit estimates for B,,, we first note some useful lemmata concerning upper and
lower bound for the severel prime functions. We start with upper bounds for the prime counting function
7(x) given in [4, Corollary 3.4].

Lemma 4.1. For every x > 21.95, we have

T

m(x) < 335 12.65 _ 80.6 ° (4.1)
logx —1- logz T logZz  logdz  loglwx
If x > 14.36, then
x
m(z 1 335 1543 (4.2)
logz 1_m_10g2m_10g3z
and for every x > 9.25, we have
T
m(x I 3.83 ° (4.3)
logx —1 logz ~ log?x
If © > 5.43, then
T
4.4
m(x logz — 1 — 117 (4.4)



In [4, Theorem 1.4 and Corollary 3.5] the following lower bounds for 7(z) are found.

Lemma 4.2. If x > xq, then

() > :
Tr a a a- a a ’
1ng717@710g%z7log§zilogixilog%z loggz

where
a1 2.65 2.65 2.65 2.65 0
as 13.35 13.35 13.35 4.6 0
as 70.3 70.3 5 0 0
Qg 455.6275 69 0 0 0
as 3404.4225 0 0 0 0
o || 1332479531 | 909050897 | 374123969 | 38168363 | 468049

In 1962, Rosser and Schoenfeld [I8, Corollary 1] already found the following lower bound for m(x).

Lemma 4.3 (Rosser and Schoenfeld, [I8]). For every x > 17, we have

w(z) >

xT

logz’
In 2010, Dusart [9, Proposition 6.6] gave the following upper bound for the nth prime number.

Lemma 4.4 (Dusart, [9]). For every n > 688383, we have

log 1 -2
Pn<n (10gn+loglogn—1+ M).

logn
The next lemma gives an inequality between logn and logp,,.

Lemma 4.5. For every n > 255, we have
logn > 0.751og py,.
Proof. First, we note an upper bound for p,, found by Rosser and Schoenfeld [I8] p. 69], namely that
pn < n(logn + loglogn)
for every n > 6. Further, we have = > 810g3 x for every x > 4913. Hence,
n* > n3(2logn)® > n3(logn + loglogn)® > p

for every n > 4913. We use a computer to check the required inequality holds for the remaining cases. O

4.2 New lower bounds for B,
The goal in this subsection is to improve the lower bound (L2). We start with the following lemma.
Lemma 4.6. For every n € IN, we have
927p2 log py, + 5620p2 > 756np, log® p, + 11702 log® p,,.
Proof. First, we consider the case n > 6077. Then, we have p,, > 60184 and by [7],
prn > n(logp, — 1.1). (4.5)
Hence, we obtain

927p2 log pp, > 756np, log® p, + 171np, log? p,, — 1019.7np,, log p,. (4.6)



Again, by using (£3), we get that
171npy, log? p, > 54n?log® p,, + 11702 log® p, — 188.1n%log? p,,
and in combination with (L), we have
927p2 log pp, > 756np, log® p, + 54n%log® p,, + 11702 log® p,, — 188.1n%log® p, — 1019.7np, log p,. (4.7)
Since log p,, > 11 > 188.1/54, we get, by (@1,
927p2 log py, > 756np,, log? p, + 117n%log® p, — 1019.7np,, log py,. (4.8)

We have logp, > 1.1/0.75. Hence, we get p, > n(logp, — 1.1) > 0.25nlogp,, and therefore 5620p2 >
1019.7np,, log p,,. In combination with (£J]), the claim follows for every n > 6077. For every 1 < n < 6076,
we check the required inequality with a computer. [l

Now we set

2.1log?n  log® p, log? n + 16.31og® n — log® p,, log n + log® p,, loglog n
p(n) = 2 + 3
4log” py 4log” pp

to obtain the following theorem.

Theorem 4.7. For every n > 842857, we have

2 n? n?loglogn  p(n)n

— 4 .
4  4logn 4log*n log®n

2

B, >

Proof. By [3, Theorem 3], we have

2 2 2

Pn 3Pn "Pn

npp, — Dk 2 + + + 0O(n) (4.9)
gl 2logpn  4log’p, 4log’p,

for every n > 52703656, where

O(n) = 43.6p2 90.9p2 927.5p2  5620.5p2  39537.75p2
8 log*p, 4log’p, 8log®p,  8log” p, 8log®p,

Let n > 52703656. By (A9) and the definition of B, it suffices to prove that

2 3p2 p2 np, n? n? n?loglogn n)n?
2logp,  4log’p, 4log’ pn 2 4  4logn 4log”n log®n

For convenience, we write p = p,,,y = logn und z = logp. By Lemma [ and the definition of p(n), we
have

2n22"y? + 4.2n%25y% + 32.6n225y2 4 927.5p?2%y? 4 5620.5p%2y% + 39537.75p%y>
> 20228y — 2n%28logy + 8p(n)n?2® + 116.964n 2"y + 755.592np2y>

which is equvalent to

2n22"y? 4+ 4.2n22%)2 + 53.5n% 2% (2 — 1.1) + 927.5p2%y? + 5620.5p 29 + 39537.75p%y>
> 21228y — 20228 logy + 8p(n)n?2® 4 20.9n22°y? + 58.114n%2%y? + 755.592np2>y>.

Using ([@3), we get

2n227y% + 4.2n225y2 + 53.5npzty? + 927.5p%2%y% + 5620.5p%2y? + 39537.75p%y>
> 21228y — 20?28 logy + 8p(n)n?2® 4 20.9n22°y? + 58.114n%2%y? + 755.592np2>y>.

10



This inequality is equvalent to
2n227y? + 4.2n%259% + 181.8np23y? (2 — 1.1) + 927.5p%22%y? + 5620.5p%2y° + 39537.75p%y>
> 2n%28y — 2n%28 logy + 8p(n)n228 +20.9n%2%y% + 58.114n2%2%y? + 128.3npzty?
+ 555.612npz3y>.
Again, we use ([@3H) to obtain that the inequality
2n22"y? + 4.2n%2%)% + 181.8p%23y% + 927.5p%2%y% + 5620.5p%zy? + 39537.75p%y>
> 21228y — 2n%28 logy + 8p(n)n?2® + 20.9n225y% + 58.114n%2%y? + 128.3npzty?
+ 555.612npz>y? (4.11)

holds. We set 117
Ui(z)=2—-1—- "
x

to see that ({IT) is equivalent to the inequality
20227y +10.2n%25y2 W (2) + 181.8p°23y% + 927.5p? 2%y + 5620.5p% 2> + 39537.75p%y>
> 21228y — 20228 logy + 8p(n)n?2® 4+ 6n220%y2 + 10.7n%2%y? + 46.18n%2%y>
+ 128.3npzty? + 555.612np2>y>.
Now we use [@4) to get

2n227y% +10.2np2y? + 181.8p%23y? + 927.5p%22y? + 5620.5p%2y> + 39537.75p%y>
> 2n%2% — 2n%28 log y + 8p(n)n?2® 4 612202 + 10.7n%2%y? + 46.18n%2"y>

+128.3npzty? + 555.612npz%y2,
which is equivalent to

2n%2"y? + 43.6np2ty? U1 (2) + 181.8p% 2%y 4 927.5p%2%y? + 5620.5p° 23> + 39537.75p%y>
> 20228y — 2n%28 logy + 8p(n)n?2® 4 612202 + 10.7n?25y* + 46.18n22%9? 4 33.4np2>y>
+ 84.7Tnpzty? + 504.6np2>y°.
By (@4) and the definition of ©(n), we obtain

2n22"y% 4+ 80 (n)2%y? > 2n22%y — 20?28 logy + 8p(n)n?2® 4 6n22%y? + 10.7n%25y* 4 46.18n2219?

+ 33.4npzSy? 4 84.Tnpz*y? + 504.6npz>y>. (4.12)
Now we set 1 383

to obtain that [@I2]) is equivalent to the inequality
4n22%92 Wy (2) + 80 (n)28y? > 2n228y — 2n%28logy + 8p(n)n?2® + 2n227y? + 2n225¢% + 6.7n22%?
+ 30.86n22%y? 4 33.4npz°y? + 84.Tnpz y? + 504.6npz3y>
and by ([£L3) we get
4npzSy? + 80 (n)28y? > 2n%28y — 2n228logy + 8p(n)n?2® + 2n22Ty? + 2n225)2 4 6.7n%25y2
+ 30.86n22%y? 4 33.4npz°y? + 84.Tnpzty? + 504.6npz3y>
which is equivalent to
14np2°y2 Wy (2) 4+ 80 (n)28y? > 2n228y — 2n%28logy + 8p(n)n?2® + 2n227y? + 202282 + 6.7n% 25>
+ 30.86n°2%y? + 10np2%y? + 19.4np2>y? + 70.7npz*y? 4+ 450.98npz>y>.
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Again by (@3], we get that the inequality

14p? 252 4+ 80(n)28y% > 20228y — 2n228 log y + 8p(n)n228 + 2n227y?% + 2n225¢% + 6.7n%25y2
g
+ 30.86n22%y? 4+ 10np2°y? + 19.4npz°y? + 70.7npz*y? + 450.98npz3y>.

holds. By putting
1 . 15.4
\Pg(z):x—lf——?)—gf— 543
x x

)

23
the last inequality is equivalent to
2n22Ty2 W3 (2) + 14p>2°5y2 + 80 (n)28y? > 2n228y 4 20228y — 20228 logy + 8p(n)n?2® + 10npz5y?
+19.4npz°y? + 70.7npzYy? + 450.98npz3y>

and by ([£2) we get that

2npzTy? + 14p*2°y% + 8®(n)z8y2 > 212282 + 2n228y — 2n228logy + 8p(n)n228 + 10npz5y>
+19.4npz°y? + 70.7npz*y? + 450.98npz3y>.

This inequality is equivalent to

6npz5y2Ws3(2) + 14p°25y% + 80(n) 2%y > 20?282 + 20228y — 2n%28 logy + 8p(n)n?2® + dnpz"y?
+ dnpz®y? + 13.4np2°y? + 50.6npzty? + 358.4npz>y>

and, again by ([@2), it follows that
6p>2%y? 4 14p?2°y% + 80(n) 2%y > 2n228y% + 20228y — 2n% 28 logy + 8p(n)n?2® + dnpz"y?
+ 4dnpzSy? + 13.4np2°y° 4 50.6npzty? + 358.4np2cy2.  (4.13)

Finally we set

1 3.35 12.65 89.6
\I/ = -1 -
a(z) =2 x x2 x3 xt

then, by (@I3), we have
dnpz"y? W4 (2) 4+ 6p22%y? + 14p22°y° 4 80 (n)25y?
> dnpzSy? + 202282 + 2n% 2%y — 2n228 logy + 8p(n)n?2®
Now we apply the inequality (£1]) to get
4p22Ty? + 6p220y2 + 14p225y2 + 80(n)25y?
> dnpzSy? + 202282 + 20228y — 2n% 28 logy 4 8p(n)n?28.
By dividing the last inequality by 8log® plog®n, we obtain the inequality #I0) and the claim follows

for every n > 52703656. For every 842857 < n < 52703655, we check the required inequality with a
computer. 0

By proving the next corollary, we improve the inequality (2.
Corollary 4.8. Ifn > 348247, then

B, > n? n? n?(loglogn — 2.1).

4 +4logn7 41og® n

Proof. For convenience, we write again y = logn and z = log p,,. First, we consider the case n > 842857.
By Theorem [L.7]it suffices to show that p(n) > 2.1/4. Since 22 — 5.2x + 16.3 - 0.75% > 0 for every = € R,
we get

(log?y — (1 +4.2)logy + 16.3-0.75%)22 + 2.1zlog? y — 2.1z(logy — 1) > 0.

12



Using Lemma [£5] the last inequality implies that
16.3y% + (log®y — (14 4.2)logy)2? + 2.1zlog? y — 2.1z(logy — 1) > 0. (4.14)

From Lemma [£.4] it follows that

logy—1 logy—2
z§y+1ogy+log<1+ =kl + &Y )

Y2
Now we apply the inequality log(1 + ¢) < ¢, which holds for every ¢ > —1, to get

logy—1 logy —2
gy n gy .

z<y-+logy+ 7 (4.15)
Using the result of Rosser [I7, Theorem 1] that p, > nlogn for every n € IN, we obtain
—z+logy < —vy, (4.16)
and therefore
—2.12%logy + 2.1zlog2 y < —2.1zylogy.
Hence, by using (£14),
16.3y° + z%(logy — 1 — 2.1)logy — 2.1zylogy — 2.1z(logy — 1) > 0. (4.17)

Let f(z) = logaz — 15(loglogx — 1)/2. Then, f’(x) > 0 if and only if = > e!%/2. Further, we have
f(e/2) > 4.26. So, f(x) > 0 for every = > 1. Therefore,

1(logl -2 2.1(log1 -1 2.1(logl -2 2
3-1loglogn — 2) (oglogn = 1) | 2:1(loglogn =2) _ 5 491 91y 2 <1,
logn logn log“n 15

We multiply this inequality by 22 and combine this to ([@I7) to obtain
22 4+16.3y% + 2%(logy — 1 — 2.1) logy

3.122)(1 -2 2.122 1 -2
(3.12%)(logy — 2) z(logy_Hogy )

> ; +2.1z(ylogy +logy — 1) +

Since 22 > z and logy — 2 > 0 we get that
2% 4+16.3 4+ z%(logy — 1 — 2.1) log y
2+2.12)(logy — 2 2.122 logy — 2
(2% 4+ 2.12)(logy ) < (logy—l—i— ogy _)
Y

> ; +2.1z(ylogy + logy — 1) +

)

which is equivalent to

2% +16.3y% + 212y + z%(logy — 1 — 2.1) logy

lo -1 lo -2 22(lo -2 2.122
gy—1 g;/2 )+ (gyy )Jr (bgy

I -2
—1+%).

>2.1zy (y + logy +

Now we use [@IH]) to obtain

2% 4+16.3y% + 2.129° + 2%(logy — 1 — 2.1) logy

2logy —2)  2.122 logy — 2
> 9122y ¢+ 2108y =2) y’z (1ogy1+ogy7>

and this inequality is equvalent to

22 +16.3y% + 2.1z + 2%(logy — 1) logy
logy —1 logy—2 2(logy — 2
gy g;g ) 2% gyy )

> 2122 (y +logy +

13



Again, by using (£I3]),

2(logy — 2
2% +16.3y% + 2.129% + 2%(logy — 1) logy > 2.12° + %_
Y
Now, by (@I4),
#*(logy — 2)

16.3y% + 2.129° 4+ 2%(z — y) logy > 2%(logy — 1) +2.12% =22 =2
Yy

which is equivalent to the inequality

logy—1 logy — 2
gy i gny

229% +16.3y% + 212y > 2%y (y +logy + ) — 23logy + 2.12°.

Now we use the inequality ([{.I5]) to get
2%9% +16.3y% + 2.1z > 23y — 23 logy + 2.12°.

Finally we divide this inequality by 423 to obtain p(n) > 2.1/4. Hence, the claim follows from Theorem
[T for every n > 842857. We check the remaining cases for n with a computer. O

Remark. Based on some computations, Sinha |20} p. 4] conjectured that

2 n? n?loglogn

n
Bp > — — 4.18
> 4 +210gn 4log’n ( )

for every n > 835. However, Corollary 3.2l implies that this inequality does not hold for sufficiently large
n. In fact, the smallest counterexample n > 835 for (£I8)) is given by n = 835.

4.3 New upper bounds for B,

We set
log pp log® n + 4.91og® n — log® p, logn + log® p, loglogn  r(log p,)log® n
w(n) = 41og? pn, * 81og® p,,
where r(z) is defined by
r(z) = 35.42% + 213.92% + 1478.78z + 30199.015, (4.19)
to obtain the following theorem.
Theorem 4.9. For every n > 2, we have
2 n? 3 n?loglogn  k(n)n?

B, <X 4
"7 4 4logn 4log®n log?n

Proof. By |3, Theorem 4], we have

2 2 2
Pn 3pn pn
npn — ) Pk < + + + Q(n) (4.20)

1%;1 2logp, 4 log;2 Pn 4 log;3 DPn

for every n € IN, where

46.4p? 95.1p? 962.5p2 5809.5p2  59424p?
n) = Pn + P + Pr + Pn+ Pn (4.21)

 Slog'p, 4log’p, 8log®p, Slog p,  Slog®p,

First, let n > 66775031; i.e. p, > 1332479531. By ([{.20) and the definition of B,, it suffices to show that

n 2 2logl 2 3p? P;
Mo n7  _n7  nlog 2ogn fﬁ(ngn Pn__ p;l n Pg +Q(n). (4.22)
2 4  4logn 4log“n log“n 2logp,  4log®p, 4log’p,

2
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For convenience, we write p = p,,,y = logn and z = logp. Using the definiton of k(n) and r(x), we get
2?28y — 2n?28 logy + 8k(n)n?2®
=2n22"y? 4 9.8n%2%2 + 35.4n%2%y% + 213.9n%2%y% + 1478.78n223y? + 30199.015n22%y>.
By setting ®1(x) = z, we get that the last equality is equivalent to
21228y — 2n?2%log y + 8k(n)n?2® 4 3993.86n22%y>
=2n22"y? 4+ 9.8n%2%% + 35.4n%2%y% + 213.9n%2%y? + 1478.78n223y? + 34192.875n2zy2<191(z).
Since p < n®1(z) by Lemma 3] we obtain the inequality
2n?2%y — 2n22% logy + 8k(n)n?z® + 3993.86n%2%y>
> 2n227y? + 9.8n225y2 + 35.4n%2%y2% + 213.9n%2%y? + 1478.78n%2%y% + 34192.875npzy?,
which is equivalent to
21228y — 2n228logy + 85(n)n228 +3993.86n%2%y% + 25231.125npzy>
> 2n%27y? 4+ 9.8n%25y% + 35.4n%2%y2 + 213.9n%2%% + 1478.78n2 23y + 59424npy° @, (2).
Again, we use the inequality p < n®(z) to get
20228y — 2n228logy + 8k(n)n?2® + 3993.86n22%y* + 25231.125npzy>
> 2n227y? 4+ 9.8n225¢% + 35.4n225y% + 213.9n22y% + 1478.78n223y% + 59424p2y>.
By setting ®o(x) = x — 1, the last inequality can be rewritten as
2228y — 2n228logy + 8k(n)n?2® + 623.87Tn%23y? + 1891.21n%2%y? + 25231.125npzy>
> 2n227y% 4+ 9.8n%202 + 35.4n%2%y? 4 213.9n% 22 + 2102.65n% 2%y By (2) + 59424p°y>
Since p < n®3(z) by Dusart [7, Théoréeme 1.10], we get
21228y — 2n228logy + 85(n)n228 +623.87n223y? + 1891.21n222y? + 25231.125npzy>
> 2n227y? + 9.8n22%y2 + 35.4n%2%9% + 213.9n%2%y2% + 2102.65np2%y? + 59425p%y>
which is equivalent to
2n228y — 2n228logy + 8/<a(n)n2z8 + 623.87n223y% + 1891.21n222y? + 3706.85npz2y? + 19421.625npzy>
> 2n227y? 4+ 9.8n%259% + 35.4n%25y2 + 213.9n%2%? + 5809.5npzy Py (2) + 59424py>.
Now we use again the inequality p < n®s(z) and obtain
2n228y — 2n228logy + 8/<a(n)n2z8 + 623.87n223y% + 1891.21n222y? 4 3706.85npz2y? + 19421.625npzy>
> 2n227y? 4+ 9.8n225¢% + 35.4n225y% + 213.9n22%y% + 5809.5p%zy? + 59424p°y>.

We define .
Dy(r)=a—1— =
3(r) = -

to rewrite the last inequality to
2n228y — 20228 logy 4 8k(n)n?28 + 113.6n22%> + 296.37n%23y% + 1563.71n22%y> 4 3706.85np2>y>
+19421.625npzy>
> 2n227y% 4+ 9.8n%202 + 35.4n%25y? + 327.5n% 232 ®3(2) + 5809.5p% 2y% 4 59424py>.
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By Lemma [£.2] we have p < n®3(z). Hence,

2n228%y — 2n?28 logy + 85(n)n228 +113.6n%2%y? + 296.37n22%y?% + 1563.71n22%y? + 3706.85npz>y>
+19421.625npzy>
> 2n227y? 4+ 9.8n225¢% + 35.4n225y% + 327.5np2>y? + 5809.5p%2y% + 59424p2y>.

This inequality is equivalent to

21228y — 2n22%logy + 8k(n)n?2® 4 113.6n%2%y? + 296.37n22%y? + 1563.71n22%y* + 635npz>y?
+ 2744.35npzy? + 18459.125npzy>
> 2n227y% 4+ 9.8n%25)2 + 35.4n%2%y? + 962.5mp22y  B3(2) + 5809.5p%zy? + 59424p%y>.

Again, by using the inequality p < n®3(z), we obtain

2n?28y — 20228 logy + 8k(n)n?2® + 113.6n22%% 4 296.37n%23y? + 1563.71n%2%y* + 635npz>y>
+ 2744.35npz%y? + 18459.125npzy>
> 2n227y? + 9.8n225y2 + 35.4n%2%y2% + 962.5p% 2%y + 5809.5p%zy? + 59424p2y2.
By setting
1 2.65
@4@):95*1*;*?7
the last inequality can be rewritten as
2?28y — 2n228logy + 8k(n)n?2® + 25.1n%259% + 53.1n%2%y? + 235.87n223y? + 1403.385n2%y>
+ 635npz>y? + 2744.35np2%y? + 18459.125npzy>
> 2n227y% 4+ 9.8n%2%92 + 60.51n22192 D4 (2) 4+ 962.5p%2%y? + 5809.5p%2y% + 59424py>.

By Lemma [L.2] we have p < n®4(z). Therefore,

21?28y — 2n228logy + 8k(n)n?2® + 25.1n%25y% + 53.1n%2%y? + 235.87n223y? + 1403.385n2%y>
+ 635npz>y? + 2744.35np2%y? + 18459.125npzy>
> 2n227y% 4+ 9.8n%20%2 + 60.5npzty? + 962.5p?2%y% + 5809.5p% zy? + 59424p?y,

which is equivalent to

21228y — 2n228logy + 85(n)n228 +25.1n%2%y% + 53.1n%2%y? + 235.87n%23y? + 1403.385n%22y>
+129.7npzYy? + 444.8np2>y? + 2554.1Tnpzy% + 17955.095npzy>
> 2n%27y% +9.8n225y°% + 190.2npz3y2<1>4(z) +962.5p%2%y? + 5809.5p%zy? + 59424p2y>

Now we apply again the inequality p < n®4(z) to get that the inequality

21228y — 2n228logy + 85(n)n228 +25.1n%2%y% + 53.1n%2%y% + 235.87n%23y? + 1403.385n%22y>
+129.7npzYy? + 444.8np2>y? + 2554.1Tnpzy* + 17955.095npzy>
> 2n227y? + 9.8n22%% + 190.2p%23y2 + 962.5p%2%y? + 5809.5p2zy% + 59424p>y>

holds. Let 1 265 13.35
Ba) —o—1-5 - 27 -2
X X

23
to rewrite the last inequality to
2?28y — 20228 logy + 8k(n)n?2® + 6n22%y% 4+ 9.3n%25y? + 37.3n%2%y? + 194n%23y> + 1192.455n222y>
+129.7npzYy? + 444 8np=3y? + 2554.1Tnpz%y? + 17955.095npzy>
> 21227y 4+ 15.8n22°9°®5(2) + 190.2p? 23y 4 962.5p2%y? + 5809.5p% 2y% 4 59424p2y?.
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It follows from Lemma that the inequality p < n®5(z) is fullfilled. So,

2?28y — 20228 logy + 8k(n)n?2® + 6n22%y% 4+ 9.3n%25y2 + 37.3n%2%y? + 194n%23y% + 1192.455n222y2
+129.7npzYy? + 444 8np=>y? + 2554.17npz%y? + 17955.095npzy>
> 2n%27y? + 15.8np2>y? + 190.2p° 23y + 962.5p% 2%y + 5809.5p%zy? + 59424p2y?,

which is equavalent to

21228y — 2n228logy + 8/<a(n)n2z8 + 6n22%y2 + 9.3n%2%y? + 37.3n22%2 4+ 194n%23y% + 1192.455n22%y>
+30.6np2"y? + 83.3npzty? + 398.4np2>3y? + 2431.21npz2y% + 17335.655npzy>
> 2n227y? 4 46.4np2ty ®5(2) + 190.2p%23y? + 962.5p%2%y? + 5809.5p%2y? + 59424p>y°.

Now we use the inequality p < n®5(z) for a second time and the definition of Q(n) from (2ZI]) to get

21228y — 2n228logy + 8/<a(n)n2z8 + 6n22%y2 + 9.3n%2%y2 + 37.3n22%2 4+ 194n%23y% + 1192.455n22%>
+ 30.6np2"y? + 83.3npzty? + 398.4np2>3y? + 2431.21npz2y% + 17335.655npzy>
> 2n%27y? + 80(n) 282
Next, we set

1 265 1335 703

3 zd

to obtain that the last inequality is equivalent to
21228y — 2n228logy + 8/<a(n)n22:8 +2n227y% + 2n%2%)% + 5.3n225y? + 26.7n%2%y% + 140.6n°%23y>
+911.255n22%92 + 30.6np2°y? + 83.3npz*y? + 398.4np2>y? + 2431.21npz2y>
+ 17335.655npzy>
> 4n?2%% g (2) + 8Q(n)2y>.
Since p < n®g(z) by Lemma [4.2 we get
2?28y — 2n228logy + 8k(n)n?z® + 2n227y? + 202252 + 5.3n2259% + 26.7n22%y? + 140.6n223y>
+911.255n%2%y% + 30.6npz>y? + 83.3npzty? + 398.4np23y? + 2431.21npz>y?

+ 17335.655npzy
> dnpzSy? + 8Q(n)28y?,

which can be rewritten to

2n228%y — 2n22%logy + 8/<a(n)n22:8 +2n227y? + 2022592 4 5.3n2259y% + 26.7n22%y? + 140.6n223y?
+911.255n%2%y% + 10npz%y? + 16.6npz°y> + 69.3npz*y? + 361.3npz3y>
+ 2244.31npzy? + 16351.455npzy>
> 14np2°y? e (2) + 8Q(n) 28y
By using again the inequality p < n®s(z), we have
21228y — 2n228logy + 8/<a(n)n22:8 +2n227y% + 2n%2%)% + 5.3n225y2 + 26.7n%2%y% + 140.6n°%23y>
+911.2551n22%y2 + 10npz°y? + 16.6npz°y? + 69.3npz*y? + 361.3npz3y>
+ 2244.31npzy? + 16351.455npzy>
> 14p>25y2 + 8Q(n) 252

Now, let

1 265 13 3 455.62
() —a_ 1 L 2651835 703 455.6275

x 2 3 4 Z°
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Then the last inequality is equivalent to
20228y + 2228y — 2n228 logy + 85(n)n228 + 10np2z5y? + 16.6npz>y? + 69.3npzty?
+ 361.3npz3y% + 2244.31npz%y? 4+ 16351.455npzy>
> 20227y Dq(2) + 14p22°y2 + 8Q(n) 2592
Lemma [£.2] implies that p < n®7(z). Hence,
20228y + 20228y — 20228 logy + 85(n)n228 + 10np2z5y? + 16.6npz>y? + 69.3npzty?
+ 361.3npz3y% + 2244.31npz%y? 4+ 16351.455npzy>
> 2npzSy? + 14p22°y* + 8Q(n) 252,
which we rewrite to

2n228y? 4+ 2n228y — 2n228 logy + 8/<a(n)n2z8 + dnpzTy? + 4npzSy? + 10.6npzy? + 53.4npzty?

+ 281.2npz3y% + 1822.51np2%y? + 13617.69npzy>
> 6npzy?®q(2) + 14p*2°y* 4 8Q(n) 25y?

Again, by using the inequality p < n®7(z), we obtain that the inequality

2n228y? 4+ 2n228y — 2n228 logy + 8/<a(n)n2z8 + dnpzTy? + 4npzSy? + 10.6npz°y? + 53.4npzty?

+ 281.2np23y% + 1822.51npz>y? + 13617.69npzy?
> 6p22%% 4 14p?2°y* + 8Q(n)2%y?
holds. Finally, we set

1 2.65 13.35 70.3  455.6275 3404.4225
0 B 26 ’

Then the last inequality can be rewritten to
AnpzSy? + 2n228y? 4+ 2n228y — 20228 logy + 85(n)n228
> dnpzTy? ®g(z) + 6p°25y? + 14p225y2 + 80 (n) 252

Now, we get p < n®g(z) by Lemma L2 Therefore,

4npzy? 4 2n228y% + 20228y — 2n% 28 log y + 8k (n)n?2®

> 4p22Ty? 4 6p220y? + 14p2 2%y 4 8Q(n) 28y

We divide both sides of this inequality by 828y? to obtain the inequality [#22)) for every n > 66775031.
For every 2 < n < 66775030 we check the required inequality with a computer. [l

According to Corollary 3.2 Theorem [£.9]implies the following result.
Corollary 4.10. If n > 26220, then

2 n? n?(loglogn — 5.22)

n
B, < — -
4 +410gn 410g2n

Proof. First, we consider the case n > e19-63

Further, we set a; = 0.08 and

For convenience, we set again y = logn and z = logp,,.

41 4 2]
ala) = 160y — 11082 4 2logs

Then, hq(z) > 0.004 for every x > 11. Next, we set

h(z) = 8a12* — 4z logx — log® z.
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Since h/(x) = xzhy(z) > 0 fiir alle x > 11 and h(19.17) > 0.008, we get that h(z) > 0 for every = > 19.17.
Now, let > 19.17. We consider the function

1 -1
f(z) = 4ai(x +logz) + (x + 4a1 — log z) log (1 + &) — log” .
T

We have

4 1 1 -1 2—1 — (4 2)1
PR P\ T e S R 1
X X

x z+logx —1 z(x +logx — 1)
log? z 2logx
x(z +logz — 1) x
Since x > €112 we get
4aq 1 logz — 1 2 —logx 8ay 2logx
"(z) > 4 — 1——1 1 - .
flw) z dar+ x +< x> og< + x )+x+logx—1+x(ac+1ogac—1) x

Now we use the inequality log(1 + t) > t — 2 /2, which holds for every ¢ > 0, to obtain that

4a;7  logz—1 log’z—2logz+1 logz—1 log?z—2logz+1 2 —logx

—+ — — +

x T 222 x? 223 z+logx —1
8aq 2logx

f(x) > 4ay +

+x(z+logx71) x
It follows that

f(x) > 4ay — >0

2logz  log’z _ h(x)

x 222 222
for every x > max{e®2/19.17} = 19.17. In addition, we have f(19.63) > 0.00011 and it follows that
f(x) >0 for every x > 19.63. Since n > €993 we have y > 19.63. Therefore f(y) > 0; i.e.

1 -1
(y+logy+ (1—1—%)) (4a1 +y —logy) > 4°. (4.23)
In [§], Dusart found that the inequality py > k(logk + loglog k — 1) holds for every k > 2. So,
logy — 1
z>y+logy+log|l+—"—]. (4.24)
Yy

Now we use ([£2Z3) to obtain that
z(4ar +y —logy) > ¢,

which is equivalent to the inequality
8ay 2% > 227y% — 228y 4+ 228 logy. (4.25)
Next, we set ao = 1.225 and
t(z) = 16az2° log z + 8aza® log® x — r(x),
where r(z) is defined by (@I9). Let © > 4.4. Then,

t(x) 35.4 213.9 1478.78  30199.015
Z 16@2

—_ - - — — > 1.648.
x5 logx 22logx  x3logx xtlogx xdlogxr
Hence, t(z) > 0 for every x > 4.4 and it follows that

16a22°y? log z + 8asz*y? log? z — r(2)y? + (8az — 9.8)z%y% > 0.
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The function w(t) = log(t)/t is decreasing for every t > e. So, log(y)/y > log(z)/z and we get
8az2%(y + logy)? — r(2)y* — 9.825y% > 0.
By ([@24]), we obtain z > y + logy. Hence,
8ayz® > T(z)y2 +9.825¢2
Now we use (23] to obtain that
10.442% = 8(ay + as)2® > 227y — 228y + 228 logy + 7(2)y* + 9.825¢% = 8k (n)2®

So, k(n) < 5.22/4 for every n > 1993, Using a computer, we check that the inequality x(n) < 5.22/4
holds for every 132380 < n < €963 as well. Applying Theorem E.9, our corollary is proved for every
n > 132380. A direkt computer check shows that the required inequality also holds for every 26220 <
n < 132379. O

5 Explicit estimates for the sum of the first n primes

In this section, we improve the sharpest known estimates for the sum of the first n primes by using the
explicit estimates for B, obtained in Corollary (L8] and Corollary (ZI0)

5.1 A new upper bound for the sum of the first n primes

By Corollary [Z8 for each e > 0 there is a No(g) > 1, such that

2 3 loglogn—5/2 (loglogn)27loglogn+29/2€> 5.1)

Zpk<n—<logn+1oglogn 5
k<n 2 2 logn 2log”n

for every n > No(e). Let m € IN. According to Corollary 23 let R,, € Q[z] with deg(R,,) = m and let
Ni = Ny(m, R,,) € N be minimal, such that

m—1 =
151 R, (log —1)" R, (logl
pn < n | logn+ loglogn — 1+ g (=) (sog ogn) + (=) ,ElOg ogn) (5.2)
o slog’n mlog™n

for every n > Nj. Further, in view of Corollary B2, let V,, € Q[z] with deg(f/m) = m — 1 and let
Ny = No(m, V) € N be minimal, such that

n2 n? n_2m ! (=1)**1V;, (log log n) N n* (—1)™ 1V, (loglog n)
2

B, > —
4 410gn 2 = slog®n

5.3
mlog™n (5-3)

for every n > Ny. Then, we obtain the following result.

Proposition 5.1. For every n > max{Ny, N2}, we have

2 loglogn) —1/2 &= (—1)"*!(R,(log] ,(log 1
Zpk<n— 10gn+10glogn—§+R 1(loglogn) — 1/ + (loglogn) — Vi(loglogn))
2 2 logn slog®n
k<n s=2
N n_2 (=1)™*+1(R,, (loglogn) — Vi, (loglog n))
2 mlog™ n ‘
Proof. The claim follows directly from (5.2) and (&.3). O

According to (5] we obtain the following corollary, which leads to an improvement of (L4]).
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Corollary 5.2. For every n > 355147, we have
2

3 logl —5/2 log 1 — T7logl 12.373
Zpk<n—(logn+1oglogn——+ oglogn —5/2  (log ogn)? oglogn + )
k<n 2 2 logn 21og” n

Proof. By Corollary[2.3] we have Ry (z) = x—2. By setting Ry (r) = 22 —62+10.273, we get N1 = 8009824
by [2| Korollar 2.11]. Now, we set %(z) = x—2.1 to get Ny = 348247 by Corollary[4.8 So, by Proposition
BT the claim follows for every n > 8009824. By using a computer, we check the asserted inequality for
every 355147 < n < 8009823. O

Corollary 5.3. For every n > 115149, we have

2 logl —5/2
Zpk<n—<logn+1oglogn§+—0g ogn — 5/ >
= 2 2 logn

Proof. Since 2% — 7Tx 4+ 12.373 > 0 for every x € R, the claim follows from Corollary for every
n > 355147. It remains to check the required inequality for every 115149 < n < 355146. |

5.2 A new lower bound for the sum of the first n primes

By Corollary [Z8 we get that for each € > 0 there exists an N3(¢) > 1, such that

2 log1 —-5/2  (logl 2 _Tlogl 29/2
Zpk > <1ogn + loglogn — = oglogn = 5/2 _ (loglogn)” =7 og2ogn +29/2+ €> (5.4)
k<n 2 2 logn 2log”n

for every n > N3(e). Let m € IN. According to Corollary 23 let R, € Q[z] with deg(R,,) = m and let
Ny = Ny(m, R,,) € N be minimal, such that

m—1 3
—1)s+1R,(log1 —1)y™HR, (logl
pn >n | logn +loglogn — 1+ g (=) (sog ogn) + (=) ,ElOg ogn) (5.5)
po slog’n mlog™n

for every n > Ny. In addition, in view of Corollary B let V,, € Q[z] with deg(‘A/m) =m — 1 and let
N5 = N5(m, V) € IN be minimal, such that

n? n? T (1) 1V, (loglogn) = n? (—1)™*1V,, (loglogn)
B, < — — — 5.6
4 +4logn 2 ; slog®n + 2 mlog™n (5:6)

for every n > N5. Then, we obtain the following lower bound for the sum of the first n prime numbers.

Proposition 5.4. If n > max{Ny, N5}, then

2 3 Ry(logl —1/2 ¥ (=1)51 (R, (log] V.(log1
Zpk>"_ logn + loglogn — > + 1(loglogn) —1/2 (loglog n) — Vi(loglogn))
2 2 logn slog®n
k<n s=2
N n? (—1)™+1(R,,(loglogn) — V,,(loglogn))
2 mlog™n ’
Proof. The claim follows directly from (G.5) and (5.0)). O

According to (B.4]) we get the following corollary, which improves the inequality (L.

Corollary 5.5. For every n > 2, we have

2 3 loglogn—5/2 (logl — 7logl 17.067
Zpk>n—(logn+1oglogn——+ oglogn —5/2  (log ogn)? oglogn + )
k<n 2 2 logn 21og” n

Proof. We have R;(xz) = x — 2 by Corollary 23] Setting Eg(z) = 22 — 6z 4 11.847, we have Ny = 2 by
[2, Korollar 2.25]. Further, we set %(z) = x — 5.22 to obtain N5 = 26220 by Corollary [£100 Hence, by
Proposition B.4] the corollary is proved for every n > 26220. For every 2 < n < 26219, we check the
asserted inequality with a computer. O
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6 On explicit estimates for the step function S(z)=>_ _ p

In this section we study the step function

S(@) = p,

p<z

which is constant on every interval of the form [p,, pp41) with S(pn) = >, -, Pk. A result of Szalay [24]
Lemma 1] implies that there exists a constant a > 0, such that -

S(z) =li(z?) 4+ O(a?e~*V18?), (6.1)

Under the assumption that the Riemann hypothesis is true, Deléglise and Nicolas [6, Lemma 2.5] improved
(1) by showing
5
|S(z) — li(z?)| < Y 222 logx

for every x > 41. The goal of this section is to find explicit estimates for S(x) by a continuous function,
which yield explicit bounds for the difference S(z) — li(z?).

6.1 Auxiliaries lemmata

In order to find new explicit estimates for S(z), we first note two useful lemmata concerning upper and
lower bound for the prime counting function 7(x) given in [4]

Lemma 6.1. If z > 1, then

T T 2x 6.35x  24.35x 121.75x  730.5z 6801.4x
m(x) < R 3 1 5 s T .t s
logz  logz log’z log*z log’z log” x log" x log® x
Proof. See [4, Theorem 1.1] O

Lemma 6.2. If x > 1332450001, then

T T 2z 5.60x  23.65x 11825z  709.5z  4966.5x
Z ooz 12 3 1 5 6 7 8-
ogx log”x logz log-x log’zx log” x log" x log™ x

(x)

Proof. See [4, Theorem 1.2] O

In the next lemma, we give an lower bound for the elements of a sequence involving the sum of the first
n prime numbers.

Lemma 6.3. If n > 52703656, then

2 2 2
Pn 3pn P
npn — Y Pk > + + +0(n),
};l 2logp, 4log’p, 4log®pn
where

o) — 43.6p2 90.9p2 927.5p2 n 5620.5p2  79075.5p2

8 1og4 pn 4 1og5 Pn 8 1og6 Pn 8 1og7 Pn 16 log8 Pn '
Proof. See [3, Theorem 3]. O

In the next two lemmata, we give some integration rules.
Lemma 6.4. Seien x,a € R mit x > a > 1. Dann gilt

T 2 2
/ LA 9hi?) — 2li(e?) - S
o log”t logz ~ loga

Proof. Siehe Dusart [7, Lemme 1.6]. O

22



Lemma 6.5. Let m € N with m > 2. Let as,...,a; € R and let r,s € R with s > 1 > 1. Then
2

Z " / x dx /5 xdx Z ; ( r )
k =tm-1,1 m—1,k |
log" x )y log?x log" s 1ogk r

k=2

where

. L 2layy,
tig=0G -1 —

I=j
Proof. See [3| Proposition 9]. O
Finally, we note the following lemma.

Lemma 6.6 (Abel’s identity). For any function a : IN — C let A(x) = ), ., a(n), where A(xz) = 0 if
x < 1. Assume f has a continuous derivative on the interval [y, ], where 0 <y < z. Then we have

y<n<z

Proof. See Apostol [Il, Theorem 4.2]. O

6.2 New upper bounds for S(x)
Using (6.I) and the asymptotic formula for li(z?) given in Lemma 24 we obtain that
2 n

S(a) ~ sy il (z — 00) (6.2)

k
2logx P 2k log" x

for every n € IN. In particular, the asymptotic formula (6.2) implies that for each € > 0 there exists an
xo(e) > 1, so that
x? x? z? (3 +¢)a?

+ + +
2logz  4log’z  4log’x 8log*

S(z) < (6.3)

for every x > xo(e). According to ([G3]), we show the following theorem, which improves the sharpest
known upper bound for S(z) found by Massias and Robin [I5], Théoréme D(v)] in 1996, namely that

x? 32

S(z) < +
(z) = 2logz  10log”z

for every x > 24281.
Theorem 6.7. For every x > 355992, we have

x2 x2 x2 7.222 6.522 46.522 223522  14873.4522
+ 7 T Eai it 5 5T 7+ 8
2logz  4logx 4log®x 8log'x 4log’z 8log’z  8log'x 8log” x

S(z) <

Proof. First, we consider the case z > 1038495853. We denote the right-hand side of the required
inequality by f(z). Then,

t 1.05 0.35 3.5 21 1 14873.45
THOE oot <1 t st Tt ——= (3522.8 — 17)> >0 (6.4)
ogt logt log™t log”t log’t log't ogt

for every t > e*23. Now, let n = (). Then,

2) = pr=7(pn)on — (100 — D _ Pk |- (6.5)

k<n k<n
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Since x > 1038495853, we have n > 52703656. Now we use (G.5]), Lemma [6.1] and [6.3] to get

P2 3p2 2

- 2logpn - 4log? p,, - 4log® p,,

S(x) < m(pn)pn —O(n) < f(pn)

In addition to (64), the claim follows for every x > 1038495853 = psa703656. A computer check shows that
f(pi) = S(p;) for every 30457 < i < 52703655. Hence, f(z) > S(z) for every & > 356023 = p3p457. Using
a computer, we check that f(355992) > 5171616645. So f(z) > S(z) for every 355992 < x < 356023. O

According to (G.1]), we obtain the following corollary.
Corollary 6.8. If x > 355992, then

0.525x2  0.875z2  3.9375x%  22.31252%  1839.49375x2
log4 T log® log® z 1og7 T log® z '

S(z) < li(z?) +

Proof. First, we consider the function

. T T 2x 6x 24x 120z 720z 5040x
fla) = i)~ ( )

+ - + - + - -
logz  log?z  log®z log4 z log’z  logbz 1og7 z  logdz
Then, f(4171) > 0.00019 and f’(x) = 40320/ log” 2. Hence, f(z) > 0 for every x > 4171. Therefore,

x? x? x? 32 32 1522 45722 31522

> + + + + + + +
2logz  4log’z  4log’z  8log'z  4log’z  8loglz  8log'z  16log’z

li(2?)

for every x > +/4171. So, the claim follows from Theorem for every x > 355992. If x = 355991, the
required inequality does not hold. O

6.3 Lower bounds for S(z)

In this subsection, we find some lower bounds for the step function S(z). The asymptoitic formula ([G.2])
implies that

x? x?
S(x) > + 6.6
(z) 2 2logz  4log’z (6:6)
for every sufficiently large . In view of (G.6]), Massias [I3, Lemme 6] proved that
2 922 2
S(a) > — i i (6.7)

2 + +
~ 2logz  52log’z  4log’x

for every & > 11813. In 1989, Massias, Nicolas and Robin [I4, Lemma 3] improved (6.7]) by showing that

2 0.477x2
() > x N 290
2logz  2log”x

for every x > 70001 and that the inequality

2 0.475
S(xz) > < exp
2logx log x
holds for every x > 4256233. The currently best known lower bound for S(z) is due to Massias and
Robin [I5] Théoréme D(ii)]. They proved that the inequality

2 0.9542>
S(z) > T x

i 6.8
~ 2logz  4log®z (6.8)

holds for every o > 70841. We obtain the following proposition, which leads to an improvement of ([6.8),
where we use Lemma and some explicit estimates for the prime counting function 7(x).
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Proposition 6.9. If x > 65405363, then
S z? n z? n x? _ 32 _ x? _ 33z _ 26722 _ 31506522
2logz  4log’z  4log®z  20log*z  8log’x 16log®z  16log’z  128logz’

Proof. First, we consider the case z > 1332450001. We denote the right-hand side of the required
inequality by f(z). Further, let y =1, f(¢) =t and

a(n){l ifn eP,

S(x)

0 otherwise.

We use Lemma to get

x

S(z) = Z a(n)f(n) =ar(x) — /j 7(t)dt = am(x) — 143 — / w(t) dt.

1<n<zx 27

Using the estimates for 7(x) given in Lemma and [6.2] we obtain that

z2 x2 222 5.6522  23.65xz2 118.252%2  709.5x2  4966.52>
S(x) > 2 3 1 5 6 7 s — 143
logz  log’xz logz log*x log” x log” x log" x log” x
* t t 2t 6.35t  24.35¢ 121.75¢ 730.5t 6801.4¢
B + 7, + 5+ T 5, T 5, T 7+ 8
31 \logt ~log“t log’t log 't log’t log” ¢ log" t log®t

Now, by Lemma 2.5 Lemma [6.4] and Lemma [6.5] we get that

95392722 95392722 95392722 94951722 23756322 59207z
+ 7T 3. T it 5.+ G

6300logz ~ 12600log“x  12600log”x  8400log™xz  1050log”x  105log’ =

11767922  4966.522 950777 ..

S(x) > Er +

+ — li(z?), 6.9
70log” x log® 3150 (=) (6.9)
where
950777 li(27%) 947627272 941327.27%  928727-27% 902057 - 277
' 3150 63001log27  12600log®27  12600log®27 8400 log* 27
425461272 187163-272 34007 - 272 43
2100log® 27  42010g°27  35log” 27 '
By [3, Lemma 19], we have
x? x? x? 322 322 1522 4522 157522

li(2?) < + + + + + + +
()_210g9€ 4log?z  4log®z  8log*z  4log’z  8loglz  8log’z  64logdx

(6.10)

for every & > 10°. Now we apply this inequality to ([63) and we get that
S(x) > E1 + f(x).
Since F7 > 110.232 > 0, our proposition is proved for every x > 1332450001. We have

1.05 3.5 21 4806.078125
o 3., 5 6. 7 >0
log>x log”z log x log' x

Flz) > — <1

~ logx

for every x > e*. So, we check with a computer that S(p;) > f(pir1) for every 3862984 < i <
7(1332450001) + 1 = 66773605. Hence, S(z) > f(x) for every & > pssozoss = 65405363. If i = 3862983,
then f(pir1)—S(pi) = f(65405363)—S(65405357) > 2:10” > 0. Since f is continuous and S(z) is constant
on I = [p3se2983, 3862984 ), there is an g € I so that f(z) — S(x) > 0 for every = € [, P3s62984)- O

In 1988, Massias, Nicolas and Robin [14, Lemma 3(i)] proved that (6.6]) holds for every 302791 < x < €%.
Under the assumption that the Riemann hypothesis is true, Massias and Robin [I5] Théoréme D(iv)]
showed in 1996 that the inequality (6.6) holds for every = > 302971. Further, they proved that the
inequality (6.6) holds unconditionally for every 302971 < z < €% and for every x > €3804 With the
following corollary, we close this gap.

>
<
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Corollary 6.10. For every x > 302971, we have

x? x?

S(x) > + .
(@) 2logz  4log®x

Proof. If x > 685 > €552 then

3 1 33 26T 315065 _
20logz  8log”’z 16log’z  16log*z  128log’ x

1
4
So, the claim follows from Proposition [6.9] for every x > 65405363. Similarly to the proof of Proposition
[6.9] we obtain that the required inequality holds for every 302971 < x < 65405363 as well. O
Using (6.9) and (6.10), we find the following explicit lower bound for S(z) — li(z?).

Corollary 6.11. For every x > 65405363, we have

70.525z2 0.875z%  3.9375x? 22.3125x272486.0546875x2

S(z) > li(x? — — —
(@) (@) log* log® x log® « 1og7 x log® z

Proof. For every x > 10%, the claim follows from Proposition and (6I0). Similarly to the proof of
Proposition 5.9 we obtain that the required inequality also holds for every 65405363 < = < 10°. O
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