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Abstract

Constraint-based causal discovery from limited data is a notoriously difficult chal-
lenge due to the many borderline independence test decisions. Several approaches
to improve the reliability of the predictions by exploiting redundancy in the inde-
pendence information have been proposed recently. Though promising, existing
approaches can still be greatly improved in terms of accuracy and scalability. We
present a novel method that reduces the combinatorial explosion of the search space
by using a more coarse-grained representation of causal information, drastically
reducing computation time. Additionally, we propose a method to score causal pre-
dictions based on their confidence. Crucially, our implementation also allows one
to easily combine observational and interventional data and to incorporate various
types of available background knowledge. We prove soundness and asymptotic
consistency of our method and demonstrate that it can outperform the state-of-
the-art on synthetic data, achieving a speedup of several orders of magnitude. We
illustrate its practical feasibility by applying it to a challenging protein data set.

1 Introduction

Discovering causal relations from data is at the foundation of the scientific method. Traditionally,
cause-effect relations have been recovered from experimental data in which the variable of interest is
perturbed, but seminal work like the do-calculus [18] and the PC/FCI algorithms [25, 28] demonstrate
that, under certain assumptions (e.g., the well-known Causal Markov and Faithfulness assumptions
[25]), it is already possible to obtain substantial causal information by using only observational data.

Recently, there have been several proposals for combining observational and experimental data to
discover causal relations. These causal discovery methods are usually divided into two categories:
constraint-based and score-based methods. Score-based methods typically evaluate models using a
penalized likelihood score, while constraint-based methods use statistical independences to express
constraints over possible causal models. The advantages of constraint-based over score-based methods
are the ability to handle latent confounders and selection bias naturally, and that there is no need
for parametric modeling assumptions. Additionally, constraint-based methods expressed in logic
[2, 3, 27, 9] allow for an easy integration of background knowledge, which is not trivial even for
simple cases in approaches that are not based on logic [1].

Two major disadvantages of traditional constraint-based methods are: (i) vulnerability to errors
in statistical independence test results, which are quite common in real-world applications, (ii) no
ranking or estimation of the confidence in the causal predictions. Several approaches address the
first issue and improve the reliability of constraint-based methods by exploiting redundancy in the
independence information [3, 9, 27]. The idea is to assign weights to the input statements that reflect
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their reliability, and then use a reasoning scheme that takes these weights into account. Several
weighting schemes can be defined, from simple ways to attach weights to single independence
statements [9], to more complicated schemes to obtain weights for combinations of independence
statements [27, 3]. Unfortunately, these approaches have to sacrifice either accuracy by using a greedy
method [3, 27], or scalability by formulating a discrete optimization problem on a super-exponentially
large search space [9]. Additionally, the confidence estimation issue is addressed only in limited
cases [19].

We propose Ancestral Causal Inference (ACI), a logic-based method that provides comparable
accuracy to the best state-of-the-art constraint-based methods (e.g., [9]) for causal systems with
latent variables without feedback, but improves on their scalability by using a more coarse-grained
representation of causal information. Instead of representing all possible direct causal relations, in
ACI we represent and reason only with ancestral relations (“indirect” causal relations), developing
specialised ancestral reasoning rules. This representation, though still super-exponentially large,
drastically reduces computation time. Moreover, it turns out to be very convenient, because in
real-world applications the distinction between direct causal relations and ancestral relations is not
always clear or necessary. Given the estimated ancestral relations, the estimation can be refined to
direct causal relations by constraining standard methods to a smaller search space, if necessary.

Furthermore, we propose a method to score predictions according to their confidence. The confidence
score can be thought of as an approximation to the marginal probability of an ancestral relation.
Scoring predictions enables one to rank them according to their reliability, allowing for higher
accuracy. This is very important for practical applications, as the low reliability of the predictions of
constraint-based methods has been a major impediment to their wide-spread use.

We prove soundness and asymptotic consistency under mild conditions on the statistical tests for ACI
and our scoring method. We show that ACI outperforms standard methods, like bootstrapped FCI
and CFCI, in terms of accuracy, and achieves a speedup of several orders of magnitude over [9] on a
synthetic dataset. We illustrate its practical feasibility by applying it to a challenging protein data set
[23] that so far had only been addressed with score-based methods and observe that it successfully
recovers from faithfulness violations. In this context, we showcase the flexibility of logic-based
approaches by introducing weighted ancestral relation constraints that we obtain from a combination
of observational and interventional data, and show that they substantially increase the reliability of
the predictions. Finally, we provide an open-source version of our algorithms and the evaluation
framework, which can be easily extended, at http://github.com/caus-am/aci.

2 Preliminaries and related work

Preliminaries We assume that the data generating process can be modeled by a causal Directed
Acyclic Graph (DAG) that may contain latent variables. For simplicity we also assume that there is
no selection bias. Finally, we assume that the Causal Markov Assumption and the Causal Faithfulness
Assumption [25] both hold. In other words, the conditional independences in the observational
distribution correspond one-to-one with the d-separations in the causal DAG. Throughout the paper
we represent variables with uppercase letters, while sets of variables are denoted by boldface. All
proofs are provided in the Supplementary Material.

A directed edge X → Y in the causal DAG represents a direct causal relation between cause X on
effect Y . Intuitively, in this framework this indicates that manipulating X will produce a change in
Y , while manipulating Y will have no effect on X . A more detailed discussion can be found in [25].
A sequence of directed edges X1 → X2 → · · · → Xn is a directed path. If there exists a directed
path from X to Y (or X = Y ), then X is an ancestor of Y (denoted as X 99K Y ). Otherwise, X is
not an ancestor of Y (denoted as X 699K Y ). For a set of variables W , we write:

X 99K W := ∃Y ∈W : X 99K Y,

X 699K W := ∀Y ∈W : X 699K Y. (1)

We define an ancestral structure as any non-strict partial order on the observed variables of the DAG,
i.e., any relation that satisfies the following axioms:

(reflexivity) : X 99K X, (2)
(transitivity) : X 99K Y ∧ Y 99K Z =⇒ X 99K Z, (3)
(antisymmetry) : X 99K Y ∧ Y 99K X =⇒ X = Y. (4)
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The underlying causal DAG induces a unique “true” ancestral structure, which represents the transitive
closure of the direct causal relations projected on the observed variables.

For disjoint sets X,Y ,W we denote conditional independence of X and Y given W as X ⊥⊥
Y |W , and conditional dependence as X 6⊥⊥ Y |W . We call the cardinality |W | the order of the
conditional (in)dependence relation. Following [2] we define a minimal conditional independence by:

X ⊥⊥ Y |W ∪ [Z] := (X ⊥⊥ Y |W ∪ Z) ∧ (X 6⊥⊥ Y |W ),

and similarly, a minimal conditional dependence by:

X 6⊥⊥ Y |W ∪ [Z] := (X 6⊥⊥ Y |W ∪ Z) ∧ (X ⊥⊥ Y |W ).

The square brackets indicate thatZ is needed for the (in)dependence to hold in the context of W . Note
that the negation of a minimal conditional independence is not a minimal conditional dependence.
Minimal conditional (in)dependences are closely related to ancestral relations, as pointed out in [2]:
Lemma 1. For disjoint (sets of) variables X,Y, Z,W :

X ⊥⊥ Y |W ∪ [Z] =⇒ Z 99K ({X,Y } ∪W ), (5)
X 6⊥⊥ Y |W ∪ [Z] =⇒ Z 699K ({X,Y } ∪W ). (6)

Exploiting these rules (as well as others that will be introduced in Section 3) to deduce ancestral
relations directly from (in)dependences is key to the greatly improved scalability of our method.

Related work on conflict resolution One of the earliest algorithms to deal with conflicting inputs
in constraint-based causal discovery is Conservative PC [20], which adds “redundant” checks to the
PC algorithm that allow it to detect inconsistencies in the inputs, and then makes only predictions that
do not rely on the ambiguous inputs. The same idea can be applied to FCI, yielding Conservative FCI
(CFCI) [4, 11]. BCCD (Bayesian Constraint-based Causal Discovery) [3] uses Bayesian confidence
estimates to process information in decreasing order of reliability, discarding contradictory inputs as
they arise. COmbINE (Causal discovery from Overlapping INtErventions) [27] is an algorithm that
combines the output of FCI on several overlapping observational and experimental datasets into a
single causal model by first pooling and recalibrating the independence test p-values, and then adding
each constraint incrementally in order of reliability to a SAT instance. Any constraint that makes the
problem unsatisfiable is discarded.

Our approach is inspired by a method presented by Hyttinen, Eberhardt and Järvisalo [9] (that
we will refer to as HEJ in this paper), in which causal discovery is formulated as a constrained
discrete minimization problem. Given a list of weighted independence statements, HEJ searches
for the optimal causal graph G (an acyclic directed mixed graph, or ADMG) that minimizes the
sum of the weights of the independence statements that are violated according to G. In order to
test whether a causal graph G induces a certain independence, the method creates an encoding DAG
of d-connection graphs. D-connection graphs are graphs that can be obtained from a causal graph
through a series of operations (conditioning, marginalization and interventions). An encoding DAG
of d-connection graphs is a complex structure encoding all possible d-connection graphs and the
sequence of operations that generated them from a given causal graph. This approach has been shown
to correct errors in the inputs, but is computationally demanding because of the huge search space.

3 ACI: Ancestral Causal Inference

We propose Ancestral Causal Inference (ACI), a causal discovery method that accurately reconstructs
ancestral structures, also in the presence of latent variables and statistical errors. ACI builds on HEJ
[9], but rather than optimizing over encoding DAGs, ACI optimizes over the much simpler (but still
very expressive) ancestral structures.

For n variables, the number of possible ancestral structures is the number of partial orders (http:
//oeis.org/A001035), which grows as 2n

2/4+o(n2) [12], while the number of DAGs can be
computed with a well-known super-exponential recurrence formula (http://oeis.org/A003024).
The number of ADMGs is |DAG(n)| × 2n(n−1)/2. Although still super-exponential, the number of
ancestral structures grows asymptotically much slower than the number of DAGs and even more so,
ADMGs. For example, for 7 variables, there are 6× 106 ancestral structures but already 2.3× 1015

ADMGs, which lower bound the number of encoding DAGs of d-connection graphs used by HEJ.
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New rules The rules in HEJ explicitly encode marginalization and conditioning operations on
d-connection graphs, so they cannot be easily adapted to work directly with ancestral relations.
Instead, ACI encodes the ancestral reasoning rules (2)–(6) and five novel causal reasoning rules:

Lemma 2. For disjoint (sets) of variables X,Y, U, Z,W :

(X ⊥⊥ Y | Z) ∧ (X 699K Z) =⇒ X 699K Y, (7)
X 6⊥⊥ Y |W ∪ [Z] =⇒ X 6⊥⊥ Z |W , (8)
X ⊥⊥ Y |W ∪ [Z] =⇒ X 6⊥⊥ Z |W , (9)
(X ⊥⊥ Y |W ∪ [Z]) ∧ (X ⊥⊥ Z |W ∪ U) =⇒ (X ⊥⊥ Y |W ∪ U), (10)
(Z 6⊥⊥ X |W ) ∧ (Z 6⊥⊥ Y |W ) ∧ (X ⊥⊥ Y |W ) =⇒ X 6⊥⊥ Y |W ∪ Z. (11)

We prove the soundness of the rules in the Supplementary Material. We elaborate some conjectures
about their completeness in the discussion after Theorem 1 in the next Section.

Optimization of loss function We formulate causal discovery as an optimization problem where
a loss function is optimized over possible causal structures. Intuitively, the loss function sums the
weights of all the inputs that are violated in a candidate causal structure.

Given a list I of weighted input statements (ij , wj), where ij is the input statement and wj is the
associated weight, we define the loss function as the sum of the weights of the input statements that
are not satisfied in a given possible structure W ∈ W , whereW denotes the set of all possible causal
structures. Causal discovery is formulated as a discrete optimization problem:

W ∗ = argmin
W∈W

L(W ; I), (12)

L(W ; I) :=
∑

(ij ,wj)∈I: W∪R|=¬ij

wj , (13)

where W ∪R |= ¬ij means that input ij is not satisfied in structure W according to the rulesR.

This general formulation includes both HEJ and ACI, which differ in the types of possible structures
W and the rules R. In HEJW represents all possible causal graphs (specifically, acyclic directed
mixed graphs, or ADMGs, in the acyclic case) andR are operations on d-connection graphs. In ACI
W represent ancestral structures (defined with the rules(2)-(4)) and the rulesR are rules (5)–(11).

Constrained optimization in ASP The constrained optimization problem in (12) can be imple-
mented using a variety of methods. Given the complexity of the rules, a formulation in an expressive
logical language that supports optimization, e.g., Answer Set Programming (ASP), is very convenient.
ASP is a widely used declarative programming language based on the stable model semantics [13, 8]
that has successfully been applied to several NP-hard problems. For ACI we use the state-of-the-art
ASP solver clingo 4 [7]. We provide the encoding in the Supplementary Material.

Weighting schemes ACI supports two types of input statements: conditional independences and
ancestral relations. These statements can each be assigned a weight that reflects their confidence. We
propose two simple approaches with the desirable properties of making ACI asymptotically consistent
under mild assumptions (as described in the end of this Section), and assigning a much smaller weight
to independences than to dependences (which agrees with the intuition that one is confident about a
measured strong dependence, but not about independence vs. weak dependence). The approaches are:

• a frequentist approach, in which for any appropriate frequentist statistical test with indepen-
dence as null hypothesis (resp. a non-ancestral relation), we define the weight:

w = | log p− logα|,where p = p-value of the test, α = significance level (e.g., 5%);
(14)

• a Bayesian approach, in which the weight of each input statement i using data set D is:

w = log
p(i|D)
p(¬i|D)

= log
p(D|i)
p(D|¬i)

p(i)

p(¬i)
, (15)

where the prior probability p(i) can be used as a tuning parameter.
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Given observational and interventional data, in which each intervention has a single known target (in
particular, it is not a fat-hand intervention [5]), a simple way to obtain a weighted ancestral statement
X 99K Y is with a two-sample test that tests whether the distribution of Y changes with respect to
its observational distribution when intervening on X . This approach conveniently applies to various
types of interventions: perfect interventions [18], soft interventions [15], mechanism changes [26],
and activity interventions [17]. The two-sample test can also be implemented as an independence test
that tests for the independence of Y and IX , the indicator variable that has value 0 for observational
samples and 1 for samples from the interventional distribution in which X has been intervened upon.

4 Scoring causal predictions

The constrained minimization in (12) may produce several optimal solutions, because the underlying
structure may not be identifiable from the inputs. To address this issue, we propose to use the loss
function (13) and score the confidence of a feature f (e.g., an ancestral relation X 99K Y ) as:

C(f) = min
W∈W

L(W ; I ∪ {(¬f,∞)})− min
W∈W

L(W ; I ∪ {(f,∞)}). (16)

Without going into details here, we note that the confidence (16) can be interpreted as a MAP
approximation of the log-odds ratio of the probability that feature f is true in a Markov Logic model:

P(f | I,R)
P(¬f | I,R)

=

∑
W∈W e−L(W ;I)1W∪R|=f∑
W∈W e−L(W ;I)1W∪R|=¬f

≈ maxW∈W e−L(W ;I∪{(f,∞)})

maxW∈W e−L(W ;I∪{(¬f,∞)}) = eC(f).

In this paper, we usually consider the features f to be ancestral relations, but the idea is more generally
applicable. For example, combined with HEJ it can be used to score direct causal relations.

Soundness and completeness Our scoring method is sound for oracle inputs:
Theorem 1. LetR be sound (not necessarily complete) causal reasoning rules. For any feature f ,
the confidence score C(f) of (16) is sound for oracle inputs with infinite weights.

Here, soundness means that C(f) = ∞ if f is identifiable from the inputs, C(f) = −∞ if ¬f
is identifiable from the inputs, and C(f) = 0 otherwise (neither are identifiable). As features, we
can consider for example ancestral relations f = X 99K Y for variables X,Y . We conjecture that
the rules (2)–(11) are “order-1-complete”, i.e., they allow one to deduce all (non)ancestral relations
that are identifiable from oracle conditional independences of order ≤ 1 in observational data. For
higher-order inputs additional rules can be derived. However, our primary interest in this work is
improving computation time and accuracy, and we are willing to sacrifice completeness. A more
detailed study of the completeness properties is left as future work.

Asymptotic consistency Denote the number of samples by N . For the frequentist weights in (14),
we assume that the statistical tests are consistent in the following sense:

log pN − logαN
P→
{
−∞ H1

+∞ H0,
(17)

as N →∞, where the null hypothesis H0 is independence/nonancestral relation and the alternative
hypothesis H1 is dependence/ancestral relation. Note that we need to choose a sample-size dependent
threshold αN such that αN → 0 at a suitable rate. Kalisch and Bühlmann [10] show how this can be
done for partial correlation tests under the assumption that the distribution is multivariate Gaussian.

For the Bayesian weighting scheme in (15), we assume that for N →∞,

wN
P→
{
−∞ if i is true
+∞ if i is false.

(18)

This will hold (as long as there is no model misspecification) under mild technical conditions for
finite-dimensional exponential family models. In both cases, the probability of a type I or type II
error will converge to 0, and in addition, the corresponding weight will converge to∞.
Theorem 2. LetR be sound (not necessarily complete) causal reasoning rules. For any feature f ,
the confidence score C(f) of (16) is asymptotically consistent under assumption (17) or (18).

Here, “asymptotically consistent” means that the confidence score C(f)→∞ in probability if f is
identifiably true, C(f)→ −∞ in probability if f is identifiably false, and C(f)→ 0 in probability
otherwise.
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Average execution time (s)
n c ACI HEJ BAFCI BACFCI
6 1 0.21 12.09 8.39 12.51
6 4 1.66 432.67 11.10 16.36
7 1 1.03 715.74 9.37 15.12
8 1 9.74 ≥ 2500 13.71 21.71
9 1 146.66 � 2500 18.28 28.51
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Figure 1: Execution time comparison on synthetic data for the frequentist test on 2000 synthetic
models: (a) average execution time for different combinations of number of variables n and max.
order c; (b) detailed plot of execution times for n = 7, c = 1 (logarithmic scale).

5 Evaluation

In this section we report evaluations on synthetically generated data and an application on a real
dataset. Crucially, in causal discovery precision is often more important than recall. In many real-
world applications, discovering a few high-confidence causal relations is more useful than finding
every possible causal relation, as reflected in recently proposed algorithms, e.g., [19].

Compared methods We compare the predictions of ACI and of the acyclic causally insufficient
version of HEJ [9], when used in combination with our scoring method (16). We also evaluate two
standard methods: Anytime FCI [24, 28] and Anytime CFCI [4], as implemented in the pcalg R
package [11]. We use the anytime versions of (C)FCI because they allow for independence test
results up to a certain order. We obtain the ancestral relations from the output PAG using Theorem
3.1 from [22]. (Anytime) FCI and CFCI do not rank their predictions, but only predict the type of
relation: ancestral (which we convert to +1), non-ancestral (-1) and unknown (0). To get a scoring of
the predictions, we also compare with bootstrapped versions of Anytime FCI and Anytime CFCI.
We perform the bootstrap by repeating the following procedure 100 times: sample randomly half
of the data, perform the independence tests, run Anytime (C)FCI. From the 100 output PAGs we
extract the ancestral predictions and average them. We refer to these methods as BA(C)FCI. For a
fair comparison, we use the same independence tests and thresholds for all methods.

Synthetic data We simulate the data using the simulator from HEJ [9]: for each experimental
condition (e.g., a given number of variables n and order c), we generate randomly M linear acyclic
models with latent variables and Gaussian noise and sample N = 500 data points. We then perform
independence tests up to order c and weight the (in)dependence statements using the weighting
schemes described in Section 3. For the frequentist weights we use tests based on partial correlations
and Fisher’s z-transform to obtain approximate p-values (see, e.g., [10]) with significance level
α = 0.05. For the Bayesian weights, we use the Bayesian test for conditional independence presented
in [14] as implemented by HEJ with a prior probability of 0.1 for independence.

In Figure 1(a) we show the average execution times on a single core of a 2.80GHz CPU for different
combinations of n and c, while in Figure 1(b) we show the execution times for n = 7, c = 1, sorting
the execution times in ascending order. For 7 variables ACI is almost 3 orders of magnitude faster
than HEJ, and the difference grows exponentially as n increases. For 8 variables HEJ can complete
only four of the first 40 simulated models before the timeout of 2500s. For reference we add the
execution time for bootstrapped anytime FCI and CFCI.

In Figure 2 we show the accuracy of the predictions with precision-recall (PR) curves for both
ancestral (X 99K Y ) and nonancestral (X 699K Y ) relations, in different settings. In this Figure, for
ACI and HEJ all of the results are computed using frequentist weights and, as in all evaluations, our
scoring method (16). While for these two methods we use c = 1, for (bootstrapped) (C)FCI we use
all possible independence test results (c = n− 2). In this case, the anytime versions of FCI and CFCI
are equivalent to the standard versions of FCI and CFCI. Since the overall results are similar, we
report the results with the Bayesian weights in the Supplementary Material.

In the first row of Figure 2, we show the setting with n = 6 variables. The performances of HEJ
and ACI coincide, performing significantly better for nonancestral predictions and the top ancestral
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Figure 2: Accuracy on synthetic data for the two prediction tasks (ancestral and nonancestral relations)
using the frequentist test with α = 0.05. The left column shows the precision-recall curve for ancestral
predictions, the middle column shows a zoomed-in version in the interval (0,0.02), while the right
column shows the nonancestral predictions.

predictions (see zoomed-in version in Figure 2(b)). This is remarkable, as HEJ and ACI use only
independence test results up to order c = 1, in contrast with (C)FCI which uses independence test
results of all orders. Interestingly, the two discrete optimization algorithms do not seem to benefit
much from higher order independence tests, thus we omit them from the plots (although we add the
graphs in the Supplementary Material). Instead, bootstrapping traditional methods, oblivious to the
(in)dependence weights, seems to produce surprisingly good results. Nevertheless, both ACI and HEJ
outperform bootstrapped FCI and CFCI, suggesting these methods achieve nontrivial error-correction.

In the second row of Figure 2, we show the setting with 8 variables. In this setting HEJ is too slow. In
addition to the previous plot, we plot the accuracy of ACI when there is oracle background knowledge
on the descendants of one variable (i = 1). This setting simulates the effect of using interventional
data, and we can see that the performance of ACI improves significantly, especially in the ancestral
preditions. The performance of (bootstrapped) FCI and CFCI is limited by the fact that they cannot
take advantage of this background knowledge, except with complicated postprocessing [1].

Application on real data We consider the challenging task of reconstructing a signalling network
from flow cytometry data [23] under different experimental conditions. Here we consider one
experimental condition as the observational setting and seven others as interventional settings. More
details and more evaluations are reported in the Supplementary Material. In contrast to likelihood-
based approaches like [23, 5, 17, 21], in our approach we do not need to model the interventions
quantitatively. We only need to know the intervention targets, while the intervention types do not
matter. Another advantage of our approach is that it takes into account possible latent variables.

We use a t-test to test for each intervention and for each variable whether its distribution changes
with respect to the observational condition. We use the p-values of these tests as in (14) in order to
obtain weighted ancestral relations that are used as input (with threshold α = 0.05). For example, if
adding U0126 (a MEK inhibitor) changes the distribution of RAF significantly with respect to the
observational baseline, we get a weighted ancestral relation MEK99KRAF. In addition, we use partial
correlations up to order 1 (tested in the observational data only) to obtain weighted independences
used as input. We use ACI with (16) to score the ancestral relations for each ordered pair of variables.
The main results are illustrated in Figure 3, where we compare ACI with bootstrapped anytime CFCI
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Figure 3: Results for flow cytometry dataset. Each matrix represents the ancestral relations, where
each row represents a cause and each column an effect. The colors encode the confidence levels:
green is positive, black is unknown, while red is negative. The intensity of the color represents the
degree of confidence. For example, ACI identifies MEK to be a cause of RAF with high confidence.

under different inputs. The output for boostrapped anytime FCI is similar, so we report it only in
the Supplementary Material. Algorithms like (anytime) (C)FCI can only use the independences in
the observational data as input and therefore miss the strongest signal, weighted ancestral relations,
which are obtained by comparing interventional with observational data. In the Supplementary
Material, we compare also with other methods ([19], [17]). Interestingly, as we show there, our
results are similar to the best acyclic model reconstructed by the score-based method from [17]. As for
other constraint-based methods, HEJ is computationally unfeasible in this setting, while COMBINE
assumes perfect interventions (while this dataset contains mostly activity interventions).

Notably, our algorithms can correctly recover from faithfulness violations (e.g., the independence
between MEK and ERK), because they take into account the weight of the input statements (the weight
of the independence is considerably smaller than that of the ancestral relation, which corresponds
with a quite significant change in distribution). In contrast, methods that start by reconstructing the
skeleton, like (anytime) (C)FCI, would decide that MEK and ERK are nonadjacent, and are unable to
recover from that erroneous decision. This illustrates another advantage of our approach.

6 Discussion and conclusions

As we have shown, ancestral structures are very well-suited for causal discovery. They offer a
natural way to incorporate background causal knowledge, e.g., from experimental data, and allow a
huge computational advantage over existing representations for error-correcting algorithms, such as
[9]. When needed, ancestral structures can be mapped to a finer-grained representation with direct
causal relations, as we sketch in the Supplementary Material. Furthermore, confidence estimates on
causal predictions are extremely helpful in practice, and can significantly boost the reliability of the
output. Although standard methods, like bootstrapping (C)FCI, already provide reasonable estimates,
methods that take into account the confidence in the inputs, as the one presented here, can lead to
further improvements of the reliability of causal relations inferred from data.

Strangely (or fortunately) enough, neither of the optimization methods seems to improve much with
higher order independence test results. We conjecture that this may happen because our loss function
essentially assumes that the test results are independent from another (which is not true). Finding a
way to take this into account in the loss function may further improve the achievable accuracy, but
such an extension may not be straightforward.

Acknowledgments

SM and JMM were supported by NWO, the Netherlands Organization for Scientific Research
(VIDI grant 639.072.410). SM was also supported by the Dutch programme COMMIT/ under the
Data2Semantics project. TC was supported by NWO grant 612.001.202 (MoCoCaDi), and EU-FP7
grant agreement n.603016 (MATRICS). We also thank Sofia Triantafillou for her feedback, especially
for pointing out the correct way to read ancestral relations from a PAG.

8



7 Proofs

7.1 ACI causal reasoning rules

We give a combined proof of all the ACI reasoning rules. Note that the numbering of the rules here is
different from the numbering used in the main paper.
Lemma 3. For X , Y , Z, U , W disjoint (sets of) variables:

1. (X ⊥⊥ Y |W ) ∧ (X 699K W ) =⇒ X 699K Y

2. X 6⊥⊥ Y |W ∪ [Z] =⇒ (X 6⊥⊥ Z |W ) ∧ (Z 699K {X,Y } ∪W )

3. X ⊥⊥ Y |W ∪ [Z] =⇒ (X 6⊥⊥ Z |W ) ∧ (Z 99K {X,Y } ∪W )

4. (X ⊥⊥ Y |W ∪ [Z]) ∧ (X ⊥⊥ Z |W ∪ U) =⇒ (X ⊥⊥ Y |W ∪ U)

5. (Z 6⊥⊥ X |W ) ∧ (Z 6⊥⊥ Y |W ) ∧ (X ⊥⊥ Y |W ) =⇒ X 6⊥⊥ Y |W ∪ Z

Proof. We assume a causal DAG with possible latent variables, the causal Markov assumption, and
the causal faithfulness assumption.

1. This is a strengthened version of rule R2(i) in [6]: note that the additional assumptions
made there (Y 699K W , Y 699K X) are redundant and not actually used in their proof. For
completeness, we give the proof here. If X 99K Y , then there is a directed path from X to
Y . As all paths between X and Y are blocked by W, the directed path from X to Y must
contain a node W ∈W . Hence X 99KW , a contradiction with X 699K W.

2. If X 6⊥⊥ Y |W ∪ [Z] then there exists a path π between X and Y such that each noncollider
on π is not in W ∪ {Z}, every collider on π is ancestor of W ∪ {Z}, and there exists a
collider on π that is ancestor of Z but not of W . Let C be the collider on π closest to X
that is ancestor of Z but not of W . Note that

(a) The path X · · ·C → · · · → Z is d-connected given W .
(b) Z 699K W (because otherwise C 99K Z 99K W , a contradiction).
(c) Z 699K Y (because otherwise the path X · · ·C → · · · → Z → · · · → Y would be

d-connected given W , a contradiction).

Hence we conclude that X 6⊥⊥ Z |W , Z 699K W , Z 699K Y , and by symmetry also Z 699K X .

3. Suppose X ⊥⊥ Y |W ∪ [Z]. Then there exists a path π between X and Y , such that each
noncollider on π is not in W , each collider on π is an ancestor of W , and Z is a noncollider
on π. Note that

(a) The subpath X · · ·Z must be d-connected given W .
(b) Z has at least one outgoing edge on π. Follow this edge further along π until reaching

either X , Y , or the first collider. When a collider is reached, follow the directed path to
W . Hence there is a directed path from Z toX or Y or to W , i.e., Z 99K {X,Y }∪W .

4. If in addition, X ⊥⊥ Z | W ∪ U , then U must be a noncollider on the subpath X · · ·Z.
Therefore, X ⊥⊥ Y |W ∪ U .

5. Assume that Z 6⊥⊥ X |W and Z 6⊥⊥ Y |W . Then there must be paths π between Z and X
and ρ between Z and Y such that each noncollider is not in W and each collider is ancestor
of W . Let U be the node on π closest to X that is also on ρ (this could be Z). Then we
have a path X · · ·U · · ·Y such that each collider (except U ) is ancestor of W and each
noncollider (except U ) is not in W . This path must be blocked given W as X ⊥⊥ Y |W .
If U would be a noncollider on this path, it would need to be in W in order to block it;
however, it must then also be a noncollider on π or ρ and hence cannot be in W . Therefore,
U must be a collider on this path and cannot be ancestor of W . We have to show that U is
ancestor of Z. If U were a collider on π or ρ, it would be ancestor of W , a contradiction.
Hence U must have an outgoing arrow pointing towards Z on π and ρ. If we encounter a
collider following the directed edges, we get a contradiction, as that collider, and hence U ,
would be ancestor of W . Hence U is ancestor of Z, and therefore, X 6⊥⊥ Y |W ∪ Z.
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7.2 Soundness

Theorem 3. LetR be sound (not necessarily complete) causal reasoning rules. For any feature f ,
the confidence score C(f) of (16) is sound for oracle inputs with infinite weights, i.e., C(f) =∞ if
f is identifiable from the inputs, C(f) = −∞ if ¬f is identifiable from the inputs, and C(f) = 0
otherwise (neither are identifiable).

Proof. We assume that the data generating process is described by a causal DAG which may contain
additional latent variables, and that the distributions are faithful to the DAG. The theorem then follows
directly from the soundness of the rules and the soundness of logical reasoning.

7.3 Asymptotic consistency of scoring method

Theorem 4. LetR be sound (not necessarily complete) causal reasoning rules. For any feature f ,
the confidence score C(f) of (16) is asymptotically consistent under assumption (14) or (15) in the
main paper, i.e.,

• C(f)→∞ in probability if f is identifiably true,

• C(f)→ −∞ in probability if f is identifiably false,

• C(f)→ 0 in probability otherwise (neither are identifiable).

Proof. As the number of statistical tests is fixed (or at least bounded from above), the probability of
any error in the test results converges to 0 asymptotically. The loss function of all structures that do
not correspond with the properties of the true causal DAG converges to +∞ in probability, whereas
the loss function of all structures that are compatible with properties of the true causal DAG converges
to 0 in probability.

8 Additional results on synthetic data

In Figures 4 and 5 we show the performance of ACI and HEJ [9] for higher order independence test
results (c = 4). As in the main paper, for (bootstrapped) FCI and CFCI we use c = 4, because it gives
the best predictions for these methods. In Figure 4 we report more accuracy results on the frequentist
test with α = 0.05, the same setting as Figure 2 (a-c) in the main paper. As we see, the performances
of ACI and HEJ do not really improve with higher order but actually seem to deteriorate.

In Figure 5 we report accuracy results on synthetic data also for the Bayesian test described in
the main paper, with prior probability of independence p = 0.1. Using the Bayesian test does not
change the overall conclusions: ACI and HEJ overlap for order c = 1 and they perform better than
bootstrapped (C)FCI.
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Figure 4: Synthetic data: accuracy for the two prediction tasks (ancestral and nonancestral relations)
for n = 6 variables using the frequentist test with α = 0.05, also for higher order c.

9 Application on real data

We provide more details and more results on the real-world dataset that was briefly described in
the main paper, the flow cytometry data [23]. The data consists of simultaneous measurements of
expression levels of 11 biochemical agents in individual cells of the human immune system under 14
different experimental conditions.
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Figure 5: Synthetic data: accuracy for the two prediction tasks (ancestral and nonancestral relations)
for n = 6 variables using the Bayesian test with prior probability of independence p = 0.1.

9.1 Experimental conditions

The experimental conditions can be grouped into two batches of 8 conditions each that have very
similar interventions:

• “no-ICAM”, used in the main paper and commonly used in the literature;
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Table 1: Reagents used in the various experimental conditions in [23] and corresponding intervention
types and targets. The intervention types and targets are based on (our interpretation of) biological
background knowledge. The upper table describes the “no-ICAM” batch of conditions that is most
commonly used in the literature. The lower table describes the additional “ICAM” batch of conditions
that we also use here.

no-ICAM:

Reagents Intervention
α-CD3, α-CD28 ICAM-2 Additional Target Type
+ - - - (observational)
+ - AKT inhibitor AKT activity
+ - G0076 PKC activity
+ - Psitectorigenin PIP2 abundance
+ - U0126 MEK activity
+ - LY294002 PIP2/PIP3 mechanism change
- - PMA PKC activity + fat-hand
- - β2CAMP PKA activity + fat-hand

ICAM:

Reagents Intervention
α-CD3, α-CD28 ICAM-2 Additional Target Type
+ + - - (observational)
+ + AKT inhibitor AKT activity
+ + G0076 PKC activity
+ + Psitectorigenin PIP2 abundance
+ + U0126 MEK activity
+ + LY294002 PIP2/PIP3 mechanism change
- - PMA PKC activity + fat-hand
- - β2CAMP PKA activity + fat-hand

• “ICAM”, where Intercellular Adhesion Protein-2 (ICAM-2) was added (except when PMA
or β2CAMP was added).

For each batch of 8 conditions, the experimenters added α-CD3 and α-CD28 to activate the signaling
network in 6 out of 8 conditions. For the remaining two conditions (PMA and β2CAMP), α-CD3 and
α-CD28 were not added (and neither was ICAM-2). We can consider the absence of these stimuli as a
global intervention relative to the observational baseline (where α-CD3 and α-CD28 are present, and
in addition ICAM-2 is present in the ICAM batch). For each batch (ICAM and no-ICAM), we can
consider an observational dataset and 7 interventional datasets with different activators and inhibitors
added to the cells, as described in Table 1. Note that the datasets from the last two conditions are the
same in both settings. For more information about intervention types, see [17].

In this paper, we ignore the fact that in the last two interventional datasets in each batch (PMA and
β2CAMP) there is also a global intervention. Ignoring the global intervention allows us to compute
the weighted ancestral relations, since we consider any variable that changes its distribution with
respect to the observational condition to be an effect of the main target of the intervention (PKC for
PMA and PKA for β2CAMP). This is in line with previous work [23, 17]. Also, we consider only
PIP3 as the main target of the LY294002 intervention, based on the consensus network [23], even
though in [17] both PIP2 and PIP3 are considered to be targets of this intervention. In future work,
we plan to extend ACI in order to address the task of learning the intervention targets from data, as
done by [5] for a score-based approach.

In the main paper we provide some results for the most commonly used no-ICAM batch of experimen-
tal conditions. Below we report additional results on the same batch. Moreover, we provide results for
causal discovery on the ICAM batch, which are quite consistent with the no-ICAM batch. Finally, we
compare with other methods that were applied to this dataset, especially with a score-based approach
([17]) that shows surprisingly similar results to ACI, although it uses a very different method.
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Figure 6: Results on flow cytometry dataset, no-ICAM batch. The top row represents some of the
possible inputs: weighted independences of order 0 from the observational dataset (the inputs include
also order 1 test results, but these are not visualized here) and weighted ancestral relations recovered
from comparing the interventional datasets with the observational data. In the bottom two rows
each matrix represents the ancestral relations that are estimated using different inputs and different
methods (ACI, bootstrapped anytime FCI or CFCI). Each row represents a cause, while the columns
are the effects. The colors encodes the confidence levels, green is positive, black is unknown, while
red is negative. The intensity of the color represents the degree of confidence.

9.2 Results on no-ICAM batch

In Figure 6 we provide additional results for the no-ICAM batch. In the first row we show some of
the possible inputs: weighted independences (in this case partial correlations) from observational data
and weighted ancestral relations from comparing the interventional datasets with the observational
data. Specifically, we consider as inputs only independences up to order 1 (but only independences
of order 0 are visualized in the figure). The color encodes the weight of the independence. As an
example, the heatmap shows that Raf and Mek are strongly dependent.

For the weighted ancestral relations, in Figure 6 we plot a matrix in which each row represents a
cause, while the columns are the effects. As described in the main paper we use a t-test to test for each
intervention and for each variable whether its distribution changes with respect to the observational
condition. We use the biological knowledge summarised in Table 1 to define the intervention target,
which is then considered the putative “cause”. Then we use the p-values of these tests and a threshold
α = 0.05 to obtain the weights of the ancestral relations, similarly to what is proposed in the main
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Figure 7: Results on flow cytometry dataset, ICAM batch. Same comparison as in Figure 6, but for
the ICAM batch.

paper for the frequentist weights for the independence tests:

w = | log p− logα|.

For example, if adding U0126 (which is known to be a MEK inhibitor) changes the distribution of
RAF with p = 0.01 with respect to the observational baseline, we get a weighted ancestral relation
(MEK99KRAF, 1.609).

9.3 ICAM batch

In Figure 7 we show the results for the ICAM setting. These results are very similar to the results
for the no-ICAM batch (see also Figure 8), showing that the predicted ancestral relations are robust.
In particular it is clear that also for the ICAM batch, weighted ancestral relations are a very strong
signal, and that methods that can exploit them (e.g., ACI) have a distinct advantage over methods that
cannot (e.g., FCI and CFCI).

In general, in both settings there appear to be various faithfulness violations. For example, it is
well-known that MEK causes ERK, yet in the observational data these two variables are independent.
Nevertheless, we can see in the data that an intervention on MEK leads to a change of ERK, as
expected. It is interesting to note that our approach can correctly recover from this faithfulness
violation because it takes into account the weight of the input statements (note that the weight of the
independence is smaller than that of the ancestral relation, which corresponds with a quite significant
change in distribution). In contrast, methods that start by reconstructing the skeleton (like (C)FCI or

15



R
af

M
ek

PLC
g

PIP2
PIP3
Erk
Akt
PKA
PKC
p38
JN
K

ACI (ancestral r. + indep. <= 1)
Raf
Mek
PLCg
PIP2
PIP3
Erk
Akt
PKA
PKC
p38
JNK R

af
M
ek

PLC
g

PIP2
PIP3
Erk
Akt
PKA
PKC
p38
JN
K

ACI (ancestral r. + indep. <= 1)
Raf
Mek
PLCg
PIP2
PIP3
Erk
Akt
PKA
PKC
p38
JNK

Weighted causes(i,j)

 

 

R
af

M
ek

P
LC

g
P

IP
2

P
IP

3
E

rk
A

kt
P

K
A

P
K

C
p38
JN

K

Raf
Mek

PLCg
PIP2
PIP3

Erk
Akt

PKA
PKC
p38
JNK −1000

−500

0

500

1000
Weighted indep(i,j)

 

 

R
af

M
ek

P
LC

g
P

IP
2

P
IP

3
E

rk
A

kt
P

K
A

P
K

C
p38
JN

K

Raf
Mek

PLCg
PIP2
PIP3

Erk
Akt

PKA
PKC
p38
JNK −1000

−500

0

500

1000
Consensus graph

 

 

R
af

M
ek

P
LC

g
P

IP
2

P
IP

3
E

rk
A

kt
P

K
A

P
K

C
p38
JN

K

Raf
Mek

PLCg
PIP2
PIP3

Erk
Akt

PKA
PKC
p38
JNK −1000

−500

0

500

1000

ACI (causes)

 

 

R
af

M
ek

P
LC

g
P

IP
2

P
IP

3
E

rk
A

kt
P

K
A

P
K

C
p38
JN

K

Raf
Mek

PLCg
PIP2
PIP3

Erk
Akt

PKA
PKC
p38
JNK −1000

−500

0

500

1000
ACI (causes + indeps)

 

 

R
af

M
ek

P
LC

g
P

IP
2

P
IP

3
E

rk
A

kt
P

K
A

P
K

C
p38
JN

K

Raf
Mek

PLCg
PIP2
PIP3

Erk
Akt

PKA
PKC
p38
JNK −1000

−500

0

500

1000

FCI

 

 

R
af

M
ek

P
LC

g
P

IP
2

P
IP

3
E

rk
A

kt
P

K
A

P
K

C
p38
JN

K

Raf
Mek

PLCg
PIP2
PIP3

Erk
Akt

PKA
PKC
p38
JNK −1000

−500

0

500

1000
CFCI

 

 

R
af

M
ek

P
LC

g
P

IP
2

P
IP

3
E

rk
A

kt
P

K
A

P
K

C
p38
JN

K

Raf
Mek

PLCg
PIP2
PIP3

Erk
Akt

PKA
PKC
p38
JNK −1000

−500

0

500

1000
Acyclic Joris graph

 

 

R
af

M
ek

P
LC

g
P

IP
2

P
IP

3
E

rk
A

kt
P

K
A

P
K

C
p38
JN

K

Raf
Mek

PLCg
PIP2
PIP3

Erk
Akt

PKA
PKC
p38
JNK −1000

−500

0

500

1000
Figure 8: ACI results (input: independences of order ≤ 1 and weighted ancestral relations) on
no-ICAM (left) and ICAM (right) batches. These heatmaps are identical to the ones in Figures 6 and
7, but are reproduced here next to each other for easy comparison.
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Figure 9: Comparison of ancestral relations predicted by ACI and the score-based method from [17],
both using the no-ICAM batch. Depicted are the top 21 ancestral relations obtained by ACI and the
transitive closure of the top 17 direct causal relations reported in [17], which results in 21 ancestral
relations. Black edges are ancestral relations found by both methods, blue edges were identified only
by ACI, while grey edges are present only in the transitive closure of the result from [17].

LoCI [2]) would decide that MEK and ERK are nonadjacent, unable to recover from that erroneous
decision. This illustrates one of the advantages of our approach.

9.4 Comparison with other approaches

We also compare our results with other, mostly score-based approaches. Amongst other results, [17]
report the top 17 direct causal relations on the no-ICAM batch that were inferred by their score-based
method when assuming acyclicity. In order to compare fairly with the ancestral relations found by
ACI, we first perform a transitive closure of these direct causal relations, which results in 21 ancestral
relations. We then take the top 21 predicted ancestral relations from ACI (for the same no-ICAM
batch), and compare the two in Figure 9. The black edges, the majority, represent the ancestral
relations found by both methods. The blue edges are found only by ACI, while the grey edges are
found only by [17]. Interestingly, the results are quite similar, despite the very different approaches.
In particular, ACI allows for confounders and is constraint-based, while the method in [17] assumes
causal sufficiency (i.e., no confounders) and is score-based.

Table 2 summarizes most of the existing work on this flow cytometry dataset. It was originally part of
the S1 material of [16]. We have updated it here by adding also the results for ACI and the transitive
closure of [17].
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Table 2: Updated Table S1 from [16]: causal relationships between the biochemical agents in the
flow cytometry data of [23], according to different causal discovery methods. The consensus network
according to [23] is denoted here by “[23]a” and their reconstructed network by “[23]b”. For [17]
we provide two versions: “[17]a” for the top 17 edges in the acyclic case, as reported in the original
paper, and “[17]b” for its transitive closure, which consists of 21 edges. To provide a fair comparison,
we also pick the top 21 ancestral predictions from ACI.

Direct causal predictions Ancestral predictions
Edge [23]a [23]b [17]a [5] ICP [19] hiddenICP [19] [17]b ACI (top 21)
RAF→MEK X X X
MEK→RAF X X X X X
MEK→ERK X X X X X
MEK→AKT X
MEK→JNK X
PLCg→PIP2 X X X X X
PLCg→PIP3 X X
PLCg→PKC X X
PIP2→PLCg X X X X
PIP2→PIP3 X
PIP2→PKC X
PIP3→PLCg X X
PIP3→PIP2 X X X X X X
PIP3→AKT X
AKT→ERK X X X X
AKT→JNK X
ERK→AKT X X X X
ERK→PKA X
PKA→RAF X X X X
PKA→MEK X X X X X X X
PKA→ERK X X X X X
PKA→AKT X X X X X X X
PKA→PKC X
PKA→P38 X X X X X
PKA→JNK X X X X X X
PKC→RAF X X X X X
PKC→MEK X X X X X X
PKC→PLCg X X X
PKC→PIP2 X X X
PKC→PIP3 X
PKC→ERK X X
PKC→AKT X X X
PKC→PKA X X X
PKC→P38 X X X X X X X
PKC→JNK X X X X X X X X
P38→JNK X
P38→PKC X
JNK→PKC X
JNK→P38 X X
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Figure 10: Synthetic data: accuracy for the two prediction tasks (direct causal and noncausal relations)
for n = 6 variables using the frequentist test with α = 0.05 for 2000 simulated models.

Table 3: Average execution times for recovering causal relations with different strategies for 2000
models for n = 6 variables using the frequentist test with α = 0.05.

Average execution time (s)
Setting Direct causal relations Only second step Ancestral relations
n c ACI with restricted HEJ direct HEJ restricted HEJ ancestral HEJ
6 1 9.77 15.03 7.62 12.09
6 4 16.96 314.29 14.43 432.67
7 1 36.13 356.49 30.68 715.74
8 1 98.92 ≥ 2500 81.73 ≥ 2500
9 1 361.91 ≥ 2500 240.47 ≥ 2500

10 Mapping ancestral structures to direct causal relations

An ancestral structure can be seen as the transitive closure of the directed edges of an acyclic directed
mixed graph (ADMG). There are several strategies to reconstruct “direct” causal relations from an
ancestral structure, in particular in combination with our scoring method. Here we sketch a possible
strategy, but we leave a more in-depth investigation to future work.

A possible strategy is to first recover the ancestral structure from ACI with our scoring method and
then use it as “oracle” input constraints for the HEJ [9] algorithm. Specifically, for each weighted
output (X 99K Y,w) obtained by ACI, we add (X 99K Y,∞) to the input list I , and similarly for
each X 699K Y . Then we can use our scoring algorithm with HEJ to score direct causal relations (e.g.,
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f = X → Y ) and direct acausal relations (e.g., f = X 6→ Y ):

C(f) = min
W∈W

L(W ; I ∪ {(¬f,∞)})− min
W∈W

L(W ; I ∪ {(f,∞)}). (19)

In the standard HEJ algorithm,W are all possible ADMGs, but with our additional constraints we can
reduce the search space to only the ones that fit the specific ancestral structure, which is on average
and asymptotically a reduction of 2n

2/4+o(n2) for n variables. We will refer to this two-step approach
as ACI with restricted HEJ (ACI + HEJ). A side effect of assigning infinite scores to the original
ancestral predictions instead of the originally estimated scores is that some of the estimated direct
causal predictions scores will also be infinite, flattening their ranking. For this preliminary evaluation,
we fix this issue by reusing the original ancestral scores also for the infinite direct predictions scores.
Another option may be to use the ACI scores for (a)causal relations as soft constraints for HEJ,
although at the time of writing it is still unclear whether this would lead to the same speedup as the
previously mentioned version.

We compared accuracy and execution times of standard HEJ (without the additional constraints
derived from ACI) with ACI with restricted HEJ on simulated data. Figure 10 shows PR curves for
predicting the presence and absence of direct causal relations for both methods. In Table 3 we list the
execution times for recovering direct causal relations. Additionally, we list the execution times of
only the second step of our approach, the restricted HEJ, to highlight the improvement in execution
time resulting from the restrictions. In this preliminary investigation with simulated data, ACI with
restricted HEJ is much faster than standard HEJ (without the additional constraints derived from ACI)
for predicting direct causal relations, but only sacrifices a little accuracy (as can be seen in Figure
10). In the last column of Table 3, we show the execution times of standard HEJ when used to score
ancestral relations. Interestingly, predicting direct causal relations is faster than predicting ancestral
relations with HEJ. Still, for 8 variables the algorithm takes more than 2,500 seconds for all but 6
models of the first 40 simulated models.

Another possible strategy first reconstructs the (possibly incomplete) PAG [25] from ancestral
relations and conditional (in)dependences using a procedure similar to LoCI [2], and then recovering
direct causal relations. There are some subtleties in the conversion from (possibly incomplete) PAGs
to direct causal relations, so we leave this and other PAG based strategies, as well as a better analysis
of conversion of ancestral relations to direct causal relations as future work.

11 Complete ACI encoding in ASP

Answer Set Programming (ASP) is a widely used declarative programming language based on the
stable model semantics of logical programming. A thorough introduction to ASP can be found in
[13, 8]. The ASP syntax resembles Prolog, but the computational model is based on the principles
that have led to faster solvers for propositional logic [13]. ASP has been applied to several NP-hard
problems, including learning Bayesian networks and ADMGs [9]. Search problems are reduced to
computing the stable models (also called answer sets), which can be optionally scored.

For ACI we use the state-of-the-art ASP solver clingo 4 [7]. We provide the complete ACI encoding
in ASP using the clingo syntax in Table 4. We encode sets via their natural correspondence with
binary numbers and use boolean formulas in ASP to encode set-theoretic operations. Since ASP does
not support real numbers, we scale all weights by a factor of 1000 and round to the nearest integer.

12 Open source code repository

We provide an open-source version of our algorithms and the evaluation framework, which can be
easily extended, at http://github.com/caus-am/aci.
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Table 4: Complete ACI encoding in Answer Set Programming, written in the syntax for clingo 4.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% Ancestral Causal Inference (ACI) %%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% Preliminaries:
%%% Define ancestral structures:
{ causes(X,Y) } :- node(X), node(Y), X!=Y.
:- causes(X,Y), causes(Y,X), node(X), node(Y), X < Y.
:- not causes(X,Z), causes(X,Y), causes(Y,Z), node(X), node(Y), node(Z).

%%% Define the extension of causes to sets.
% existsCauses(Z,W) means there exists I \in W that is caused by Z.
1{ causes(Z, I): ismember(W,I)} :- existsCauses(Z,W), node(Z), set(W), not ismember(W,Z).
existsCauses(Z,W) :- causes(Z, I), ismember(W,I), node(I), node(Z), set(W), not ismember(W,Z), Z!=I.

%%% Generate in/dependences in each model based on the input in/dependences.
1{ dep(X,Y,Z);indep(X,Y,Z) }1 :- input_indep(X,Y,Z,_).
1{ dep(X,Y,Z);indep(X,Y,Z) }1 :- input_dep(X,Y,Z,_).

%%% To simplify the rules , add symmetry of in/dependences.
dep(X,Y,Z) :- dep(Y,X,Z), node(X), node(Y), set(Z), X!=Y, not ismember(Z,X), not ismember(Z,Y).
indep(X,Y,Z) :- indep(Y,X,Z), node(X), node(Y), set(Z), X!=Y, not ismember(Z,X), not ismember(Z,Y).

%%%%% Rules from LoCI:
%%% Minimal independence rule (4) : X || Y | W u [Z] => Z -/-> X, Z -/-> Y, Z -/-> W
:- not causes(Z,X), not causes(Z,Y), not existsCauses(Z,W), dep(X,Y,W), indep(X,Y,U),
U==W+2**(Z-1), set(W), node(Z), not ismember(W, Z), Y != Z, X != Z.

%%% Minimal dependence rule (5): X |/| Y | W u [Z] => Z --> X or Z-->Y or Z-->W
:- causes(Z,X), indep(X,Y,W), dep(X,Y,U), U==W+2**(Z-1), set(W), set(U), node(X),
node(Y), node(Z), not ismember(W, Z), not ismember(W, X), not ismember(W,Y),
X != Y, Y != Z, X != Z.

% Note: the version with causes(Z,Y) is implied by the symmetry of in/dependences.
:- existsCauses(Z,W), indep(X,Y,W), dep(X,Y,U), U==W+2**(Z-1), set(W), set(U), node(X),
node(Y), node(Z), not ismember(W, Z), not ismember(W, X), not ismember(W,Y),
X != Y, Y != Z, X != Z.

%%%%% ACI rules:
%%% Rule 1: X || Y | U and X -/-> U => X -/->Y
:- causes(X,Y), indep(X,Y,U), not existsCauses(X,U), node(X), node(Y), set(U), X != Y,
not ismember(U,X), not ismember(U,Y).

%%% Rule 2: X || Y | W u [Z] => X |/| Z | W
dep(X,Z,W) :- indep(X,Y,W), dep(X,Y,U), U==W+2**(Z-1), set(W), set(U),
node(X), node(Y), node(Z), X != Y, Y != Z, X != Z, not ismember(W,X), not ismember(W,Y).

%%% Rule 3: X |/| Y | W u [Z] => X |/| Z | W
dep(X,Z,W) :- dep(X,Y,W), indep(X,Y,U), U==W+2**(Z-1), set(W), set(U),
node(X), node(Y), node(Z), X != Y, Y != Z, X != Z, not ismember(W,X), not ismember(W,Y).

%%% Rule 4: X || Y | W u [Z] and X || Z | W u U => X || Y | W u U
indep(X,Y,A) :- dep(X,Y,W), indep(X,Y,U), U==W+2**(Z-1), indep(X,Z,A), A==W+2**(B-1),
set(W), set(U), not ismember(W,X), not ismember(W,Y), node(X), node(Y), node(Z),
set(A), node(B), X!=B, Y!=B, Z!=B, X != Y, Y != Z, X != Z.

%%% Rule 5: Z |/| X | W and Z |/| Y | W and X || Y | W => X |/| Z | W u Z
dep(X,Y,U) :- dep(Z,X,W), dep(Z,Y,W), indep(X,Y,W), node(X), node(Y), U==W+2**(Z-1),
set(W), set(U), X != Y, Y != Z, X != Z, not ismember(W,X), not ismember(W,Y).

%%%%% Loss function and optimization.
%%% Define the loss function as the incongruence between the input in/dependences
%%% and the in/dependences of the model.
fail(X,Y,Z,W) :- dep(X,Y,Z), input_indep(X,Y,Z,W).
fail(X,Y,Z,W) :- indep(X,Y,Z), input_dep(X,Y,Z,W).

%%% Include the weighted ancestral relations in the loss function.
fail(X,Y,-1,W) :- causes(X,Y), wnotcauses(X,Y,W), node(X), node(Y), X != Y.
fail(X,Y,-1,W) :- not causes(X,Y), wcauses(X,Y,W), node(X), node(Y), X != Y.

%%% Optimization part: minimize the sum of W of all fail predicates that are true.
#minimize{W,X,Y,C:fail(X,Y,C,W) }.
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