On Two OEIS Conjectures

Jeremy M. Dover

Abstract

In [2], Stephan enumerates a number of conjectures regarding integer sequences contained in Sloane's On-line Encyclopedia of Integer Sequences [1]. In this paper, we prove two of these conjectures.

1 Proof of Conjecture 110

In [2] Stephan formulates the following conjecture:
Define $a_{n}=\mid\{(i, j): 0 \leq i, j<n$ and i AND $j>0\} \mid$, where AND is the bitwise and operator. Then a_{n} is the sequence given by the recursions $a_{2 n}=3 a_{n}+n^{2}, a_{2 n+1}=a_{n}+2 a_{n+1}+n^{2}-1$, with initial conditions $a_{0}=a_{1}=0$.

Truth for the initial conditions is easy to calculate. In what follows, we define $S_{n}=\{(i, j): 0 \leq i, j<n$ and i AND $j>0\}$ from which we have $a_{n}=\left|S_{n}\right|$.

To see that $a_{2 n}=3 a_{n}+n^{2}$, we partition the set $S_{2 n}$ into four parts, $E E_{2 n}, E O_{2 n}, O E_{2 n}$ and $O O_{2 n}$ where $E E_{2 n}=\left\{(x, y) \in S_{2 n}: x, y\right.$ even $\}$ and the other sets are defined analogously. We count the number of elements in each set.

Since the AND of two odd numbers is always at least $1, O O_{2 n}$ consists of all pairs of odd numbers (x, y) with $0 \leq x, y<n$, of which there are n^{2} possibilities. To count the number of elements in $E E_{2 n}$, let $(2 i, 2 j)$ be an element of $E E_{2 n}$ which forces $0 \leq i, j<n$. We know $2 i$ AND $2 j$ is nonzero, and since the low order bit of both numbers is zero, we must have i AND j nonzero. Thus for each $(2 i, 2 j) \in E E_{2 n}$ we have the corresponding pair $(i, j) \in S_{n}$. Moreover for any pair $(i, j) \in S_{n}$ it is easy to see that $(2 i, 2 j) \in S_{2 n}$. Therefore $\left|E E_{2 n}\right|=\left|S_{n}\right|=a_{n}$.

As with the previous case we can write each element of $O E_{2 n}$ as $(2 i+1,2 j)$ for $0 \leq i, j<n$ where $2 i+1$ AND $2 j$ is nonzero. Since the low order bit of $2 j$ is zero, we must have i AND j nonzero, thus $(i, j) \in S_{n}$. Then for any $(i, j) \in S_{n}$ we have $(2 i+1,2 j) \in S_{2 n}$, showing that $\left|O E_{2 n}\right|=a_{n}$. Since $\left|E O_{2 n}\right|$ is obviously equal to $\left|O E_{2 n}\right|$, we find that $a_{2 n}=3 a_{n}+n^{2}$ as conjectured.

To show $a_{2 n+1}=a_{n}+2 a_{n+1}+n^{2}-1$ we use the same sort of analysis, but one of the counts is more tricky. Using the same definitions for $O O$, et. al., the exact same argument as above shows that $\left|O O_{2 n+1}\right|=n^{2}$. For $E E_{2 n+1}$ we again look at elements $(2 i, 2 j) \in S_{2 n+1}$ and still must have i AND j nonzero, but now $0 \leq i, j<n+1$ since either i and/or j can be n. Thus $\left|E E_{2 n+1}\right|=a_{n+1}$, as opposed to a_{n} for the previous case.

Counting $\left|O E_{2 n+1}\right|$ is more tricky in this case. Again we have that the elements of $O E_{2 n+1}$ are the pairs $(2 i+1,2 j)$ such that i AND j is nonzero, but in this case $0 \leq i<n$, while $0 \leq j<n+1$. Thus $\left|O E_{2 n+1}\right|$ is the number of elements of $(i, j) \in S_{n+1}$ for which $i \neq n$. To determine this number we provide a different partition of S_{n+1} as:

$$
\begin{aligned}
S_{n+1}= & \left\{(i, j) \in S_{n+1}: i, j<n\right\} \cup\left\{(n, j) \in S_{n+1}: j<n\right\} \cup \\
& \left\{(i, n) \in S_{n+1}: i<n\right\} \cup\{(n, n)\}
\end{aligned}
$$

In this expression, the set $\left\{(i, j) \in S_{n+1}: i, j<n\right\}$ is exactly S_{n}. If we let x be the cardinality of $\left\{(n, j) \in S_{n+1}: j<n\right\}$, then by taking cardinalities of each partition element we have

$$
a_{n+1}=a_{n}+2 x+1
$$

Therefore, $x=\frac{1}{2}\left(a_{n+1}-a_{n}-1\right)$ and we have $\left|O E_{2 n+1}\right|=a_{n}+\frac{1}{2}\left(a_{n+1}-\right.$ $\left.a_{n}-1\right)=\frac{1}{2}\left(a_{n+1}+a_{n}-1\right)$. Since $E O_{2 n+1}$ has the same cardinality we finally have

$$
\begin{aligned}
a_{2 n+1} & =n^{2}+a_{n+1}+\frac{1}{2}\left(a_{n+1}+a_{n}-1\right)+\frac{1}{2}\left(a_{n+1}+a_{n}-1\right) \\
& =a_{n}+2 a_{n+1}+n^{2}-1
\end{aligned}
$$

which finishes the conjecture.

2 Proof of Conjecture 115

In [2] Stephan formulates the following conjecture:
Define the sequence a_{n} by $a_{1}=1$ and $a_{n}=M_{n}+m_{n}$, where $M_{n}=\max _{1 \leq i<n}\left(a_{i}+a_{n-i}\right)$ and $m_{n}=\min _{1 \leq i<n}\left(a_{i}+a_{n-i}\right)$. Let further b_{n} be the number of binary partitions of $2 n$ into powers of 2 (number of binary partitions). Then

$$
m_{n}=\frac{3}{2} b_{n-1}-1, M_{n}=n+\sum_{k=1}^{n-1} m_{n}, a_{n}=M_{n+1}-1
$$

We prove this conjecture through a series of short induction proofs. For convenience we define $m_{1}=1$.

Proposition 2.1. The sequence a_{n} is strictly increasing, and thus positive for all $n \geq 1$. Moreover, each of the sequences M_{n} and m_{n} is also strictly increasing and positive for all $n \geq 2$.

Proof. It suffices to show that $a_{n}>a_{n-1}, M_{n}>M_{n-1}$, and $m_{n}>m_{n-1}$ for all $n \geq 3$, and we proceed by induction on n. By definition $a_{1}=1$ and a_{2} is easily computed to be 4 , proving the base for our induction, as well as that $a_{2}>a_{1}$.

To complete our induction step, we assume the result is true for all a_{i} with $i<n$, and consider a_{n}. By definition M_{n} and m_{n} are the maximum and minimum, respectively, of the set $S_{n}=\left\{a_{i}+a_{n-i}: 1 \leq i<n\right\}$. By our induction hypothesis each of the a_{i} 's is positive, implying that M_{n} and m_{n} are positive as well. Now $a_{n}=M_{n}+m_{n}>M_{n}$. Since $a_{n-1}+a_{1}=a_{n-1}+1$ is in the set S, we must have $M_{n} \geq a_{n-1}+1$. Thus $a_{n}>M_{n} \geq a_{n-1}+1$, showing that the sequence a_{n} is increasing.

To show that M_{n} is increasing, suppose that the maximum value in S_{n} is given by the element $a_{i}+a_{n-i}$. Then S_{n+1} contains the element $a_{i}+a_{n+1-i}$ which is strictly greater than $a_{i}+a_{n-i}$ since a_{i} is increasing. Thus the maximum value in S_{n+1} must be larger than the greatest value in S_{n}, proving M_{n} is increasing.

A similar argument shows m_{n} is increasing. Now let $a_{i}+a_{n+1-i}$ be the smallest element in S_{n+1}, and thus equal to m_{n+1}. Then S_{n} must contain the element $a_{i}+a_{n-i}$ which is strictly less than m_{n+1}. Then we have $m_{n} \leq$ $a_{i}+a_{n-i}<m_{n+1}$, showing m_{n} is increasing.

Proposition 2.2. $M_{n+1}=a_{n}+1$ for all $n \geq 1$.
Proof. We again proceed by induction on n, noting that the base case $M_{2}=$ $a_{1}+1=2$ is easily calculated. For our strong induction hypothesis assume $M_{i+1}=a_{i}+1$ for all $1 \leq i<n$, and attempt to prove the result $M_{n+1}=a_{n}+1$.

By the definition of a_{n} we have $a_{n}=M_{n}+m_{n}$, from which $a_{n}+1=$ $M_{n}+m_{n}+1$. Using our induction hypothesis we know $M_{n}=a_{n-1}+1$
from which we obtain $a_{n}+1=a_{n-1}+m_{n}+2$. Iterating this procedure of alternately applying the definition of a_{i} and the induction hypothesis gives:

$$
\begin{equation*}
a_{n}+1=a_{i}+\sum_{j=i+1}^{n} m_{i}+(n-i+1) \tag{1}
\end{equation*}
$$

for all $1 \leq i<n$.
To show $M_{n+1}=a_{n}+1$ we must show that $a_{n}+1 \geq a_{i}+a_{n+1-i}$ for all $2 \leq i<n$. By symmetry in the indices of the sequence this is equivalent to showing this result for all $\left\lceil\frac{n+1}{2}\right\rceil \leq i<n$.

Since a_{i} is positive and increasing for all $i \geq 1, m_{n}>a_{i}$ for all $1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil$ as every element in $S_{n}=\left\{a_{i}+a_{n-i}: 1 \leq i<n\right\}$ has a summand a_{j} for which $j \geq\left\lceil\frac{n}{2}\right\rceil$.

From Equation 1 we know that $a_{n}+1=a_{i}+\sum_{j=i+1}^{n} m_{j}+(n-i+1)>a_{i}+$ m_{n} for all $1 \leq i<n$. This implies $a_{n}+1>a_{i}+a_{n+1-i}$ for all $\left\lfloor\frac{n}{2}\right\rfloor+1 \leq i<n$. As $\left\lfloor\frac{n}{2}\right\rfloor+1=\left\lceil\frac{n+1}{2}\right\rceil$ for all positive integers n, this proves the claim.

Corollary 2.3. $M_{n}=\sum_{k=1}^{n-1} m_{k}+n$ for all $n \geq 1$.
Proof. This follows immediately from Equation 1 with $i=1$.
The conjectured value for m_{n} is somewhat trickier, and requires the following intermediate result.

Proposition 2.4. $m_{n}=a_{\left\lfloor\frac{n}{2}\right\rfloor}+a_{\left\lceil\frac{n}{2}\right\rceil}$ for all $n \geq 2$.
Proof. By the definition of m_{n}, m_{n} is the smallest element of $S_{n}=\left\{a_{i}+a_{n-i}\right.$: $1 \leq i<n\}$. Using the results of Proposition 2.2 and Corollary 2.3, we can calculate:

$$
\begin{aligned}
a_{i}+a_{n-i} & =M_{i+1}-1+M_{n+1-i}-1 \\
& =\sum_{k=1}^{i} m_{k}+(i+1)+\sum_{k=1}^{n-i} m_{k}+(n+1-i)-2 \\
& =n+\sum_{k=1}^{i} m_{k}+\sum_{k=1}^{n-i} m_{k}
\end{aligned}
$$

Denoting $d_{i}=a_{i}+a_{n-i}$ and noting that $d_{i}=d_{n-i}$, we need to show that $d_{\left\lfloor\frac{n}{2}\right\rfloor} \leq d_{i}$ for all $1 \leq i<\left\lfloor\frac{n}{2}\right\rfloor$. To do this, we will show that d_{i} is a decreasing
sequence in the interval $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$ by looking at the differences $d_{i}-d_{i+1}$ for $1 \leq i<\left\lfloor\frac{n}{2}\right\rfloor$ and showing they are all positive.

To this end we calculate

$$
\begin{aligned}
d_{i}-d_{i+1} & =n+\sum_{k=1}^{i} m_{k}+\sum_{k=1}^{n-i} m_{k}-\left[n+\sum_{k=1}^{i+1} m_{k}+\sum_{k=1}^{n-(i+1)} m_{k}\right] \\
& =m_{n-i}-m_{i+1}
\end{aligned}
$$

By Proposition 2.1, m_{n} is an increasing sequence, and $n-i>i+1$ for all $1 \leq i<\left\lfloor\frac{n}{2}\right\rfloor$, which implies that $d_{i}-d_{i+1}$ is positive for all $1 \leq i<\left\lfloor\frac{n}{2}\right\rfloor$, proving the result.

Prior to proving the final piece of the conjecture, we need the following result from Sloane [1]. The sequence b_{n}, denoted A000123 by Sloane, where b_{n} is the number of partitions of $2 n$ into powers of 2 satisfies the recursion $b_{n}=b_{n-1}+b_{\left\lfloor\frac{n}{2}\right\rfloor}$, for all $n \geq 2$ with initial condition $b_{1}=2$.

Proposition 2.5. $m_{n}=\frac{3}{2} b_{n-1}-1$ for all $n \geq 2$.
Proof. To show that this equation holds, we prove that the sequence $c_{n}=$ $\frac{2}{3}\left(m_{n+1}+1\right)$ satisfies the recursion and initial conditions for b_{n}. Rather than use the form $b_{n}=b_{n-1}+b_{\left\lfloor\frac{n}{2}\right\rfloor}$ for the recursion, we will instead use $b_{n}-b_{n-1}=b_{\left\lfloor\frac{n}{2}\right\rfloor}$, being easier for computations.

Using Proposition [2.4, we have

$$
c_{n}-c_{n-1}=\frac{2}{3}\left(a_{\left\lfloor\frac{n+1}{2}\right\rfloor}+a_{\left\lceil\frac{n+1}{2}\right\rceil}+1\right)-\frac{2}{3}\left(a_{\left\lfloor\frac{n}{2}\right\rfloor}+a_{\left\lceil\frac{n}{2}\right\rceil}+1\right)
$$

Noting that $\left\lceil\frac{n}{2}\right\rceil=\left\lfloor\frac{n+1}{2}\right\rfloor$ and $\left\lceil\frac{n+1}{2}\right\rceil=\left\lfloor\frac{n}{2}\right\rfloor+1$ for all integers $n \geq 1$, this reduces to

$$
c_{n}-c_{n-1}=\frac{2}{3}\left(a_{\left\lfloor\frac{n}{2}\right\rfloor+1}-a_{\left\lfloor\frac{n}{2}\right\rfloor}\right)
$$

Now using the formula for a_{i} given in Proposition 2.2 and Corollary 2.3, we obtain

$$
c_{n}-c_{n-1}=\frac{2}{3}\left(\left\lfloor\frac{n}{2}\right\rfloor+2+\sum_{k=1}^{\left\lfloor\frac{n}{2}\right\rfloor+1} m_{k}-\left[\left\lfloor\frac{n}{2}\right\rfloor+1+\sum_{k=1}^{\left\lfloor\frac{n}{2}\right\rfloor} m_{k}\right]\right)
$$

which reduces to

$$
\begin{aligned}
c_{n}-c_{n-1} & =\frac{2}{3}\left(m_{\left\lfloor\frac{n}{2}+1\right\rfloor}+1\right) \\
& =c_{\left\lfloor\frac{n}{2}\right\rfloor}
\end{aligned}
$$

Therefore $c_{n}=\frac{2}{3}\left(m_{n}+1\right)$ satsfies the same recursion as b_{n}, and $c_{1}=$ $\frac{2}{3}\left(m_{2}+1\right)=2=b_{1}$, implying that $b_{n}=\frac{2}{3}\left(m_{n}+1\right)$ for all $n \geq 2$, from which we obtain the result.

References

[1] N.J.A. Sloane, editor, The On-Line Encyclopedia of Integer Sequences, published electronically at https://oeis.org
[2] Ralf Stephan. Prove or Disprove 100 Conjectures from the OES, arXiv:math/0409509v4 [math.CO]

