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Abstract

With the aid of hypergraph transversals it is proved that γt(Qn+1) = 2γ(Qn),
where γt(G) and γ(G) denote the total domination number and the domination
number of G, respectively, and Qn is the n-dimensional hypercube. More generally,
it is shown that if G is a bipartite graph, then γt(G�K2) = 2γ(G). Further, we
show that the bipartite condition is essential by constructing, for any k ≥ 1, a
(non-bipartite) graph G such that γt(G�K2) = 2γ(G)− k. Along the way several
domination-type identities for hypercubes are also obtained.
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1 Introduction

Domination and total domination in graphs are very well studied in the literature, here
we study these concepts in prisms of graphs, in particular in hypercubes. To deter-
mine the domination number γ of the n-dimensional hypercube Qn, is a fundamental
problem in coding theory, computer science, and of course in graph theory. In coding
theory, the problem equivalent to the determination of γ(Qn) is to find the size of a
minimal covering code of length n and covering radius 1. In computer science, different
distribution type problems on interconnection networks can be modelled by domination
invariants, where hypercubes in turn form a central model for interconnection networks.

To determine γ(Qn) turns out to be an intrinsically difficult problem. To date,
exact values are only known for n ≤ 9. These results are summarized in Table 1.
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n 1 2 3 4 5 6 7 8 9 10

γ(Qn) 1 2 2 4 7 12 16 32 62 107-120

Table 1: Domination numbers of hypercubes up to dimension 10

We have checked these values by formulating an integer linear program and solving it
with CPLEX. The result γ(Q9) = 62 due to Österg̊ard and Blass [18] actually presented
a breakthrough back in 2001. The value of γ(Q10) is currently unknown, see [1] for the
present best lower bound as given in Table 1 and [14] for the present best upper bound.

Total domination γt is, besides classical domination, among the most fundamental
concepts in domination theory. It has in particular been extensively investigated on
Cartesian product graphs (cf. [3, 10, 16]), which was in a great part motivated by the
famous Vizing’s conjecture [2]. Specifically, γt(Qn) was recently investigated in the
thesis [20] under the notion of a binary covering code of empty spheres of length n and

radius 1. In particular, values γt(Qn) for n ≤ 10 were computed and some bounds
established. These exact values intrigued us to wonder whether there exists some
general relation between the domination number and the total domination number in
hypercubes.

From our perspective it is utmost important that Qn can be represented as the nth

power of K2 with respect to the Cartesian product operation � , that is, Q1 = K2

and Qn = Qn−1�K2 for n ≥ 2. Our immediate aim in this paper is to prove that
γt(Qn+1) = 2γ(Qn) holds for all n ≥ 1. For this purpose, we prove the following much
more general result that the total domination of a bipartite prism of a graph G is equal
to twice the domination number of G.

Theorem 1.1 If G is a bipartite graph, then

γt(G�K2) = 2γ(G) .

Since Qn, n ≥ 1, is a bipartite graph, as a special case of Theorem 1.1 we note
that γt(Qn+1) = 2γ(Qn). Our second aim is to show that the bipartite condition in the
statement of Theorem 1.1 is essential. For this purpose, we prove the following result.

Theorem 1.2 For each integer k ≥ 1, there exists a connected graph Gk satisfying

γt(Gk �K2)− 2γ(Gk) = k.

We proceed as follows. In the next section concepts used throughout the paper are
introduced and known facts and results needed are recalled. In particular, the state
of the art on γ(Qn) is surveyed. In Section 3, Theorem 1.1 is proved and several of
its consequences listed. A proof of Theorem 1.2 is given in Section 4. We conclude
the paper with some open problems. In particular we conjecture that the equality in
Theorem 1.1 holds for almost all graphs.
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2 Preliminaries

Let G be a graph with vertex set V (G) and edge set E(G). The order of G is denoted by
n(G) = |V (G)|. The open neighborhood of a vertex v in G is NG(v) = {u ∈ V (G) |uv ∈
E(G)} and the closed neighborhood of v is NG[v] = {v} ∪NG(v).

For graphs G and H, the Cartesian product G�H is the graph with vertex set
V (G) × V (H) where vertices (u1, v1) and (u2, v2) are adjacent if and only if either
u1 = u2 and v1v2 ∈ E(H) or v1 = v2 and u1u2 ∈ E(G). If (u, v) ∈ V (G�H), then the
subgraph of G�H induced by the vertices of the form (u, x), x ∈ V (H), is isomorphic
to H; it is called the H-layer (through (u, v)). Analogously G-layers are defined. The
prism of a graph G is the graph G�K2. Note that G�K2 contains precisely two
G-layers. Further, if G is a bipartite graph, then we call the prism G�K2 the bipartite
prism of G. As already mentioned in the introduction, Qn is a (bipartite) prism because
Qn = Qn−1�K2.

A dominating set of a graph G is a set S of vertices of G such that every vertex in
V (G) \ S is adjacent to at least one vertex in S, while a total dominating set of G is a
set S of vertices of G such that every vertex in V (G) is adjacent to at least one vertex
in S. The domination number of G, denoted by γ(G), is the minimum cardinality of
a dominating set of G and the total domination number of G, denoted by γt(G), is
the minimum cardinality of a total dominating set of G. We refer to the books [8, 12]
for more information on the domination number and the total domination number,
respectively.

The values γ(Q7) = 16 and γ(Q8) = 32 also follow from the following result which
gives exact values for two infinite families of hypercubes.

Theorem 2.1 If k ≥ 1, then γ(Q2k−1) = 22
k−k−1 and γ(Q2k) = 22

k−k.

The first assertion of Theorem 2.1 is based on the fact that hypercubes Q2k−1

contain perfect codes, cf. [7]. Since the domination number of a graph with a perfect
code is equal to the size of such a code, the assertion follows. Knowing the existence
of such codes, by the divisibility condition one immediately infers that Qn contains a
perfect code if and only if n = 2k − 1 for some k ≥ 1. Lee [15, Theorem 3] further
proved that this is equivalent to the fact that Qn is a regular covering of the complete
graph Kn+1. The second assertion of Theorem 2.1 is due to van Wee [23]. Related
aspects of domination in hypercubes were investigated in [22].

A set S of vertices in G is a paired-dominating set if every vertex of G is adjacent
to a vertex in S and the subgraph induced by S contains a perfect matching (not
necessarily as an induced subgraph). The minimum cardinality of a paired-dominating
set of G is the paired-domination number of G, denoted γpr(G). A survey on paired-
domination in graphs can be found in [4]. By definition every paired-dominating set is
a total dominating set, and every total dominating set is a dominating set. Hence we
have the following result first observed by Haynes and Slater [9].

Observation 2.2 ([9]) For every isolate-free graph G, γ(G) ≤ γt(G) ≤ γpr(G).
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A total restrained dominating set of G is a total dominating set S of G with the
additional property that every vertex outside S has a neighbor outside S; that is,
G[V (G) \ S] contains no isolated vertex. The total restrained domination number of
G, denoted γtr(G), is the minimum cardinality of a total restrained dominating set.
The concept of total restrained domination in graphs was introduced by Telle and
Proskurowksi [19] as a vertex partitioning problem. By definition every total restrained
dominating set if a total dominating set, implying the following observation.

Observation 2.3 ([9]) For every isolate-free graph G, γt(G) ≤ γtr(G).

The open neighborhood hypergraph, abbreviated ONH, of G is the hypergraph HG

with vertex set V (HG) = V (G) and with edge set E(HG) = {NG(x) | x ∈ V (G)}
consisting of the open neighborhoods of vertices in G. The closed neighborhood hyper-

graph, abbreviated CNH, of G is the hypergraph Hc
G with vertex set V (Hc

G) = V (G)
and with edge set E(HG) = {NG[x] | x ∈ V (G)} consisting of the closed neighborhoods
of vertices in G.

A subset T of vertices in a hypergraph H is a transversal (also called vertex cover

or hitting set) if T has a nonempty intersection with every edge of H. The transversal

number τ(H) of H is the minimum size of a transversal inH. A transversal of size τ(H)
is called a τ(H)-set.

The transversal number of the ONH of a graph is precisely the total domination
number of the graph, while the transversal number of the CNH of a graph is precisely
the domination number of the graph. We state this formally as follows.

Observation 2.4 If G is a graph, then γt(G) = τ(H
G
) and γ(G) = τ(Hc

G
).

We shall also need the following result from [11] (see also [12]).

Theorem 2.5 ([11]) The ONH of a connected bipartite graph consists of two compo-

nents (which are induced by the two partite sets of the graph), while the ONH of a

connected graph that is not bipartite is connected.

3 Proof of Theorem 1.1 and its Consequences

In this section, we first present a proof of Theorem 1.1. Recall its statement.

Theorem 1.1 If G is a bipartite graph, then γt(G�K2) = 2γ(G).

Proof. Note first that K1 �K2 = K2, hence the assertion of the theorem holds for
G = K1. Since we can apply the result to each component of the bipartite graph G, we
may assume that G is connected. Hence in the rest of the proof let G be a connected
bipartite graph of order at least 2.

Let G1 and G2 be the G-layers of G�K2, and let Vi = V (Gi) for i ∈ [2]. For
notational convenience, for each vertex v in G1 we denote the corresponding vertex in
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G2 that is adjacent to v in G�K2 by v′. Thus, the set ∪v∈V1{vv
′} of edges between

V1 and V2 in G�K2 forms a perfect matching in G�K2.
Since G is a bipartite graph, G�K2 is bipartite as well. Let X and Y be the partite

sets of G�K2. If w ∈ {v, v′} for some vertex v ∈ V1, then we define the complement of
the vertex w to be the vertex w ∈ {v, v′} \ {w}. We note that if w ∈ V3−i, then w ∈ Vi

for i ∈ [2]. Further, we note that w and w belong to different partite sets of G�K2.
Let H be the ONH of G�K2. By Theorem 2.5, H consists of two components

that are induced by the two partite sets, X and Y , of G. Let H
X

and H
Y
be the two

components of H, where V (H
X
) = X and V (H

Y
) = Y . We note that each edge in H

X

and H
Y
corresponds to the open neighborhood of some vertex in Y and some vertex in

X, respectively, in G. For each vertex w in G�K2, let ew be the associated hyperedge
in H; that is, ew = NG(w).

We proceed further with the following series of claims.

Claim 3.1 The hypergraphs H
X

and H
Y
are isomorphic.

Proof. Let f : X → Y be the function that assigns to each vertex x ∈ X the vertex
x ∈ Y . Then, f is a bijection between the vertex set of H

X
and H

Y
. Suppose that e

X

is an edge of H
X
. Thus, e

X
= ew for some vertex w ∈ Y . The function f maps the

edge e
X

to the edge e
Y
. We show that e

Y
is precisely the edge in H

Y
associated with

the vertex w ∈ X.
Suppose first that w ∈ V1. In this case, w = w′. Let w have degree k+1 in G�K2,

for some k ≥ 1. Thus, w is adjacent in G�K2 to k vertices in V1, say to w1, w2, . . . , wk,
and to one vertex in V2, namely the vertex w′. Since w ∈ Y and G�K2 is bipartite,
we note that {w1, w2, . . . , wk} ⊆ V1 ∩ X and that w′ ∈ V2 ∩ X. Further, the edge
e
X
= ew = {w1, w2, . . . , wk, w

′} ∈ E(H
X
). Since f(wi) = w′

i for i ∈ [k] and f(w′) = w,
the function f maps the edge e

X
to the edge e

Y
= {w′

1, w
′
2, . . . , w

′
k, w}. We note that

{w′
1, w

′
2, . . . , w

′
k, w} ⊆ Y , and that e

Y
is precisely the edge in H

Y
associated with the

vertex w ∈ X.
Suppose next that w ∈ V2. In this case, w = v′ for some vertex v ∈ V1. Thus, w = v.

Let w have degree k + 1 in G�K2, for some k ≥ 1. Thus, the vertex v′ is adjacent in
G�K2 to k vertices in V2, say to v′1, v

′
2, . . . , v

′
k, and to one vertex in V1, namely the

vertex v. Since v′ ∈ Y and G�K2 is bipartite, we note that {v′1, v
′
2, . . . , v

′
k} ⊆ V2 ∩X

and that v ∈ V1 ∩ X. Further, the edge e
X

= ew = {v′1, v
′
2, . . . , v

′
k, v} ∈ E(H

X
).

The function f maps the edge e
X

to the edge e
Y
= {v1, v2, . . . , vk, v

′}. We note that
{v1, v2, . . . , vk, v

′} ⊆ Y , and that e
Y

is precisely the edge in H
Y

associated with the
vertex w ∈ X.

Suppose that e
Y

is an edge of H
Y

and e
Y

= ew for some vertex w ∈ X. If the
function f maps the edge e

Y
to e

X
, then analogously as before, e

X
is precisely the

edge in H
X

associated with the vertex w ∈ Y . Thus, the bijective function f preserves
adjacency, implying that H

X
and H

Y
are isomorphic. (✷)

Claim 3.2 γt(G�K2) = 2τ(H
X
).

Proof. By Observation 2.4, γt(G�K2) = τ(H) = τ(H
X
) + τ(H

Y
). By Claim 3.1,

τ(H
X
) = τ(H

Y
), and so γt(G�K2) = 2τ(H

X
). (✷)
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Claim 3.3 γt(G�K2) ≤ 2γ(G).

Proof. Let D be a minimum dominating set in G, and let D1 and D2 be the copies of
G in G-layers G1 and G2, respectively. Clearly, v ∈ D1 if and only if v′ ∈ D2. The set
D1 ∪D2 is a total dominating set of G�K2, and so γt(G�K2) ≤ |D1 ∪D2| = 2|D| =
2γ(G). (✷)

Claim 3.4 γ(G) ≤ τ(H
X
).

Proof. Let Hc be the CNH of G. By Observation 2.4, γ(G) = τ(Hc). We show that
τ(Hc) ≤ τ(H

X
). Let T

X
be a minimum transversal in H

X
, and so |T

X
| = τ(H

X
). We

now define the set T c
X

as follows. For each vertex v ∈ T
X
, we add v to T c

X
if v ∈ V1,

otherwise if add v to T c
X
if v ∈ V2. We show that T c

X
is a transversal in Hc. Let e be an

arbitrary edge in Hc. Thus, e = NG[w] for some vertex w in G. We may assume that
the vertices of G1 are named as in the graph G, and so G1 = G. In particular, w ∈ V1.
Thus, w = w′ ∈ V2.

Suppose that w ∈ Y . In this case, the edge ew = NG(w) = (e \ {w}) ∪ {w} is an
edge of H

X
and is therefore covered by some vertex, say z, of T

X
. If z = w, then noting

that w ∈ V2, the vertex w ∈ T c
X
, and the edge e is therefore covered by a vertex in T c

X
,

namely the vertex w. If z 6= w, then z is a vertex in ew different from w. However,
ew \ {w} = e \ {w} ⊂ V1, implying that the vertex z ∈ V1 and therefore z ∈ T c

X
. The

edge e is therefore covered by a vertex in T c
X
, namely the vertex z. Thus, if w ∈ Y ,

then the edge e is covered by a vertex in T c
X
.

Suppose that w ∈ X. We now consider the vertex w ∈ V2. We note that w ∈ Y and
that the edge ew = NG(w) is an edge of H

X
. Further, the edge ew contains the vertex

w ∈ V1 and all other vertices in ew belong to the set V2. Further, if u is a vertex in the
edge e, then either u = w, in which case u also belongs to the edge ew, or u 6= w, in
which case u′ belongs to the edge ew. Since the edge ew is an edge of H

X
, it is covered

by some vertex, say z, of T
X
. If z = w, then noting that w ∈ V1, the vertex w ∈ T c

X
,

and the edge e is therefore covered by a vertex in T c
X
, namely the vertex w. If z 6= w,

then z is a vertex in ew different from w. Thus, z = u′ for some vertex u ∈ V1. Since
u′ ∈ V2, the vertex u ∈ T c

X
. As observed earlier, u belongs to the edge e, implying that

the edge e is covered by a vertex in T c
X
, namely the vertex u. Thus, if w ∈ X, then the

edge e is covered by a vertex in T c
X
.

Thus, whenever w ∈ X or w ∈ Y , the edge e is covered by a vertex in T c
X
. Since

e is an arbitrary edge of Hc, this implies that T c
X

is a transversal of Hc, and therefore
that τ(Hc) ≤ |T c

X
| = |T

X
| = τ(H

X
). (✷)

We now return to the proof of Theorem 1.1 one final time. By Claims 3.2, 3.3,
and 3.4, the following holds.

2τ(H
X
)
Claim 3.2

= γt(G�K2)
Claim 3.3

≤ 2γ(G)
Claim 3.4

≤ 2τ(H
X
) .

Consequently, we must have equality throughout the above inequality chain. In
particular, γt(G�K2) = 2γ(G). This completes the proof of Theorem 1.1. �
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As an immediate consequence of Theorem 1.1 we state that the problems of de-
termining the domination number and the total domination number of hypercubes are
equivalent in the following sense:

Corollary 3.5 If n ≥ 1, then γt(Qn+1) = 2γ(Qn).

Combining Corollary 3.5 with Theorem 2.1 we also deduce the following result:

Corollary 3.6 If k ≥ 1, then γt(Q2k+1) = 22
k−k+1 and γt(Q2k) = 22

k−k.

While the first assertion of Corollary 3.6 appears to be new, the second assertion
goes back to Johnson [13], see also [21, Theorem 1(b)].

As another consequence of Theorem 1.1, we have the following result.

Corollary 3.7 If G is a bipartite graph, then

γt(G�K2) = γpr(G�K2) = γtr(G�K2) .

Proof. As shown in the proof of Claim 3.3 in Theorem 1.1, if D1 is a minimum
dominating set in G1, and D2 = {v′ | v ∈ D1}, then the set D∗ = D1 ∪D2 is a total
dominating set of G�K2. We note that D∗ is also a paired-dominating set of G�K2.
Further, |D∗| = 2γ(G). By Observation 2.2 and Theorem 1.1, this implies that

γt(G�K2) ≤ γpr(G�K2) ≤ |D∗| = 2γ(G) = γt(G�K2) .

Consequently, we must have equality throughout the above inequality chain. In partic-
ular, γt(G�K2) = γpr(G�K2). We note that D∗ is also a total restrained dominating
set of G�K2. Thus, by Observation 2.3, γt(G�K2) ≤ γtr(G�K2) ≤ |D∗| = 2γ(G) =
γt(G�K2), implying that γt(G�K2) = γtr(G�K2). �

As a special case of Theorem 1.1 and Corollary 3.7, we have the following result.

Corollary 3.8 If n ≥ 1, then γt(Qn) = γpr(Qn) = γtr(Qn).

4 Proof of Theorem 1.2

In this section, we consider general prisms and show that the bipartite condition in the
statement of Theorem 1.1 is essential. First we recall the trivial lower bound on the
total domination number of a graph in terms of the maximum degree of the graph: If G
is a graph of order n and maximum degree ∆ with no isolated vertex, then γt(G) ≥ n/∆,
cf. [12, Theorem 2.11].

Proposition 4.1 If k ≥ 1, then γt(C6k+1 �K2) = 2γ(C6k+1)− 1.
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Proof. Let G ∼= C6k+1 for some integer k ≥ 1. Then, γ(G) = ⌈n(G)/3⌉ = 2k + 1. We
show that γt(G�K2) = 4k+1. Let G1 and G2 be the G-layers of G�K2, where G1 is
the cycle u1u2 . . . u6k+1u1 and G2 is the cycle v1v2 . . . v6k+1v1, and where uivi ∈ E(G).
The set

S =

(

k−1
⋃

i=0

{u6i+1, u6i+2, v6k+4, v6k+5}

)

∪ {u6k+1}

is a total dominating set of G�K2, implying that γt(G�K2) ≤ |S| = 4k + 1. Con-
versely, since G�K2 is a cubic graph of order 12k + 2, the trivial lower bound on the
total domination number of G�K2 is given by γt(G�K2) ≥ (12k + 2)/3, implying
that γt(G�K2) ≥ 4k + 1. Consequently, γt(G�K2) = 4k + 1. As observed earlier,
γ(G) = 2k + 1. Therefore, γt(G�K2) = 2γ(G) − 1. �

We show next that there are connected, non-bipartite graphs G for which the differ-
ence γt(G�K2)−2γ(G) can be arbitrarily large. Recall the statement of Theorem 1.2.

Theorem 1.2 For each integer k ≥ 1, there exists a connected graph Gk satisfying

γt(Gk �K2)− 2γ(Gk) = k.

Proof. For k = 1, let G1
∼= C7. By Proposition 4.1, γt(G1 �K2) = 2γ(G1) − 1.

Hence, we assume in what follows that k ≥ 2. For i ∈ [k], let Fi be the 5-cycle
v5(i−1)+1v5(i−1)+2v5(i−1)+4v5(i−1)+5v5(i−1)+3v5(i−1)+1. Let Gk be obtained from the dis-
joint union of the cycles F1, . . . , Fk by adding the edges v5jv5j+1 for j ∈ [k − 1]. By
construction, Gk is a connected graph of order k. The following two claims determine
the domination number of Gk and total domination numbers of the prism Gk �K2.

Claim A For k ≥ 2, γ(Gk) = 2k.

Proof. Every dominating set of Gk contains at least two vertices from V (Fi) in order
to dominate the vertices in V (Fi) for each i ∈ [k], and so γ(Gk) ≥ 2k. Conversely, every
set consisting of two non-adjacent vertices from each set V (Fi) forms a dominating set
of Gk, and so γ(Gk) ≤ 2k. Consequently, γ(Gk) = 2k. (✷)

Claim B For k ≥ 2, γt(Gk �K2) = 3k.

Proof. Let G1
k and G2

k be the two copies of the graph Gk in the prism Gk �K2, where
the vertex in G1

k and G2
k corresponding to the vertex vj in Gk is labeled xj and yj,

respectively, for j ∈ [5k]. Thus, the set ∪5k
j=1{xjyj} of edges between V (G1

k) and V (G2
k)

in Gk �K2 forms a perfect matching in Gk �K2. For i ∈ [k], let

Vi =

5
⋃

j=1

{x5(i−1)+j , y5(i−1)+j}.

8



When k = 6, the prism Gk �K2 is illustrated in Figure 1, where the vertices in V1

are labelled. Let S be an arbitrary total dominating set of Gk �K2. For i ∈ [k], let
Si = S ∩ Vi. For i ∈ [k], let

Xi =

4
⋃

j=2

{x5(i−1)+j} and Yi =

4
⋃

j=2

{y5(i−1)+j}

In order to totally dominate the vertices in the set Xi, we note that |Si| ≥ 2 for
all i ∈ [k]. Suppose that |Si| = 2 for some i ∈ [k]. If both vertices in Si belong to the
same copy of Gk, say to G2

k, then at least one vertex in Xi is not totally dominated by
S. If the vertices in Si belong to different copies of Gk, then at least two vertices in
Xi ∪ Yi are not totally dominated by S. Both cases produce a contradiction, implying
that |Si| ≥ 3. Hence,

|S| =

k
∑

i=1

|Si| ≥ 3k.

Since S is an arbitrary total dominating set of Gk �K2, this implies that γt(Gk �K2) ≥
3k. To prove the converse, let

X =

⌊k/2⌋
⋃

i=1

{x10(i−1)+1, x10(i−1)+2, x10i} and Y =

⌊k/2⌋
⋃

i=1

{y10(i−1)+5, y10(i−1)+6, y10(i−1)+7}.

If k is even, let
D = (X ∪ Y ∪ {x5k−1}) \ {y5k−3}.

If k is odd, let
D = X ∪ Y ∪ {x5k−4, y5k−1, y5k}.

For k = 6, the set D is illustrated by the darkened vertices in Figure 1. In both
cases, D is a total dominating set of Gk �K2, and |D∩Vi| = 3 for each i ∈ [k], implying
that

γt(Gk �K2) ≤ |D| =
k
∑

i=1

|D ∩ Vi| = 3k.

Consequently, γt(Gk �K2) = 3k. (✷)

By Claim A and Claim B, for k ≥ 2, γ(Gk) = 2k and γt(Gk �K2) = 3k. This
completes the proof of Theorem 1.2. �

5 Concluding Remarks

Let us say that a graph G is γt-prism perfect if γt(G�K2) = 2γ(G). We have seen
that all bipartite graphs are γt-prism perfect. It would certainly be interesting to
characterize γt-prism perfect graphs in general, but this appears to be a challenging
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Figure 1: The prism G6 �K2

problem. Instead, one could try to characterize γt-prism perfect graphs within some
interesting families of graphs, say triangle-free graphs.

A computation shows that among the 11.117 connected graphs of order 8, precisely
297 graphs are not γt-prism perfect. Similarly, there are 79.638 graphs that are not γt-
prism perfect among the 11.716.571 connected graphs of order 9. These computations
led us to conjecture the following conjecture.

Conjecture 5.1 Almost all graphs are γt-prism perfect.

With respect to the conjecture we refer to [5] for the investigation of the behavior
of the domination number in random graphs.

Motivated by the construction presented in the proof of Theorem 1.2 we wonder
whether the following lower bound on the total domination number of prisms holds
true. If so, then the construction implies that the bound is sharp.

Problem 5.2 Is it true that for any graph G, γt(G�K2) ≥
3
2γ(G)?

One may be tempted to try to extend the presented results to additional Cartesian
product graphs. Clearly, γ(P3) = 2 and an easy computation gives γt(P3�K3) =
γt(P3�P3) = 4. Similarly γt(P3�K4) = 4 and γt(P3�P4) = 6, indicating that our result
cannot be extended by a matter of parity. Moreover for all listed Cartesian products
we were able to find pairs of bipartite graphs with the same domination number so
that the total domination number of the respective Cartesian product differs. These
examples give a strong evidence that the identity of Theorem 1.1 cannot be generalized
in “obvious” directions.
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[14] G. Kéri, P.R.J. Österg̊ard, Bounds for covering codes over large alphabets, Des.
Codes Cryptogr. 137 (2005) 45–60.

[15] J. Lee, Independent perfect domination sets in Cayley graphs, J. Graph Theory
37 (2001) 213–219.

[16] Y. Lu, X. Hou, Total domination in the Cartesian product of a graph and K2 or
Cn, Util. Math. 83 (2010) 313–322.

11



[17] Y.S. Kwon, J. Lee, Perfect domination sets in Cayley graphs, Discrete Appl. Math.
162 (2014) 259–263.
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