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Abstract. Recently, Z. W. Sun introduced a sequence (Sn)n≥0, where

Sn =
(6n3n)(

3n

n
)

2(2n+1)(2n
n
)
, and found one congruence and two convergent series on

Sn by Mathematica. Furthermore, he proposed some related conjectures.
In this paper, we first give analytic proofs of his two convergent series
and then confirm one of his conjectures by invoking series expansions of
sin(t arcsin(x)) and cos(t arcsin(x)).
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1 Introduction

Throughout the paper, we let R, N = {0, 1, 2, 3, . . .} and N
+ = N\{0} de-

note the set of real numbers, natural numbers and positive integer numbers,
respectively.

Recently, Z. W. Sun [6] considered the divisibilities of products and
sums concerned binomial coefficients and central binomial coefficients. He
also studied the divisibility of

(

6n
3n

)(

3n
n

)

and obtained the following result,

2(2n+ 1)

(

2n

n

)

∣

∣

∣

(

6n

3n

)(

3n

n

)

for all n ∈ N
+, (1.1)
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where
(

m

n

)

= m!
n!(m−n)! is a binomial coefficient. We call

(

2n
n

)

the central

binomial coefficient (cf. [4, A000984]). The binomial coefficients
(

6n
3n

)

is the

sequence [4, A066802] and
(

3n
n

)

is the sequence [4, A005809].

According to (1.1), Z. W. Sun [6] introduced the following integer se-
quence [4, A176898].

Sn =

(

6n
3n

)(

3n
n

)

2(2n+ 1)
(

2n
n

) , for n ∈ N
+.

Here we list the values of S1, S2, . . . , S8 as follows:

5, 231, 14568, 1062347, 84021990,
7012604550, 607892634420, 54200780036595.

Z. W. Sun [6] proved that for any odd prime p,

Sp ≡ 15− 30p+ 60p2 (mod p3).

Additionally, Guo [3] studied the sequence and proved that 3Sn ≡ 0
(mod 2n+3), positively answering a question of Z. W. Sun [6]. By setting
S0 = 1

2 and employing Mathematica, Z. W. Sun also obtained

∑

n≥0

Snx
n =

sin(23 arcsin(6
√
3x))

8
√
3x

(

0 < x ≤ 1

108

)

, (1.2)

and
∑

n≥0

Sn

(2n+ 3)108n
=

27
√
3

256
. (1.3)

Particularly, setting x = 1/108 in (1.2), we derive

∞
∑

n=0

Sn

108n
=

3
√
3

8
. (1.4)

Moreover, he proposed the following conjecture.

Conjecture 1.1 There exist positive integers T1, T2, . . . such that

∞
∑

k=0

Skx
2k+1 +

1

24
−

∞
∑

k=1

Tkx
2k =

cos(23 arccos(6
√
3x))

12
(1.5)

for all real x with |x| ≤ 1
6
√
3
. Also, Tp ≡ −2 (mod p) for any prime p.

In this paper, we first deduce formulas (1.2) and (1.3) by utilizing a series
expansion in [5]. Besides, we confirm Conjecture 1.1 , i.e.,

Theorem 1.2 Conjecture 1.1 is true.
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2 Trigonometric Series

Before proving Theorem 1.2, we need some formulas and series expansions
on trigonometric functions. We first note that

arcsin(x) + arccos(x) =
π

2
, (2.1)

where x ∈ [−1, 1]. What’s more, the basic fact

cos(α− β) = cosα cosβ + sinα sinβ (2.2)

is needed.

Here we also use two trigonometric series in [5, Ex. 44, p. 51], namely,

sin(t arcsin(x)) =
∑

n≥0

(−1)nt

(

n−1
∏

i=0

(t2 − (2i+ 1)2)

)

x2n+1

(2n+ 1)!
, (2.3)

and

cos(t arcsin(x)) =
∑

n≥0

(−1)n

(

n−1
∏

i=0

(t2 − (2i)2)

)

x2n

(2n)!
. (2.4)

With the formula (2.3) in hand, it is not difficult to derive the identities
(1.2) and (1.3).

To begin with, we consider the uniform convergence of series (1.2). Due
to Stirling [2], we hold the following approximate formula, which was called
Stirling’s formula,

Γ(α) ≈
(

α− 1

e

)α−1
√

2π(α− 1), as α → ∞, (2.5)

where Γ(α) is the gamma function and is defined by

Γ(α) =

∫ +∞

0

xα−1e−xdx for α > 0.

For more information on this formula, one can consult [2]. By Stirling’s
formula (2.5), we have

ρ = lim
n→∞

n

√

Sn = 108, as n → ∞. (2.6)

Thus by Cauchy-Hadamard’s theorem and (2.6), the series
∑∞

n=0 Snx
n is

uniformly convergent for 0 < x < 1
108 . So, before we make operations

on
∑∞

n=0 Snx
n, we designate x ∈ (0, 1/108) in order that all the following

operations are well defined.
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Theorem 2.1 For all a, b ∈ R and bx ∈ [−1, 1], we have

∫

x sin(a arcsin(bx))dx =

sin((a−2) arcsin(bx))
a−2 − sin((a+2) arcsin(bx))

a+2

4b2
+ C,

where C is any constant.

Now we are in a position to consider formulas (1.2) and (1.3).

(i) As to (1.2), let t = 2/3 and x = 6
√
3x in (2.3), we obtain

sin(
2

3
arcsin(6

√
3x)) =

∑

n≥0

2

3

(

n−1
∏

i=0

((2i+ 1)2 − 4

9
)

)

(6
√
3x)

2n+1

(2n+ 1)!

= 4
√
3x
∑

n≥0

12n

(2n+ 1)!

(

n−1
∏

i=0

(6i+ 1)(6i+ 5)

)

xn

= 8
√
3x
∑

n≥0

Snx
n,

(2.7)

which is nothing but (1.2).

(ii) For (1.3), let

f(x) =
∞
∑

n=0

Sn

2n+ 3
x2n+3. (2.8)

Thanks to (i), we get

f ′(x) =

∞
∑

n=0

Snx
2n+2 =

x sin(23 arcsin(6x
√
3))

8
√
3

.

From Theorem 2.1, it follows that

f(x) =
1

8
√
3

∫ x

0

t sin(
2

3
arcsin(6t

√
3))dt

=
3
4 sin

(

4
3 sin

−1
(

6
√
3x
))

− 3
8 sin

(

8
3 sin

−1
(

6
√
3x
))

3456
√
3

,

which indicates

f(1/6
√
3) =

1

6144
. (2.9)

Therefore, we can deduce identity (1.3) by invoking (2.8) and (2.9) .
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In addition, combining formulas (2.1) and (2.2), it is not difficult to obtain
the following result,

Proposition 2.2 For all t ∈ R and x ∈ [−1, 1], we have

sin(
πt

2
) sin(t arcsin(x)) + cos(

πt

2
) cos(t arcsin(x)) = cos(t arccos(x)).

With above results, we are ready to prove Theorem 1.2.

3 Proof of the Theorem 1.2

We shall give two lemmas before giving the proof of Theorem 1.2. The first
lemma is Fermat’s simple theorem [1].

Lemma 3.1 If a is any integer prime to m, and if m is prime, then

am−1 ≡ 1 (mod m).

Lemma 3.2 For any prime p, we have

1

p

(

3p− 2

p− 1

)

≡ −2 (mod p).

Proof. By applying

1

p

(

3p− 2

p− 1

)

=
(3p− 2)!

p!(2p− 1)!

= 2

p−2
∏

j=1

(

3p

j + 1
− 1

)

and

p−2
∏

j=1

(

3p

j + 1
− 1

)

≡ (−1)p−2

= −1 (mod p),

the conclusion can be derived at once.

Now we can prove Theorem 1.2.
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Proof of Theorem 1.2. Firstly, we need to point out that (1.5) can be
rewritten as follows:

cos(
2

3
arccos(6x

√
3)) = sin(

π

3
) sin(

2

3
arcsin(6x

√
3))+cos(

π

3
)(1−24

∞
∑

k=1

Tkx
2k).

By Proposition 2.2, for k = 1, 2, 3, . . ., if we can find Tk such that

1− 24

∞
∑

k=1

Tkx
2k = cos(

2

3
arcsin(6x

√
3)),

then we can prove the first part of Conjecture 1.1.

By (2.4), we see that

cos(
2

3
arcsin(6x

√
3)) = −

∑

n≥0

4

9n

(

n−1
∏

i=1

(6i+ 2)(6i− 2)

)

(6x
√
3)2n

(2n)!

= −
∑

n≥0

16n

3n− 1

(

3n

n

)

x2n

= 1−
∑

n≥1

16n

3n− 1

(

3n

n

)

x2n.

For integers n ≥ 1, if we set Tn = 16n

24(3n−1)

(

3n
n

)

, thus obtaining the desired

sequence (Tn)n≥1 for Conjecture 1.1.

It is clear that

16n

24(3n− 1)

(

3n

n

)

= 16n−1

(

2

(

3n− 2

n− 1

)

−
(

3n− 2

n

))

is an integer. One can refer to [7] for details. In view of Lemmas 3.1 and
3.2, we can get Tp ≡ −2 (mod p) for any prime p. This completes the
proof of Theorem 1.2.
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