On the number of prime factors of Mersenne numbers

Abílio Lemos and Ady Cambraia Junior
Departamento de Matemática
Universidade Federal de Viçosa
Viçosa-MG 36570-900
Brazil
abiliolemos@ufv.com.br
ady.cambraia@ufv.br

August 28, 2017

Abstract

Let $\left(M_{n}\right)_{n \geq 0}$ be the Mersenne sequence defined by $M_{n}=2^{n}-1$. Let $\omega(n)$ be the number of distinct prime divisors of n. In this short note, we present a description of the Mersenne numbers satisfying $\omega\left(M_{n}\right) \leq 3$. Moreover, we prove that the inequality, for $\epsilon>0, \omega\left(M_{n}\right)>2^{(1-\epsilon) \log \log n}-3$ holds almost all positive integer n.

2010 Mathematics Subject Classification: 11A99, 11K65, 11A41.
Keywords: Mersenne numbers, arithmetic functions, prime divisors.

1 Introduction

Let $\left(M_{n}\right)_{n \geq 0}$ be the Mersenne sequence (sequence $\underline{\text { A000225 in the OEIS) given by } M_{0}=}$ $0, M_{1}=1, M_{2}=3, M_{3}=7, M_{4}=15$ and $M_{n}=2^{n}-1$, for $n \geq 0$. A simple calculation shows that if M_{n} is a prime number, then n is a prime number. When M_{n} is a prime number, it is called Mersenne prime. Throughout history, many researchers sought to find Mersenne primes. Some tools are very important for the search for Mersenne primes, mainly the Lucas-Lehmer test. There are papers (see for example $[1,3,11]$) that seek to describe the prime factors of M_{n}, where M_{n} is a composite number and n is a prime number.

Besides, some papers seek to describe prime divisors of Mersenne number M_{n}, where n cannot be a prime number (see for example $[4,6,8,9,10]$). In this paper, we propose to investigate the function $\omega(n)$, which refers to the number of distinct prime divisors of n, applied to M_{n}.

2 Preliminary results

If n is a positive integer, write $\omega(n)$ for the number of distinct prime divisors of n. Some well known facts are presented below as lemmas.

The first Lemma is the well-know Theorem XXIII of [2], obtained by Carmichael.
Lemma 1. If $n \neq 1,2,6$, then M_{n} has a prime divisor which does not divide any M_{m} for $0<m<n$. Such prime is called a primitive divisor of M_{n}.

We also need the following results:

$$
\begin{equation*}
d=\operatorname{gcd}(m, n) \Rightarrow \operatorname{gcd}\left(M_{m}, M_{n}\right)=M_{d} \tag{1}
\end{equation*}
$$

Proposition 2. If $1<m<n, \operatorname{gcd}(m, n)=1$ and $m n \neq 6$, then $\omega\left(M_{m n}\right)>\omega\left(M_{m}\right)+\omega\left(M_{n}\right)$.
Proof. As $\operatorname{gcd}(m, n)=1$, it follows that $\operatorname{gcd}\left(M_{m}, M_{n}\right)=1$ by (1). Now, according to Lemma 1, we have a prime number p such that p divides $M_{m n}$ and p does not divide $M_{m} M_{n}$. Therefore, the proof of proposition is completed.

Mihǎilescu [7] proved the following result.
Lemma 3. The only solution of the equation $x^{m}-y^{n}=1$, with $m, n>1$ and $x, y>0$ is $x=3, m=2, y=2, n=3$.

For $x=2$, the Lemma 3 ensures that there is no $m>1$, such that $2^{m}-1=y^{n}$ with $n>1$.

Lemma 4. Let p, q be prime numbers. Then,
(i) $M_{p} \nmid\left(M_{p q} / M_{p}\right)$, if $2^{p}-1 \nmid q$.
(ii) $M_{p} \nmid\left(M_{p^{3}} / M_{p}\right)$.

Proof. (i) We noticed that $M_{p q}=\left(2^{p}-1\right)\left(\sum_{k=0}^{q-1} 2^{k p}\right)$. Thus, if $\left(2^{p}-1\right) \mid\left(\sum_{k=0}^{q-1} 2^{k p}\right)$, then

$$
\left(2^{p}-1\right) \mid\left(\sum_{k=0}^{q-1} 2^{k p}+2^{p}-1\right)=2^{p+1}\left(2^{p q-2 p-1}+\cdots+2^{p-1}+1\right),
$$

i.e., $\left(2^{p}-1\right) \mid\left((q-2) 2^{p-1}+1\right)$, where $(q-2) 2^{p-1}+1$ is the rest of the euclidean division of $2^{p q-2 p-1}+2^{p q-3 p-1}+\cdots+2^{p q-(q-2) p-1}+2^{p-1}+1$ by $2^{p}-1$, i.e.,

$$
\left(2^{p}-1\right) \mid\left((q-2) 2^{p-1}+1+\left(2^{p}-1\right)\right)=2^{p-1} q
$$

i.e., $2^{p}-1 \mid q$. Therefore, the proof of (i) is completed.
(ii) We noticed that $M_{p^{3}}=\left(2^{p}-1\right)\left(\sum_{k=0}^{p^{2}-1} 2^{k p}\right)$. Thus, if $\left(2^{p}-1\right) \mid\left(\sum_{k=0}^{p^{2}-1} 2^{k p}\right)$, then

$$
\left(2^{p}-1\right) \mid\left(\sum_{k=0}^{p^{2}-1} 2^{k p}+2^{p}-1\right)=2^{p+1}\left(2^{p^{3}-2 p-1}+\cdots+2^{p-1}+1\right)
$$

i.e., $\left(2^{p}-1\right) \mid\left(\left(p^{2}-2\right) 2^{p-1}+1\right)$, where $\left(p^{2}-2\right) 2^{p-1}+1$ is the rest of the euclidean division of $2^{p^{3}-2 p-1}+2^{p^{2}-3 p-1}+\cdots+2^{p^{3}-\left(p^{2}-2\right) p-1}+2^{p-1}+1$ by $2^{p}-1$, i.e.,

$$
\left(2^{p}-1\right) \mid\left(\left(p^{2}-2\right) 2^{p-1}+1+\left(2^{p}-1\right)\right)=2^{p-1} p^{2}
$$

i.e., $2^{p}-1 \mid p^{2}$. But, for $p=2$ or $p=3,2^{p}-1 \nmid p^{2}$ and for $p \geq 5$, we have $2^{p}-1>p^{2}$. Therefore, the proof of $(i i)$ is completed.

Remark 5. It is known that all divisors of M_{p} have the form $q=2 l p+1$, where p, q are prime numbers and $l \equiv 0$ or $-p(\bmod 4)$.

3 Mersenne numbers with $\omega\left(M_{n}\right) \leq 3$

Theorem 6. The only solutions of the equation

$$
\omega\left(M_{n}\right)=1
$$

are given by n, where n is a prime number for which M_{n} is a prime number of the form $2 l p+1$, where $l \equiv 0$ or $-p(\bmod 4)$.

Proof. The case $n=2$ is obvious. The equation implied in $M_{n}=q^{m}$, with $m \geq 1$. However, according to Lemma $3, M_{n} \neq q^{m}$, with $m \geq 2$. Thus, if there is a unique prime number q that divides M_{n}, then $M_{n}=q$, and $q=2 l p+1$, where $l \equiv 0$ or $-p(\bmod 4)$, according to Remark 5.

Proposition 7. Let $p_{1}, p_{2}, \ldots, p_{s}$ be distinct prime numbers and n a positive integer such that $n \neq 2,6$. If $p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}} \mid n$, where the $\alpha_{i}^{\prime} s$ are positive integers and $\sum_{i=1}^{s} \alpha_{i}=t$, then $\omega\left(M_{n}\right) \geq t+1$.

Proof. According to Lemma 1, we have

$$
\omega\left(M_{p_{i}^{\alpha_{i}}}\right)>w\left(M_{p_{i}^{\alpha_{i}-1}}\right)>\cdots>\omega\left(M_{p_{i}}\right) \geq 1
$$

for each $i \in\{1, \ldots, s\}$. Therefore, $\omega\left(M_{p_{i}}\right) \geq \alpha_{i}$. Now, according to Proposition 2, we have

$$
\omega\left(M_{n}\right)>\sum_{i=1}^{s} \omega\left(M_{p_{i}^{\alpha_{i}}}\right) \geq \sum_{i=1}^{s} \alpha_{i}=t .
$$

Therefore, $\omega\left(M_{n}\right) \geq t+1$.

To facilitate the proof of the next two theorems, we present two specific cases of Proposition 7.

Proposition 8. Let $n \neq 6$ and
(i) $p_{1}^{3} \mid n$, where p_{1} is a prime number or
(ii) $p_{1} p_{2} \mid n$ or $2 p_{1} \mid n$, where p_{1}, p_{2} are distinct odd prime numbers.

Then, $\omega\left(M_{n}\right) \geq 3$.
Proof. For $p_{1}^{3} \mid n$, we apply the first part of the proof Proposition 7, with $s=1$ and $\alpha_{1}=3$. For $p_{1} p_{2} \mid n$ and $2 p_{1} \mid n$, we apply the Proposition 7, with $s=2$ and $\alpha_{1}=\alpha_{2}=1$.

Proposition 9. Let
(i) $p_{1}^{4} \mid n$, where p_{1} is a prime number or
(ii) $p_{1} p_{2} p_{3} \mid n$, where p_{1}, p_{2}, p_{3} are distinct prime numbers or
(iii) $p_{1} p_{2}^{2} \mid n$, where p_{1}, p_{2} are distinct prime numbers.

Then, $\omega\left(M_{n}\right)>3$.
Proof. For $p_{1}^{4} \mid n$, we apply the first part of the proof Proposition 7 , with $s=1$ and $\alpha_{1}=4$. For $p_{1} p_{2} p_{3} \mid n$, we apply the Proposition 7, with $s=3$ and $\alpha_{1}=\alpha_{2}=\alpha_{3}=1$. For $p_{1} p_{2}^{2} \mid n$, we apply the Proposition 7 , with $s=2, \alpha_{1}=1$ and $\alpha_{2}=2$.

Theorem 10. The only solutions of the equation

$$
\omega\left(M_{n}\right)=2
$$

are given by $n=4,6$ or $n=p_{1}$ or $n=p_{1}^{2}$, for some odd prime number p_{1}. Furthermore,
(i) if $n=p_{1}^{2}$, then $M_{n}=M_{p_{1}} q^{t}, t \in \mathbb{N}$.
(ii) if $n=p_{1}$, then $M_{n}=p^{s} q^{t}$, where p, q are distinct odd prime numbers and $s, t \in \mathbb{N}$ with $\operatorname{gcd}(s, t)=1$. Moreover, p, q satisfy $p=2 l_{1} p_{1}+1, q=2 l_{2} p_{1}+1$, where l_{1}, l_{2} are distinct positive integers and $l_{i} \equiv 0$ or $-p(\bmod 4)$.

Proof. This first part is an immediate consequence of Proposition 8.
(i) If $\omega\left(M_{n}\right)=2$, with $n=p_{1}^{2}$, then on one hand $M_{n}=p^{s} q^{t}$, with $t, s \in \mathbb{N}$. On the other hand, by Lemma $1 \omega\left(M_{p_{1}^{2}}\right)>\omega\left(M_{p_{1}}\right) \geq$ 1, i.e., $M_{p_{1}}=p$, by Lemma 3. Thus, according to Lemma $4, M_{n}=M_{p_{1}} q^{t}=p q^{t}$, with $t \in \mathbb{N}$.
(ii) If $\omega\left(M_{n}\right)=2$, with $n=p_{1}$, then $M_{n}=p^{s} q^{t}$, with $t, s \in \mathbb{N}$. However, according to Lemma 3, we have $\operatorname{gcd}(s, t)=1$. The remainder of the conclusion is a direct consequence of Remark 5 .

Theorem 11. The only solutions of the equation

$$
\omega\left(M_{n}\right)=3
$$

are given by $n=8$ or $n=p_{1}$ or $n=2 p_{1}$ or $n=p_{1} p_{2}$ or $n=p_{1}^{2}$ or $n=p_{1}^{3}$, for some distinct odd prime numbers $p_{1}<p_{2}$. Furthermore,
(i) if $n=2 p_{1}$, then $M_{n}=3 M_{p_{1}} k^{r}, r \in \mathbb{N}$, if $p_{1} \neq 3$ and k is a prime number.
(ii) if $n=p_{1} p_{2}$, then $M_{n}=M_{p_{1}}\left(M_{p_{2}}\right)^{t} k^{r}$ and $\operatorname{gcd}(t, r)=1$, with $t, r \in \mathbb{N}$, and k is a prime number.
(iii) if $n=p_{1}^{2}$, then $M_{n}=M_{p_{1}} q^{t} k^{r}$ or $M_{n}=p^{s} q^{t} k^{r}$, with $M_{p_{1}}=p^{s} q^{t}$ and $(s, t)=1$, and p, q, k are prime numbers.
(iv) if $n=p_{1}^{3}$, then $M_{n}=M_{p_{1}} q^{t} k^{r}$ and $\operatorname{gcd}(t, r)=1$, with $t, r \in \mathbb{N}$, and and q, k are prime numbers.
(v) if $n=p_{1}$, then $M_{n}=p^{s} q^{t} k^{r}$ and $p=2 l_{1} p_{1}+1, q=2 l_{2} p_{1}+1, k=2 l_{3} p_{1}+1$, where l_{1}, l_{2}, l_{3} are distinct positive integers and $l_{i} \equiv 0$ or $-p(\bmod 4)$, and $\operatorname{gcd}(s, t, r)=1$, with $s, t, r \in \mathbb{N}$.

Proof. This first part is an immediate consequence of the Proposition 9.
(i) If $\omega\left(M_{n}\right)=3$, with $n=2 p_{1}$, then on one hand $M_{n}=p^{s} q^{t} k^{r}$, with $t, s, r \in \mathbb{N}$. On the other hand, according to Proposition 2, $\omega\left(M_{2 p_{1}}\right)>\omega\left(M_{p_{1}}\right)+\omega\left(M_{2}\right)$, i. e., $M_{p_{1}}=q$, according to Lemma 3. We noticed that $M_{2 p_{1}}=\left(2^{p_{1}}-1\right)\left(2^{p_{1}}+1\right)$ and q does not divide $2^{p_{1}}+1$, because if $q \mid\left(2^{p_{1}}+1\right)$, then $q \mid 2^{p_{1}}+1-\left(2^{p_{1}}-1\right)=2$. This is a contradiction, since q is odd prime. Thus, $M_{n}=\left(M_{2}\right)^{s} M_{p_{1}} w^{r}=3^{s} q k^{r}$. Moreover, according to Lemma 4, we have $s=1$ if $p_{1} \neq 2^{2}-1=3$. Therefore, $M_{n}=M_{2} M_{p_{1}} w^{r}=3 q k^{r}$.
(ii) If $\omega\left(M_{n}\right)=3$, with $n=p_{1} p_{2}$, then on one hand $M_{n}=p^{s} q^{t} k^{r}$, with $t, s, r \in \mathbb{N}$. On the other hand, according to Proposition 2, $\omega\left(M_{p_{1} p_{2}}\right)>\omega\left(M_{p_{1}}\right)+\omega\left(M_{p_{2}}\right)$, i. e., $M_{p_{1}}=p$ and $M_{p_{2}} \quad=\quad q, \quad$ according to Lemma 3 . Thus, $M_{n}=\left(M_{p_{1}}\right)^{s}\left(M_{p_{2}}\right)^{t} k^{r}=p^{s} q^{t} k^{r}$ and $\operatorname{gcd}(s, t, r)=1$ if $s, t, r>1$, according to Lemma 3. However, if $2^{p_{1}}-1 \nmid p_{2}$, then $t=1$ according to Lemma 4 and clearly, $2^{p_{2}}-1 \nmid p_{1}$, because $p_{1}<p_{2}$, i.e., according to Lemma 4, again, we have $s=1$. Thus, $M_{n}=M_{p_{1}} M_{p_{2}} k^{r}=p q k^{r}$.
(iii) If $\omega\left(M_{n}\right)=3$, with $n=p_{1}^{2}$, then on one hand $M_{n}=p^{s} q^{t} w^{r}$, with $t, s, r \in \mathbb{N}$. On the other hand, according to Lemma 4 , we have $M_{p_{1}}=p^{s} q^{t}$, with $(s, t)=1$ or $M_{p_{1}}=p$.
(iv) If $\omega\left(M_{n}\right)=3$, with $n=p_{1}^{3}$, then on one hand $M_{n}=p^{s} q^{t} w^{r}$, with $t, s, r \in \mathbb{N}$. On the other hand, according to Lemma $1, \omega\left(M_{p_{1}^{3}}\right)>\omega\left(M_{p_{1}^{2}}\right)>\omega\left(M_{p_{1}}\right) \geq 1$, i.e., $M_{p_{1}}=p$, according to Lemma 3. Thus, $M_{n}=M_{p_{1}} q^{t} k^{r}=p q^{t} k^{r}$ according to Lemma 4 and, $\operatorname{gcd}(t, r)=1$ according to Lemma 3.
(v) If $n=p_{1}$, then $M_{n}=p^{s} q^{t} k^{r}$, with $t, s, r \in \mathbb{N}$. However, according to Lemma 3, $\operatorname{gcd}(s, t, r)=1$. The form of p, q and k is given by Remark 5 .

We present some examples of solutions for Theorems 6, 10 and 11.
(i) $\omega\left(M_{n}\right)=1$, where n is a prime number: $M_{2}=3, M_{3}=7, M_{5}=31, M_{7}=127, \ldots$
(ii) $\omega\left(M_{n}\right)=2$, where n is a prime number: $M_{11}=2047=23 \times 89, M_{23}=8388607=$ $47 \times 178481, \ldots$ and $M_{6}=\left(M_{2}\right)^{2} M_{3}$; with $n=p^{2}$, where p is a prime number: $M_{4}=$ $15=M_{2} \times 5, M_{9}=511=M_{3} \times 73, M_{49}=M_{27} \times 4432676798593, \ldots$
(iii) $\omega\left(M_{n}\right)=3$, where n is a prime number: $M_{29}=536870911=233 \times 1103 \times 2089, M_{43}=$ $8796093022207=431 \times 9719 \times 2099863, \ldots ;$ with $n=2 p$, where p is a prime number: $M_{10}=M_{2} \times M_{5} \times 11, M_{14}=M_{2} \times M_{7} \times 43 \ldots$; with $n=p^{3}, p$ is a prime number: $M_{8}=255=M_{2} \times 5 \times 17, M_{27}=M_{3} \times 73 \times 262657, \ldots ;$ with $n=p_{1} p_{2}$, where p_{1} and p_{2} are prime numbers: $M_{15}=M_{3} \times M_{5} \times 151, M_{21}=\left(M_{3}\right)^{2} \times M_{7} \times 337, \ldots$; with $n=p^{2}$, where p is a prime number: $M_{25}=M_{5} \times 601 \times 1801, \ldots$.

4 Mersenne numbers rarely have few prime factors.

We observe, that by Proposition 7, we have $\omega\left(M_{n}\right) \geq t+1$, where t is the number of prime divisors of n, counting the multiplicity. Of course, this lower bound depends on n, but it is necessary to obtain the factorization of n. The theorem below proved a lower bound that depends directly on n. To prove this theorem, we need the following lemma.

Lemma 12 (Theorem 432, [5]). Let $d(n)$ be the total number of divisors of n. If ϵa is positive number, then

$$
2^{(1-\epsilon) \log \log n}<d(n)<2^{(1+\epsilon) \log \log n}
$$

for almost all positive integer n.
Theorem 13. Let ϵ be a positive number. The inequality

$$
\omega\left(M_{n}\right)>2^{(1-\epsilon) \log \log n}-3
$$

holds for almost all positive integer n.
Proof. According to Lemma 1, we know that if $h \mid n$ and $h \neq 1,2,6$, then M_{h} has a prime primitive factor. This implies that

$$
\omega\left(M_{n}\right) \geq d(n)-3
$$

Consequently, by Lemma 12, we have

$$
\omega\left(M_{n}\right)>2^{(1-\epsilon) \log \log n}-3
$$

for almost all positive integer n.

References

[1] J. Brillhart, On the factors of certain Mersenne numbers. II, Math. Comp. 18 (1964), no. 87-92.
[2] R. D. Carmichael, On the numerical factors of arithmetic forms $\alpha^{n} \pm \beta^{n}$, Ann. of Math. 15 (2) (1913/14), no. 1-4, 30-48.
[3] J. R. Ehrman, The number of prime divisors of certain Mersenne numbers, Math. Comp. 21 (1967), no. 700-704.
[4] K. Ford, F. Luca, I. E. Shparlinski, On the largest prime factor of the Mersenne numbers, Bull. Austr. Math. Soc. 79 (3) (2009), 455-463.
[5] G. H. Hardy and E. M. Wright, Editors (D. R. Heath-Brown, Joseph H. Silverman). An Introduction to the Theory of Numbers, Sixth Edition, Oxford University Press (2008).
[6] L. Murata, C. Pomerance, On the largest prime factor of a Mersenne number, Number Theory 36 (2004), 209-218.
[7] P. Mihǎilescu, Primary Cyclotomic Units and a Proof of Catalan's Conjecture. J. Reine Angew. Math. 572 (2004), 167-195.
[8] C. Pomerance, On primitive dvivisors of Mersenne numbers, Acta Arith. 46 (1986), 355367.
[9] A. Schinzel, On primitive prime factors of $a^{n}-b^{n}$, Proc. Cambridge Philos. Soc. 58 (1962), 555-562.
[10] C. L. Stewart, The greatest prime factor of $a^{n}-b^{n}$, Acta Arith. 26 (1974/75), 427-433.
[11] S. S. Wagstaff, Jr., Divisors of Mersenne numbers. Math. Comp. 40 (1983), 385-397.

