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Abstract

Let (Mn)n≥0 be the Mersenne sequence defined by Mn = 2n − 1. Let ω(n) be the
number of distinct prime divisors of n. In this short note, we present a description of
the Mersenne numbers satisfying ω(Mn) ≤ 3. Moreover, we prove that the inequality,
for ǫ > 0, ω(Mn) > 2(1−ǫ) log logn − 3 holds almost all positive integer n.
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1 Introduction

Let (Mn)n≥0 be the Mersenne sequence (sequence A000225 in the OEIS) given by M0 =
0,M1 = 1,M2 = 3,M3 = 7,M4 = 15 and Mn = 2n − 1, for n ≥ 0. A simple calculation
shows that if Mn is a prime number, then n is a prime number. When Mn is a prime
number, it is called Mersenne prime. Throughout history, many researchers sought to find
Mersenne primes. Some tools are very important for the search for Mersenne primes, mainly
the Lucas-Lehmer test. There are papers (see for example [1, 3, 11]) that seek to describe
the prime factors of Mn, where Mn is a composite number and n is a prime number.

Besides, some papers seek to describe prime divisors of Mersenne number Mn, where n
cannot be a prime number (see for example [4, 6, 8, 9, 10]). In this paper, we propose to
investigate the function ω(n), which refers to the number of distinct prime divisors of n,
applied to Mn.
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2 Preliminary results

If n is a positive integer, write ω(n) for the number of distinct prime divisors of n. Some
well known facts are presented below as lemmas.

The first Lemma is the well-know Theorem XXIII of [2], obtained by Carmichael.

Lemma 1. If n 6= 1, 2, 6, then Mn has a prime divisor which does not divide any Mm for
0 < m < n. Such prime is called a primitive divisor of Mn.

We also need the following results:

d = gcd(m,n) ⇒ gcd(Mm,Mn) = Md (1)

Proposition 2. If 1 < m < n, gcd(m,n) = 1 and mn 6= 6, then ω(Mmn) > ω(Mm)+ω(Mn).

Proof. As gcd(m,n) = 1, it follows that gcd(Mm,Mn) = 1 by (1). Now, according to
Lemma 1, we have a prime number p such that p divides Mmn and p does not divide MmMn.
Therefore, the proof of proposition is completed.

Mihǎilescu [7] proved the following result.

Lemma 3. The only solution of the equation xm − yn = 1, with m,n > 1 and x, y > 0 is
x = 3, m = 2, y = 2, n = 3.

For x = 2, the Lemma 3 ensures that there is no m > 1, such that 2m − 1 = yn with
n > 1.

Lemma 4. Let p, q be prime numbers. Then,

(i) Mp ∤ (Mpq/Mp), if 2
p − 1 ∤ q.

(ii) Mp ∤ (Mp3/Mp).

Proof. (i) We noticed that Mpq = (2p − 1)(
∑q−1

k=0 2
kp). Thus, if (2p − 1)|(

∑q−1
k=0 2

kp), then

(2p − 1)
∣

∣

∣

(

q−1
∑

k=0

2kp + 2p − 1

)

= 2p+1
(

2pq−2p−1 + · · ·+ 2p−1 + 1
)

,

i.e., (2p − 1)| ((q − 2)2p−1 + 1), where (q − 2)2p−1 + 1 is the rest of the euclidean division of
2pq−2p−1 + 2pq−3p−1 + · · ·+ 2pq−(q−2)p−1 + 2p−1 + 1 by 2p − 1, i.e.,

(2p − 1)|
(

(q − 2)2p−1 + 1 + (2p − 1)
)

= 2p−1q,

i.e., 2p − 1|q. Therefore, the proof of (i) is completed.

(ii) We noticed that Mp3 = (2p − 1)(
∑p2−1

k=0 2kp). Thus, if (2p − 1)|(
∑p2−1

k=0 2kp), then

(2p − 1)
∣

∣

∣





p2−1
∑

k=0

2kp + 2p − 1



 = 2p+1
(

2p
3−2p−1 + · · ·+ 2p−1 + 1

)

,
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i.e., (2p − 1)| ((p2 − 2)2p−1 + 1), where (p2 − 2)2p−1 + 1 is the rest of the euclidean division
of 2p

3−2p−1 + 2p
2−3p−1 + · · ·+ 2p

3−(p2−2)p−1 + 2p−1 + 1 by 2p − 1, i.e.,

(2p − 1)|
(

(p2 − 2)2p−1 + 1 + (2p − 1)
)

= 2p−1p2,

i.e., 2p − 1|p2. But, for p = 2 or p = 3, 2p − 1 ∤ p2 and for p ≥ 5, we have 2p − 1 > p2.
Therefore, the proof of (ii) is completed.

Remark 5. It is known that all divisors of Mp have the form q = 2lp+1, where p, q are prime
numbers and l ≡ 0 or − p (mod 4).

3 Mersenne numbers with ω(Mn) ≤ 3

Theorem 6. The only solutions of the equation

ω(Mn) = 1

are given by n, where n is a prime number for which Mn is a prime number of the form
2lp+ 1, where l ≡ 0 or − p (mod 4).

Proof. The case n = 2 is obvious. The equation implied in Mn = qm, with m ≥ 1. However,
according to Lemma 3, Mn 6= qm, with m ≥ 2. Thus, if there is a unique prime number q
that divides Mn, then Mn = q, and q = 2lp + 1, where l ≡ 0 or − p (mod 4), according to
Remark 5.

Proposition 7. Let p1, p2, . . . , ps be distinct prime numbers and n a positive integer such
that n 6= 2, 6. If pα1

1 · · · pαs

s |n, where the α′
is are positive integers and

∑s

i=1 αi = t, then
ω(Mn) ≥ t + 1.

Proof. According to Lemma 1, we have

ω(Mp
αi

i

) > w(M
p
αi−1

i

) > · · · > ω(Mpi) ≥ 1,

for each i ∈ {1, . . . , s}. Therefore, ω(Mp
αi

i

) ≥ αi. Now, according to Proposition 2, we have

ω(Mn) >
s
∑

i=1

ω(Mp
αi

i

) ≥
s
∑

i=1

αi = t.

Therefore, ω(Mn) ≥ t + 1.

To facilitate the proof of the next two theorems, we present two specific cases of Propo-
sition 7.

Proposition 8. Let n 6= 6 and
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(i) p31|n, where p1 is a prime number or

(ii) p1p2|n or 2p1|n, where p1, p2 are distinct odd prime numbers.

Then, ω(Mn) ≥ 3.

Proof. For p31|n, we apply the first part of the proof Proposition 7, with s = 1 and α1 = 3.
For p1p2|n and 2p1|n, we apply the Proposition 7, with s = 2 and α1 = α2 = 1.

Proposition 9. Let

(i) p41|n, where p1 is a prime number or

(ii) p1p2p3|n, where p1, p2, p3 are distinct prime numbers or

(iii) p1p
2
2|n, where p1, p2 are distinct prime numbers.

Then, ω(Mn) > 3.

Proof. For p41|n, we apply the first part of the proof Proposition 7, with s = 1 and α1 = 4.
For p1p2p3|n, we apply the Proposition 7, with s = 3 and α1 = α2 = α3 = 1. For p1p

2
2|n, we

apply the Proposition 7, with s = 2, α1 = 1 and α2 = 2.

Theorem 10. The only solutions of the equation

ω(Mn) = 2

are given by n = 4, 6 or n = p1 or n = p21, for some odd prime number p1. Furthermore,

(i) if n = p21, then Mn = Mp1q
t, t ∈ N.

(ii) if n = p1, then Mn = psqt, where p, q are distinct odd prime numbers and s, t ∈ N with
gcd(s, t) = 1. Moreover, p, q satisfy p = 2l1p1+1, q = 2l2p1+1, where l1, l2 are distinct
positive integers and li ≡ 0 or − p (mod 4).

Proof. This first part is an immediate consequence of Proposition 8.
(i) If ω(Mn) = 2, with n = p21, then on one hand Mn = psqt, with t, s ∈ N. On the other

hand, by Lemma 1 ω(Mp2
1
) > ω(Mp1) ≥ 1, i.e., Mp1 = p, by Lemma 3. Thus, according to

Lemma 4, Mn = Mp1q
t = pqt, with t ∈ N.

(ii) If ω(Mn) = 2, with n = p1, then Mn = psqt, with t, s ∈ N. However, according to
Lemma 3, we have gcd(s, t) = 1. The remainder of the conclusion is a direct consequence of
Remark 5.

Theorem 11. The only solutions of the equation

ω(Mn) = 3

are given by n = 8 or n = p1 or n = 2p1 or n = p1p2 or n = p21 or n = p31, for some distinct
odd prime numbers p1 < p2. Furthermore,
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(i) if n = 2p1, then Mn = 3Mp1k
r, r ∈ N, if p1 6= 3 and k is a prime number.

(ii) if n = p1p2, then Mn = Mp1(Mp2)
tkr and gcd(t, r) = 1, with t, r ∈ N, and k is a prime

number.

(iii) if n = p21, then Mn = Mp1q
tkr or Mn = psqtkr, with Mp1 = psqt and (s, t) = 1, and

p, q, k are prime numbers.

(iv) if n = p31, then Mn = Mp1q
tkr and gcd(t, r) = 1, with t, r ∈ N, and and q, k are prime

numbers.

(v) if n = p1, then Mn = psqtkr and p = 2l1p1 + 1, q = 2l2p1 + 1, k = 2l3p1 + 1, where
l1, l2, l3 are distinct positive integers and li ≡ 0 or − p (mod 4), and gcd(s, t, r) = 1,
with s, t, r ∈ N.

Proof. This first part is an immediate consequence of the Proposition 9.
(i) If ω(Mn) = 3, with n = 2p1, then on one hand Mn = psqtkr, with t, s, r ∈ N. On

the other hand, according to Proposition 2, ω(M2p1) > ω(Mp1) + ω(M2), i. e., Mp1 = q,
according to Lemma 3. We noticed that M2p1 = (2p1 − 1)(2p1 + 1) and q does not divide
2p1 + 1, because if q|(2p1 + 1), then q|2p1 + 1− (2p1 − 1) = 2. This is a contradiction, since q
is odd prime. Thus, Mn = (M2)

sMp1w
r = 3sqkr. Moreover, according to Lemma 4, we have

s = 1 if p1 6= 22 − 1 = 3. Therefore, Mn = M2Mp1w
r = 3qkr.

(ii) If ω(Mn) = 3, with n = p1p2, then on one hand Mn = psqtkr, with t, s, r ∈ N. On
the other hand, according to Proposition 2, ω(Mp1p2) > ω(Mp1)+ω(Mp2), i. e., Mp1 = p and
Mp2 = q, according to Lemma 3. Thus,
Mn = (Mp1)

s(Mp2)
tkr = psqtkr and gcd(s, t, r) = 1 if s, t, r > 1, according to Lemma 3.

However, if 2p1 − 1 ∤ p2, then t = 1 according to Lemma 4 and clearly, 2p2 − 1 ∤ p1, because
p1 < p2, i.e., according to Lemma 4, again, we have s = 1. Thus, Mn = Mp1Mp2k

r = pqkr.
(iii) If ω(Mn) = 3, with n = p21, then on one hand Mn = psqtwr, with t, s, r ∈ N. On the

other hand, according to Lemma 4, we have Mp1 = psqt, with (s, t) = 1 or Mp1 = p.
(iv) If ω(Mn) = 3, with n = p31, then on one hand Mn = psqtwr, with t, s, r ∈ N. On the

other hand, according to Lemma 1, ω(Mp3
1
) > ω(Mp2

1
) > ω(Mp1) ≥ 1, i.e., Mp1 = p, according

to Lemma 3. Thus, Mn = Mp1q
tkr = pqtkr according to Lemma 4 and, gcd(t, r) = 1

according to Lemma 3.
(v) If n = p1, then Mn = psqtkr, with t, s, r ∈ N. However, according to Lemma 3,

gcd(s, t, r) = 1. The form of p, q and k is given by Remark 5.

We present some examples of solutions for Theorems 6, 10 and 11.

(i) ω(Mn) = 1, where n is a prime number: M2 = 3,M3 = 7,M5 = 31,M7 = 127, . . .

(ii) ω(Mn) = 2, where n is a prime number: M11 = 2047 = 23 × 89,M23 = 8388607 =
47× 178481, . . . and M6 = (M2)

2M3; with n = p2, where p is a prime number: M4 =
15 = M2 × 5,M9 = 511 = M3 × 73,M49 = M27 × 4432676798593, . . . .
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(iii) ω(Mn) = 3, where n is a prime number: M29 = 536870911 = 233×1103×2089,M43 =
8796093022207 = 431× 9719× 2099863, . . . ; with n = 2p, where p is a prime number:
M10 = M2 × M5 × 11,M14 = M2 × M7 × 43 . . . ; with n = p3, p is a prime number:
M8 = 255 = M2×5×17,M27 = M3×73×262657, . . . ; with n = p1p2, where p1 and p2
are prime numbers: M15 = M3 ×M5 × 151,M21 = (M3)

2×M7 × 337, . . . ; with n = p2,
where p is a prime number: M25 = M5 × 601× 1801, . . . .

4 Mersenne numbers rarely have few prime factors.

We observe, that by Proposition 7, we have ω(Mn) ≥ t + 1, where t is the number of prime
divisors of n, counting the multiplicity. Of course, this lower bound depends on n, but it is
necessary to obtain the factorization of n. The theorem below proved a lower bound that
depends directly on n. To prove this theorem, we need the following lemma.

Lemma 12 (Theorem 432, [5]). Let d(n) be the total number of divisors of n. If ǫ a is
positive number, then

2(1−ǫ) log logn < d(n) < 2(1+ǫ) log logn

for almost all positive integer n.

Theorem 13. Let ǫ be a positive number. The inequality

ω(Mn) > 2(1−ǫ) log logn − 3

holds for almost all positive integer n.

Proof. According to Lemma 1, we know that if h|n and h 6= 1, 2, 6, then Mh has a prime
primitive factor. This implies that

ω(Mn) ≥ d(n)− 3

Consequently, by Lemma 12, we have

ω(Mn) > 2(1−ǫ) log logn − 3

for almost all positive integer n.
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