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CONSTRUCTION AND SHAPE OPTIMIZATION OF

SIMPLICIAL MESHES IN d-DIMENSIONAL SPACE

RADIM HOŠEK

Abstract. We provide a constructive proof of a face-to-face simplicial parti-
tion of a d-dimensional space for arbitrary d by generalizing the idea of Som-
merville, used to create space-filling tetrahedra out of triangular base, to any
dimension. Each step of construction that increases the dimension is deter-
mined up to a positive parameter, d-dimensional simplicial partition is there-
fore parametrized by d parameters. We show the shape optimal value of those
parameters and reveal that the shape optimal partition of d-dimensional space
is constructed over the shape optimal partition of (d − 1)-dimensional space.

Key words: simplicial tessellation, simplicial mesh, Sommerville tetrahedron,
Sommerville simplex, mesh regularity, shape optimization.

Subj. AMS Class.: 51M20, 51M04, 51M09, 65N50.

1. Introduction

There has been introduced many tilings of a d-dimensional space, d ∈ N, see for
example a thorough summary of results on tilings by congruent simplices in [7].
There has been also shown that any unit d-dimensional cube can be decomposed
into d! simplices defined by

(1.1) Sπ = {x ∈ R
d; 0 ≤ xπ(1) ≤ · · · ≤ xπ(d) ≤ 1}, π ∈ Πd,

where Πd is the set of all permutations of numbers 1, . . . , d. Moreover, these sim-
plices have the same volume, measdSπ = (d!)−1. See Kuhn’s original paper [16] or
the papers of Brandts et al. [2], [4].

But the not all partitions of the space need to use congruent simplices. When a
simplicial partition of some general polyhedral domain satisfies the so called face-
to-face property, it can be effectively used as a computational mesh for various
computational methods. A technique of such mesh generation can be found in [15].

A majority of today’s computations take place in two or three spatial dimensions
while those in higher dimension still occur rather rarely. However, some elliptic
problems are treated in more dimension, see e.g. [22] for such example emanating
from stochastic analysis. Besides that, for problems represented by evolutionary
partial differential equations of the hyperbolic type in three spatial dimensions, one
can understand time as fourth variable and use a mesh in four-dimensional space,
see e.g. the practical examples [11] and [17].

In this paper we introduce a method for creating a d-parametric family of tilings.
Despite the set of parameters available, subsets of these tilings create only very rigid
meshes. However, some theoretical results suggest that for numerical methods to
be convergent, the numerical domain and target domain do not necessarily have
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to coincide and that is where our meshes might find their use. Two different ap-
proaches can be found in works of Feireisl et al. [8], [9] and of Angot et al. [1],
[14].

Our result is strongly based on the (almost 100 years old) construction developed
by Sommerville, which uses a regular triangle as a base for building a one-parametric
family of tetrahedral elements that tile the three-dimensional space, see [10], [12]
or the original Sommerville’s article [24]. Our tilings are definitely not performed
by congruent simplices and they do not cover d-dimensional cubes, thus they are
clearly distinct from those introduced in [7] and [16].

We start the construction from one-dimensional simplices, i.e. segments, to
increase the dimension repeatedly and build a d-parametrical family of simplicial
tessellations of d-dimensional space. Its existence is stated in Theorem 2.1 and its
proof covers Section 2. Then, in Section 3 we determine the shape-optimizing vector
of parameters with the result summarized in Theorem 3.2. Section 4 introduces
some concluding remarks and open questions.

2. Construction of the tessellation

We start with stating the existence result in the first of two central theorems of
this article.

Theorem 2.1. For any d-dimensional space there exists a d-parametric family of
simplicial tessellations Td(p),p = (p1, p2, . . . , pd). For p fixed, all elements K ∈
Td(p) have the same d-dimensional measure equal to

(2.1) measdK =

d∏

i=1

|pi|.

Moreover, every connected compact subset of the tessellation builds a face-to-face
mesh.

We start with introducing the original Sommerville’s construction (see [10] or
[24]) which creates a tessellation of an infinite triangular prism over an equilateral
triangle (which tessellates the two dimensional space). In the construction, new
vertices are created above (and below) the three vertices of the triangle in the
heights . . . , 0, 3p, 6p, . . . ; . . . , p, 4p, 7p, . . . and . . . , 2p, 5p, . . . , respectively, with a
positive parameter p. Ordering these vertices with respect to their height (i.e. third
component), tetrahedra are defined as convex hulls of four consequent vertices. A
sketch of this construction is given by Figure 1, with the notation given by upcoming
Lemma 2.2, which is the key ingredient of Theorem 2.1.

Lemma 2.2 (Induction Step). Let d ≥ 2 and Td−1 = {Kk
d−1}k∈Zd−1 be a simpli-

cial tessellation of (d − 1)-dimensional space such that the graph constructed from
vertices and edges of Td−1 is a d-vertex-colorable graph.

Then

• there exists Td = {Ll
d}l∈Zd a simplicial tesselation of d-dimensional space

with additional shape parameter pd,
• any connected compact subset of Td is a face-to-face mesh,
• Td is a (d+ 1)-vertex-colorable graph.
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x1
A1

B1

B4

B3

A0 = B0

x3

A2
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B2

x2

Figure 1. Illustration of Sommerville’s original construction cre-
ating a three-dimensional face-to-face mesh above unilateral tri-
angular mesh. For the sake of clarity, only elements K

0,0
2 and

L
0,0,0
3 , L

0,0,1
3 , L

0,0,2
3 are shown.

Proof. Take an element Kk
d−1 ∈ Td−1, K

k
d−1 = co{A0, A1, . . . Ad−1}. Thanks to the

d-vertex-colorability we can assume that the labels of vertices represent their color.
Let Ai = [Ai,1, Ai,2, . . . Ai,d−1] be the coordinates of Ai in (d−1)-dimensional space.

We define the following points in d-dimensional space:

Bj = [Ai(j),1, Ai(j),2, . . . , Ai(j),d−1, jpd], j ∈ Z,

where i(j) ≡ j mod d and pd > 0 is a parameter. Denote

(2.2) L
k,z
d = co{Bz, Bz+1, . . . , Bz+d+1},

the d-simplex as a convex hull of d + 1 consequent vertices. Then {Lk,z
d }z∈Z is

a tessellation of an infinite d-dimensional prism with the cross-section Kk
d−1, see

Figures 1 and 2 for illustration. As Td−1 = {Kk
d−1}k∈Zd−1 is a tessellation of (d−1)-

dimensional space, then the set Td := {Lk,z
d }(k,z)∈Zd−1×Zd forms a tessellation of

d-dimensional space.
The construction uses the colors from the previous tessellation. Thus it is ensured

that from any vertex Aj , that is shared by more simplices in Td−1, we create new
vertices Vz of only one type; having the last coordinate of the form

(2.3) Vz,d
1

pd
≡ cd−1(Aj) mod d = j.
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This implies the face-to-face property, i.e. the facet of a simplex in tessellation Td
is a facet of another simplex.

Finally, we define the new coloring with

(2.4) cd(Bj) ≡ j mod d+ 1, for Bj = [Ai(j), jpd].

Such mapping is a vertex coloring, since edges of the graph are only edges in

simplices and vertices in any simplex L
k,z
d have a different last component, but the

‘height’ difference of two vertices connected by an edge does not exceed dpd. �

 

 

K2

1

L
2,1

2

c1 = 0

c1 = 1

c2 = 0

c2 = 1

c2 = 2

Figure 2. Illustration of creating a simplicial face-to-face mesh
of two dimensional space out of the one-dimensional one, with the
parameters p1 = 1, p2 =

1
2 . The simplices K2

1 and L
2,1
2 are marked

in bold to clarify the notation defined by (2.2). For general values of

the parameters there are two candidates for diameter of Lk,z
2 , equal

to
√
p21 + p22 and 2p2. Notice also the vertex coloring, assigned

through (2.4).

The part that proves the face-to-face property based on vertex coloring of a
graph was used already in [12]. Lemma 2.2 supplies the induction step, to complete
the proof of Theorem 2.1, we show the initial step.

Proof of Theorem 1. A 1-dimensional Euclidean space (a line) can be divided into
intervals of the length p1. The color of a border point Az ∈ {zp1}z∈Z is given by

c1(Az) ≡ z mod 2.

The assumptions of Lemma 2.2 are satisfied, hence we have the initial step
and the induction step. For every use of Lemma 2.2 we use the coloring that
was generated by the Lemma in its previous use, which finishes the proof. The
equivolumetric property is proved by Proposition 2.4. �
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In the proof above, the considerate reader might be confused why we stressed
that for the next step of construction the coloring produced by the previous use of
the induction lemma is used. Clearly, at every step the original coloring cj can be
changed using any πj+1 a permutation of numbers {0, . . . , j}. As a consequence,
we may state the following.

Theorem 2.3. For any p = (p1, . . . , pd) and any vector π = (π2, . . . , πd), where
πi ∈ Πi is a permutation of numbers {0, . . . , i − 1}, there exists a tessellation
Td(p,π) of a d-dimensional Euclidean space. For p fixed, all elements K ∈ Td(p,π)
have the same d-dimensional measure equal to

(2.5) measdK =

d∏

i=1

|pi|.

Moreover, every connected compact subset of the tessellation builds a face-to-face
mesh.

Clearly, for a vector of identical permutations we get the original tessellation
from Theorem 2.1, i.e. Td(p, (Id, . . . , Id)) = Td(p).

In general the created simplices are not identical. However, the following propo-
sition shows that all elements of the tessellation Td(p) have the same volume, i.e.
the d-dimensional measure.

Proposition 2.4 (Equal Volume of the Elements). Let Td(p,π) be the tessellation
constructed by the procedure introduced in Proof of Lemma 2.2, with parameter
vector p = (p1, p2, . . . , pd) and vector of permutations π = (π2, . . . , πd). Then for
every simplex L ∈ Td(p) we have

(2.6) measdL =

d∏

i=1

|pi|.

Proof. In one-dimensional space, the situation is obvious; points zp1, z ∈ Z divide
a line into segments of the same length |p1|. We prove the induction step. Let us
assume that there exists Md−1 > 0 such that measd−1K = Md−1 for any K ∈ Td−1.

According to the construction, an element L ∈ Td is determined by the points

Bz = [A0, zpd]; Bz+1 = [A1, (z + 1)pd]; . . .

Bz+d−1 = [Ad−1, (z + d− 1)pd]; Bz+d = [A0, (z + d)pd],
(2.7)

where co(A0, A1, . . . , Ad−1) = K ∈ Td−1.
The d-dimensional measure of a simplex is determined by the determinant of a

matrix composed of the vectors that build the simplex, more precisely by the (d!)−1

multiple of its absolute value. We use (2.7) and performing operations that do not
affect the value of the determinant we obtain
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measdL =
1

d!

∣∣∣∣∣∣∣∣∣∣∣

det




A1 −A0 pd
A2 −A0 2pd

...
...

Ad−1 −A0 (d− 1)pd
0 dpd




∣∣∣∣∣∣∣∣∣∣∣

=
d|pd|
d!

∣∣∣∣∣∣∣∣∣
det




A1 −A0

A2 −A0

...
Ad−1 −A0




∣∣∣∣∣∣∣∣∣
=

= |pd| ·measd−1K.

(2.8)

The proof is concluded by repeated use of (2.8) up to d = 1, which yields
(2.6). �

Remark 2.5. In what follows, we consider only positive values of pi, shortly we
write p ∈ R

d
+, where R

d
+ =

{
v = (v1, . . . , vd) ∈ R

d; vi ≥ 0, ∀i ∈ {1, . . . , d}
}
. It is

rather a technical constraint, in fact one could allow pi ∈ R\{0}. However, negative
parameters affect only the orientation of the elements, not their shape characteris-
tics. Therefore for the regularity optimization we can restrict ourselves to p ∈ R

d
+

which also simplifies the process. One should bear in mind that if p⋆ = (p⋆1, . . . , p
⋆
d)

is a vector of shape-optimal parameters, then also (δ1p
⋆
1, . . . , δdp

⋆
d) is shape-optimal,

for δj = ±1.

3. Regularity optimization

We have constructed a d-parametric family of tessellations in d-dimensional
space, where the values of parameters pi, i = 1, . . . , d influence their shape. We
look for a vector of parameters p⋆ = (p⋆1, . . . , p

⋆
d) for which the simplicial elements

are shape optimal. There are several regularity ratios with respect to which we
might optimize. Some of them have been shown to be equivalent in the sense of
the strong regularity even in general dimension, see [3], but not in the sense of their
maximization.

For convenient calculation we use the following ratio

(3.1) ϑ(K) =
measdK

(diam K)d
, d ≥ 2,

where measd is the d-dimensional Lebesgue measure and diam K is the maximal
distance of two points in K. The ratio ϑ(K) can be interpreted as a similarity of
K to an equilateral simplex. In other words, we find p⋆ and K⋆ which realize

(3.2) sup
p∈R

d
+

min
K∈Td(p)

ϑ(K).

As the simplices in Td(p) are not identical, the optimization focuses on the worst
simplex only. Since we proved by Proposition 2.4 that all elements in Td(p) have
the same d-measure, this worst case in the sense of (3.1) occurs when the diameter
is maximal.
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3.1. Difficulties with the optimization. One can think through that the Som-
merville’s construction enables us to rewrite (3.5) using (2.6) as

(3.3) sup
p∈R

d
+

min
w∈W̃d

∏d
i=1 pi(∑d

i=1 w
2
i p

2
i

) d
2

,

where W̃d ⊆ Ŵd, which is defined by
(3.4)

Ŵd :=




w ∈ (N ∪ {0})d

∣∣∣∣∣∣∣
∃k ∈ {1, . . . , d} :





wk = k,

wi = 0, for 1 ≤ i < k,

wj ∈ {1, . . . , j − 1}, for k < j ≤ d





.

For example W̃3 = Ŵ3 = {(0, 0, 3), (0, 2, 1), (0, 2, 2), (1, 1, 2), (1, 1, 1)} and W̃2 =

Ŵ2 = {(0, 2), (1, 1)}. However, in general W̃d 6= Ŵd as the following Lemma shows.

Lemma 3.1. For d = 4, the vector (1, 1, 2, 3) ∈ Ŵ4 \ W̃4. In other words, there is
no element K ∈ T4(p) such that ±p1e1 ± p2e2 ± 2p3e3 ± 3p4e4 in any combination
of the signs is an edge of K.

Proof. Let p′ = (p1, p2, p3) and p = (p′, p4). Clearly there exists Lz1,z2,z3
3 ∈ T3(p′)

such that
−−→
UV = ±p1e1±p2e2±2p3e3 (in some combination of the signs) is an edge of

L
z1,z2,z3
3 . (One of such elements is L0,0,0

3 , see Figure 1, for which U = B3, V = B1.)

Then necessarily vertices U, V have the height difference equal to 2p3, i.e. c3(U)−
c3(V ) ≡ 2 mod 4 and vertices created above U and V that belong to any 4-simplex
K

z1,z2,z3,z4
4 ∈ T4(p′, p4) have the difference vector equal to ±p1e1 ± p2e2 ± 2p3e3 ±

2p4e4. As the construction in each step affects only the last component of the

vector w, we conclude that w 6∈ W̃4. �

The fact that W̃d 6= Ŵd and problematic determination of their difference makes
the optimization severely difficult. However, as the proof of the above lemma
suggests, the difficulties are caused by inheriting the coloring from the preceding
step of the construction. Removing this constraint by allowing recoloring before
every step of the construction (as in Theorem 2.3), we find out that

(3.5) sup
p∈R

d
+

min
π∈Π2×···×Πd

K∈Td(p,π)

ϑ(K)

is equivalent to

(3.6) sup
p∈R

d
+

min
w∈Ŵd

∏d
i=1 pi(∑d

i=1 w
2
i p

2
i

) d
2

,

and also to

(3.7) sup
p∈R

d
+

min
w∈Wd

∏d
i=1 pi(∑d

i=1 w
2
i p

2
i

) d
2

,



8 RADIM HOŠEK

where Wd is defined by
(3.8)

Wd :=




w ∈ (N ∪ {0})d

∣∣∣∣∣∣∣
∃k ∈ {1, . . . , d} :





wk = k,

wi = 0, for 1 ≤ i < k,

wj = j − 1, for k < j ≤ d





.

The equivalence of the optimization problems (3.6) and (3.7) is based on the

facts that (w1, . . . , wd) 7→ ∑d
i=1 w

2
i p

2
i is increasing in each component and that

elements in Wd dominate those in Ŵd componentwise.
For example, for d = 3 we have W3 = {{1, 1, 2}, {0, 2, 2}, {0, 0, 3}}.
Since |Wd| = d, we can also label its elements as wj = (wj,1, wj,2, . . . , wj,d),

where j is its first nonzero coordinate. We also define

(3.9) Dj(p) =

√√√√
d∑

i=1

w2
j,ip

2
i and D(p) = max

j∈{1,...,d}
Dj(p),

so that (3.7) can be rewritten as

(3.10) sup
p∈R

d
+

min
k∈{1,...,d}

∏d
i=1 pi

Dk(p)d
.

For illustration, we write out the ‘worst diameter candidates’ Dj explicitly,

(3.11)
D1(p)

2 = p21 + p22 + 4p23 + . . . +(d− 1)2p2d,
D2(p)

2 = 4p22 + 4p23 + . . . +(d− 1)2p2d,
D3(p)

2 = 9p23 + . . . +(d− 1)2p2d,
...

Dj−1(p)
2 = (j − 1)2p2j−1 + (j − 1)2p2j + j2p2j+1 + . . . +(d− 1)2p2d,

Dj(p)
2 = j2p2j + j2p2j+1 + . . . +(d− 1)2p2d,

...
Dd(p)

2 = d2p2d.

3.2. Optimal parameters. Now we can state the central theorem.

Theorem 3.2 (Optimal Parameters). Let d ≥ 2 and let Td(p,π) be a tessellation
constructed through the procedure in proof of Theorem 2.3. Then there exists a
unique one-dimensional vector half-space

P ⋆ =

{
p
⋆
κ ∈ R

d
+|p⋆

κ = κp⋆, κ > 0,p⋆ = (p⋆1, . . . , p
⋆
d),

p⋆1 = 1, p⋆2 =
1√
3
, p⋆j =

1

j − 1

√
2

3
, j ∈ {3, . . . , d}

}
,

(3.12)

of optimal parameters that realize
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(3.13) sup
p∈R

d
+

min
π∈Π2×···×Πd

K∈Td(p,π)

measdK

(diam K)d
,

for some π ∈ Π2 × · · · ×Πd.

Remark 3.3. Notice that we do not care much about ideal vector of permutations
π nor the element K. The above result could also be interpreted as a lower bound on
regularity ratio of elements K(p⋆, Id) = K(p⋆) for (in some sense) shape optimal
value p

⋆.

The rest of this section is devoted to the proof of Theorem 3.2, which consists
of three main steps. First, we prove the existence of the maximizer p⋆, then we
show the particular form of the largest possible diameter that corresponds to the
‘most deformed’ simplex in Td(p⋆,π⋆) and conclude the proof with determining the
values of the components of p⋆ through constrained optimization.

We would like to recall that we have three equivalent formulations of the opti-
mization problem; (3.7), (3.10) and (3.13).

Lemma 3.4 (Existence of the Maximizer). Let d ≥ 2. Then there exists a one-
dimensional vector half-space

(3.14) P ⋆ =
{
p
⋆
κ ∈ R

d
+|p⋆

κ = κp⋆, κ > 0
}
,

of optimal parameters that realize

(3.15) sup
p∈R

d
+

min
w∈Wd

∏d
i=2 pi(∑d

i=1 w
2
i p

2
i

) d
2

.

Proof. As for the above discussion, (3.13) is equivalent to (3.15). We observe that
the ratio in (3.15) is 0-homogeneous, thus without loss of generality we fix p1 = 1.
We continue with denoting the parametric vector by p ∈ R

d
+, keeping in mind that

due to its first component being fixed, p may be considered as (p2, . . . , pd) ∈ R
d−1
+ .

Defining

F (p) := min
w∈Wd

∏d
i=2 pi(∑d

i=1 w
2
i p

2
i

) d
2

,

we can rewrite (3.15) as sup
p∈R

d
+
F (p) and we observe that

lim
pj→0+

F (p) = 0, lim
pj→∞

F (p) = 0,

for any j ∈ {2, . . . , d}. Moreover, F ∈ C(Rd−1
+ ) and F > 0. Thus we infer that for

any (sufficiently small) ε the set Ωε := {F (p) ≥ ε} is a non-empty, bounded and

closed subset of Rd−1
+ and due to the continuity of F , it must attain its maximum

in Ωε which necessarily coincides with the maximum of F in R
d−1
+ . �

In the next step we show which element of Wd in (3.7) or equivalently which Dk

in (3.10) realizes the maximal diameter.
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Lemma 3.5. Let p
⋆ = (1, p⋆2, . . . , p

⋆
d) be the maximizer of (3.10). Then it holds

that

D(p⋆) := max
k∈{1,...,d}

Dk(p
⋆) = D1(p

⋆).

Proof. We proceed via contradiction. Let D1(p
⋆) < Dk(p

⋆) = D(p⋆) for some
k ∈ {2, . . . , d}. Then we define p′ = (p′1, . . . , p

′
d) with

(3.16) p′1 = 1, p′j = p⋆j ·
1

1 + δ
, j ∈ {2, . . . , d},

where δ > 0 is chosen small enough to ensure D1(p
′) < Dk(p

′) = D(p′). Then it
holds that

(3.17) D(p′) = Dk(p
′) = Dk(p

⋆)
1

1 + δ
= D(p⋆)

1

1 + δ
,

as wj = 0 for j < k, recall (3.9), the definition of Dk. Substitution from (3.16) and
(3.17) into (3.7) yields

∏d
i=1 p

′
i

Dj(p′)d
=

∏d
i=1 p

⋆
i

Dj(p⋆)d
· (1 + δ)d

(1 + δ)d−1
= (1 + δ)

∏d
i=1 p

⋆
i

Dj(p⋆)d
,

which contradicts the assumption of the maximality of p⋆. �

By virtue of Lemma 3.5, the maximization problem (3.10), which is equivalent
to (3.13), reduces to the optimization of a C1 function with inequality constraints,

(3.18) max

{∏d
i=1 pi

D1(p)d

∣∣∣∣∣p ∈ R
d
+, p1 = 1, D1(p)

2 ≥ Dj(p)
2, for all j ∈ {2, . . . , d}

}
.

To prove Theorem 3.2 it suffices to show that problem (3.18) has a unique solu-
tion, which is p⋆ in (3.12). By virtue of Lemma 3.5 the optimization problem (3.18)
is equivalent to (3.7) and further to the original problem (3.13), hence Lemma 3.4
guarantees it has a solution.

The function

(3.19) F1(p) = F1(p2, . . . , pd) =

∏d
i=2 pi

D1(1, p2, . . . , pd)d
,

is continuously differentiable in R
d−1
+ , hence its constrained maximizer p⋆ satisfies

the necessary Karush-Kuhn-Tucker conditions. They read as follows,

(3.20)
∂

∂pj
F1(p) =

d∑

i=2

µi
∂

∂pj

(
Di(p)

2 −D1(p)
2
)
,

(3.21) µj

(
Dj(p)

2 −D1(p)
2
)
= 0,

(3.22) µj ≥ 0, Dj(p) ≤ D1(p),

for j = {2, . . . , d}.
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Let us focus on the right hand side of (3.20). Recalling (3.11) with p1 = 1, one
can express

(3.23)
∂

∂pj
(Di(p)

2 −D1(p)
2) =





−2(j − 1)2pj for j < i,

2(2j − 1)pj for j = i,

0 for j > i.

Then, by virtue of (3.19) and (3.8) with (3.9) and just derived (3.23), we can
rewrite (3.20) as

∏d
i=2 pi

D1(p)2d

(
1

pj
D1(p)

d − d(j − 1)2D1(p)
d−2pj

)

− 2µj(2j − 1)pj + 2(j − 1)2pj

d∑

i=j+1

µi = 0, j ∈ {2, . . . , d}.
(3.24)

It is not obvious how to get a solution of (3.20–3.22) or its equivalent (3.21, 3.22,
3.24), nor its uniqueness. At the end, we show that µj = 0 for j ∈ {3, . . . , d} and
µ2 > 0 which is then enough to determine uniquely the solution. To get this, we
proceed in three steps. We show that

• there exists k ∈ {2, . . . , d} such that µk > 0,
• this k is unique,
• k = 2.

We introduce three lemmas, each corresponding to one of the items at the above
list.

Lemma 3.6 (Existence of an Active Constraint). Let d ≥ 2 and p
⋆ be the max-

imizer of (3.18). Then p
⋆ is a solution of (3.20–3.22) with (µ2, . . . , µd) 6= 0, i.e.

there exists k ∈ {2, . . . , d} such that µk > 0.

Proof. We proceed via contradiction. Assume that µj = 0 for all j ∈ {2, . . . , d}. In
such case (3.24), which is a consequence of (3.20), implies

p⋆j =
D1(p

⋆)

(j − 1)
√
d
, j ∈ {2, . . . , d},

which substituted into D2(p)
2 yields

D2(p
⋆)2 =

4

d
D1(p

⋆)2 +

d∑

i=3

D1(p
⋆)2

d
=

d+ 2

d
D1(p

⋆)2 > D1(p
⋆)2,

which contradicts (3.22). Thus there is some k ∈ {2, . . . , d} for which µk > 0. �

For d = 2 Lemma 3.6 implies directly that k = 2. For d ≥ 3 we supply the
following lemma.

Lemma 3.7 (One Active Constraint). Let d ≥ 3 and p
⋆ be a maximizer in (3.18)

which satisfies (3.20–3.22) with µk > 0 for some k ∈ {3, . . . , d}. Then µj = 0 for
all j ∈ {2, . . . , k − 1, k + 1, . . . , d} and p

⋆ = (1, p⋆2, . . . , p
⋆
d) fulfills
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(3.25) p⋆j =





√
2Dk(p

⋆)

(j − 1)
√
dk

√
2k − 1

k − 1
for j ∈ {2, . . . , k − 1},

Dk(p
⋆)√

dk
for j = k,

Dk(p
⋆)

(j − 1)
√
d

for j ∈ {k + 1, . . . , d}.

Proof. Let us take the largest k ∈ {3, . . . , d} for which µk > 0. Then for j ∈
{k + 1, . . . , d} we have µj = 0. This enables us to deduce directly from (3.24) that

(3.26) p⋆j =
D1(p

⋆)

(j − 1)
√
d
, j ∈ {k + 1, . . . , d}.

And as D1 = Dk (this follows from the assumption µk > 0 and (3.21)) we can
use (3.26) for computing p⋆k from definition of Dk (3.9). The computation

(3.27) Dk(p
⋆)2 = k2(p⋆k)

2 +
d∑

j=k+1

(j − 1)2(p⋆j )
2 = k2(p⋆k)

2 +
d− k

d
Dk(p

⋆)2,

yields

(3.28) p⋆k =
Dk(p

⋆)√
dk

.

Notice that (3.28) holds even if k = d and the summation in (3.27) is void.
Since D(p⋆) = D1(p

⋆) = Dk(p
⋆), then the constrained maximization problem

(3.18) is equivalent to a constrained optimization, where Dk is taken as the diam-
eter, i.e.

(3.29) max

{∏d
i=1 pi

Dk(p)d

∣∣∣∣∣p ∈ R
d
+, p1 = 1, Dk(p)

2 ≥ Dj(p)
2, for all j ∈ {1, . . . , d}

}
.

Arguing as before, the maximizer in (3.29) exists and fulfills the following nec-
essary Karush-Kuhn-Tucker conditions,

(3.30)
∂

∂pj

∏d
i=2 pi

Dk(p)d
=

d∑

i=1
i6=k

νi
∂

∂pj
(Di(p)

2 −Dk(p)
2),

for j ∈ {2, . . . , d} and

(3.31) νi(Di(p)
2 −Dk(p)

2) = 0,

(3.32) νi ≥ 0, Di(p) ≤ Dk(p),

for i ∈ {1, . . . , k − 1, k + 1, . . . , d} and moreover we know that D1(p) = Dk(p). As
we already settled j ∈ {k + 1, . . . , d}, we need to focus on j ∈ {2, . . . , k − 1} only,
hence we consider only those.
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We know that

(3.33)
∂

∂pj

∏d
i=2 pi

Dk(p)d
=

∏d
i=2 pi

Dk(p)d
1

pj
, j ∈ {2, . . . , k − 1},

and using (3.11) we compute the right-hand side of (3.30) for j ∈ {2, . . . , k − 1} as

(3.34)
∂

∂pj
(Di(p)

2 −Dk(p)
2) =





2(j − 1)2pj for i < j,

2j2pj for i = j,

0 for i > j.

Collecting (3.33–3.34) together with νi = 0 for i > k (as Di(p) < Dk(p) by
assumption), we can rewrite (3.30) in the form

(3.35)

∏d
i=2 pi

Dk(p)d
1

pj
= 2νjj

2pj + 2(j − 1)2pj

j−1∑

i=1

νi, j ∈ {2, . . . , k − 1}.

Take any j ∈ {2, . . . , k − 1}, we have either νj = 0 or νj > 0.
Let first assume νj = 0. Then, from (3.35) we deduce

(3.36) p2j = p2j,u =

∏d
i=2 pi

2Dk(p)d
1

(j − 1)2
∑j−1

i=1 νi
.

If νj > 0, then

p2j = p2j,c =

∏d
i=2 pi

2Dk(p)d
1

j2νj + (j − 1)2
∑j−1

i=1 νi
.

We observe that pj,c < pj,u and p⋆ is supposed to maximize
∏d

i=2 pi · (Dk(p))
−d,

where Dk(p) is independent of pj for j ∈ {1, . . . , k−1}. Thus p⋆j needs to maximize

only
∏d

i=2 pi, i.e. only its value. Since pj,u > pj,c, we choose its unconstrained
version p⋆j = pj,u from (3.36), i.e. νj = 0 for any j ∈ {2, . . . , k − 1}. This enables
to rewrite (3.36) into

(3.37) p2j = p2j,u =

∏d
i=2 pi

2ν1Dk(p)d
1

(j − 1)2
.

Computing (3.30) also for j = k, one gets

(3.38)
1

Dk(p)2d

(
d∏

i=2

piDk(p)
d 1

pk
− d

d∏

i=2

piDk(p)
d−2k2pk

)
= ν12(−2k + 1)pk,

and after substituting p⋆k from (3.28) into (3.38) we can express ν1 as

(3.39) ν1 =
dk
∏d

i=2 pi

2Dk(p)d+2

k − 1

2k − 1
.

Collecting (3.26), (3.28) and substituting from (3.39) into (3.37) we get (3.25),
which concludes the proof. �

Lemmas 3.6 and 3.7 give rise to the following corollary.
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Corollary 3.8. Let d ≥ 2 and p
⋆ be a maximizer in (3.18). Then there exists

a unique k ∈ {2, . . . , d} such that Dk(p
⋆) = D1(p

⋆) = D(p⋆) and (3.25) holds.

Proof. Lemma 3.6 together with (3.21) gives existence of k ∈ {2, . . . , d} such that
Dk(p

⋆) = D1(p
⋆) = D(p⋆). For d = 2 we get directly k = 2. For k ≥ 3, Lemma 3.7

gives uniqueness of such k and also (3.25). Using the procedure from the beginning
of the proof of Lemma 3.7, one recovers (3.25) also for d = 2. �

Finally, we show that k from the previous lemma is equal to 2 which will enable
us to determine also the values of p⋆i .

Lemma 3.9. Let d ≥ 2 and p
⋆ be a maximizer in (3.18). Then it holds that

(3.40) D(p⋆) = D1(p
⋆) = D2(p

⋆),

and

(3.41) p⋆2 =

√
1

3
, p⋆j =

√
2

3

1

j − 1
, j ∈ {3, . . . , d}.

Proof. Let d = 2. Then Lemma 3.6 implies (3.40), which can be written explicitly
as 1 + (p⋆2)

2 = 4(p⋆2)
2. Thus we infer p⋆2 = 3−1/2.

Let further d ≥ 3. Then from Corollary 3.8 we get a unique existence of some
k ∈ {2, . . . , d} for which D(p⋆) = D1(p

⋆) = Dk(p
⋆) and the relation (3.25) for p⋆.

We prove k = 2 via contradiction. Let us assume that k ≥ 3. Then, D(p⋆) =
D1(p

⋆) = Dk(p
⋆) > D2(p

⋆). Writing out D2(p
⋆) explicitly using (3.25), we get

(3.42) D2 > D2
2 =

D2

d

(
2
4(2k − 1)

k(k − 1)
+ 2

(k − 2)(2k − 1)

k(k − 1)
+

(k − 1)2

k
+ (d− k)

)
,

where we skipped the argument p⋆ for the sake of brevity. Direct computation
simplifies inequality (3.42) into

2k2 + 9k − 5

k(k − 1)
< 0,

which is not true for any k ∈ N, a contradiction. Thus k = 2, and from (3.25) we
get

(3.43) p⋆2 =
D(p⋆)√

2d
, p⋆j =

D(p⋆)

(j − 1)
√
d
, j ∈ {3, . . . , d},

which we substitute into D1(p)
2 to get

(3.44) D(p⋆)2 = D1(p
⋆)2 = 1 +

D(p⋆)2

2d
+ (d− 2)

D(p⋆)2

d
.

From (3.44) we deduce D(p⋆)2 = 2
3d which, substituted into (3.43) yields (3.41).

�
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Proof of Theorem 3.2. The optimization problem (3.13) can be equivalently rewrit-
ten to (3.7) and also to (3.10). Lemma 3.4 yields existence of the half-space of
maximizers to (3.7). Then, factoring the problem by fixing p1 = 1, Lemma 3.5
reduces (3.10) to a constraint optimization problem (3.18). This problem is shown
to have exactly one active constraint (Lemmas 3.6, 3.7 and Corollary 3.8). Fur-
ther, the active constraint is identified and the maximizer of (3.18) is determined
in Lemma 3.9. Equivalence of the optimization problems concludes the proof. �

4. Concluding remarks

We conclude with five remarks on various topics.

4.1. Optimization at each step. Notice that the optimal values of parameters
(3.41) are independent of the dimension d. This can be interpreted that the most
regular partition of d-dimensional space is constructed above the most regular par-
tition of (d − 1)-dimensional space. As a consequence, the shape optimization we
performed is equivalent to the shape optimization at every dimension, which gives
a sequence of one-dimensional optimization problems that is technically much less
demanding.

4.2. Integer sequence for OEIS. One can easily see that for suitable κ it is
possible to express the squares of the components of p⋆

κ from (3.12) as fraction
with unit numerator and integer denominator. Largest such κ, yielding the smallest
possible integers in those fractions, is κ = 2−1/2. For this value, the denominators
give the following values: 2, 6, 12, 27, 48, 75, 108, 147, 192, 243, 300,. . . , having
the formula for j-th item aj = 3(j − 1)2 for j ≥ 3. This sequence has been upon
the suggestion of the author indexed in Sloane’s database of integer sequences [23]
as sequence A289443.

4.3. Shape optimality of the partition. It is not obvious whether there exists
any better simplicial tiling that cannot be constructed by our method. However, in
2D there is no triangle with better ratio ϑ than the equilateral one. Similarly, in 3D,
our method gives the standard Sommerville tetrahedron (see [13, Figure 2]), which
as for Naylor [21] is the best one among space-filling tetrahedra when considering
the regularity ratio ϑ.

Moreover, we have computed that the regularity ratio of the worst element in
Td(p⋆) is greater or equal to that of Td(p⋆,π⋆), which is, see (3.12),

(4.1)

∏d
i=1 p

⋆
i

D1(p⋆)d
=

√
3
2

(
2
3

)d 1
(d−1)!

(
2d
3

) d
2

=

√
3

2
d · 1

d
d
2 d!

,

while for Kuhn’s partition (1.1) we have

(4.2) ϑ(Sπ) =
(
d

d
2 d!
)−1

.

From this we can conclude that the elements of Td(p⋆) are at least
√
3
2 d times more

regular than those of Kuhn.
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4.4. Non-euclidean geometries. We devote the last remark to the fact that
the construction is independent of the underlying geometry and thus might be
used also for computations in non-euclidean spaces. However, we cannot apply the
optimization result directly, as it uses the equivolumetricity property. This is based
on translation invariance which does not hold in non-euclidean geometries. More
on tessellations of hyperbolic spaces can be found in works of Coxeter [5] or [6], and
Margenstern [18], [19], [20]. As Margenstern points out, these works might find their
use in computational problems of theory of relativity or cosmological research, but
such results had not been published before 2003 and to the best author’s knowledge
not even since these days.
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