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Abstract

We demonstrate a new kind of companion matrix, for polynomials of the form

c(λ) = λa(λ)b(λ) + c0 where upper Hessenberg companions are known for the

polynomials a(λ) and b(λ). This construction can generate companion matrices

with smaller entries than the Fiedler or Frobenius forms. This generalizes Piers

Lawrence’s Mandelbrot companion matrix. We motivate the construction by

use of Narayana-Mandelbrot polynomials, which are also new to this paper.
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1. Introduction

Sequence A000930 of the Online Encyclopedia of Integer Sequences, Narayana’s

cows sequence, begins

1, 1, 1, 2, 3, 4, 6, 9, 13, 19, . . . (1)

and is generated by rn = rn−1 + rn−3 [1]. The connection to cows is that an

ideal cow produces a calf every year, starting in its fourth year. Narayana was a

mathematician in 14th century India. Various facts are known for this sequence,
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which is similar to the Fibonacci sequence: for instance, the generating function

is 1/(1− x− x3). Many references are given in the OEIS, but see also [2].

Recently, we generalized the Mandelbrot polynomials

pn+1 = zp2n + 1 p0 = 0 (2)

to the Fibonacci-Mandelbrot polynomials

qn+1 = zqnqn−1 + 1 q0 = 0, q1 = 1 (3)

and generalized Piers Lawrence’s supersparse1 companion matrix for pn [3] to

an analogous one for qn. See [4], [5] and [6] for details, though we summarize

these constructions below.

In this paper, we define the Narayana-Mandelbrot polynomials by r0 =

0, r1 = r2 = 1 and

rn+1 = zrnrn−2 + 1 (4)

for n ≥ 2. We give some basic facts about these polynomials, and we construct

a recursive family of companion matrices Rn, i.e. such that

rn(z) = det(zI−Rn). (5)

The Rn will be seen to be supersparse. We prove that the construction is valid

by using induction and the Schur determinantal formula.

The surprising analogy between all three families of supersparse companions

led us to conjecture and prove the following.

Theorem 1. Suppose a(z) = det(zI−A), b(z) = det(zI−B), and both A and

B are upper Hessenberg matrices with nonzero subdiagonal entries, and

α =
1(∏da−1

j=1 aj+1,j

)(∏db−1
j=1 bj+1,j

) (6)

1A matrix is supersparse if, it is sparse and its nonzero elements are drawn from a small

set, e.g. {−1, 1}
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Figure 1: Roots of Narayana-Mandelbrot polynomial, r36(z). The degree of r36(z) is 395032.
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is the reciprocal of the product of the subdiagonal entries of A and B, and

da = degz a and db = degz b, so the dimension of A is da×da and the dimension

of B is db × db. Suppose both da and db are at least 1. Then if

C =


A −αc0carb
−ra 0

−cb B

 (7)

where ra =
[

0 0 · · · 1
]
of length da, cb =

[
1 0 · · · 0

]T
of length

db, we have

c(z) = det (zI−C) = z · a(z)b(z) + c0. (8)

Remark 1. Proving this theorem automatically proves the validity of the con-

structions of the supersparse companion matrices for pn, qn, and rn.

Remark 2. Starting with a polynomial c(z), we see that there are potentially

many such a(z) and b(z). This freedom may be quite valuable or, it may be an

obstacle.

Proof. Partition

zI−C =

 C11 C12

C21 C22

 (9)

where C22 = zI−B is nonsingular if z is not an eigenvalue of B, i.e. b(z) 6= 0.

Later we will remove this restriction. Also,

C21 =


1
 (10)

is db × (da + 1) and has only one nonzero element, which is a 1 in the upper

right corner. Next,

C12 =


αc0

 (11)
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is (1 + da)× db and again has only one nonzero element, αc0 in the upper right

corner. [In fact, c0 can be zero.] This leaves

C11 =


zI−A

0
...

0

0

1 z


(12)

which is da + 1 by da + 1.

The Schur factoring is C11 C12

C21 C22

 =

 I C12

0 C22

 C11 −C12C
−1
22 C21 0

C−1
22 I

 (13)

with the computation of the Schur complement C11 −C12C
−1
22 C21 going to do

most of the work in the proof. The Schur determinantal formula [7, Chapter

12] is then

detC = det (C22) det
(
C11 −C12C

−1
22 C21

)
. (14)

We have the following propositions.

0. zI−A and zI−B are upper Hessenberg because A and B are.

1. The first da columns of C−1
22 C21 are zero.

2. The final column of C−1
22 C21 is the solution, say ~v, of (zI−B)~v = e1.

Again, zI−B is nonsingular.

3. By Cramer’s rule, the final entry in ~v, say v, is

v =

det

(
C22 ←−

db

e1

)
det (C22)

(15)

where the notation M←−
k
~v means replace the kth column of M with the

vector ~v [8].
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4. Since C22 = zI−B is upper Hessenberg,

C22 ←−
db

e1 =



∗ ∗ ∗ · · · ∗ 1

−b21 ∗ ∗ · · · ∗ 0

−b32 ∗
...

...

−b43
. . .

. . .

∗ 0

−bdb,db−1 0


. (16)

Laplace expansion about the final column gives

det

(
C22 ←−

db

e1

)
= (−1)db−1(−1)db−1

db−1∏
j=1

bj+1,j

=

db−1∏
j=1

bj+1,j . (17)

Therefore,

v =

∏db−1
j=1 bj+1,j

b(z)
(18)

because detC22 = det (zI−B) = b(z) by hypothesis.

5. Now

C12C
−1
22 C21 =


αc0




∗
...

∗

v

 =


αc0v

 (19)

is da + 1 by da + 1 and has its only nonzero entry, αc0v, in the upper right

corner.
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6. The Schur complement is therefore
zI−A

−αc0v

0
...

0

0 · · · 0 1 z


(20)

and we compute det
(
C11 −C12C

−1
22 C21

)
by Laplace expansion on the

last column:

det
(
C11 −C12C

−1
22 C21

)
=− (−1)daαc0v det



−a21 ∗ ∗ · ∗

−a32 ∗ ∗

−a43
...

. . .

−ada,da−1


+ z det (zI−A)

=− (−1)daαc0v

da−1∏
j=1

(−aj+1,j) + z · a(z)

=αv

da−1∏
j=1

aj+1,j · c0 + z · a(z)

=α ·

(∏db−1
j=1 bj+1,j

)
b(z)

·

da−1∏
j=1

aj+1,j

 · c0 + z · a(z)

=
c0

b(z)
+ z · a(z) (21)

by the definition of α.

Therefore by the Schur determinantal formula

det (zI−C) = det (C22) det
(
C11 −C12C

−1
22 C21

)
= b(z)

(
c0
b(z)

+ z · a(z)

)
= z · a(z)b(z) + c0. (22)
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Since the left hand side is a polynomial as is the right hand side, the

formula will be true even if b(z) = 0, by continuity.

\

If pn = det (zI−Mn) for the Mandelbrot polynomials, the subdiagonals are

all −1 and the matrices are the same size, so α = 1 as is c0: pn+1 = zp2n + 1

gives

Mn+1 =


Mn −cnrn
−rn 0

−cn Mn

 , (23)

where rn =
[

0 0 . . . 1
]

and cn =
[

1 0 · · · 0
]T

are both of length

dn. This is Piers Lawrence’s original construction [3].These are remarkable

matrices: they contain only −1 or 0, and therefore are Bohemian matrices; yet

the characteristic polynomial contains coefficients that grow exponentially in

the degree dn (doubly exponentially in n).

For the Fibonacci-Mandelbrot polynomials, deg qn = Fn − 1 and the con-

struction contains matrices of different size:

Mn+1 =


Mn (−1)dn+1cnrn−1

−rn 0

−cn−1 Mn−1

 , (24)

where rn =
[

0 0 · · · 1
]

and cn =
[

1 0 · · · 0
]T

be row and column

vectors of length dn. This gives a matrix of slightly greater height than 23

because entries may be −1, 0, 1.

For the Narayana-Mandelbrot polynomials, the product of dn−1 (−1)s with

dn−2 − 1 (−1)s gives (−1)dn+dn−2 = (−1)dn+1 again.

This construction allows new matrix families. Suppose s0 = 0, sn+1 =

z3s4n + 1. Then if Sn is an upper Hessenberg companion for sn (with all −1 on
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the subdiagonal) the matrix

Sn+1 =



Sn −cnrn
−rn 0

−cn Sn

−rn 0

−cn Sn

−rn 0

−cn Sn


(25)

is an upper Hessenberg companion for sn+1.

2. Concluding Remarks

This is a genuinely new kind of companion matrix. We demonstrate this

on Newton’s example polynomial x3 − 2x − 5. We see that x3 − 2x − 5 =

x(x2 − 2) − 5 = x(x −
√

2)(x +
√

2) − 5, and companion matrices for x −
√

2

and x +
√

2 are just [+
√

2] and [−
√

2] respectively. Thus a companion matrix

for Newton’s polynomial is 
√

2 5

−1

−1 −
√

2

 (26)

For unimodular polynomials, such companion matrices will be of lower height

than the Frobenius or Fiedler [9] companions, and may offer better numerical

condition.

We have now established that if c(z) = z·a(z)b(z)+c0 and A and B are upper

Hessenberg companion matrices for the polynomials a(z) and b(z) respectively,

then

C =


A −αc0carb
−ra 0

−cb B

 (27)
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is a companion matrix for c(z). One wonders immediately about a corresponding

linearization, LC, strong or otherwise, for the Matrix polynomial

C(z) = zA(z)B(z) + C0 (28)

if LA is a linearization for A, LB for B. Some very preliminary experiments,

where LA and LB were block upper Hessenberg with all blocks I, so α = 1, find

that indeed

LC =


LA −c0

−I 0

−I
LB

 (29)

is a (strong) linearization for c(z), in the examples we tried.

But we have no proof, and there are complications that suggest care will

need to be taken. For instance, the matrix polynomials C1 = zAB + C0 and

C2 = zBA + C0 may be different and have different polynomials eigenvalues.

Placement of LB in the lower right seems to be necessary, and different to

exchange of LA and LB.

We leave this extension to future work.
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