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EULERIAN POLYNOMIALS, PERFECT MATCHINGS AND STIRLING

PERMUTATIONS OF THE SECOND KIND

SHI-MEI MA AND YEONG-NAN YEH

Abstract. In this paper, we first present combinatorial proofs of a kind of expansions of the

Eulerian polynomials of types A and B, and then we introduce Stirling permutations of the

second kind. In particular, we count Stirling permutations of the second kind by their cycle

ascent plateaus, fixed points and cycles.

Keywords: Eulerian polynomials; Perfect matchings; Stirling permutations of the second kind;

Stirling derangements

1. Introduction

Let Sn be the symmetric group on the set [n] = {1, 2, . . . , n} and let π = π(1)π(2) · · · π(n) ∈
Sn. Denote by Bn the hyperoctahedral group of rank n. Elements π of Bn are signed permuta-

tions of the set ±[n] such that π(−i) = −π(i) for all i, where ±[n] = {±1,±2, . . . ,±n}. Let #S

denote the cardinality of a set S. We define

desA(π) := #{i ∈ {1, 2, . . . , n− 1}|π(i) > π(i+ 1)},
desB(π) := #{i ∈ {0, 1, 2, . . . , n− 1}|π(i) > π(i+ 1)},

where π(0) = 0. The Eulerian polynomials of types A and B are respectively defined by

An(x) =
∑

π∈Sn

xdesA(π),

Bn(x) =
∑

π∈Bn

xdesB(π).

There is a larger literature devoted to An(x) and Bn(x) (see, e.g., [5, 6, 12, 15, 20, 27] and

references therein). Let s = (s1, s2, . . .) be a sequence of positive integers. Let

I(s)n = {(e1, e2, . . . , en) ∈ Zn| 0 ≤ ei < si} ,

which known as the set of s-inversion sequences. The number of ascents of an s-inversion

sequence e = (e1, e2, . . . , en) ∈ I
(s)
n is defined by

asc (e) = #

{
i ∈ [n− 1] :

ei
si

<
ei+1

si+1

}
∪ {0 : if e1 > 0}.

Let Es
n(x) =

∑
e∈Isn

xasc (e). Following [27], we have

An(x) = E(1,2,...,n)
n (x),

Bn(x) = E(2,4,...,2n)
n (x).
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Let Mn(x) be a sequence of polynomials defined by

M(x, z) =
∑

n≥0

Mn(x)
zn

n!
=

√
x− 1

x− e2z(x−1)
. (1)

Combining (1) and an explicit formula of the Ehrhart polynomial of the s-lecture hall polytope,

Savage and Viswanathan [28] proved that Mn(x) = E
(1,3,...,2n−1)
n (x).

A perfect matching of [2n] is a partition of [2n] into n blocks of size 2. Denote by N(n, k) the

number of perfect matchings of [2n] with the restriction that only k matching pairs have even

larger entries. The numbers N(n, k) satisfy the recurrence relation

N(n+ 1, k) = 2kN(n, k) + (2n − 2k + 3)N(n, k − 1)

for n, k ≥ 1, where N(1, 1) = 1 and N(1, k) = 0 for k ≥ 2 or k ≤ 0 (see [25, Proposition 1]). Let

Nn(x) =
∑n

k=1N(n, k)xk. The first few of the polynomials Nn(x) are

N0(x) = 1, N1(x) = x,N2(x) = 2x+ x2, N3(x) = 4x+ 10x2 + x3.

The exponential generating function for Nn(x) is given as follows (see [22, Eq. (25)]):

N(x, z) =
∑

n≥0

Nn(x)
zn

n!
=

√
1− x

1− xe2z(1−x)
. (2)

Combining (1) and (2), we get Mn(x) = xnNn(
1
x
) for n ≥ 0.

Context-free grammar was introduced by Chen [7] and it is a powerful tool for studying expo-

nential structures in combinatorics. We refer the reader to [9, 10, 13, 23] for further information.

In particular, using [23, Theorem 10], it is easy to present a grammatical proof of the following

result.

Proposition 1. For n ≥ 0, we have

2nxAn(x) =
n∑

k=0

(
n

k

)
Nk(x)Nn−k(x), (3)

Bn(x) =

n∑

k=0

(
n

k

)
Nk(x)Mn−k(x). (4)

Recall that the exponential generating function for xAn(x) is

A(x, z) = 1 +
∑

n≥1

xAn(x)
tn

n!
=

1− x

1− xez(1−x)
.

An equivalent formula of (3) is given as follows:

N2(x, z) = A(x, 2z). (5)

One purpose of this paper is to study the correspondence between permutations and pairs

of perfect matchings. Motivated by (5), another purpose of this paper is to explore some cycle

structure related to N(x, z) or M(x, z). This paper is organized as follows. In Section 2,

we present a combinatorial proof of Proposition 1. In Section 3, we introduce the Stirling

permutations of the second kind. In Section 4, we count Stirling permutations of the second

kind by their cycle ascent plateaus, fixed points and cycles.
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2. A combinatorial proof of Proposition 1

Let M2n be the set of perfect matchings of [2n], and let M ∈ M2n. The standard form

of M is a list of blocks {(i1, j1), (i2, j2), . . . , (in, jn)} such that ir < jr for all 1 ≤ r ≤ n and

1 = i1 < i2 < · · · < in. In the following discussion we always write M in standard form. Let

el (M) (resp. ol (M)) be the number of blocks of M with even larger (resp. odd larger) entries.

Therefore, we have

Nn(x) =
∑

M∈M2n

xel (M),

Mn(x) =
∑

M∈M2n

xol (M).

For convenience, we call (i, j) a marked block (resp. an unmarked block) if j is even (resp. odd)

and large than i.

2.1. Permutations and pairs of perfect matchings.

Let the entry π(i) be called a descent (resp. an ascent) of π if π(i) > π(i + 1) (resp. π(i) <

π(i + 1)). By using the reverse map, it is evident that the ascent and descent statistics are

equidistributed. Let asc (π) be the number of ascents of π. Hence

An(x) =
∑

π∈Sn

xasc (π). (6)

Throughout this subsection, we shall always use (6) as the definition of An(x).

We now constructively define a set of decorated permutations on [n] with some entries of

permutations decorated with hats and circles, denoted by Pn. Let w = w1w2 · · ·wn ∈ Pn.
We say that wi with a hat (resp. circle) if wi = k̂ or wi = k̂ (resp. wi = k or wi = k̂ )

for some k ∈ [n]. Start with P1 = {1, 1̂}. Suppose we have get Pn−1, where n ≥ 2. Given

v = v1v2 · · · vn−1 ∈ Pn−1. We now construct entries of Pn by inserting n, n , n̂ or n̂ into v

according the following rules:

(r1) We can only put n or n̂ at the end of v;

(r2) For 1 ≤ i ≤ n− 1, if vi with no bar, then we can only put n or n immediately before vi;

if vi with a bar, then we can only put n̂ or n̂ immediately before vi. In other words, if

vi with a hat (resp. with no hat), then we can only insert n with a hat (resp. with no

hat) immediately before vi.

It is clear that there are 2n elements in Pn that can be generated from any v ∈ Pn−1.

By induction, we obtain |Pn| = 2n|Pn−1| = 2nn!. Let ϕ(w) = ϕ(w1)ϕ(w2) · · ·ϕ(wn) be a

permutation of Sn obtained from w ∈ Pn by deleting the hats and circles of all wi. For example,

ϕ(3̂ 1̂ 4 2) = 3142. Let Pn(π) = {w ∈ Pn : ϕ(w) = π}. Let kℓ be a consecutive subword of

π ∈ Sn. By using the above rules, we see that if k < ℓ, then kℓ can be decorated as follows:

kℓ, kℓ̂, k̂ℓ, k̂ ℓ̂;

If k > ℓ, then kℓ can be decorated as kℓ, k ℓ, k̂ ℓ̂, k̂ ℓ̂. Therefore, |Pn(π)| = 2n for any π ∈ Sn.

It should be noted that kℓ̂ or k̂ℓ is a consecutive subword of w ∈ Pn if and only if k < ℓ. Let

the entry wi be called an ascent (resp. a descent) of w if ϕ(wi) < ϕ(wi+1) (ϕ(wi) > ϕ(wi+1)).
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Also a conventional ascent is counted at the beginning of w. That is, we identify a decorated

permutation w = w1 · · ·wn with the word w0w1 · · ·wn, where w0 = 0. Let asc (w) be the number

of ascents of w. Therefore, we obtain

2nxAn(x) =
∑

w∈Pn

xasc (w).

Example 2. The following decorated permutations are generated from 3̂ 1̂4 2:

3̂ 1̂425, 3̂ 1̂4 2 5̂, 3̂ 1̂4 5 2, 3̂ 1̂4 5 2, 3̂ 1̂542,

3̂ 1̂ 5 42, 3̂ 5̂ 1̂42, 3̂ 5̂ 1̂ 4 2, 5̂ 3̂ 1̂42, 5̂ 3̂ 1̂42.

Example 3. We have P2 = {12, 12̂, 1̂2, 1̂ 2̂, 21, 2 1, 2̂ 1̂, 2̂ 1̂}.

Let In,k be the set of subsets of [n] with cardinality k. Let Hat (w) be the set of entries of w

with hats and let hat (w) = #Hat (w). Let ϕ(Hat (w)) be a subset of [n] obtained from Hat (w)

by deleting all hats and circles of all entries of Hat (w). For example, if w = 5̂ 3̂ 1̂42, then

Hat (w) = {1̂, 3̂, 5̂ } and ϕ(Hat (w)) = {1, 3, 5}. We define

PMn,k = {(S1, S2, In,k) : S1 ∈M2k, S2 ∈ M2n−2k, In,k ∈ In,k},
Pn,k = {w ∈ Pn : hat (w) = k}.

In this subsection, we always assume that the weight of w ∈ Pn,k is xasc (w) and that of the pair

of matchings (S1, S2) is x
el (S1)+el (S2).

Now we start to construct a bijection, denoted by Φ, between Pn,k and PMn,k. When n = 1,

set Φ(1) = (∅, (12), ∅) and Φ(1̂) = ((12), ∅, {1}). This gives a bijection between P1,k and PM1,k.

When n = 2, the bijection between P2,k and PM2,k is given as follows:

Φ(12) = (∅, (12)(34), ∅), Φ(21) = (∅, (13)(24), ∅)
Φ( 2 1) = (∅, (14)(23), ∅), Φ(1̂2) = ((12), (12), {1}),
Φ(12̂) = ((12), (12), {2}), Φ(1̂ 2̂) = ((12)(34), ∅, {1, 2}),

Φ(2̂ 1) = ((13)(24), ∅, {1, 2}), Φ( 2̂ 1̂) = ((14)(23), ∅, {1, 2}).

Suppose Φ is a bijection between Pm−1,k and PMm−1,k for all k, where m ≥ 3. Assume

that w = w1w2 · · ·wm−1 ∈ Pm−1,k, asc (w) = i + j and Hat (w) = {wi1 , wi2 , . . . , wik}. Let

Φ(w) = (S1, S2, Im−1,k), where S1 ∈ M2k, S2 ∈ M2m−2k−2, Im−1,k = ϕ(Hat (w)), el (S1) =

i, el (S2) = j.

Consider the case n = m. Let w′ be a decorated permutation generated from w. We first

distinguish two cases: If w′ = wm, then let Φ(w′) = (S1, S2(2m − 2k − 1, 2m − 2k), Im,k),

where Im,k = ϕ(Hat (w)); If w′ = wm̂, then let Φ(w′) = (S1(2k + 1, 2k + 2), S2, Im,k+1), where

Im,k+1 = ϕ(Hat (w)) ∪ {m}.
Now let ℓ1ℓ2 be a consecutive subword of w. Firstly, suppose that ℓ2 with no hat. We say

ℓ2 is a unhat-ascent-top (resp. unhat-descent-bottom) if ϕ(ℓ1) < ϕ(ℓ2) (resp. ϕ(ℓ1) > ϕ(ℓ2)).

Consider the following two cases:
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(c1) If w′ = · · · ℓ1mℓ2 (resp. w′ = · · · ℓ1mℓ2 · · · ) and ℓ2 is the pth unhat-ascent-top of w,

then let Φ(w′) = (S1, S
′
2, Im,k), where Im,k = ϕ(Hat (w)) and S′

2 is obtained from S2

by replacing pth marked block (a, b) by two blocks (a, 2m− 2k − 1), (b, 2m − 2k) (resp.

(a, 2m− 2k), (b, 2m − 2k − 1)).

(c2) If w′ = · · · ℓ1mℓ2 · · · (resp. w′ = · · · ℓ1mℓ2 · · · ) and ℓ2 is the pth unhat-descent-bottom

of w, then let Φ(w′) = (S1, S
′
2, Im,k), where Im,k = ϕ(Hat (w)) and S′

2 is obtained from

S2 by replacing pth unmarked block (a, b) by two blocks (a, 2m − 2k − 1), (b, 2m − 2k)

(resp. (a, 2m− 2k), (b, 2m − 2k − 1)).

Secondly, suppose that ℓ2 with a hat. We say ℓ2 is a hat-ascent-top (resp. hat-descent-bottom)

if ϕ(ℓ1) < ϕ(ℓ2) (resp. ϕ(ℓ1) > ϕ(ℓ2)). Consider the following two cases:

(c1) If w′ = · · · ℓm̂ ℓ2 · · · (resp. w′ = · · · ℓ1 m̂ ℓ2 · · · ) and ℓ2 is the pth hat-ascent-top of w,

then let Φ1(w
′) = (S′

1, S2, Im,k+1), where Im,k+1 = ϕ(Hat (w)) ∪ {m} and S′
1 is obtained

from S1 by replacing the pth marked block (a, b) by two blocks (a, 2k + 1), (b, 2k + 2)

(resp. (a, 2k + 2), (b, 2k + 1)).

(c2) If w′ = · · · ℓm̂ ℓ2 · · · (resp. w′ = · · · ℓ1 m̂ ℓ2 · · · ) and ℓ2 is the pth hat-descent-bottom of

w, then let Φ(w′) = (S′
1, S2, Im,k+1), where Im,k+1 = ϕ(Hat (w))∪{m} and S′

1 is obtained

from S1 by replacing the pth unmarked block (a, b) by two blocks (a, 2k + 1), (b, 2k + 2)

(resp. (a, 2k + 2), (b, 2k + 1)).

After the above step, we write the obtained perfect matchings in standard form. Suppose that

w ∈ Pn,k and Φ(w) = (S1, S2, In,k). Then asc (w) = i+ j if and only if el (S1) + el (S2) = i+ j.

By induction, we see that Φ is the desired bijection between PMn,k to Pn,k for all k, which also

gives a constructive proof of (3).

Example 4. Let w = 3̂ 1̂42 6̂ 5̂ ∈ P6,4. The correspondence between w and Φ(w) is built up as

follows:

1̂⇔ ((12), ∅, {1});
1̂2⇔ ((12), (12), {1});

3̂ 1̂2⇔ ((13)(24), (12), {1, 3});
3̂ 1̂42⇔ ((13)(24), (13)(24), {1, 3});

3̂ 1̂425̂⇔ ((13)(24)(5, 6), (13)(24), {1, 3, 5});

3̂ 1̂42 6̂ 5̂⇔ ((13)(24)(5, 8)(6, 7), (13)(24), {1, 3, 5, 6}).

2.2. Signed permutations and pairs of perfect matchings.

In this subsection, we shall write signed permutations of Bn as π = π(0)π(1)π(2) · · · π(n),
where some elements are associated with the minus sign and π(0) = 0. As usual, we denote by

i the negative element −i. For π ∈ Bn, let RLMIN (π) = {π(i) : |π(i)| < |π(j)| for all j > i}.
For example, RLMIN (3 142675) = {1, 2, 5}. Let rlmin (π) = #RLMIN (π). It is clear that if

π ∈ Sn, then rlmin (π) is the number of right-to-left minima of π. Thus
∑

π∈Bn

xrlmin (π) = 2n
∑

π∈Sn

xrlmin (π) = 2nx(x+ 1)(x+ 2) · · · (x+ n− 1) for n ≥ 1.
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Definition 5. A block of π is a maximal subsequence of consecutive elements of π ending with

π(i) ∈ RLMIN (π) and not contain any other element of RLMIN (π).

It is clear that any π has a unique decomposition as a sequence of its blocks. If rlmin (π) = k,

then we write π 7→ B1B2 · · ·Bk, where Bi is ith block of π. A bar-block (resp. unbar-block) is a

block ending with a negative (resp. positive) element. Let Bar (π) be the union of elements of

bar-blocks of π and let bar (π) = #Bar (π). We define a map θ by

θ(Bar (π)) = {|π(i)| : π(i) ∈ Bar (π)}.

Set NBar (π) = [n]/Bar (π). For example, if π = 3 142675, then π 7→ [3 1][42][675], [3 1] and

[675] are bar-blocks of π, Bar (π) = {6, 5, 3, 1, 7},bar (π) = 5, θ(Bar (π)) = {1, 3, 5, 6, 7}. and

NBar (π) = {2, 4}.
Let Bn,k = {π ∈ Bn : bar (π) = k} and let

BMn,k = {(T1, T2, In,k) : T1 ∈ M2k, T2 ∈ M2n−2k, In,k ∈ In,k},

where In,k is the set of subsets of [n] with cardinality k. In this subsection, we always assume

that the weight of π ∈ Bn,k is xdesB(π) and that of the pair of matchings (T1, T2) is x
el (T1)+ol (T2).

Along the same lines as the proof of (3), we start to construct a bijection, denoted by Ψ,

between Bn,k and BMn,k. When n = 1, set Ψ(1) = (∅, (12), ∅) and Ψ(1) = ((12), ∅, {1}). This

gives a bijection between B1,k and BM1,k. When n = 2, the bijection Ψ between B2,k and BM2,k

is given as follows:

Ψ(12) = (∅, (12)(34), ∅), Ψ(21) = (∅, (13)(24), ∅)
Ψ(21) = (∅, (14)(23), ∅), Ψ(12) = ((12), (12), {1}),
Ψ(12) = ((12), (12), {2}), Ψ(1 2) = ((12)(34), ∅, {1, 2}),
Ψ(21) = ((13)(24), ∅, {1, 2}), Ψ(2 1) = ((14)(23), ∅, {1, 2}).

Suppose Ψ is a bijection between Bm−1,k and BMm−1,k for all k, where m ≥ 3. Assume that

π = π(1)π(2) · · · π(m − 1) ∈ Bm−1,k, desB(π) = i + j and Bar (π) = {π(i1), π(i2) . . . , π(ik)}.
Let Ψ(π) = (T1, T2, Im−1,k), where T1 ∈ M2k, T2 ∈ M2m−2k−2, Im−1,k = θ(Bar (π)), el (T1) =

i, ol (T2) = j. Consider the case n = m. Let π′ be obtained from π by inserting the entry m

(resp. m) into π. We first distinguish two cases: If π′ = πm, then let

Ψ(π′) = (T1, T2(2m− 2k − 1, 2m− 2k), Im,k),

where Im,k = θ(Bar (π)); If π′ = πm, then let Ψ(π′) = (T1(2k + 1, 2k + 2), T2, Im,k+1), where

Im,k+1 = θ(Bar (π)) ∪ {m}.
For 0 ≤ i ≤ m − 2, consider the consecutive subword π(i)π(i + 1) of π. Firstly, suppose

that π(i + 1) ∈ NBar (π). We say π(i+ 1) is a unbar-ascent-top (resp. unbar-descent-bottom) if

π(i) < π(i+ 1) (resp. π(i) > π(i+ 1)). Consider the following two cases:

(c1) If π′ = · · · π(i)mπ(i + 1) · · · (resp. π′ = · · · π(i)mπ(i + 1) · · · ) and π(i + 1) is the pth

unbar-ascent-top of π, then let Ψ(π′) = (T1, T
′
2, Im,k), where T ′

2 is obtained from T2 by

replacing the pth marked block (a, b) by two blocks (a, 2m− 2k − 1), (b, 2m− 2k) (resp.

(a, 2m− 2k), (b, 2m − 2k − 1)) and Im,k = θ(Bar (π)).
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(c2) If π′ = · · · π(i)mπ(i + 1) · · · (resp. π′ = · · · π(i)mπ(i + 1) · · · ) and π(i + 1) is the pth

unbar-descent-bottom of π, then let Ψ(π′) = (T1, T
′
2, Im,k), where T

′
2 is obtained from T2

by replacing the pth unmarked block (a, b) by two blocks (a, 2m− 2k − 1), (b, 2m − 2k)

(resp. (a, 2m− 2k), (b, 2m − 2k − 1)) and Im,k = θ(Bar (π)).

Secondly, suppose that π(i + 1) ∈ Bar (π). We say π(i + 1) is a bar-ascent-top (resp. bar-

descent-bottom) if π(i) < π(i+ 1) (resp. π(i) > π(i+ 1)). Consider the following two cases:

(c1) If π′ = · · · π(i)mπ(i + 1) · · · (resp. π′ = · · · π(i)mπ(i + 1) · · · ) and π(i + 1) is the pth

bar-ascent-top of π, then let Ψ(π′) = (T ′
1, T2, Im,k+1), where T ′

1 is obtained from T1

by replacing the pth unmarked block (a, b) by two blocks (a, 2k + 1), (b, 2k + 2) (resp.

(a, 2k + 2), (b, 2k + 1)) and Im,k+1 = θ(Bar (π)) ∪ {m}.
(c2) If π′ = · · · π(i)mπ(i + 1) · · · (resp. π′ = · · · π(i)mπ(i + 1) · · · ) and π(i + 1) is the pth

bar-descent-bottom of π, then let Ψ(π′) = (T ′
1, T2, Im,k+1), where T ′

1 is obtained from

T1 by replacing the pth marked block (a, b) by two blocks (a, 2k + 1), (b, 2k + 2) (resp.

(a, 2k + 2), (b, 2k + 1)) and Im,k+1 = θ(Bar (π)) ∪ {m}.

After the above step, we write the obtained perfect matchings in standard form. Suppose that

π ∈ Bn,k and Ψ(π) = (T1, T2, In,k). Then desB(π) = i+ j if and only if el (T1) + ol (T2) = i+ j.

By induction, we see that Ψ is the desired bijection between Bn,k to BMn,k for all k, which also

gives a constructive proof of (4).

Example 6. Let π = 3 142675. The correspondence between π and Ψ(π) is built up as follows:

1⇔ ((12), ∅, {1});
12⇔ ((12), (12), {1});

3 12⇔ ((14)(23), (12), {1, 3});
3 142⇔ ((14)(23), (13)(24), {1, 3});
3 1425⇔ ((14)(23)(5, 6), (13)(24), {1, 3, 5});

3 1426 5⇔ ((13)(24)(5, 8)(6, 7), (13)(24), {1, 3, 5, 6});
3 142675⇔ ((13)(24)(5, 8)(6, 9)(7, 10), (13)(24), {1, 3, 5, 6, 7}).

3. The String permutations of the second kind

Stirling permutations were introduced by Gessel and Stanley [16]. Let [n]2 = {1, 1, 2, 2 . . . , n, n}.
A Stirling permutation of order n is a permutation of the multiset [n]2 such that every el-

ement between the two occurrences of i is greater than i for each i ∈ [n]. For example,

Q2 = {1122, 1221, 2211}. Let σ1σ2 · · · σ2n ∈ Qn. An index i is a descent of σ if σi > σi+1

or i = 2n. Let C(n, k) be the number of Stirling permutations of [n]2 with k descents. Follow-

ing [16, Eq. (6)], the numbers C(n, k) satisfy the recurrence relation

C(n, k) = kC(n− 1, k) + (2n− k)C(n− 1, k − 1) (7)
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for n ≥ 2, with the initial conditions C(1, 1) = 1 and C(1, 0) = 0. The second-order Eulerian

polynomial is defined by

Cn(x) =

n∑

i=1

C(n, k)xk.

In recent years, there has been much work on Stirling permutations (see [2, 14, 18, 17, 24, 26]).

In particular, Bóna [2] introduced the plateau statistic on Stirling permutations, and proved

that descents and plateaus have the same distribution over Qn. Given σ ∈ Qn, the index i

is called a plateau if σi = σi+1. We say that an index i ∈ [2n − 1] is an ascent plateau if

σi−1 < σi = σi+1, where σ0 = 0. Let ap (σ) be the number of the ascent plateaus of σ. For

example, ap (221133) = 2. Very recently, we present a combinatorial proof of the following

identity (see [25, Theorem 3]):
∑

σ∈Qn

xap (σ) =
∑

M∈M2n

xel (M). (8)

Motivated by (5) and (8), we shall introduce Stirling permutations of the second kind.

Let [k]n denote the set of words of length n in the alphabet [k]. For ω = ω1ω2 · · ·ωn ∈ [k]n,

the reduction of ω, denoted by red (ω), is the unique word of length n obtained by replacing the

ith smallest entry by i. For example, red (33224547) = 22113435.

Definition 7. A permutation σ of the multiset [n]2 is a Stirling permutation of the second kind

of order n whenever σ can be written as a nonempty disjoint union of its distinct cycles and σ

has a standard cycle form satisfying the following conditions:

(i) For each i ∈ [n], the two copies of i appear in exactly one cycle;

(ii) Each cycle is written with one of its smallest entry first and the cycles are written in

increasing order of their smallest entry;

(iii) The reduction of the word formed by all entries of each cycle is a Stirling permutation.

In other words, if (c1, c2, . . . , c2k) is a cycle of σ, then red (c1c2 · · · c2k) ∈ Qk.

Let Q2
n denote the set of Stirling permutations of the second kind of order n. In the following

discussion, we always write σ ∈ Q2
n in standard cycle form.

Example 8.

Q2
1 = {(11)},Q2

2 = {(11)(22), (1122), (1221)},
Q2

3 = {(11)(22)(33), (11)(2233), (11)(2332), (1133)(22), (1331)(22), (1122)(33), (112233),
(112332), (113322), (133122), (1221)(33), (122133), (122331), (123321), (133221)}.

Let (c1, c2, . . . , c2k) be a cycle of σ. An entry ci is called a cycle plateau (resp. cycle ascent)

if ci = ci+1 (resp. ci < ci+1), where 1 ≤ i < 2k. Let cplat (π) and casc (π) be the number

of cycle plateaus and cycle ascents of π, respectively. For example, cplat ((1221)(33)) = 2 and

casc ((1221)(33)) = 1. Now we present a dual result of [2, Proposition 1].

Proposition 9. For n ≥ 1, we have

Cn(x) =
∑

π∈Q2
n

xcplat (π) =
∑

π∈Q2
n

xcasc (π)+1.
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Proof. There are two ways in which a permutation σ′ ∈ Q2
n with k cycle plateaus can be

obtained from a permutation σ ∈ Q2
n−1. If cplat (σ) = k, then we can put the two copies of

n right after a cycle plateau of σ. This gives k possibilities. If cplat (σ) = k − 1, then we can

append a new cycle (nn) right after σ or insert the two copies of n into any of the remaining

2n− 2− (k− 1) = 2n− k− 1 positions. This gives 2n− k possibilities. Comparing with (7), this

completes the proof of Cn(x) =
∑

π∈Q2
n
xcplat (π). Along the same lines, one can easily prove the

assertion for cycle ascents. This completes the proof. �

Let (c1, c2, . . . , c2k) be a cycle of σ, where k ≥ 2. An entry ci is called a cycle ascent plateau

if ci−1 < ci = ci+1, where 2 ≤ i ≤ 2k − 1. Denote by cap (σ) (resp. cyc (σ)) the number of cycle

ascent plateaus (resp. cycles) of σ. For example, cap ((1221)(33)) = 1. We define

Qn(x, q) =
∑

σ∈Q2
n

xcap (σ)qcyc (σ),

Q(x, q; z) = 1 +
∑

n≥1

Qn(x, q)
zn

n!
.

Our main result of this section is the following.

Theorem 10. The polynomials Qn(x, q) satisfy the recurrence relation

Qn+1(x, q) = (q + 2nx)Qn(x, q) + 2x(1− x)
∂

∂x
Qn(x, q) (9)

for n ≥ 0, with the initial condition Q0(x) = 1. Moreover,

Q(x, q; z) =

(√
x− 1

x− e2z(x−1)

)q

. (10)

Proof. Given σ ∈ Q2
n. Let σi be an element of Q2

n+1 obtained from σ by inserting the two

copies of n + 1, in the standard cycle decomposition of σ, right after i ∈ [n] or as a new cycle

(n+ 1, n + 1) if i = n+ 1. It is clear that

cyc (σi) =

{
cyc (σ), if i ∈ [n];

cyc (σ) + 1, if i = n+ 1.

Therefore, we have

Qn+1(x, q) =
∑

π∈Q2
n+1

xcap (π)qcyc (π)

=
n+1∑

i=1

∑

σi∈Q2
n

xcap (σi)qcyc (σi)

=
∑

σ∈Q2
n

xcap (σ)qcyc (σ)+1 +
n∑

i=1

∑

σi∈Q2
n

xcap (σi)qcyc (σi)

= qQn(x, q) +
∑

σ∈Q2
n

(2cap (σ)xcap (σ) + (2n− 2cap (σ))xcap (σ)+1)qcyc (σ)
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and (9) follows. By rewriting (9) in terms of the exponential generating function Q(x, q; z), we

have

(1− 2xz)
∂

∂z
Q(x, q; z) = qQ(x, q; z) + 2x(1− x)

∂

∂x
Q(x, q; z). (11)

It is routine to check that the generating function

Q̃(x, q; z) =

(√
x− 1

x− e2z(x−1)

)q

satisfies (11). Also, this generating function gives Q̃(x, q; 0) = 1, Q̃(x, 0; z) = 1 and Q̃(0, q; z) =

eqz. Hence Q(x, q; z) = Q̃(x, q; z). �

Combining (1) and (10), we get Q(x, q; z) = M q(x, z). Thus Qn(x, 1) = Mn(x). Moreover, it

follows from (9) that Qn+1(1, q) = (q + 2n)Qn(1, q). So the following corollary is immediate.

Corollary 11. For n ≥ 1, we have

∑

σ∈Q2
n

qcyc (σ) = q(q + 2) · · · (q + 2n− 2).

We now introduce a statistic on Qn that is equidistributed with the cycle statistic on Q2
n.

Denote by [i, j] the interval of all integers between i and j, where i ≤ j. In particular, when

i = j, we denote by [i] the singleton interval. For σ = σ1σ2 · · · σ2n ∈ Qn, if σi > σi+1, all of the

different elements before σi+1 appear a second time and all of these different entries construct

an interval, then this interval is called a descent interval of σ, where i ∈ [2n] and σ2n+1 = 0.

For example, if σ = 44223311 and τ = 113322, then the descent intervals of σ are [4], [2, 4] and

[1, 4], and that of τ is [1, 3].

Let desi (σ) be the number of descent intervals of σ. Define

Ln(q) =
∑

σ∈Qn

qdesi (σ).

Let σ(i) ∈ Qn+1 be obtained from σ ∈ Qn by inserting two copies of n+1 before σi. It is evident

that

desi (σ(i)) =

{
desi (σ) + 1, if i = 1;

desi (σ), otherwise.

Thus

Ln+1(q) = (q + 2n)Ln(q).

The following result is immediate.

Proposition 12. For n ≥ 1, we have

∑

σ∈Qn

qdesi (σ) =
∑

σ∈Q2
n

qcyc (σ).

Let An(x) =
∑n−1

k=0

〈
n
k

〉
xk. The numbers

〈
n
k

〉
are called Eulerian numbers and satisfy the

recurrence relation 〈
n

k

〉
= (k + 1)

〈
n− 1

k

〉
+ (n − k)

〈
n− 1

k − 1

〉
,
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with initial conditions
〈0
0

〉
= 1 and

〈0
k

〉
for k ≥ 1 (see [3, 6] for instance). Hence

An+1(x) = (1 + nx)An(x) + x(1− x)A′
n(x), (12)

Let CQn denote the set of Stirling permutations of Q2
n with only one cycle, which can be named

as the set of cyclic Stirling permutations. Define

Yn(x) =
∑

σ∈CQn

xcap (σ).

Comparing (9) with (12), we get the following corollary.

Corollary 13. For n ≥ 1, we have

Yn+1(x) = 2nxAn(x).

4. The distribution of cycle ascent plateaus and fixed points on Q2
n

Given σ ∈ Q2
n. Let the entry k ∈ [n] be called a fixed point of σ if (kk) is a cycle of σ. The

number of fixed points of σ is defined by

fix (σ) = #{k ∈ [n] : (kk) is a cycle of σ}.

For example, fix ((1133)(22)) = 1. Define

Pn(x, y, q) =
∑

σ∈Q2
n

xcap (σ)yfix (σ)qcyc (π),

P (x, y, q; z) =
∑

n≥0

Pn(x, y, q)
zn

n!
.

Now we present the main result of this section.

Theorem 14. For n ≥ 1, the polynomials Pn(x, y, q) satisfy the recurrence relation

Pn+1(x, y, q) = qyPn(x, y, q) + qx
n−1∑

k=0

(
n

k

)
Pk(x, y, q)2

n−kAn−k(x), (13)

with the initial conditions P0(x, y, q) = 1, P1(x, y, q) = yq. Moreover,

Pn+1(x, y, q) = (2nx+ qy)Pn(x, y, q) + 2x(1 − x)
∂

∂x
Pn(x, y, q) + 2x(1− y)

∂

∂y
Pn(x, y, q). (14)

Furthermore,

P (x, y, q; z) = eqz(y−1)Q(x, q; z). (15)

In the following, we shall prove Theorem 14 by using context-free grammars. For an alphabet

A, let Q[[A]] be the rational commutative ring of formal power series in monomials formed from

letters in A. Following [7], a context-free grammar over A is a function G : A → Q[[A]] that

replace a letter in A by a formal function over A. The formal derivative D is a linear operator

defined with respect to a context-free grammar G. More precisely, the derivative D = DG:

Q[[A]] → Q[[A]] is defined as follows: for x ∈ A, we have D(x) = G(x); for a monomial u in

Q[[A]], D(u) is defined so that D is a derivation, and for a general element q ∈ Q[[A]], D(q) is

defined by linearity.
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Lemma 15. If A = {a, b, c, d} and G = {a→ qab2, b→ b−1c2d2, c→ cd2, d→ c2d}, then

Dn(a) = a
∑

σ∈Q2
n

qcyc (σ)b2fix (σ)c2cap (σ)d2n−2fix (σ)−2cap (σ). (16)

Proof. Let Q2
n(i, j, k) = {σ ∈ Q2

n : cyc (σ) = i,fix (σ) = j, cap (σ) = k}. Given σ ∈ Q2
n(i, j, k).

We now introduce a labeling scheme for σ:

(i) Put a superscript label a at the end of σ and a superscript q before each cycle of σ;

(ii) If k is a fixed point of σ, then we put a superscript label b right after each k;

(iii) Put superscript labels c immediately before and right after each cycle ascent plateau;

(iv) In each of the remaining positions except the first position of each cycle, we put a

superscript label d.

When n = 1, we have Q2
1(1, 1, 0) = {q(1b1b)a}. When n = 2, we have Q2

2(2, 2, 0) =

{q(1b1b)q(2b2b)a} and Q2
2(1, 0, 1) = {q(1d1c2c2d)a, q(1c2c2d1d)a}. Let n = m. Suppose we

get all labeled permutations in Q2
m(i, j, k) for all i, j, k, where m ≥ 2. We consider the case

n = m+1. Let σ′ ∈ Q2
m+1 be obtained from σ ∈ Q2

m(i, j, k) by inserting two copies of the entry

m+ 1 into σ. Now we construct a correspondence, denoted by ϑ, between σ and σ′. Consider

the following cases:

(c1) If the two copies of m+1 are put at the end of σ as a new cycle ((m+1)(m+1)), then

we leave all labels of σ unchanged except the last cycle. In this case, the correspondence

ϑ is defined by

σ = · · · (· · · )a ϑ←−−→ σ′ = · · · (· · · )q((m+ 1)b(m+ 1)b)a,

which corresponds to the operation a→ qab2. Moreover, σ′ ∈ Q2
m+1(i+ 1, j + 1, k).

(c2) If the two copies of m+1 are inserted to a position of σ with label b, then ϑ corresponds

to the operation b→ b−1c2d2. In this case, σ′ ∈ Q2
m+1(i, j − 1, k + 1).

(c3) If the two copies of m+1 are inserted to a position of σ with label c, then ϑ corresponds

to the operation c→ cd2. In this case, σ′ ∈ Q2
m+1(i, j, k).

(c4) If the two copies of m+1 are inserted to a position of σ with label d, then ϑ corresponds

to the operation c→ c2d. In this case, σ′ ∈ Q2
m+1(i, j, k + 1).

By induction, we see that ϑ is the desired correspondence between permutations in Q2
m and

Q2
m+1, which also gives a constructive proof of (16). �

Lemma 16. If A = {b, c, d} and G = {b→ b−1c2d2, c→ cd2, d→ c2d}, then

Dn(b2) = 2n
n−1∑

k=0

〈
n

k

〉
c2k+2d2n−2k = 2nd2nc2An

(
c2

d2

)
for n ≥ 1.

Proof. Note that D(b2) = 2c2d2. Hence Dn(b2) = 2Dn−1(c2d2) for n ≥ 1. Note that D(c2d2) =

2(c2d4 + c4d2). Assume that

Dn(b2) = 2n
n−1∑

k=0

F (n, k)c2n−2kd2k+2.
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Since

D(Dn(b2)) = 2n+1
n−1∑

k=0

(n− k)F (n, k)c2n−2kd2k+4 + 2n+1
n−1∑

k=0

(k + 1)F (n, k)c2n−k+2d2k+2,

there follows

F (n+ 1, k) = (k + 1)F (n, k) + (n− k + 1)F (n, k − 1).

We see that the coefficients F (n, k) satisfy the same recurrence relation and initial conditions

as
〈
n
k

〉
, so they agree. �

Proof of Theorem 14:

By Lemma 15 and Lemma 16, we get

Dn+1(a) =qDn(ab2)

=q
n∑

k=0

(
n

k

)
Dk(a)Dn−k(b2)

=qb2Dn(a) + q
n−1∑

k=0

(
n

k

)
Dk(a)2n−kd2n−2kc2An−k

(
c2

d2

)
.

Taking c2 = x, b2 = y and d2 = 1 in both sides of the above identity, we immediately get (13).

Set Sn(i, j, k) = #Q2
n(i, j, k). The following recurrence relation follows easily from the proof of

Lemma 15:

Sn+1(i, j, k) = Sn(i−1, j−1, k)+2(j+1)Sn(i, j+1, k−1)+2kSn(i, j, k)+2(n−j−k+1)Sn(i, j, k−1).

Multiplying both sides of the last recurrence relation by qiyjxk and summing for all i, j, k, we

immediately get (14). Note that

Pn(x, y, q) =

n∑

i=0

(
n

i

)
(yq − q)i

∑

σ∈Q2
n

xcap (σ)qcyc (π)

=

n∑

i=0

(
n

i

)
(yq − q)iQn−i(x, q).

Thus P (x, y, q; z) = eqz(y−1)Q(x, q; z). This completes the proof of Theorem 14.

Given σ ∈ Q2
n. We say that σ is a Stirling derangement if σ has no fixed points. Let DQn

be the set of Stirling derangements of Q2
n. Let Rn,k(x, q) be the coefficient of yk in Pn(x, y, q).

Note that Rn,0 is the corresponding enumerative polynomials on DQn. Set Rn(x, q) = Rn,0(x, q).

Note that

Rn,k(x, q) =
∑

σ∈Q2
n

fix (σ)=k

xcap (σ)qcyc (π)

=

(
n

k

)
qk

∑

σ∈DQn−k

xcap (σ)qcyc (π)

=

(
n

k

)
qkRn−k(x, q).

Comparing the coefficients of both sides of (14), we get the following result.



14 S.-M. MA AND Y.-N. YEH

Theorem 17. For n ≥ 1, the polynomials Rn(x, q) satisfy the recurrence relation

Rn+1(x, q) = 2nxRn(x, q) + 2x(1 − x)
∂

∂x
Rn(x, q) + 2nxqRn−1(x, q), (17)

with the initial conditions R1(x, q) = 0, R2(x, q) = 2qx,R3(x, q) = 4qx(1 + x).

Let qn = #DQn. Then the following corollary is immediate.

Corollary 18. For n ≥ 1, the numbers qn satisfy the recurrence relation qn+1 = 2n(qn + qn−1),

with the initial conditions q0 = 1, q1 = 0 and q2 = 2.

Note that #Q2
n = Qn = (2n− 1)!!. Then

∑

n≥0

#Q2
n

zn

n!
=

1√
1− 2z

.

Thus ∑

n≥0

qn
zn

n!
=

e−z

√
1− 2z

,

which can be easily proved by using the exponential formula (see [3, Theorem 3.50]). It should

be noted that qn+1 is also the number of minimal number of 1-factors in a 2n-connected graph

having at least one 1-factor (see [1]). It would be interesting to study the relationship between

Stirling permutations of the second kind and 2n-connected graphs.

In recent years, there has been much work on derangements polynomials of Coxeter groups

(see [8, 11, 19, 20, 31] for instance). For each π ∈ Sn, an index i is called excedance (resp.

anti-excedance) if π(i) > i (resp. π(i) < i). Let exc (π) be the number of excedances of π. A

permutation π ∈ Sn is a derangement if π(i) 6= i for any i ∈ [n]. Let Dn denote the set of

derangements of Sn. The derangements polynomial is defined by

dn(x) =
∑

π∈Dn

xexc (π).

Brenti [4, Proposition 5] derived that

d(x, z) =
∑

n≥0

dn(x)
zn

n!
=

1− x

exz − xez
. (18)

The Stirling derangement polynomial is defined by

Rn(x) =
∑

σ∈DQn

xcap (σ).

Let

S(x, z) =
∑

n≥0

Rn(x)
zn

n!
.

Taking y = 0 and q = 1 in (15), we have

S(x, z) =

√
x− 1

xe2z − e2xz
. (19)

Thus

S2(x, z) = d(x, 2z),
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which is a dual result of (5). Equivalently,

2ndn(x) =

n∑

k=0

(
n

k

)
Rk(x)Rn−k(x).

Moreover, combining (17), (19) and [21, Corollary 2.4], we immediately get the following result.

Proposition 19. For n ≥ 2, the polynomial Rn(x) is symmetric and has only simple real zeros.

Let ı2 =
√
−1. From (19), putting x = −1, we deduce the expression

S(−1, z) =
√

2

e2z + e−2z
=
√

sec(2ız). (20)

Note that sec(z) is an even function. Therefore, for n ≥ 1, we have

∑

σ∈DQn

(−1)cap (σ) =

{
0, if n = 2k − 1;

(−1)khk, if n = 2k,

where the number hn is defined by the following series expansion:

√
sec(2ız) =

∑

n≥0

(−1)nhn
z2n

(2n)!
.

The first few of the numbers hn are h0 = 1, h1 = 2, h2 = 28, h3 = 1112, h4 = 87568. It should

be noted that the numbers hn also count permutations of S4n having the following properties:

(a) The permutation can be written as a product of disjoint cycles with only two elements;

(b) For i ∈ [2n], indices 2i− 1 and 2i are either both excedances or both anti-excedances.

For example, when n = 1, there are only two permutations having the desired properties:

(1, 3)(2, 4) and (14)(23). This kind of permutations was introduced by Sukumar and Hodges [30].

5. Concluding remarks

A natural generalization of Stirling permutations is k-Stirling permutations. Let ji denote the

i copies of j, where i, j ≥ 1. We call a permutation of the multiset {1k, 2k, . . . , nk} a k-Stirling

permutation of order n if for each i, 1 ≤ i ≤ n, all entries between the two occurrences of i are

at least i. One can introduce k-Stirling permutations of the second kind along the same line as

in Definition 7.
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