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In [2] I showed that the finite groups with a specified number of subgroups can always
be described as a finite list of similarity classes. Neil Sloane suggested that I submit the
corresponding sequence, the number of similarity classes with n subgroups, to his Online
Encyclopedia of Integer Sequences [4]. I thought this would be a quick calculation until I
discovered that my “example” case in the paper (n = 6) was wrong (as noted in [3]). I
realized that producing a reliable count required a full proof. This note contains the proof
behind my computation of the first 12 terms of the sequence.

For completeness, we include a section of [2]:

Now, we saw [above] that cyclic Sylow subgroups of G which are direct factors
allow many non-isomorphic groups to have the same number of subgroups. [This
lemma] tells us that these are precisely the cyclic Sylow subgroups which lie in
the center of G. Consequently, if p1, . . . , pc are the primes which divide |G| such
that a Sylow pi-subgroup is cyclic and central, then we can write

G = P1 × P2 × · · · × Pc ×Oπ′(G)

where each Pi is a Sylow pi-subgroup, the set π = {p1, . . . , pc} and Oπ′(G) is the
largest normal subgroup of G with order not divisible by any prime in π. We
will write G̃ = Oπ′(G). In other words, G̃ is the unique subgroup of G left after
factoring out the cyclic, central Sylow subgroups. It is the part of G that we can
hope to restrict in terms of the number of subgroups. On the other hand, if we
substituted a different prime (relatively prime to |G|) for any one of the pi, it
would not affect the number of subgroups of G. Thus, we are led to define the
following equivalence relation (which we will call “similar” for this note).

Definition. Let G and H be two finite groups. Write G as a product of cyclic
central Sylow subgroups and G̃ as above. Hence, G = P1 × P2 × · · · × Pc × G̃,
and similarly, H = Q1 × Q2 × · · · × Qd × H̃ . We say that G is similar to H if,
and only if, the following three conditions hold:

1. G̃ is isomorphic to H̃;

2. c = d;
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3. ni = mi for some reordering, where |Pi| = pni

i and |Qi| = qmi

i .

From the comments before the definition, we see that if G is similar to H , then
they will have the same number of subgroups. Also, note that the equivalence
class of G is determined by G̃ and the multiset [n1, . . . , nc]. If we have a bound
on the number of subgroups of G, then this will bound c and each ni. Therefore,
the only remaining hole in our theorem will be filled with the following lemma.

Lemma. Given k > 1 there are a finite number of isomorphism classes of groups
G = G̃ (i.e. G has no cyclic, central Sylow subgroups) having at most k subgroups.

We wish to identify all similarity classes of groups with at most 12 subgroups.
To begin, we will find all groups with G = G̃ and at most 12 subgroups.

1 Abelian Groups

If G is abelian, then no Sylow p-subgroup can be cyclic. This means that if G is not a
p-group, then it has at least p + 1 subgroups of order p and q + 1 subgroups of order q for
some distinct primes p and q and so at least (p + 1)(q + 1) ≥ 12 non-trivial subgroups. So,
G must be a non-cyclic p-group.

If G contains Zp×Zp×Zp then it has at least 2p2+2p+4 ≥ 16 subgroups. Consequently,
G = Zpr × Zps with r ≥ s ≥ 1.

Now, Zp2 × Zp2 has p2 + 3p + 5 ≥ 15 subgroups, so we must have s = 1. Furthermore,
Zp4 × Zp has 4p+ 6 ≥ 14 subgroups, so r ≤ 3.

Hence, the abelian groups with G = G̃ and at most 12 subgroups are:
r = 1: (p+ 3 subgroups) p = 2, 3, 5, 7
r = 2: (2p+ 4 subgroups) p = 2, 3
r = 3: (3p+ 5 subgroups) p = 2

2 Non-Abelian Groups

Now we consider non-abelian G. Let q be any prime dividing |G|. If Sylow q is not normal,
there are at least q + 1 Sylow q-subgroups. If Sylow q is normal, there is a q-complement.
If the complement is normal, then the Sylow q cannot be cyclic (else G 6= G̃) and so has at
least q + 1 maximal subgroups. Finally, if the complement is not normal, then we have at
least q complements and 1 Sylow q. So, in every case, with the trival subgroup and G, the
number of subgroups is at least q + 3. This implies q ≤ 9.

??? Can |G| be div by all of 2, 3, 5, and 7 ??? As below, at least 2 must be normal
and their product has a complement with 2 primes that can have at most 3 subgroups ⇒⇐
impossible.

Suppose |G| is divisible by 3 distinct primes p, q, r.
If none of the Sylows are normal, we have at least (p + 1) + (q + 1) + (r + 1) ≥ 13

subgroups, so at least one is normal. Call it an r-subgroup N . Complementing N , we have
a two prime group H in G and every subgroup of H gives rise to at least two subgroups of
G (itself and itself times N). So, H has at most 6 subgroups.



???Must we have H = H̃??? NO: Z6 on Z7.

Lemma. A group H divisible by 2 primes with at most 6 subgroups is either Zp×Zq, Zp×Zq2,
or S3.

Proof. If H is abelian, one sylow has 2 subgroups, the other 2 or 3 subgroups, so H = Zp×Zq

or Zp × Zq2 . If H has a non-abelian sylow, the sylow has at least 3 maximal subgroups, 1
prime order, 1 triv, 1 whole subgrp, plus the other sylow ⇒≥ 7 subgrps, which is too many.
So both sylows of H are abelian and so at least one is not normal. Assume WLOG p < q.
Then there are at least p+1 non-normal sylows, one other sylow, the whole group, and trivial
⇒≥ p+ 4 subgroups. So we must have equality on our estimate which means, p = 2, sylow
2 is not normal, p + 1 divides |G|, so q = 3, sylow 3 is normal, sylows have no non-trivial
subgroups ⇒ H = S3.

If H is abelian with cyclic sylows, then neither Sylow can act trivially on N or it would
be central cyclic in G. Therefore N cannot normalize the sylows or H and so the number
of conjugates of each is at least r. This gives at least 3r subgroups of G. Furthermore we
have G, N , 1, and NHp and NHq, so at least 3r+5 subgroups. Consequently, we must have
r = 2.

Our list of subgroups includes only N and 1 from subgroups of N . So, if N has at least
4 subgroups, then G will have at least 13 subgroups. Therefore, N is cyclic of order 2 or 4.
But odd primes cannot act non-trivially on a cyclic group of order 2 or 4, so this situation
is impossible.

Last, we consider the case of H = S3. In this case, r ≥ 5. If H acts trivially on N ,
then N cannot be cyclic and so has at least 8 subgroups. Since S3 has 6 subgroups, G will
have at least 48 subgroups. So, H acts non-trivially on N and a sylow 2, H2, must also act
non-trivally on N . In particular, N does not normalize H or H2 and, as above, this gives us
at least 2r subgroups of G. We also have G, N , and 1. Since r is at least 5, this implies G
has more than 12 subgroups.

Consequently, |G| must be divisible by at most two primes.

3 Groups with two primes in the order

Suppose |G| = paqb, p < q primes and G is non-abelian.
The argument for two primes is more complicated than I would like. I’ll use indentation

to organize assumptions (like in computer code).

If neither sylow is cyclic, then we have (p+1)+ (q+1) maximals in the sylows, the two
sylows and the whole group and trivial. That is, the number of subgroups is at least
p + q + 6. This can only be less than or equal to 12 when p = 2, q = 3. Furthermore,
the close estimate means each sylow must be normal and prime squared order. That
forces G to be abelian ⇒⇐.

If sylow p is cyclic,



If sylow p is normal, then the sylow q cannot act non-trivially and so the sylow p
is cyclic and central ⇒⇐.

else sylow p is not normal, then the number of sylow p is ≥ q.

If sylow q not cyclic, we have at least q + 1 maximals and so at least 2q + 4
subgroups. Again the estimate forces sylow q to be Z3 × Z3 and p = 2, at
least 10 subgroups. Furthermore, we cannot have 9 sylow 2’s, so there is a
central subgroup of order 3. Counting again, we have whole, trivial, one 9,
four 3’s, three sylow 2’s, three sylow 2 times central 3 ⇒≥ 13 subgroups.
⇒⇐

else sylow q is cyclic, thenGmust be supersolvable since both sylows are cyclic
and it follows the sylow q must be normal. Sylow p must act non-trivially on
q, so (p, q) = (2, 3), (2, 5), (2, 7), or (3, 7).
The only case where the action is not that of an element of order p is when
p = 2, q = 5 when Z4 acts faithfully on Z5. In this case, G will have a quo-
tient group of order 20 isomorphic to Z4 acting faithfully on Z5. Since this
group has 14 subgroups, we do not need to consider such G. Therefore, we
can assume the sylow p acts as an element of order p. The sylow p fixes only
the identity in sylow q (only possible non-triv action). This means the sylow
p is self-normalizing and so the number of sylow p subgroups is qb. Now the
subgroup of order pa−1 centralizes the sylow q and so is the intersection of the
sylow p’s. Hence the non-triv p-subgroups are order p, . . . , pa−1, and qb sub-
groups order pa. There are b non-triv q-subgroups and (a−1)·b proper abelian
subgroups divisible by pq. Furthermore, for each non-triv, proper q-subgroup,
order qc, we can multiply that by the sylow p’s to get subgroups of order paqc.
There will be qc different sylow p’s giving the same subgroup of order paqc and
so a total of qb−c such subgroups. Consequently, the number of (non-abelian)
proper subgroups divisible by paq will be q+ q2+ · · ·+ qb−1 = (qb−q)/(q−1).
Including trivial and whole group, the number of subgroups is:

(a− 1 + qb) + b+ (a− 1)b+
qb − q

q − 1
+ 2 = qb +

qb − q

q − 1
+ a(b+ 1) + 1.

The corresponding values are shown in the following tables.
q = 3

b
1 2

1 6 16
a 2 8 19

3 10 22
4 12 25
5 14 28

q = 5
b
1 2

1 8 34
a 2 10 37

3 12 40
4 14 43

q = 7
b
1 2

1 10 60
a 2 12 63

3 14 66

Since the q = 7 table applies to both p = 2 and p = 3 we see there are 11
groups with at most 12 subgroups in this case.



else sylow p is not cyclic, and so sylow q must be cyclic and not central.

If neither sylow is normal, then number of sylow p is at least q and the number
of sylow q is at least q + 1. Including trivial and whole, we have at least 2q + 3
subgroups, which means q < 5 and so we have q = 3, p = 2. We have at least three
sylow 2’s and at least four sylow 3’s, triv, whole, and one sylow 2 will contain
three subgroups of order 2. However, that’s already 12 subgroups and we have
more order 2 subgroups in the other sylow 2’s. ⇒⇐

If sylow p is normal, then it cannot be cyclic, else it would be central. Furthermore,
Zp × Zp × Zp has too many subgroups, so the sylow p must be a two-generator
group. So, the sylow p has p+1 maximal subgroups, there are at least q+1 sylow
q’s and with sylow p itself, triv, and whole, we have at least p+ q + 5 subgroups.
If p ≥ 3, this is too many, so we must have p = 2. If q ≥ 5, then our count gives
at least 12 subgroups. The only way to avoid going over 12 would be to have the
sylow p be Z2 × Z2, sylow q be Z5. But Z5 has no non-trivial action on Z2 × Z2,
and so we are left only with the case p = 2, q = 3, and at least 10 subgroups. Now,
the alternating group A4 satisfies these conditions and has 10 subgroups. If sylow
3 has order larger than 3, then there will be a central 3-subgroup whose product
with the various 2-subgroups will give more than 12 subgroups. So, the sylow 3
must be order 3. If sylow 2 has order larger than 4, then the frattini subgroup of
the sylow 2 and the frattini subgroup times the various sylow 3-subgroups give
more than 12 subgroups. So, A4 is the only group in this case.

If sylow q is normal, we are already assuming the sylow q is cyclic. Furthermore,
the sylow p is not normal and not cyclic. So we have at least q sylow p’s and the
sylow p’s have at least p+ 1 maximal subgroups.

If two sylow p’s have a common maximal subgroup, M , then the normal-
izer of M will contain at least two sylow p-subgroups of G and so must be
divisible by q. Thus the intersection of the normalizer with the sylow q-
subgroup is a non-trivial central q subgroup. Therefore, our subgroups in-
clude q sylow p’s, q sylow p’s times the central q, at least p + 1 maximal
subgroups of sylow p, each of those p+1 times the central q, the sylow q, the
central q, triv, and whole for at least 2q + 2p+ 6 ≥ 16 subgroups. ⇒⇐

else no shared maximal subgroups, which means we have at least q(p + 1)
maximal subgroups of sylow p’s altogether. Therefore we have at least these
q(p+ 1) subgroups, q sylow p-subgroups, one sylow q, triv, and whole. That
is, qp+ 2q + 3 ≥ 15 subgroups. ⇒⇐

Hence, the non-abelian groups with G = G̃, |G| divisible by at least two primes, and at
most 12 subgroups are:

Zp ⋉ Zq: (q + 3 subgroups) (p, q) = (2, 3), (2, 5), (2, 7), or (3, 7)
Zp2 ⋉ Zq with action of order p: (q + 5 subgroups) (p, q) = (2, 3), (2, 5), (2, 7), or (3, 7)
Z8 ⋉ Zq with action of order 2: (q + 7 subgroups) q = 3 or 5
Z16 ⋉ Z3 with action of order 2: (12 subgroups)
A4: (10 subgroups)



4 p-Groups

Finally, we have the case of G a non-abelian p-group, |G| = pn.
The group Zp ×Zp ×Zp has at least 16 subgroups, so G must be a two-generator group.

Consequently, we haveG, p+1 maximals, the Frattini subgroup, and triv⇒≥ p+4 subgroups.
When p is odd we will have at least p+ 1 order p, one of which might be the Frattini, so

we’d have at least 2p+ 4 ⇒ p = 2 or 3.
Assume |G′| = p and Z(G) cyclic. Then G′ ⊂ Z(G) and for x, y ∈ G, [xp, y] = [x, y]p = 1

so xp is central and Φ(G) ⊂ Z(G). Now |G : Φ(G)| = p2 and so we must have Φ(G) = Z(G)
is cyclic order pn−2.

If G has a single subgroup of order p, then p = 2 and G is generalized quaternion. Now,
each generalized quaternion 2-group contains the next smaller as a subgroup. So, we can
just check: Q8 has 6 subgroups, Q16 has 11 subgroups, and Q32 has 20. That is, G must be
Q8 or Q16.

Otherwise, G has more than one subgroup of order p and so we can choose S ⊂ G with
S order p and not in the center. Then M = SZ(G) is an abelian subgroup isomorphic to
Zp×Zpn−2. From the abelian case above, we see that the number of subgroups of M is given
in the following table.

n
3 4 5

p 2 5 8 11
3 6 10 14

In addition to the subgroups in M , G also has p other maximal subgroups, and G itself.
So, increasing each table entry by p+1 we see the only possibilities for at most 12 subgroups
are |G| = 8, 16, or 27.

By brute force check we find for order 8 the dihedral group D8 with 10 subgroups, for
order 16 a group with presentation 〈a, b|a2, b8, ba = b5〉 having 11 subgroups, and for order
27 the extraspecial group of exponent 9 with 10 subgroups.

Thus we have found five groups with |G′| = p and cyclic center. Now any non-abelian
finite p-group will have such a group as a homomorphic image.

Note that no generalized quaternion group can have a smaller generalized quaternion
group as a homomorphic image. One easy way to see this is to note that Qn/Z(Qn) = Dn/2

and any non-abelian image of a dihedral group will have more than one involution. We will
use this fact several times below.

Suppose |G| = 35 and choose K maximal such that G = G/K is non-abelian. It follows

that G will have |G
′

| = 3 and Z(G) cyclic. If |K| ≤ 3, it follows from above that G, and so G,
will have more than 12 subgroups. If |K| = 32, then |G| = 33 and so must be the extraspecial
group of exponent 32. Thus, G has 10 subgroups. The only way we could have at most 12
subgroups in G is if K is cyclic and every subgroup either contains K or is order 3 or 1
in K. However, this implies that G has only one subgroup of order 3, which is impossible.
Consequently, no non-abelian 3-group of order at least 35 can have at most 12 subgroups.
We know from above that there is only one such group of order 33 and a computer check
shows that there are no examples of order 34 (these groups have at least 14 subgroups).

Now suppose |G| = 26 and choose K maximal such that G = G/K is non-abelian. As

above, G will have |G
′

| = 2 and Z(G) cyclic. If |K| ≤ 2, it follows from above that G, and so



G, will have more than 12 subgroups. If |K| = 22, then |G| = 24 and so we see from above
that G is one of two groups each of which have 11 subgroups. Since K has at least 2 proper
subgroups, G must have 13 or more subgroups. Finally, consider |K| = 23. Then G must
be D8 or Q8 with 10 or 6 subgroups respectively. Since K has at least 3 proper subgroups,
G cannot be D8 and so must be Q8 with 6 subgroups. Even if all of the subgroups of G
either contained K or were contained in K, then K would have to have at most 7 subgroups
(6 proper). However, the only groups of order 23 with 7 or fewer subgroups are Z8 and Q8.
Since each of these have a single subgroup of order 2, our assumption would force G to be
generalized quaternion, which it clearly is not. Thus we see that no non-abelian 2-group of
order at least 26 can have number of subgroups less than or equal to 12. A computer check
shows there are no examples of order 25 (these groups have at least 14 subgroups) and only
the two groups mentioned above for order 24.

Hence, the non-abelian p-groups with G = G̃ and at most 12 subgroups are:
D8: (10 subgroups)
Q8: (6 subgroups)
Q16: (11 subgroups)
Z2 ⋉ Z8: (11 subgroups)
E27 extraspecial order 27, exponent 9: (10 subgroups)

5 Conclusion

Collecting all of our results, we have:

n Groups with G = G̃ and n subgroups
1 Trivial group
2
3
4
5 Z2 × Z2

6 Z3 × Z3, S3, Q8

7
8 Z2 × Z4, Z5 × Z5, D10, Z4 ⋉ Z3

9
10 Z3 × Z9, Z7 × Z7, D14, A4, Z3 ⋉ Z7, Z4 ⋉ Z5, Z8 ⋉ Z3, E27

11 Z2 × Z8, Q16, Z2 ⋉ Z8

12 Z4 ⋉ Z7, Z9 ⋉ Z7, Z8 ⋉ Z5, Z16 ⋉ Z3

In particular the sequence of the number of groups with G = G̃ and n subgroups would
be:

1, 0, 0, 0, 1, 3, 0, 4, 0, 8, 3, 4, . . .

Forming the direct product with a coprime, cyclic group of order pk will multiply the
number of subgroups by k + 1. Thus we find groups with n subgroups corresponding to
various factorizations of n.



n Similarity class representatives with n subgroups
1 Trivial group
2 Z2

3 Z22

4 Z23, Z2 × Z3

5 Z24, Z2 × Z2

6 Z25, Z2 × Z32 , Z3 × Z3, S3, Q8

7 Z26

8 Z27, Z2 × Z33 , Z2 × Z3 × Z5, Z2 × Z4, Z5 × Z5, D10, Z4 ⋉ Z3

9 Z28, Z22 × Z32

10 Z29, Z2 × Z34 , Z2 × Z2 × Z3, Z3 × Z9, Z7 × Z7, D14, A4, Z3 ⋉ Z7, Z4 ⋉ Z5, Z8 ⋉ Z3, E27

11 Z210 , Z2 × Z8, Q16, Z2 ⋉ Z8

12 Z211 , Z2 × Z35 , Z3 × Z3 × Z2, S3 × Z5, Q8 × Z3, Z22 × Z33 , Z2 × Z3 × Z52 , Z4 ⋉ Z7,
Z9 ⋉ Z7, Z8 ⋉ Z5, Z16 ⋉ Z3

In the following version of the previous table we represent classes using p, q, r to represent
primes which do not occur anywhere else in the group order. This makes it a bit easier to
recognize the infinite classes.

n Similarity classes with n subgroups
1 Trivial group
2 Zp

3 Zp2

4 Zp3, Zp × Zq

5 Zp4, Z2 × Z2

6 Zp5, Zp × Zq2 , Z3 × Z3, S3, Q8

7 Zp6

8 Zp7, Zp × Zq3 , Zp × Zq × Zr, Z2 × Z4, Z5 × Z5, D10, Z4 ⋉ Z3

9 Zp8, Zp2 × Zq2

10 Zp9, Zp × Zq4 , Z2 × Z2 × Zp, Z3 × Z9, Z7 × Z7, D14, A4, Z3 ⋉ Z7, Z4 ⋉ Z5, Z8 ⋉ Z3, E27

11 Zp10, Z2 × Z8, Q16, Z2 ⋉ Z8

12 Zp11, Zp × Zq5, Z3 × Z3 × Zp, S3 × Zp, Q8 × Zp, Zp2 × Zq3, Zp × Zq × Zr2 , Z4 ⋉ Z7,
Z9 ⋉ Z7, Z8 ⋉ Z5, Z16 ⋉ Z3

In conclusion, the sequence of number of similarity classes with a given number of sub-
groups begins:

1, 1, 1, 2, 2, 5, 1, 7, 2, 11, 4, 11, . . .

Note: In [1], Miller lists the groups with specified number of subgroups where the number
of subgroups runs from 1 through 9. His lists agree with ours.
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