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THE SEQUENCE OF MIDDLE DIVISORS IS UNBOUNDED

JON EIVIND VATNE

Abstract. The sequence of middle divisors is shown to be unbounded. For a
given number n, an,0 is the number of divisors of n in between

√

n/2 and
√
2n.

We explicitly construct a sequence of numbers n(i) and a list of divisors in the
interesting range, so that the length of the list goes to infinity as i increases.
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1. Introduction

In [1], Kassel and Reutenauer studies the zeta function of the Hilbert scheme of
n points in the two-torus. The polynomial counting ideals of codimension n in the
Laurent algebra in two variables turns out to have an interesting quotient, whose
middle coefficient an,0 has a direct description:

an,0 =
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∣

∣

∣

{d : d|n ,

√
2n

2
< d ≤

√
2n}

∣
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∣
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We follow the symbolism from [1], which the reader should also consult for more mo-
tivation. In a talk at the conference Algebraic geometry and Mathematical Physics

2016, in honour of A. Laudal’s 80th birthday, Kassel discussed the results in [1] and
asked whether the sequence an,0 is bounded or not. Evidently it grows very slowly.
The sequence is included in the online encyclopedia of integer sequences as sequence
A067742 [2].

In this short note, we will show that the sequence is unbounded. The idea is to
choose n such that

√

n/2 is a divisor, and to multiply this divisor with a number
slightly larger than one repeatedly, making sure that the product still divides n as
long as it is smaller than

√
2n.

2. Unboundedness of the sequence

Theorem 2.1. Let

an,0 =
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√
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Then

lim sup
n→∞

an,0 = ∞
1
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More precisely, for any i ≥ 1 define smax = ln(2)/ ln(1 + i−1) and

(1) n(i) = 2(i+ 1)⌈2smax⌉ · i2⌈smax⌉.

Then limi→∞ an(i),0 = ∞.

Proof. With the choice of n(i) from (1), we have that
√

n/2 = (i+ 1)⌈smax⌉ · i⌈smax⌉,

a divisor of n(i). For each s = 1, 2, . . . , ⌊smax⌋, consider

d(s) =
√

n/2

(

i+ 1

i

)s

= (i+ 1)⌈smax⌉+s · i⌈smax⌉−s.

This divides n(i) as long as ⌈smax⌉+ s ≤ 2⌈smax⌉ and ⌈smax⌉ − s ≥ 0, which in both
cases translates simply to s ≤ ⌊smax⌋. Thus we have exhibited a number of divisors,
so that

an(i),0 ≥ ⌊smax⌋.
Note also that smax is chosen so that

(

i+ 1

i

)smax

= 2.

Therefore all the d(s) are in the interesting interval. Since

lim
i→∞

smax(i) = lim
i→∞

ln 2

ln(1 + i−1)
= ∞

this proves the theorem. �

The sequence n(i) grows very quickly whereas as the sequence smax(i) grows slowly.
It is likely that the minimal n needed to find a given value for an,0 is a lot smaller
than what is constructed in the proof.
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