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TWO TRIPLE BINOMIAL SUM SUPERCONGRUENCES

TEWODROS AMDEBERHAN AND ROBERTO TAURASO

Abstract. In a recent article, Apagodu and Zeilberger discuss some applications of an
algorithm for finding and proving congruence identities (modulo primes) of indefinite
sums of many combinatorial sequence. At the end, they propose some supercongruences
as conjectures. Here we prove one of them, including a new companion enumerating
abelian squares, and we leave some remarks for the others.

1. Introduction

In recent literature, a variety of supercongruences have been conjectured by several people,
such as Beukers [2], van Hamme [5], Rodriguez-Villegas [15], Zudilin [16], Chan et al. [3],
and lots more by Z.-W. Sun [11], [12]. Some of these conjectures are proved using a
variety of methods, including the Gaussian hypergeometric series, the Wilf-Zeilberger
method and p-adic analysis.

In a more recent and illuminating article, Apagodu and Zeilberger [1] discuss applications
of constant term extraction for finding and proving congruence identities (modulo primes)
of indefinite sums of many combinatorial sequence. At the end of their paper, they propose
some supercongruences for multiple sums as conjectures. In this paper, we prove one of
them, including a new companion, and we leave some remarks for the others. To be
specific, we confirm the following supercongruence that appears as Conjecture 6’ in [1].

Theorem 1. Let p > 2 be a prime, and let r, s, t be any positive integers, then

rp−1
∑

m1=0

sp−1
∑

m2=0

tp−1
∑

m3=0

(

m1 +m2 +m3

m1, m2, m3

)

≡p3

r−1
∑

m1=0

s−1
∑

m2=0

t−1
∑

m3=0

(

m1 +m2 +m3

m1, m2, m3

)

. (1)

The paper is organized as follows. The preliminary sections, Section 2 and Section 3,
target a host of results which are relevant for our present purpose. In Section 4, we
supply the proof for one of our main results - Theorem 1. The penultimate section,
Section 5, recalls the notion of abelian squares [9] and subsequently provides congruences
for a triple sum of squares of multinomial terms. The final section, Section 6, concludes
with a few remarks.
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2. Preliminary results on harmonic sums

For r > 0, let s = (s1, . . . , sr) ∈ (Z∗)r and let x ∈ R. We define the multiple sum

Hn(s; x) =
∑

1≤k1<···<kr≤n

r
∏

i=1

xki
i

k
|si|
i

with xi =

{

x if si < 0,
1 if si > 0.

The number l(s) := r is called the depth (or length) and |s| :=
∑r

j=1 |sj| is the weight of

the multiple sum. By convention, these sums are zero if n < r. Hn(s; 1) is the ordinary

multiple harmonic sum and in that case we will simply write Hn(s). We denote the
ordinary harmonic sum Hn(1) by Hn. Some known harmonic-sum evaluations include:

n
∑

k=0

(

n

k

)

Hk = 2n

(

Hn −
n
∑

k=1

1

k2k

)

, (2)

n
∑

k=0

(

n

k

)2

Hk =

(

2n

n

)

(2Hn −H2n) . (3)

These identities (2) and (3) are found in [8, (39)] and [4, (3.125)], respectively.

Let T (n, k) = (−1)n−k
(

n
k

)(

n+k
k

)

. Then, we have

n
∑

k=0

T (n, k) = 1 , (4)

n
∑

k=0

T (n, k)Hk = 2Hn . (5)

The identity (4) is found in [4, (3.150)] and the identity (5) in [7, Theorem 2].

Lemma 1. The following holds:

n
∑

k=0

T (n, k)H2k = 3Hn −H⌊n/2⌋. (6)

Proof. Let F (n, k) = (−1)n−k

2k+1

(

n−1
k

)(

n+k
k

)

n and δE(n) be the indicator function of E ⊂ Z.
We first show that

n−1
∑

k=0

F (n, k) = −δodd(n), (7)

We follow the Wilf-Zeilberger method. Define W (n, k) = 2(−1)n−k−1
(

n
k−1

)(

n+k
k−1

)

and then

(routinely) check that F (n+ 2, k)− F (n, k) = W (n, k + 1)−W (n, k). Summing over all
integers k and telescoping, we get

∑n+1
k=0 F (n+2, k) =

∑n−1
k=0 F (n, k). For initial conditions,

compute at n = 1 and n = 2. This settles the argument on this parity result (7).
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Now we prove, by induction on n, that

n−1
∑

j=0

1

2j + 1

j
∑

k=0

T (n, k) = H2n −
5

2
Hn +H⌊n/2⌋. (8)

The case n = 1 checks −1 = −1. Assume the statement holds for n−1. Define G(n, k) =
2(−1)n−k

(

n
k−1

)(

n+k
k−1

)

and verify that T (n, k)−T (n− 1, k) = G(n− 1, k+1)−G(n− 1, k),

also the summation
∑j

k=0 T (n, k) =
∑j

k=0 T (n−1, k)+G(n−1, j+1). Based on (4), the
induction assumption and the identity (7) from above, we gather

n−1
∑

j=0

j
∑

k=0

T (n, k)

2j + 1
=

n−1
∑

a=0

j
∑

k=0

T (n− 1, k)

2j + 1
+ 2

n−1
∑

j=0

(−1)n−j

2j + 1

(

n− 1

j

)(

n+ j

j

)

= H2n−2 −
5Hn−1

2
+H⌊(n−1)/2⌋ +

n−1
∑

k=0

T (n− 1, k)

2n− 1
−

2δodd(n)

n

= H2n−2 −
5Hn−1

2
+H⌊(n−1)/2⌋ +

1

2n− 1
−

2δodd(n)

n

= H2n −
5

2
Hn +H⌊(n−1)/2⌋ +

2δeven(n)

n
= H2n −

5

2
Hn +H⌊n/2⌋.

By induction, the claim (8) holds true.

To prove (6): employ H2k =
∑k

j=1
1

2j−1
+ 1

2
Hk twice, Abel’s summation by parts, equations

(5) and (4), again
∑n

j=1
1

2j−1
= H2n −

1
2
Hn, and then equation (8). The outcome is

n
∑

k=0

T (n, k)H2k =
n
∑

k=0

T (n, k)
k
∑

j=1

1

2j − 1
+

1

2

n
∑

k=0

T (n, k)Hk

=
n
∑

k=0

T (n, k)
n
∑

j=1

1

2j − 1
−

n−1
∑

j=0

1

2j + 1

j
∑

k=0

T (n, k) +Hn

= H2n −
1

2
Hn −H2n +

5

2
Hn −H⌊n/2⌋ +Hn

= 3Hn −H⌊n/2⌋.

The proof is now complete. �
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Let qp(2) = (2p−1−1)/p and p > 3 a prime. These are known (see [14, Sections 1 and 7]):

Hp−1 ≡p2 0 , (9)

Hp−1(2) ≡p 0 , (10)

Hp−1(1, 1) ≡p 0 , (11)

Hp−1(−1; 2) ≡p2 −2qp(2) , (12)

Hp−1(−1; 1/2) ≡p qp(2) , (13)

Hp−1(−2;−1) ≡p 0 , (14)

Hp−1(−2; 2) ≡p −q2p(2) , (15)

Hp−1(1,−1;−1) ≡p q
2
p(2) , (16)

Hp−1(1,−1; 2) ≡p 0 , (17)

Hp−1(−1, 1; 1/2) ≡p 0 . (18)

3. More preliminary results

In the next section we will need the following results.

Lemma 2. Let p > 2 be a prime, then we have

p−1
∑

k=1

1

k2k

k−1
∑

j=1

2j

j
≡p 0, (19)

and
p−1
∑

k=1

2k

k

k−1
∑

j=1

1

j2j
≡p −2q2p(2). (20)

Proof. By (18),

p−1
∑

k=1

1

k2k

k−1
∑

j=1

2j

j
≡p

p−1
∑

k=1

2−k

k

k−1
∑

j=1

2k−j

k − j
=

p−1
∑

k=1

k−1
∑

j=1

2−j

k(k − j)

=

p−2
∑

j=1

2−j

j

p−1
∑

k=j+1

(

1

k − j
−

1

k

)

=

p−2
∑

j=1

2−j

j

p−j−1
∑

k=1

1

k
−Hp−1(−1, 1; 1/2)

=

p−2
∑

j=1

2−j

j

p−1
∑

k=j+1

1

p− k
−Hp−1(−1, 1; 1/2) ≡p −2Hp−1(−1, 1; 1/2) ≡p 0.

As regards (20), use (10), (12), (13), and (19). It follows from

Hp−1(−1; 2) ·Hp−1(−1; 1/2) = Hp−1(2) +

p−1
∑

k=1

1

k2k

k−1
∑

j=1

2j

j
+

p−1
∑

k=1

2k

k

k−1
∑

j=1

1

j2j
.

�
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Lemma 3. Let p > 2 be a prime, then

p−1
∑

k=2

1

k2

p−1
∑

m=k

(−1)m−k

(

m
k

) ≡p −2qp(2). (21)

Proof. We have that

p−1
∑

k=2

1

k2

p−1
∑

m=k

(−1)m−k

(

m
k

) =

p−1
∑

k=2

1

k2

p−1−k
∑

m=0

(−1)m
(

k+m
m

) =

p−2
∑

k=1

1

(p− k)2

k−1
∑

m=0

(−1)m
(

p−k+m
m

)

≡p

p−2
∑

k=1

1

k2

k−1
∑

m=0

1
(

k−1
m

) =

p−2
∑

k=1

1

k2k

k
∑

j=1

2j

j

=

p−1
∑

k=1

1

k2k

k−1
∑

j=1

2j

j
+Hp−1(2)−

Hp−1(−1; 2)

(p− 1)2p−1

≡p 0 + 0− 2qp(2) = −2qp(2)

where we have used the congruences (12), (19),

(−1)m
(

p− k +m

m

)

=
1

m!

k−1
∏

j=k−m

(p− j) ≡p

(

k − 1

m

)

,

and the identity

k−1
∑

m=0

1
(

k−1
m

) =
k

2k

k
∑

j=1

2j

j
,

for which the reader may refer to [4, (2.4)]. �

Lemma 4. Suppose i and j are non-negative integers and p > 2 is a prime. Then, for

0 < r < p, we have

(

(i+ j)p

r + ip

)

≡p3

(

i+ j

i

)(

p

r

)

j

(

1− p

(

(i+ j − 1)Hr−1 +
i

r

))

, (22)

and

p−1
∑

m=0

(

p− 1 + (i+ j)p

m+ ip

)

≡p3

(

i+ j

i

)(

1 + (i+ j + 1)pqp(2) +

(

i+ j + 1

2

)

p2q2p(2)

)

.

(23)
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Proof. We have that

(

(i+ j)p

r + ip

)

=

(

(i+ j)p

ip

)

jp

ip + r

r−1
∏

k=1

jp− k

ip + k

≡p3

(

i+ j

i

)

jp(−1)j−1

ip+ r

r−1
∏

k=1

1− jp
k

1 + ip
k

≡p3

(

i+ j

i

)

jp(−1)j−1

r

(

1−
ip

r

)

(1− jpHr−1) (1− ipHr−1)

≡p3

(

i+ j

i

)

jp(−1)r−1

r

(

1− p

(

(i+ j)Hr−1 +
i

r

))

.

Congruence (22) follows as soon as we note that

(

p

r

)

≡p3
p(−1)r−1

r
(1− pHr−1) .

As regards (23),

p−1
∑

m=0

(

p− 1 + (i+ j)p

m+ ip

)

=

p−1
∑

m=0

p−1
∑

l=0

(

(i+ j)p

m− l + ip

)(

p− 1

l

)

=

(

(i+ j)p

ip

)

2p−1 +

p−1
∑

l=1

(

p− 1

l

) l
∑

r=1

((

(i+ j)p

r + ip

)

+

(

(i+ j)p

r + jp

))

≡p3

(

i+ j

i

)

2p−1 +

(

i+ j

i

) p−1
∑

l=1

(

p− 1

l

) l
∑

r=1

(

p

r

)

·

(

(i+ j)− p(i+ j)(i+ j − 1)Hr−1 −
2pij

r

)

where in the last step we applied (22). By (11) and (16), we get

p−1
∑

l=1

(

p− 1

l

) l
∑

r=1

(

p

r

)

Hr−1 ≡p2 −p

p−1
∑

r=1

(−1)rHr−1

r

p−1
∑

r=l

(−1)l

= −
p

2
(Hp−1(1,−1;−1) +Hp−1(1, 1)) ≡p2 −

pq2p(2)

2
.

In a similar vain, (10) and (14) imply

p−1
∑

l=1

(

p− 1

l

) l
∑

r=1

(

p

r

)

1

r
≡p2 −

p

2
(Hp−1(−2;−1) +Hp−1(2)) ≡p2 0.
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Moreover, we have the identity

p−1
∑

l=1

(

p− 1

l

) l
∑

r=1

(

p

r

)

= 2p−1(2p−1 − 1).

Finally, we obtain

p−1
∑

m=0

(

p− 1 + (i+ j)p

m+ ip

)

≡p3

(

i+ j

i

)(

2p−1 + (i+ j)2p−1(2p−1 − 1) + p2
(

i+ j

2

)

q2p(2)

)

which is equivalent to (23). �

Lemma 5. Let i, j be non-negative integers and p > 2 a prime. Then, for 0 ≤ m ≤ k < p,
we have

(

k + (i+ j)p

m+ ip

)

≡p2

(

i+ j

i

)(

k

m

)

(1 + p((i+ j)Hk − jHk−m − iHm)), (24)

and
k
∑

m=0

(

k + (i+ j)p

m+ ip

)

≡p2 2
k

(

i+ j

i

)

(

1 + p(i+ j)

k
∑

m=1

1

m2m

)

. (25)

Proof. We begin with

(

k + (i+ j)p

m+ ip

)

=
k
∑

l=0

(

(i+ j)p

m− l + ip

)(

k

l

)

=

(

i+ j

j

)(

k

m

)

+

m
∑

l=1

(

(i+ j)p

l + ip

)(

k

m− l

)

+

k−m
∑

l=1

(

(i+ j)p

l + jp

)(

k

m+ l

)

.

Then we apply (22) modulo p2 so that

(

k + (i+ j)p

m+ ip

)

≡p2

(

i+ j

j

)

[

(

k

m

)

+ j
m
∑

l=1

(

p

l

)(

k

m− l

)

+ i
k−m
∑

l=1

(

p

l

)(

k

k −m− l

)

]

=

(

i+ j

j

)[

(1− j − i)

(

k

m

)

+ j

(

p+ k

m

)

+ i

(

p+ k

k −m

)]

≡p2

(

i+ j

i

)(

k

m

)

(1 + p((i+ j)Hk − jHk−m − iHm)).

From (24), by summing over m we obtain

k
∑

m=0

(

k + (i+ j)p

m+ ip

)

≡p2

(

i+ j

i

)

(

2k + p(i+ j)

(

2kHk −

k
∑

m=0

(

k

m

)

Hm

))

.

Congruence (25) follows after applying the identity from (2). �
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4. Proof of Theorem 1

Let LHS and RHS be the left-hand side and the right-hand side of (1). We have that

LHS =

rp−1
∑

m1=0

sp−1
∑

m2=0

(

m1 +m2

m1

) tp−1
∑

m3=0

(

m1 +m2 +m3

m3

)

= tp

rp−1
∑

m1=0

sp−1
∑

m2=0

(

m1 +m2

m1

)(

m1 +m2 + tp

m1 +m2

)

1

m1 +m2 + 1

= tp

rp−1
∑

m=0

m+sp−1
∑

k=m

(

k

m

)(

k + tp

k

)

1

k + 1

= tp
r−1
∑

i=0

s−1
∑

j=0

p−1
∑

m=0

m+p−1
∑

k=m

(

k + (i+ j)p

m+ ip

)(

k + (i+ j + t)p

k + (i+ j)p

)

1

k + (i+ j)p+ 1

=
r−1
∑

i=0

s−1
∑

j=0

(Aij +Bij + Cij)

where

Aij := tp

p−1
∑

m=0

p−1
∑

k=m

(

k + (i+ j)p

m+ ip

)(

k + (i+ j + t)p

k + (i+ j)p

)

1

k + (i+ j)p+ 1
,

Bij :=
tp

(i+ j + 1)p+ 1

(

(i+ j + t + 1)p

(i+ j + 1)p

) p−1
∑

m=1

(

(i+ j + 1)p

m+ ip

)

,

Cij := tp

p−1
∑

m=0

m−1
∑

k=1

(

k + (i+ j + 1)p

m+ ip

)(

k + (i+ j + t+ 1)p

k + (i+ j + 1)p

)

1

k + 1 + (i+ j + 1)p
.

In a similar way

RHS = t

r−1
∑

i=0

s−1
∑

j=0

(

i+ j

i

)(

i+ j + t

i+ j

)

1

i+ j + 1
.

Wolstenholme’s theorem
(

ap
bp

)

≡p3
(

a
b

)

and
(

n1p+n0

k1p+k0

)

≡p

(

n1

k1

)(

n0

k0

)

deliver

Bij ≡p3
t(i+ j + 1)p2

(i+ j + 1)p+ 1

(

i+ j + t + 1

i+ j + 1

) p−1
∑

m=1

(

p− 1 + (i+ j)p

m− 1 + ip

)

1

m+ ip

≡p3 tp
2(i+ j + 1)

(

i+ j + t + 1

i+ j + 1

)(

i+ j

i

) p−1
∑

m=1

(

p− 1

m− 1

)

1

m

≡p3 2tp
2(i+ j + t + 1)

(

i+ j + t

i, j, t

)

qp(2),
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because of the fact that

p−1
∑

m=1

(

p− 1

m− 1

)

1

m
=

1

p

p−1
∑

m=1

(

p

m

)

=
2p − 2

p
= 2qp(2).

Finally, we note that for k < m < p:

(

k + p

m

)

=
1

m!

k
∏

j=1

(j + p) · p ·

m−(k+1)
∏

j=1

(p− j) ≡p2
p(−1)m−(k+1)

(k + 1)
(

m
k+1

) ,

and

(

k + (i+ j + 1)p

m+ ip

)

=
(k + p+ (i+ j)p) · · · (p+ (i+ j)p)

(m+ ip) · · · (1 + ip)

(

k + p−m+ (i+ j)p

ip

)

≡p2 (i+ j + 1)

(

k + p

m

)(

k −m+ p + (i+ j)p

ip

)

≡p2 (i+ j + 1)
p(−1)m−(k+1)

(k + 1)
(

m
k+1

)

(

i+ j

i

)

.

Furthermore,
(

k + (i+ j + t + 1)p

k + (i+ j + 1)p

)

≡p

(

i+ j + t+ 1

i+ j + 1

)

,

and thus we obtain

Cij ≡p3 tp
2(i+ j + 1)

(

i+ j + t + 1

i+ j + 1

)(

i+ j

i

) p−1
∑

m=0

m−1
∑

k=1

(−1)m−(k+1)

(k + 1)2
(

m
k+1

)

≡p3 tp
2(i+ j + t+ 1)

(

i+ j + t

i, j, t

) p−2
∑

k=1

1

(k + 1)2

p−1
∑

m=k+1

(−1)m−(k+1)

(

m
k+1

)

≡p3 tp
2(i+ j + t+ 1)

(

i+ j + t

i, j, t

) p−1
∑

k=2

1

k2

p−1
∑

m=k

(−1)m−k

(

m
k

)

≡p3 −2tp2(i+ j + t+ 1)

(

i+ j + t

i, j, t

)

qp(2)

where in the last step we used (21). Therefore Bij +Cij ≡p3 0 and it suffices to show that

Aij ≡p3
t

i+ j + 1

(

i+ j

i

)(

i+ j + t

i+ j

)

. (26)
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Now, by (23),

p

p−1
∑

k=p−1

k
∑

m=0

· · · =
1

i+ j + t+ 1

(

(i+ j + t+ 1)p

(i+ j + 1)p

) k
∑

m=0

(

p− 1 + (i+ j)p

m+ ip

)

≡p3
1

i+ j + 1

(

i+ j + t

i+ j

)(

i+ j

i

)

2(p−1)(i+j+1)

≡p3

(

i+ j + t

i, j, t

)(

1

i+ j + 1
+ pqp(2) +

(i+ j)

2
p2q2p(2)

)

because

(2p−1)(i+j+1)

i+ j + 1
=

(1 + pqp(2))
i+j+1

i+ j + 1
≡p3

1

i+ j + 1
+ pqp(2) +

(i+ j)

2
p2q2p(2).

Moreover by (24) and (25),

p

p−2
∑

k=0

k
∑

m=0

· · · ≡p3 p

p−2
∑

k=0

(

1

k + 1
−

p(i+ j)

(k + 1)2

)(

i+ j + t

i+ j

)

(1 + p(i+ j)Hk)

· 2k
(

i+ j

i

)

(

1 + p(i+ j)

k
∑

m=1

1

m2m

)

≡p3
p

2

(

i+ j + t

i, j, t

)

(

Hp−1(−1; 2)− p(i+ j)Hp−1(−2; 2)

+p(i+ j)Hp−1(1,−1; 2) + p(i+ j)

p−2
∑

k=0

1

k + 1

k
∑

m=1

1

m2m

)

≡p3

(

i+ j + t

i, j, t

)(

−pqp(2)−
(i+ j)

2
p2q2p(2)

)

,

where in the last step we used (12), (15), (17), and (20). Hence

Aij = tp

p−1
∑

k=0

k
∑

m=0

· · · ≡p3
t

i+ j + 1

(

i+ j + t

i, j, t

)

,

and the proof of (26) follows. Therefore, Theorem 1 has been validated.

5. Supercongruence for sum of abelian squares

In this section, we consider a supercongruence for a triple sum of squared multinomial
terms, which one can regard as a close companion to Theorem 1, and these appear in the
following context (see [9] for details). An abelian square is a nonempty string of length
2n where the last n symbols form a permutation of the first n symbols. If fk(n) denotes
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the number of abelian squares of length 2n over an alphabet with k letters, we have [9]

fk(n) =
∑

n1+···+nk=n

(

n1 + n2 + · · ·+ nk

n1, n2, . . . , nk

)2

.

We are ready to state and prove our second main result, namely the congruence that we
promised for the abelian squares which is very much in the spirit of Section 4.

Remark 2. We remark that the congruence (28) implies that the number of abelian
squares over an alphabet with 3 letters whose lengths are positive and less than 2p, is
divisible by p2 (see entry A174123 in OEIS, Online Encyclopedia of Integer Sequences).

Theorem 3. Let p > 2 be a prime, and let r, s, t be any positive integers. Then

rp−1
∑

m1=0

sp−1
∑

m2=0

tp−1
∑

m3=0

(

m1 +m2 +m3

m1, m2, m3

)2

≡p2

r−1
∑

m1=0

s−1
∑

m2=0

t−1
∑

m3=0

(

m1 +m2 +m3

m1, m2, m3

)2

. (27)

Proof. We have that the LHS is

r−1
∑

i1=0

s−1
∑

i2=0

t−1
∑

i3=0

p−1
∑

m1=0

p−1
∑

m2=0

p−1
∑

m3=0

(

m1 +m2 +m3 + (i1 + i2 + i3)p

m3 + i3p

)2(
m1 +m2 + (i1 + i2)p

m2 + i2p

)2

.

If m1 +m2 ≥ p then 0 ≤ m1 + m2 − p < m2 < p and p divides
(

m1+m2+(i1+i2)p
m2+i2p

)

. Hence

modulo p2 we can assume that m1 + m2 < p. Using a similar argument for the other
binomial coefficient, we can assume that m1 +m2 +m3 < p. With these assumptions, by
using (24), we obtain that the LHS is congruent modulo p2 to

r−1
∑

i1=0

s−1
∑

i2=0

t−1
∑

i3=0

(

i1 + i2 + i3
i1, i2, i3

)2
∑

m1+m2+m3<p

(

m1 +m2 +m3

m1, m2, m3

)2

· (1 + 2p((i1 + i2 + i3)Hm1+m2+m3
− i1Hm1

− i2Hm2
− i3Hm3

)) .

So, it suffices to show that (this is the case r = s = t = 1!)

∑

m1+m2+m3<p

(

m1 +m2 +m3

m1, m2, m3

)2

≡p2 1 (28)

and

∑

m1+m2+m3<p

(

m1 +m2 +m3

m1, m2, m3

)2

(Hm1+m2+m3
−Hm1

) ≡p 0. (29)

Before proving (28), we opt to rewrite the LHS and apply Vandermonde-Chu’s identity
followed by interchanging the order of summations so that

LHS =

p−1
∑

a=0

a
∑

b=0

b
∑

c=0

(

b

c

)2(
a

b

)2

=

p−1
∑

a=0

a
∑

b=0

(

2b

b

)(

a

b

)2

=

p−1
∑

b=0

(

2b

b

) p−1
∑

a=b

(

a

b

)2

.
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Denote p′ = p−1
2
. Next, we break this up into two separate claims:

S1 :=

p−1
∑

b=0
b6=p′

(

2b

b

) p−1
∑

a=b

(

a

b

)2

≡p2 0 and S2 :=

(

p− 1

p′

) p−1
∑

a=p′

(

a

p′

)2

≡p2 1.

As regards the first one,

S1 =

p′−1
∑

b=0

(

2b

b

) p−1
∑

a=b

(

a

b

)2

+

p−1
∑

b=p′+1

(

2b

b

) p−1
∑

a=b

(

a

b

)2

=

p′−1
∑

b=0

(

(

2b

b

) p−1
∑

a=b

(

a

b

)2

+

(

2(p− 1− b)

p− 1− b

) b
∑

a=0

(

p− 1− a

b− a

)2
)

≡p2

p′−1
∑

b=0

(

(

2b

b

) p−1
∑

a=b

(

a

b

)2

+

(

2(p− 1− b)

p− 1− b

)(

2b

b

)

)

because p divides
(

2(p−1−b)
p−1−b

)

for b = 0, . . . , p′ − 1 and
(

p−1−a
b−a

)

≡p (−1)b−a
(

b
b−a

)

.

Hence, it suffices to show that, for b = 0, . . . , p′ − 1,

p−1
∑

a=b

(

a

b

)2

+

(

2(p− 1− b)

p− 1− b

)

≡p2 0.

Replacing c = p− 1− b, this claim tantamount: for c = p′ + 1, . . . , p− 1
c
∑

a=0

(

p− 1− a

c− a

)2

+

(

2c

c

)

≡p2 0.

Since p divides
(

2c
c

)

for c = p′ + 1, . . . , p− 1 and
(

p− 1− a

c− a

)

≡p2 (−1)c−a

(

c

c− a

)

(1− p(Hc −Ha)),

it follows that
c
∑

a=0

(

p− 1− a

c− a

)2

+

(

2c

c

)

≡p2

c
∑

a=0

(

c

a

)2

(1− 2p(Hc −Ha)) +

(

2c

c

)

= 2

(

2c

c

)

(1− pHc) + 2p

c
∑

a=0

(

c

a

)2

Ha

= 2

(

2c

c

)

(1− pHc + p(2Hc −H2c))

≡p2 2

(

2c

c

)

(1− pH2c) ≡p2 2

(

2c

c

)

(1− 1) = 0,
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where we used the identity from (3), p
(

2c
c

)

Hc ≡p2 0 and
(

2c
c

)

pH2c ≡p2 1.

As regards S2, we have that (see [10, Lemma 2.5]), for a = 0, . . . , p′,
(

p′ + a

p′

)

≡p2 (−1)a
(

p′

a

)

(1 + p (2H2a −Ha)) .

Hence
(

p− 1

p′

)

=

(

p′ + p′

p′

)

≡p2 (−1)p
′

(1 + p (2Hp−1 −Hp′)) ≡p2 (−1)p
′

(1− pHp′),

and

S2 =

(

p− 1

p′

) p′
∑

a=0

(

p′ + a

p′

)2

≡p2 (−1)p
′

p′
∑

a=0

(−1)a
(

p′

a

)(

p′ + a

a

)

(1 + p(2H2a −Ha −Hp′))

After using identity (4), it suffices to show that

p′
∑

a=1

(−1)p
′−a

(

p′

a

)(

p′ + a

a

)

(2H2a −Ha −Hp′) ≡p 0. (30)

At this point, invoke the identities (4), (5) and (6). Then, (30) becomes

6Hp′ − 2H⌊p′/2⌋ − 2Hp′ −Hp′ = 3Hp′ − 2H⌊p′/2⌋ ≡p 0

which holds because it is known (see [6, congruences (41)-(44)]) that Hp′ ≡p −2qp(2) and
H⌊p′/2⌋ ≡p −3qp(2).

We now turn to the congruence (29), which can be reformulated as follows

p−1
∑

a=0

a
∑

b=0

b
∑

c=0

(

b

c

)2(
a

b

)2

Ha ≡p

p−1
∑

a=0

a
∑

b=0

b
∑

c=0

(

b

c

)2(
a

b

)2

Hc. (31)

Applying the Vandermonde-Chu identity and swapping the order of summations, the
left-hand side of (31) equals to

LHS =

p−1
∑

a=0

a
∑

b=0

(

2b

b

)(

a

b

)2

Ha =

p−1
∑

b=0

(

2b

b

) p−1
∑

a=b

(

a

b

)2

Ha.

An analogous procedure allows to express the right-hand side of (31) as

RHS =

p−1
∑

b=0

(

2b

b

) p−1
∑

a=b

(

a

b

)2

Ha−b.

Therefore, our task boils down to proving
p−1
∑

b=0

(

2b

b

) p−1
∑

a=b

(

a

b

)2

Ha ≡p

p−1
∑

b=0

(

2b

b

) p−1
∑

a=b

(

a

b

)2

Ha−b.
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In fact, since p divides
(

2b
b

)

for p′ < b < p, it suffices to show, for 0 ≤ b ≤ p′, that

p−1
∑

a=b

(

a

b

)2

(Ha −Ha−b) ≡p 0. (32)

The case b = 0 is trivial. Note that if p− 1 does not divide i then
∑p−1

a=1 a
i ≡p 0 (see, for

instance [6, equation (16)]); Or, more directly, since
∑p−1

a=1 a ≡p 0 and because the map

a 7→ ai is an isomorphism of the group F
∗
p, we have

∑p−1
a=1 a

i ≡p 0. On this basis and
starting the summation (harmlessly) at a = 1, we obtain

p′
∑

a=b

(

a

b

)2

(Ha −Ha−b) =

p−1
∑

a=b

(

a

b

)2 b−1
∑

j=0

1

a− j
=

p−1
∑

a=1

(

a

b

)2 b−1
∑

j=0,j 6=a

1

a− j

=
1

b!2

p−1
∑

a=1

2b−1
∑

i=1

αi a
i =

2b−1
∑

i=1

αi

b!2

p−1
∑

a=1

ai ≡p 0,

for some integers αi. Since 1 ≤ i ≤ 2p′ − 1 = p− 2, the proof follows. �

6. Some further remarks

Let us consider the double-sum counterparts of those sums from the last two sections.
First of all, it is evident that

rp−1
∑

m1=0

sp−1
∑

m2=0

(

m1 +m2

m1

)

=

(

(s+ r)p

rp

)

− 1 ≡p3

(

s+ r

r

)

− 1 =
r−1
∑

m1=0

s−1
∑

m2=0

(

m1 +m2

m1

)

.

Moreover, the Supercongruence 5’ in [1] says that

rp−1
∑

m1=0

sp−1
∑

m2=0

(

m1 +m2

m1

)2

≡p2

(p

3

)

r−1
∑

m1=0

s−1
∑

m2=0

(

m1 +m2

m1

)2

.

As a matter of fact, as before, the LHS is

r−1
∑

i1=0

s−1
∑

i2=0

(

i1 + i2
i1

)2
∑

m1+m2<p

(

m1 +m2

m1

)2

· (1 + 2p((i1 + i2)Hm1+m2
− i1Hm1

− i2Hm2
)) .

Now, by Vandermonde’s convolution,

∑

m1+m2<p

(

m1 +m2

m1

)2

≡p2

p−1
∑

k=0

k
∑

m1=0

(

k

m1

)2

=

p−1
∑

k=0

(

2k

k

)

≡p2

(p

3

)

where in the last step we used [13, congruence (1.9)]. Here,
(

p
3

)

is the Legendre symbol.
So, it suffices to show that

∑

m1+m2<p

(

m1 +m2

m1

)2

(Hm1+m2
−Hm1

) ≡p 0 (33)
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which can be proved as before. By [1, Proposition 7’], if p > 3 is a prime and r1, . . . , rn
are positive integers, then

r1p−1
∑

m1=0

· · ·

rnp−1
∑

mn=0

(

m1 + · · ·+mn

m1, . . . , mn

)

≡p

r1−1
∑

m1=0

· · ·
rn−1
∑

mn=0

(

m1 + · · ·+mn

m1, . . . , mn

)

.

What can be said of

p−1
∑

m1=0

· · ·

p−1
∑

mn=0

(

m1 + · · ·+mn

m1, . . . , mn

)2

≡p

∑

m1+···+mn<p

(

m1 + · · ·+mn

m1, . . . , mn

)2

≡p?

Apagodu and Zeilberger [1] succeeded to prove Theorem 1, by the constant term method,
modulo p, although our method yields modulo p3. Below, an intermediate congruence
(modulo p2) is established by allowing the two techniques to work in tandem. For nota-
tional simplicity, adopt the cyclic notation

∏

cyc U(x, y, z) = U(x, y, z)U(z, x, y)U(y, z, x).
Leaving out the initial steps, for which the reader is referred to [1], we commence with:

p−1
∑

m1,m2,m3=0

(

m1 +m2 +m3

m1, m2, m3

)

= CT
1

(xyz)p−1

∏

cyc

(x+ y + z)p − xp

y + z

= CT
1

(xyz)p−1

∏

cyc

(

(y + z)p−1 +

p−1
∑

i=1

(

p

i

)

xp−1(y + z)i−1

)

.

We proceed with this equation by identifying two separate contributors. For the first
piece, use

(

p−1
j

)

≡p2 (−1)j [1− pHj] and Hp′ ≡p −2qp(2) (see [6, (41)]) so that

CT
1

(xyz)p−1

∏

cyc

(y + z)p−1 = CT
1

(xyz)p−1

∏

cyc

p−1
∑

i=0

(

p− 1

i

)

yizp−1−i =

p−1
∑

j=0

(

p− 1

j

)3

≡p2

p−1
∑

j=0

(−1)j [1− 3pHj] = 1−
3p

2
Hp′ ≡p2 1 + 3p qp(2).
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For the second part, apply
(

p
k

)

≡p2 (−1)k−1 p
k
,
(

p−1
j

)

≡p (−1)j and (12) to obtain

CT
1

(xyz)p−1

∏

cyc

(

(y + z)p−1(x+ z)p−1

p−1
∑

k=1

(

p

k

)

zp−k(x+ y)k−1

)

=CT
1

(xyz)p−1

∏

cyc

(

p−1
∑

i,j=0

(

p− 1

i

)

yp−1−izi
(

p− 1

j

)

xp−1−jzj
p−1
∑

k=1

(

p

k

)

zp−k(x+ y)k−1

)

=3

p−1
∑

i,j=0
i+j<p−1

(

p− 1

i

)(

p− 1

j

)(

p

i+ j + 1

)(

i+ j

i

)

≡p23p

p−1
∑

i,j=0
i+j<p−1

1

i+ j + 1

(

i+ j

i

)

= 3p

p−2
∑

k=0

1

k + 1

k
∑

j=0

(

k

j

)

=3p

p−2
∑

k=0

2k

k + 1
≡p2 −3p qp(2).

Combining the two pieces, we arrive at
∑p−1

m1,m2,m3=0

(

m1+m2+m3

m1,m2,m3

)

≡p2 1.
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