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1 Introduction

Recently, Jiu and the second author have conducted work [5] concerning the base-b binomial coefficient. We

let n =
∑Nn−1

i=0 nib
i and k =

∑Nk−1
i=0 kib

i be the base-b expansions of n and k respectively. Then we define

N := max{Nn, Nk}, the base-b binomial coefficient is given as the product

(

n

k

)

b

:=

N−1
∏

i=0

(

ni

ki

)

, (1.1)

so that
(

n
k

)

b
= 0 if ki > ni for some i.

This also motivates the definition of a base b factorial, which we define as

(n!)b :=

Nn−1
∏

i=0

ni!.

The binomial theorem is a classic result stating that (X + Y )n =
∑n

k=0

(

n
k

)

XkY n−k. Nguyen subsequently

generalized this to the digital binomial theorem in [3, (26)], which states that

(X + Y )s2(n) =
∑

0≤k≤2n

Xs2(k)Y s2(n−k), (1.2)

where s2(n) denotes the sum of the digits of n expressed in base 2. The condition k ≤2 n restricts the summation

over indices such that each digit of k is less than the corresponding digit of n in base 2, i.e. ki ≤ ni for all

0 ≤ i ≤ N − 1. This notation, which has previously been referred to as digital dominance, will be adopted

throughout this paper. This is also equivalent to the condition that the addition of n − k and k be carry-free

in base 2, which can be written symmetrically as s2(k) + s2(n − k) = s2(n) so that an equivalent form of (1.2)

reads

(X + Y )s2(n) =
∑

s2(k)+s2(n−k)=s2(n)

Xs2(k)Y s2(n−k).
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The discovery of this digital binomial theorem spurred further extensions by Nguyen [3] [4], Nguyen and

Mansour [1, 2] and Liu and the second author [5], which led to the introduction of the base-b binomial coefficient
(

n
k

)

b
and a generalization of the digital binomial theorem to an arbitrary base b as follows:

(X + Y )sb(n) =

n
∑

k=0

(

n

k

)

b

Xsb(k)Y sb(n−k)

where sb (n) is the sum of the digits of n in base b and the base-b binomial coefficient is given by (1.1).

The paper is organized as follows. In Section 2, we present a general summation formula, which is used

in Section 4 to derive theorems about a base-b analogue of the Stirling numbers of the second kind. This

same formula is used to define a base-b analogue of the Fibonacci numbers in Section 5. Finally, in Section 6 we

introduce an analogue of the exponential function involving the base-b factorial and derive some of its properties.

2 Sums over carry-free k

We can extend the methods of [5] to take sums over carry-free k, with a weighting by the base-b binomial

coefficient.

Theorem 1. Let S(n) :=
∑n

k=0 f(n, k). Then

N−1
∏

i=0

S (ni) =
∑

0≤k≤bn

N−1
∏

i=0

f(ni, ki). (2.1)

Proof. We have

N−1
∏

i=0

S (ni) =

n0
∑

k0=0

f (n0, k0)

n1
∑

k1=0

f (n1, k1) · · ·

nN−1
∑

kN−1=0

f (nN−1, kN−1)

=

n0
∑

k0=0

n1
∑

k1=0

· · ·

nN−1
∑

kN−1=0

f (n0, k0) f (n1, k1) · · · f (nN−1, kN−1)

=
∑

0≤k≤bn

N−1
∏

i=0

f (ni, ki) .

�

Corollary 2. Let S2(n) :=
∑n

k=0

(

n
k

)

f(n, k). Then

N−1
∏

i=0

S2 (ni) =
∑

0≤k≤bn

N−1
∏

i=0

(

ni

ki

)

f(ni, ki) =
n
∑

k=0

(

n

k

)

b

N−1
∏

i=0

f(ni, ki). (2.2)

Proof. Replace f (n, k) with
(

n
k

)

f (n, k) in (2.1). We can extend the sum over all 0 ≤ k ≤ n since
(

n
k

)

b
= 0 if k

is not digitally dominated by n. �

While the algebraic proof of this identity is very simple, it greatly simplifies and supersedes the proof of many

previously discovered identities relating to sums over digitally dominated k, and admits much more sweeping

generalizations. The previous work done on sums over carry-free k has centered on proving this identity for

special values of f(n, k), often using the properties of infinite matrices. We now give the choices of f (n, k) that

yield the central theorems in previous papers [1] [2] [3] [4] [5].
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• By taking f(n, k) = XkY n−k in (2.2) with constantX and Y , and noting that S2(n) =
∑n

k=0

(

n
k

)

XkY n−k =

(X + Y )n, we recover the base-b binomial theorem [5, (Theorem 2)]. Taking the b = 2 case reduces to the

digital binomial theorem [3, (26)]. Namely,

(X + Y )sb(n) =
n
∑

k=0

(

n

k

)

b

Xsb(k)Y sb(n−k). (2.3)

• We take f(n, k) =
(X)

k

k!

(Y )
n−k

(n−k)! with constant X and Y in (2.1), where (x)k := Γ(x+k)
Γ(x) is the Pochhammer

symbol. Noting that S(n) =
(X+Y )

n

n! by the Vandermonde identity, we obtain an extension of the base-b

binomial theorem, the central theorem in [4, (Theorem 2)]. Namely,

N−1
∏

i=0

(

X + Y + ni − 1

ni

)

=
∑

0≤k≤bn

N−1
∏

i=0

(

X + ki − 1

ki

)(

Y + ni − ki − 1

ki

)

. (2.4)

• Taking f (n, k) =
(

x;r
k

)(

y;r
n−k

)

in (2.1) where
(

x;r
d

)

:= x(x+r)···(x+(d−1)r)
d! [1, (Definition 8)] and using [1,

(Lemma 9)] to find the sum of f over k gives [1, (Theorem 4)], which can be specialized to find q-analogues.

Namely,

N−1
∏

i=0

(

xi + yi; r

ni

)

=
∑

0≤k≤bn

N−1
∏

i=0

(

xi; ri
ki

)(

yi; ri
ni − ki

)

. (2.5)

• Taking f (n, k) = pk(x)sn−k(y) and f(n, k) = pk(x)pn−k(y) in (2.1) where s and p are normalized Sheffer

sequences and using [2, (Theorem 7)] to evaluate the sum of f over k gives [2, (Theorem 1)].

As a corollary of (2.5), we obtain a base-b analog of the Chu-Vandermonde identity. The Chu-Vandermonde

identity states [7, (Page 8)] that, for integer m and n,

r
∑

k=0

(

n

k

)(

m

r − k

)

=

(

n+m

r

)

. (2.6)

This can be extended to complex valued n and m. This has a base-b counterpart [5, (Theorem 8)] which can be

proved by taking r = 1 in (2.5) and applying (1.1). We note that if the addition of n andm in base b in carry-free,

then
∏N−1

i=0

(

ni+mi

ri

)

=
(

n+m
r

)

b
. Changing variables to maintain consistent notation yields the following analog

of the Chu-Vandermonde identity.

Theorem 3. For integral n and m such that their addition in base b in carry-free,
(

n+m

r

)

b

=
∑

0≤k≤br

(

n

k

)

b

(

m

r − k

)

b

. (2.7)

As with the digital binomial theorem, an identity involving binomial coefficients has an obvious base-b analog.

However, we emphasize that the results do not immediately transfer, as can be seen by the restriction on n andm

in the base-b Chu-Vandermonde identity. However, the striking similarities between the digital binomial theorem

and binomial theorem ensure that some linear identities transfer almost identically. We list some analogs of

classic binomial identities derived from the binomial theorem, omitting the proofs since they follow classical

lines.

n
∑

k=0

(

n

k

)

b

= 2sb(n). (2.8)
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n
∑

k=0

(

n

k

)

b

sb(k) = sb(n)2
sb(n)−1. (2.9)

n
∑

k=0

(

n

k

)

b

sb
2(k) = sb(n)(sb(n) + 1)2sb(n)−2. (2.10)

3 Generating Function

From the Theorem 1 we can also derive a generating function for digitwise functions, based on the following

lemma.

Lemma 4.

{k : 0 ≤ k ≤b n, 0 ≤ ni ≤ b− 1, 0 ≤ i < ∞} = {k : 0 ≤ k ≤ ∞}. (3.1)

Proof. There is a bijection between both sets. To see this, fix a base b. Every natural number has a unique

representation in base b which occurs in the left-most set, while every number in the left-most set corresponds

to a unique natural number k. �

We now state without proof the straightforward extension of (2.1): let S(n, i) :=
∑n

k=0 f(n, k, i). Then

N−1
∏

i=0

S (ni, i) =
∑

0≤k≤bn

N−1
∏

i=0

f(ni, ki, i). (3.2)

We then extend the summation over digitally dominated k in (3.2) to a sum over all natural numbers k. This

means by letting the number of digits in (3.2) tend to infinity while letting each ni = b−1 and applying Lemma

4 we can convert our sum over digitally dominated k to a sum over natural numbers.

Theorem 5.

∞
∏

i=0

b−1
∑

k=0

f(k, i) =

∞
∑

k=0

∞
∏

i=0

f(ki, i). (3.3)

Proof. Fixing a base b and real x and setting ni = b − 1 in (3.2) while taking N → ∞, we can apply the

preceeding lemma to (3.2) as

∞
∏

i=0

b−1
∑

ki=0

f(ki, i) =
∞
∑

k=0

∞
∏

i=0

f(ki, i). (3.4)

We can remove the dependence of k on i on the left hand side since each k goes from 0 to b−1 identically, which

completes the proof. �

Corollary 6.

∞
∏

i=0

b−1
∑

k=0

f(k, i)xb
ik =

∞
∑

k=0

xk
∞
∏

i=0

f(ki, i). (3.5)
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Proof. Making the substitution f(ki, i) = xb
ikif(ki, i) in (3.3) and noting

∞
∏

i=0

xb
ikif(ki, i) = x

∑

∞

i=0
biki

∞
∏

i=0

f(ki, i) = xk
∞
∏

i=0

f(ki, i) (3.6)

completes the proof. �

This means that any base-b function which can be represented as a digitwise product has a closed form

generating function.

4 Stirling numbers of the second kind

The Stirling numbers of the second kind
{

n
k

}

count the number of ways to partition a set of n elements into k

non-empty subsets. They have a natural base-b analog, defined as

{

n

k

}

b

=

N−1
∏

i=0

{

n

ki

}

. (4.1)

Theorem 7. The base-b Stirling numbers of the second kind satisfy

{

n

k

}

b

=
1

(k!)b

k
∑

j=0

(−1)sb(k)−sb(j)

(

k

j

)

b

(

N−1
∏

i=0

ji

)n

. (4.2)

Proof. From [7, (Page 90)] the Stirling numbers of the second kind can be represented as

{

n

k

}

=
1

k!

k
∑

j=0

(−1)k−j

(

k

j

)

jn. (4.3)

Rearranging this relation and changing variables to maintain consistency with (2.2) yields

n
∑

k=0

(−1)k
(

n

k

)

kα = (−1)nn!

{

α

n

}

. (4.4)

Taking f(n, k) = (−1)kkα in (2.2) and noting that S2(n) is nothing more than the left hand side of (4.3), we

obtain

N−1
∏

i=0

(−1)nini!

{

α

ni

}

=

n
∑

k=0

(

n

k

)

b

N−1
∏

i=0

(−1)kiki
α. (4.5)

Simplifying the product on both sides yields

(−1)sb(n)(n!)b

N−1
∏

i=0

{

α

ni

}

=

n
∑

k=0

(

n

k

)

b

(−1)sb(k)

(

N−1
∏

i=0

ki

)α

. (4.6)

Rearranging then gives

N−1
∏

i=0

{

α

ni

}

=
1

(n!)b

n
∑

k=0

(−1)sb(n)−sb(k)

(

n

k

)

b

(

N−1
∏

i=0

ki

)α

, (4.7)

which can be compared with (4.3). The parallels are immediately obvious. Renaming variables completes the

proof. �
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In general, any sequence of numbers with an explicit representation as a sum involving a binomial coefficient

will have a base-b analog. But this representation is always possible, since an arbitrary sequence (an) can always

expressed as [7, p.43]

an =
n
∑

k=0

(

n

k

)

(−1)k bk

with the sequence (bn) defined by

bn =

n
∑

k=0

(

n

k

)

(−1)k ak.

These base-b Stirling numbers can then be used to generalize certain results about the Stirling numbers. A

fundamental result concerning the differential operator ϑ := xD, D := d
dx
, found in [7, (Page 218)], is

ϑn =

n
∑

k=0

{

n

k

}

xkDk. (4.8)

Theorem 8. Define a multivariable differential operator ϑN := x0x1 · · · xN−1D0D1 · · ·DN−1 where Di :=
∂
∂xi

.

Then

ϑn
N =

∑

k1,...,kN−1≤n

{

n

k

}

b

N−1
∏

i=0

x
ki
i D

ki
i . (4.9)

Proof. By the equality of mixed partial derivatives,

ϑn
N = (x0D0x1D1 · · · xN−1DN−1)

n = (x0D0)
n(x1D1)

n · · · (xN−1DN−1)
n. (4.10)

Expanding each term using (4.8) gives

ϑn
N =





n
∑

k0=0

{

n

k0

}

xk00 Dk0
0



 · · ·





n
∑

kN−1=0

{

n

kN−1

}

x
kN−1

N−1 D
kN−1

N−1





=
∑

k1,...,kN−1≤n

N−1
∏

i=0

{

n

ki

}

xkii Dki
i

=
∑

k1,...,kN−1≤n

{

n

k

}

b

N−1
∏

i=0

x
ki
i D

ki
i . (4.11)

In the second equality, we used the interchange of summation presented in (2.1). �

An explicit expression of the base-b Stirling numbers as sum over partitions can be obtained as follows.

Theorem 9.

{

n

k

}

b

=
∑

j

∏

|J |=j

kJ

{

n− 1

kJ

}

b

{

n− 1

kJ̄ − 1

}

b

, (4.12)

where the product is over all partitions J of {1, . . . , n} and J̄ = {1, . . . , n}\J

6



Proof. We begin with the Pascal-type recurrence [6, (4)]
{

n
k

}

=
{

n−1
k−1

}

+ k
{

n−1
k

}

and substitute into the first

equality in (4.2). Namely,

{

n

k

}

b

=

N−1
∏

i=0

{

n

ki

}

=

N−1
∏

i=0

({

n− 1

ki − 1

}

+ ki

{

n− 1

ki

})

, (4.13)

from which the theorem follows. �

As a last remark, we start from the well-known representation of the Stirling numbers of the second kind
{

n

k

}

=
(−1)k

k!
∆kxn |x=0

where ∆ is the forward difference operator

∆f (x) = f (x+ 1)− f (x) .

With sb (n) denoting the sum of digits of n in base b, we deduce from (4.1) the representation of the base b

Stirling numbers as
{

n

k

}

b

=
(−1)sb(k)

k!b
∆sb(k)xn |x=0

The base-b Stirling number naturally occurs as a consequence of creating a multivariable generalization of an

existing single variable identity, a process which could be explored further in the future. Additionally, the base

b has no special significance here so long as it is larger than ki, suggesting that
{

n
k

}

b
has a larger combinatorial

significance outside of the sum of digits function.

5 Fibonacci numbers

In this section, we introduce one further analogue of classic numbers with well-studied properties. The Fibonacci

numbers Fn are defined by the recurrence Fn+1 = Fn + Fn−1 and the initial values F0 = 1 and F1 = 1.

5.1 Definition

Theorem 10. Define the base-b generalized Fibonacci numbers F
(b)
n as

F (b)
n =

N−1
∏

i=0

Fni
. (5.1)

Then these numbers satisfy

F (b)
n =

∑

k≤bn

(

n− k

k

)

b

. (5.2)

Proof. By summing over shallow diagonals of Pascal’s triangle, we have the relation

Fn =
n
∑

k=0

(

n− k

k

)

. (5.3)

Taking f(n, k) =
(

n−k
k

)

in (2.1) and utilizing the relation (5.3) yields (5.2). �

Rather than the Stirling numbers, which have combinatorial significance, the Fibonacci numbers are well

studied objects in number theory.

7



5.2 The case b = 3

The sequence F
(3)
n , for n ≥ 0, starts with

1, 1, 2, 1, 1, 2, 2, 2, 4, 1, 1, 2, 1, 1, 2, 2, 2, 4, 2, 2, 4, 2, 2, 4, 4, 4, 8, 1, 1, 2 . . .

We recognize the beginning of sequence A117592 in OEIS defined by

a (3n) = a (n) , a (3n + 1) = a (n) , a (3n + 2) = 2a (n)

and

a (0) = a (1) = 1, a (2) = 2.

Theorem 11. The sequence
{

F
(3)
n

}

satisfies the recurrence

F
(3)
3n = F (3)

n , F
(3)
3n+1 = F (3)

n , F
(3)
3n+2 = 2F (3)

n

with initial conditions

F
(3)
0 = F

(3)
1 = 1, F

(3)
2 = 2

so that it coincides with OEIS sequence A117592.

Proof. By our main theorem, the base-b Fibonacci sequence satisfies

F (b)
m =

∏

i

Fmi
.

The digits of m = 3n (resp. m = 3n+1 and m = 2n+2) coincide with those of n up to an extra 0 (resp. 1 and

2) appended at the right. We deduce

F
(3)
3n = F (3)

n F0 = F (3)
n (5.4)

and

F
(3)
3n+1 = F (3)

n F1 = F (3)
n (5.5)

and

F
(3)
3n+2 = F (3)

n F2 = 2F (3)
n . (5.6)

The initial conditions are easily checked. �

As a consequence of identities (5.4), (5.5) and (5.6), we have

Corollary 12. The Fibonacci numbers F
(3)
n satisfy the recurrence

F
(3)
3n+2 = F

(3)
3n + F

(3)
3n+1

which can be interpreted as a mod 3 version of the usual recursion on the Fibonacci numbers

Fn+2 = Fn+1 + Fn.

A combinatorial interpretation for the sequence F
(3)
n is obtained using the base-3 expansion of the integer n,

which consist of a sequence of 0’s, 1’s and 2’s, the number of which we call respectively s3 (n, 0) , s3 (n, 1) and

s3 (n, 2). Then from definition (5.1), we deduce

F (3)
n = F

s3(n,0)
0 F

s3(n,1)
1 F

s3(n,2)
2 = 2s3(n,2)

so that F
(3)
n essentially counts the number of 2’s in the base 3 representation of n. We remark that this inter-

pretation does not extend to the case of a base b > 3.
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5.3 The general case

This suggests the more general result as follows. Its proof is omitted since it is identical to the previous one.

Theorem 13. For 0 ≤ p < b, the sequence
{

F
(b)
n

}

satisfies the recurrence

F
(b)
bn+p = F (b)

n Fp

with initial conditions

F (b)
p = Fp.

We also have the following theorem:

Theorem 14. A generating function for the sequence
{

F
(b)
n

}

is

Fb (z) =
∑

n≥0

F (b)
n zn =

∏

k≥0

(

b−1
∑

l=0

Flz
bl

)

Proof. Take f(k, i) = Fk in Theorem 3. �

Additional identities similar to those satisfied by the usual Fibonacci numbers are derived from the identities

(5.4), (5.5) and (5.6) as follows.

Theorem 15. The Fibonacci numbers F
(b)
n satisfy

b−1
∑

k=0

F
(b)
bn+k = 2F

(b)
bn+(b−1) + F

(b)
bn+(b−2) − F (b)

n

and, for 0 ≤ p ≤ q < b− 3,

q
∑

k=p

F
(b)
bn+k = F

(b)
bn+q+2 − F

(b)
bn+p+1.

Proof. We use the identity

n
∑

k=0

Fk = Fn+2 − 1

and, for 0 ≤ p ≤ b− 1,

F
(b)
bn+p = FpF

(b)
n

to deduce

b−1
∑

k=0

F
(b)
bn+k =

b−1
∑

k=0

FkF
(b)
n = F (b)

n (Fb+1 − 1)

= F (b)
n (Fb + Fb−1 − 1) = F (b)

n (Fb−2 + 2Fb−1 − 1)

= F
(b)
bn+b−2 + 2F

(b)
bn+b−1 − F (b)

n .

9



Moreover, for 0 ≤ p ≤ q < b− 3,

q
∑

k=p

F
(b)
bn+k =

q
∑

k=0

F
(b)
bn+k −

p−1
∑

k=0

F
(b)
bn+k

= F (b)
n

q
∑

k=0

Fk − F (b)
n

p−1
∑

k=0

Fk

= F (b)
n (Fq+2 − 1)− F (b)

n (Fp+1 − 1)

= F
(b)
bn+q+2 − F

(b)
bn+p+1.

�

Proposition 16. As a consequence of Cassini’s identity

F 2
q − Fq+1Fq−1 = (−1)q ,

we deduce

(

F
(b)
bn+q

)2
− F

(b)
bn+q+1F

(b)
bn+q−1 = (−1)q

(

F (b)
n

)2

and from its more general version

F 2
q − Fq+rFq−r = (−1)q−r+1

F 2
r−1,

we have

(

F
(b)
bn+q

)2
− F

(b)
bn+q+rF

(b)
bn+q−r = (−1)n−r+1

(

F
(b)
bn+r−1

)2
.

5.4 Another definition of base-2 Fibonacci numbers

The extension of Fibonacci numbers defined in (5.2) in the case b = 2 gives the uninteresting sequence

F (2)
n = 1, ∀n ≥ 0,

so that we propose the study of a slightly modified version of it. Assume we define now the modified base-2

Fibonacci numbers as follows:

F̃ (2)
n =

n
∑

k=0

(

n− k

k

)

b

so that we do not impose the digitally dominance on the summation index.

The first values of this new sequence, starting from n = 0, are

1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, . . .

We recognize the first entries of Stern’s diatomic sequence A002487 defined by

a0 = 0, a1 = 1 and a2n = an, a2n+1 = an + an+1, n ≥ 1.

10



Theorem 17. The modified base-2 Fibonacci numbers F̃n are

F̃ (2)
n = an+1

where {an} is Stern’s diatomic sequence.

Proof. Since the base-2 binomial coefficient
(

n
k

)

2
equals 0 or 1 according to the parity of

(

n
k

)

, the modified

base-2 Fibonacci number

F̃ (2)
n =

∑

k≥0

(

n− k

k

)

2

is the number of odd binomial coefficients
(

n−k
k

)

. It was identified by Carlitz who showed in [10] that this number

θ0 (n) (in Carlitz notation) satisfies

θ0 (2n+ 1) = θ0 (n) , θ0 (2n) = θ0 (n) + θ0 (n+ 1)

with θ0 (0) = 1 and θ0 (1) = 1, hence θ0 (n) = an+1. �

Another proof is obtained remarking that the modified base-2 binomial coefficients coincide with the usual

binomial coefficients mod 2, and using the formula by S. Northshield [11, Thm4.1]

∑

2i+j=n

((

i+ j

i

)

mod 2

)

= an+1.

Carlitz gives in [10] a combinatorial interpretation of an+1 = F̃
(2)
n as the number of hyperbinary representations

of n, i.e the number of ways of writing n as a sum of powers of 2, each power being used at most twice.

6 The base-b exponential

Analogously to the classical exponential function, we are interested in studying a modified exponential function

eb(x,w) :=

∞
∑

k=0

xsb(k)

(k!)b
wk. (6.1)

We note that without the weighting from wk this series has a zero radius of convergence. We can relate this to

the classical exponential function, but require the following formula about the upper incomplete gamma function

Γ(a, z) [8, (8.2.2)], where

Γ(a, z) :=

∫ ∞

z

ta−1e−tdt. (6.2)

From [8, (8.4.8)], we have

n
∑

k=0

zk

k!
= ez

Γ(n+ 1, z)

n!
. (6.3)

11



Theorem 18. The base-b exponential function satisfies

eb(x,w) = exp

(

x

∞
∑

i=0

wbi

)

∞
∏

i=0

(

Γ(b, xwbi)

(b− 1)!

)

≃ exp

(

x

∞
∑

i=0

wbi

)

≃ exw+xwb

(6.4)

for w close to 0.

Proof. Making the substitution x → w in Theorem 6, then taking f(ki, i) =
xki

ki!
while using (6.3) to simplify

the partial sums as below completes the proof:

∞
∏

i=0

b−1
∑

k=0

f(k, i) =

∞
∏

i=0

b−1
∑

k=0

(xwbi)k

k!
=

∞
∏

i=0

exp
(

xwbi
) Γ(b, xwbi)

(b− 1)!
= exp

(

∞
∑

i=0

xwbi

)

∞
∏

i=0

(

Γ(b, xwbi)

(b− 1)!

)

. (6.5)

Equating these representations proves the first part of the theorem. The behavior of our base-b exponential then

depends on the series
∑∞

i=0w
bi and an infinite gamma product. We now prove the first approximation. Looking

at the infinite product term on the right-hand side shows that, even for small values of b and |x| < 1 it can be

approximated by the indicator function of the interval [0, 1]

f (w) =

{

1, 0 ≤ w ≤ 1

0, w > 1
(6.6)

This can be explained as follows: the function

w 7→
Γ
(

b, xwbi
)

Γ (b)
(6.7)

is strictly decreasing over [0, 1] from 1 at w = 0, to 0 <
Γ(b,x)
Γ(b) < 1 at w = 1. Moreover, as b increases, the ratio

Γ(b,x)
Γ(b) increases to 1. For 0 < w < 1, wbi is close to 0 for i large, so that using the asymptotic expansion [8,

(8.7.3)]

Γ (b, z) = Γ (b) + zb
(

−
1

b
+

z

1 + b
+ . . .

)

(6.8)

we obtain

Γ
(

b, xwbi
)

Γ (b)
= 1−

xbwbi+1

Γ (b+ 1)
+

xb+1wbi+1+bi

(b+ 1) Γ (b)
+ . . . (6.9)

As a consequence, for 0 ≤ w < 1,
∑

wbi+1

is convergent so that
∏

i

(

1− xwb
i+1

Γ(b+1)

)

and
∏

i

Γ
(

b,xwb
i
)

Γ(b) are convergent.

Moreover, from

log Γ
(

b, xwbi
)

− log Γ (b) ≃ −
1

b
xbwbi+1

, (6.10)

we deduce, for 0 ≤ x < 1,

∣

∣

∣

∑

log Γ
(

b, xwbi
)

− log Γ (b)
∣

∣

∣
=

1

b

∑

i≥0

xbwbi+1

≤
1

b

∑

i≥0

wbi+1

≤
1

b

wb

1− w
(6.11)
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which goes to 0 as b → ∞, so that the left-hand side goes to 0 as well. This yields the first approximation for

x ∈ [0, 1], which can in turn be approximated as

eb(x,w) ≃ exw+xwb

(6.12)

since for w ∈ [0, 1),

ew
b
2

≪ ew
b

. (6.13)

�

For b = 2, we obtain the following result.

Corollary 19. The base 2 exponential function satisfies

e2(x,w) =

∞
∏

i=0

(

1 + xw2i
)

. (6.14)

Analogously to the classical identity exey = ex+y, we have a similar convolution identity for the base-b

exponential.

Theorem 20.

eb(x,w) ⋆ eb(y,w) = eb(x+ y,w), (6.15)

where

∞
∑

k=0

akx
sb(k) ⋆

∞
∑

l=0

bly
sb(l) =

∞
∑

n=0

∑

k≤bn

akbn−kx
sb(k)ysb(n−k). (6.16)

Proof. The theorem follows from taking ak = wk

(k!)b
and bl =

wl

(l!)b
and applying the digital binomial theorem

(2.3). �

The ⋆ operation forms an analogue of multiplication for formal power series which instead applies to series

with involving powers of sb(k), where the convolution of two power series is defined as

∞
∑

k=0

akx
k ⋆

∞
∑

l=0

bly
l =

∞
∑

n=0

∑

k≤n

akbn−kx
kyn−k. (6.17)

We note that the ⋆ operator must manually impose the condition k ≤b n because of the basic result that

(

n

k

)

b

6=
(n!)b

(k!)b(n− k)!b
, (6.18)

since the left hand side is zero for k not digitally dominated by n, while the right hand side is well-defined and

in general non-zero for such k.
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