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Abstract

Triangular distributions are a well-known class of distributions that are

often used as an elementary example of a probability model. Maximum

likelihood estimation of the mode parameter of the triangular distribu-

tion over the unit interval can be performed via an order statistic-based

method. It had been conjectured that such a method can be conducted

using only a constant number of likelihood function evaluations, on av-

erage, as the sample size becomes large. We prove two theorems that

validate this conjecture. Graphical and numerical results are presented to

supplement our proofs.

1 Introduction

LetX ∈ [0, 1] be a random variable with cumulative distribution function (CDF)
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Fθ (x) =





x2/θ, if x < θ,

1− (1− x)
2
/ (1− θ) , if x ≥ θ,

(1)

when θ ∈ (0, 1), F0 (x) = 1 − (1− x)
2 when θ = 0, and F1 (x) = x2 when

θ = 1. We say that X arises from a triangular distribution with mode parameter

θ ∈ [0, 1]. The probability density function of X can be written as

fθ (x) =





2x/θ, if x < θ,

2 (1− x) / (1− θ) , if x ≥ θ,

when θ ∈ (0, 1), f0 (x) = 2 (1− x) when θ = 0, and f1 (x) = 2x when θ = 1.

The triangular distribution is a popular probability model for teaching, due

to its simple geometric form; see Doane (2004) and Price and Zhang (2007)

for examples where the triangular distribution is used in the teaching of various

aspects of distribution theory. Outside of the classroom, the triangular distribu-

tion has also been used to model task completion times for Program Evaluation

and Review Techniques (PERT) models, prices of securities that are traded on

the New York Stock Exchange, and haul times in civil engineering data. Elab-

orations on these applications can be found in Kotz and Van Dorp (2004, Ch.

1) and the references therein.

Recently, there has been a renewed interest in the triangular distribution.

For example, Glickman and Xu (2008) investigated the distribution of the prod-

uct of triangular distributions for applications in traffic-related risk assessment,

Karlis and Xekalaki (2008) considered the use of mixtures of triangular distri-

butions for estimation of bounded and concave densities, and Nagaraja (2013)

derived expressions for the moments of order statistics and L-moments, for appli-

cation smart communication networks. Furthermore, Gunduz and Genc (2015)

followed the work of Glickman and Xu (2008) and derived expressions for the
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distribution of quotients of triangular distributions, and Nguyen and McLachlan

(2016) utilized a novel characterization of the triangular distribution to derive

minorization–maximization algorithms (Hunter and Lange, 2004) for the maxi-

mum likelihood (ML) estimation of the triangular distribution and the mixture

of triangular distributions of Karlis and Xekalaki (2008).

Let X1, ..., Xn be a random IID (independent and identically distributed)

sample of size n ∈ N from a triangular distribution with unknown mode param-

eter and let x1, ..., xn be its realization. The likelihood function and the ML

estimator can be expressed as Ln (θ) =
∏n
i=1 fθ (xi) and

θ̂n = arg max
θ∈[0,1]

Ln (θ) ,

respectively.

Let x(1) ≤ x(2) ≤ ... ≤ x(n) be the order statistics of the sample realization.

It is shown in Oliver (1972) that θ̂n = x(i) for some i = 1, ..., n. That is, the

ML estimate is always one of the observations from sample; the same result was

proved in Kotz and Van Dorp (2004, Ch. 1). Remarkably, Oliver (1972) also

showed that if θ̂n = x(j), then x(j) must fulfill the condition (j − 1) /n < x(j) <

j/n. Thus, the ML estimator can be rewritten as

θ̂n = arg max
θ∈Θn

Ln (θ) (2)

where Θn =
{
x(j) : (j − 1) /n < x(j) < j/n, j = 1, ..., n

}
.

An investigation into the expected number of elements in the set Θn was con-

ducted by Huang and Shen (2007). Let mn =
∑n
j=1 I

{
(j − 1) /n < x(j) < j/n

}

be the observed number of elements in Θn, where I {A} equals 1 if proposition A

is true and 0 otherwise. As with Huang and Shen (2007), we will subsequently
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call mn the observed number of ’matches’. It was observed and conjectured that

E (Mn) =

n∑

j=1

P
(
j − 1

n
< X(j) <

j

n

)
≈ 2 (3)

as n grows large, for various values of θ. Here X(1) ≤ X(2) ≤ ... ≤ X(n) is the or-

der statistics of a random sample, andMn =
∑n
j=1 I

{
(j − 1) /n < X(j) < j/n

}
.

In contrast to this observation regarding the triangular distribution, Huang

and Shen (2007) proved that if one assumes that X1, ..., Xn is an IID sample

from a uniform distribution over the unit interval (i.e. X ∈ [0, 1]), then the

expected number of elements in Θn is

E (Mn) = 1 +
n−1∑

j=1

(
n

j

)(
j

n

)j (
1− j

n

)n−j
. (4)

Upon application of Stirling’s formula [cf. Charalambides (2002, Thm. 3.2)]

and limn→∞
∑n−1
j=1 1/

√
j (n− j) = π, Huang and Shen (2007) obtained the

approximation formula

E (Mn) ≈ 1 +

√
n

2π

n−1∑

j=1

1√
j (n− j)

≈ 1 +

√
πn

2
(5)

for large n. Thus, whereas the expected number of matches for a triangular

distribution remains constant as n grows, the expected number of matches grows

at a rate of O (
√
n) [using Landau’s O-notation; see Cormen et al. (2002, Ch.

3)] asymptotically, when the sample arises from a uniform distribution.

In Nguyen and McLachlan (2016), it was established that the average or-

der of complexity for computing the ML estimate using the estimator (2) is

O (n [log n+ E (Mn)]). This is due to the requirement of a sorting algorithm to

obtain the order statistics, which requires O (n log n) operations [e.g. Heapsort

(Cormen et al., 2002, Ch. 6, p. 146)], and the computation of the likelihood
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function for comparison, which requires O (n) operations. Thus, if the conjec-

ture of Huang and Shen (2007) is true (i.e. (3) is true), then the ML estimate

has average order of complexity O (n log n), which makes it no more complex

than the computation of order statistics.

In this article, we extend the work of Huang and Shen (2007) to obtain an

expression for the expected number of matches E (Mn) of samples arising from

any distribution over the unit interval. Furthermore, we prove that for any

continuous distribution, the maximum rate of growth of E (Mn) is O (
√
n).

Using the derived general expression for E (Mn), we provide a formula for the

expected number of matches of any sample arising from a triangular distribution.

Using the formula, we then prove that E (Mn) → 1.684567, as n → ∞, for

θ ∈ {0, 1}. Similarly, for θ ∈ (0, 1), we obtain the approximation E (Mn) ≈ Nn

for large n, where Nn → 2.369134, as n→∞. Thus, we obtain positive progress

towards the conjecture of Huang and Shen (2007). We supplement the main

result with graphical and numerical results regarding the expected number of

matches from a triangular distributed sample.

Although the content of the article is aimed at resolving the discussed con-

jecture of Huang and Shen (2007), it is anticipated that the techniques from

this article can also be applied in other settings. The standard two-sided power

distribution (STPD) of Kotz and Van Dorp (2004, Ch. 3) is a generalization

of the triangular distribution for which the ML estimator is an order statistic

that satisfies a criterion [cf. Kotz and Van Dorp (2004, Ch. 3, p. 80)]. It

may be possible to apply the methodology from this article to obtain an analo-

gous result in the STPD setting. The beta distribution is also interesting as it

includes both the θ ∈ {0, 1} cases of the triangle as well as the uniform distri-

bution as special cases. An interesting problem that arises is to determine the

parameter settings for which the number of matches E (Mn) converges in the
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beta distribution setting.

The rest of the article proceeds as follows. General results regarding the

expected number of matches that are obtained from arbitrary distributions over

the unit interval are presented in Section 2. Specific results regarding the trian-

gular distribution are presented in Section 3. Numerical and graphical results

are presented in Section 4. Proofs for the main results are relegated to Section

5.

2 General Results

Let X1, ..., Xn be an IID random sample, where X1 ∈ [0, 1] has distribution

function F (x), which is well-defined for x ∈ [0, 1]. Let, X(1) ≤ X(2) ≤ ... ≤ X(n)

be the order statistics of the random sample. For j = 1, ..., n, let Fj:n (x) be the

distribution function of X(j). David and Nagaraja (2003, Eq. 2.1.3) states

Fj:n (x) =

n∑

i=j

(
n

i

)
F i (x) [1− F (x)]

n−i , (6)

which provides the link between F (x) and the order statistic distributions.

Using (6), we get the general formula for the expected number of matches of

any sample arising from distribution F (x).

Theorem 1. Let X1, ..., Xn be an IID random sample, where X1 ∈ [0, 1] has

distribution F (x).The expected number of matches from the sample is

E (Mn) = 1 +

n−1∑

j=1

(
n

j

)
F j
(
j

n

)[
1− F

(
j

n

)]n−j
. (7)

Remark 1. If X1 has distribution F (x) = x (i.e. X1 is uniformly distributed),

then (7) becomes (4), as expected.

Via an elementary calculus argument and upon application of Stirling’s for-
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mula, we obtain the following upper bound for the asymptotic growth rate of

the expected number of matches.

Corollary 1. Let X1, ..., Xn be an IID random sample, where X1 ∈ [0, 1] has

distribution F (x). For any F (x), the asymptotic growth rate of E (Mn) has up-

per bound O (
√
n). For large n, the upper bound of E (Mn) can be asymptotically

approximated by Equation (5).

Remark 2. Corollary 1 implies that the uniform distribution maximizes the

growth rate of the expected number of matches. Interestingly, the right-hand

side of (5) is related to the enumeration of rooted trees by total height. That

is, n
√
πn/2 is the asymptotic growth rate of the mean total height of all rooted

trees with n labeled points, and also the mean height; see Riordan and Sloane

(1969). Furthermore, upon rearrangement of Equation (4), we obtain the OEIS

(On-line Encyclopedia of Integer Sequences; https://oeis.org) sequence A001864

from the expression nn (E (Mn)− 1); see also M2138 from Sloane and Plouffe

(1995).

3 Triangular Distribution

Let X1, ..., Xn be an IID random sample, where X1 has triangular distribution

function Fθ (x). From Theorem 1, we have

E (Mn) = 1 +
n−1∑

j=1

(
n

j

)
F jθ

(
j

n

)[
1− Fθ

(
j

n

)]n−j
. (8)

In the case where θ = 0 or θ = 1, (8) becomes

E (Mn) = 1 +

n−1∑

j=1

(
n

j

)[
1−

(
1− j

n

)2
]j (

1− j

n

)2(n−j)
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and

E (Mn) = 1 +

n−1∑

j=1

(
n

j

)(
j

n

)2j
[

1−
(
j

n

)2
]n−j

= 1 +
n−1∑

j=1

(
n

n− j

)(
n− j
n

)2(n−j) [
1−

(
n− j
n

)2
]j

= 1 +
n−1∑

j=1

(
n

j

)[
1−

(
1− j

n

)2
]j (

1− j

n

)2(n−j)
, (9)

respectively. It is not difficult to obtain the limit

lim
n→∞

(
n

j

)[
1−

(
1− j

n

)2
]j (

1− j

n

)2(n−j)
=

2je−2jjj

j!
= sj .

Thus, we have

E (Mn) ≈ 1 + Sn−1 (10)

for large n in the cases where θ ∈ {0, 1}, and Sn =
∑n
j=1 sj .

Lemma 1. The series Sn converges to S∞ ≈ 0.684567.

Applying Lemma 1 to (10) yields the first main result of the article.

Theorem 2. For triangular distributions with θ ∈ {0, 1}, E (Mn)→ 1.684567,

as n→∞.

Suppose now that n = p + q and let θ = p/ (p+ q), where p, q ∈ N. From

(1), we note that Fθ (θ) = θ; thus θ is the θth quantile of the distribution. Using
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this fact, we have the following expression of (8):

E (Mp+q) = 1 +

p∑

j=1

(
p+ q

j

)
F jθ

(
j

p+ q

)[
1− Fθ

(
j

p+ q

)]p+q−j

+

p+q−1∑

j=p+1

(
p+ q

j

)
F jθ

(
j

p+ q

)[
1− Fθ

(
j

p+ q

)]p+q−j

= 1 +

p∑

j=1

(
p+ q

j

)
F j1

(
j

p

)[
1− F1

(
j

p

)]p+q−j

+

p+q−1∑

j=p+1

(
p+ q

j

)
F j0

(
j

q

)[
1− F0

(
j

q

)]p+q−j

= 1 +

p∑

j=0

(
p+ q

p− j

)(
p− j
p

)2(p−j) [
1−

(
p− j
p

)2
]q+j

+

q−1∑

j=1

(
p+ q

p+ j

)[
1−

(
1− p+ j

q

)2
]p+j (

1− p+ j

q

)2(q−j)
.

The second equality is due to the fact that the first θ = p/ (p+ q) is the

[p/ (p+ q)] th quantile. We apply this fact by noting that fθ (x), to the left of

θ, has upwards-sloping density and vice versa, has downward-sloping density to

the right. Since all triangular distributions must have height fθ (θ) = 2, the

region to the left of θ is proportional f1 (x) in the sense that fθ (x) = f1 (y),

for x = θy, and similarly the region to the right is proportion to f0 (x) in the

sense that fθ (x) = f0 (y), for x = (1− θ) y. Via the proportionality argument,

we can compute

Fθ

(
j

n

)
= F1

(
j

n
× n

p

)
= F1

(
j

p

)
,

for j/n ≤ θ, and

Fθ

(
j

n

)
= F0

(
j

n
× n

q

)
= F0

(
j

q

)
,

for j/n > θ.

9



Again, it is not difficult to obtain the limits

lim
p→∞

(
p+ q

p− j

)(
p− j
p

)2(p−j) [
1−

(
p− j
p

)2
]q+j

=
2j+qe−2jjj+q

(j + q)!
= uqj

and

lim
q→∞

(
p+ q

p+ j

)[
1−

(
1− p+ j

q

)2
]p+j (

1− p+ j

q

)2(q−j)
=

2j+pe−2(j+p) (j + p)
j+p

(j + p)!
= vpj .

Thus, we have

E (Mp+q) ≈ 1 + Uqp + V pq , (11)

where Uqp =
∑p
j=1 u

q
j and V pq =

∑q
j=1 v

p
j , for large p and q. Note that Uqp is

indexed from j = 1, since 00+q = 0 for any q ∈ N.

Lemma 2. The series Uqp converges as p → ∞, for any finite q ∈ N, and the

series V pq converges as q →∞, for any finite p ∈ N.

For fixed j, we note that uqj/sj = 2qjqj!/ (j + q)! → 0, as q → ∞ since

factorials grow faster than exponentials. Similarly vpj /sj → 0, as p→∞. Thus,

we obtain the following result.

Lemma 3. The ratios uqj/sj → 0 and vpj /sj → 0, as q → ∞ and p → ∞,

respectively, for any finite j ∈ N.

Lemmas 2 and 3 suggest that for large p and q, E (Mp+q) converges to a

finite constant. Further, it is suggested that we can conservatively approximate

E (Mp+q) by Np,q = 1+Sp+Sq, in the sense that 1+Uqp +V pq ≤ Np,q for large p

and q. An application of Lemma 1 yields the second main result of the article.

Theorem 3. For triangular distributions with θ = p/ (p+ q) for p, q ∈ N,

E (Mp+q) ≈ Np,q, where Np,q → 2.369134, as p→∞ and q →∞.
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Table 1: Exact values of expected matches E (Mn) for various sample sizes n
and mode parameters θ.
n\θ 0 0.1 0.2 0.3 0.4 0.5

5 1.814694 1.960713 2.093680 2.162657 2.207036 2.217071
10 1.929234 2.271707 2.466275 2.579562 2.640312 2.659541
20 1.842068 2.394180 2.608803 2.707651 2.751632 2.764140
50 1.731881 2.490839 2.531784 2.487879 2.450077 2.436588
100 1.705885 2.477835 2.358059 2.282239 2.249001 2.239780
200 1.694797 2.332438 2.205683 2.166804 2.151832 2.147659
500 1.688567 2.162322 2.110494 2.093518 2.086342 2.084280
1000 1.686553 2.103114 2.073165 2.062607 2.058058 2.056742

4 Graphical and Numerical Results

Using R (R Core Team, 2013), we compute exact values of expected matches

E (Mn) for values of n ≤ 1000, and for triangular distributions with parameters

θ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}. The ptriangle function from the package triangle

(Carnell, 2016) and the chooseZ function from the package gmp (Lucas et al.,

2014) were used to evaluate the CDF of the triangular distribution and precisely

evaluate the necessary combinatorial values, respectively.

Figure 1 indicates that for θ ∈ {0, 1}, the approximated limit of 1.684567

appears sharp (note that E (Mn) is symmetric in θ about 1/2). However, for

θ ∈ (0, 1), the approximated limit of 2.369134 appears quite conservative, as

remarked in Section 3. We also observe that for small values of n < 200, the

behavior of E (Mn) lacks monotonicity; however, when n ≥ 200, E (Mn) appears

to be decreasing for all cases of θ. Table 1 extends upon Huang and Shen (2007)

by tabulating the exact values of E (Mn) for n = 1000 and also increasing the

precision from 4 to 6 decimal places.

To supplement the results from Figure 1 and Table 1, which replicate the

study by Huang and Shen (2007) with greater accuracy, we also consider the

θ ∈ {0.05, 0.15, 0.25, 0.35, 0.45} cases. The computations follow the same setup

and the tabulation and graphical representation of the results are provided in
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Figure 1: The lines marked by the symbols ◦, 4, +, ×, �, and ∇ indicate the
exact values of expected matches E (Mn) for triangular distributions with θ set
to 0, 0.1, 0.2, 0.3, 0.4, and 0.5, respectively. The lower and upper dashed lines
mark the values 1.684567 and 2.369134, respectively.
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Figure 2: The lines marked by the symbols ◦, 4, +, ×, �, and ∇ indicate the
exact values of expected matches E (Mn) for triangular distributions with θ set
to 0, 0.05, 0.15, 0.25, 0.35, and 0.45, respectively. The lower and upper dashed
lines mark the values 1.684567 and 2.369134, respectively.

Table 2 and Figure 2, respectively. Like the θ 6= 0 cases that are considered by

Huang and Shen (2007), we also observe that the supplementary cases appear

to exhibit convergence to some value below the approximated limit of 2.369134.

Furthermore, the behavior of E (Mn) also lacks monotonicity for small values of

n.

Using 1000 Monte Carlo simulations of n ∈
{

103, 104, 105, 106
}
triangularly

distributed random variables, we obtain estimates and 95% asymptotic confi-

dence intervals for E (Mn) for the cases θ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}. The results

are presented in Figure 3. Upon inspection of Figure 3, we note that E (Mn) re-

mains close to 1.684567 for the assessed values of n. Further, for the cases where

θ ∈ (0, 1), we observe that 2.369134 remains a conservative approximation, and
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Table 2: Exact values of expected matches E (Mn) for various sample sizes n
and some supplementary values of the mode parameters θ.
n\θ 0.05 0.15 0.25 0.35 0.45

5 1.886329 2.033059 2.133066 2.188078 2.215196
10 2.107125 2.379993 2.529493 2.614819 2.654147
20 2.190642 2.522747 2.667543 2.73453 2.761107
50 2.32348 2.534738 2.511676 2.466411 2.439975
100 2.451241 2.417751 2.313203 2.261787 2.242005
200 2.458084 2.249248 2.181441 2.15757 2.148671
500 2.270841 2.127744 2.100175 2.089135 2.084782
1000 2.15722 2.083563 2.066782 2.059835 2.057063

that E (Mn) appears to converge to 2 for large n, as predicted by Huang and

Shen (2007).

5 Proofs of Theorems

5.1 Proof of Theorem 1

We can write

P
(
j − 1

n
< X(j) <

j

n

)
= Fj:n

(
j

n

)
− Fj:n

(
j − 1

n

)
,

for each j = 1, ..., n. Thus, we can write

E (Mn) =
n∑

j=1

P
(
j − 1

n
< X(j) <

j

n

)

=
n∑

j=1

[
Fj:n

(
j

n

)
− Fj:n

(
j − 1

n

)]

= Fn:n (1)− F1:n (0) +
n−1∑

j=1

aj , (12)
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Figure 3: The ◦ marked line indicates the average number of matches from
1000 Monte Carlo samples of n observations. The dotted lines indicate the 95%
asymptotic confidence interval for E (Mn). The lower and upper dashed lines
mark the values 1.684567 and 2.369134, respectively. Each subplot presents
results for a different value of θ.
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where aj = Fj:n (j/n)− F(j+1):n (j/n) . Using (6), we can write

aj =
n∑

i=j

(
n

i

)
F i (x) [1− F (x)]

n−i −
n∑

i=j+1

(
n

i

)
F i (x) [1− F (x)]

n−i

=

(
n

j

)
F j (x) [1− F (x)]

n−j ,

upon expansion of the summations. Finally, since F1:n (0) = 0 and Fn:n (1) = 1

by definition of CDFs, we have the desired result by simplification of (12).

5.2 Proof of Corollary 1

Write (7) as

E (Mn) = 1 +

n−1∑

j=1

(
n

j

)
bj (φj) , (13)

where bj (φj) = φjj (1− φj)n−j and φj = F (j/n). To obtain an upper bound

for (7), we maximize (13) with respect to φj , for j = 1, ..., n− 1. Since each φj

is linearly separable, we can maximize (13) by maximizing each bj , respectively.

Solving the first-order condition using the derivatives

dbj
dφj

= (j − nφj)φj−1
j (1− φj)n−j−1

yields the solution φ∗j = j/n, for each j. For any j, bj is log-concave since it is

the product of two powers of positive values [cf. Boyd and Vandenberghe (2004,

Example 3.39)], and thus bj is also quasi-concave.

Note that dbj/dφj > 0 when φj < φ∗j and dbj/dφj < 0 when φj > φ∗j . Thus

φ∗j is the mode and global maximizer of bj [cf. Boyd and Vandenberghe (2004,

Sec. 3.4.2)]. Substitution of φ∗j into (13) yields an upper bound for E (Mn). We

obtain the desired result via approximation (5).
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5.3 Proof of Lemma 1

Note that sj > 0 for all j = 1, ..., n, and that the ratio sj+1/sj = 2 (1 + 1/j)
j
/e2→2/e

as j → ∞. Since 2/e < 1, we obtain the convergence of Sn as n → ∞, by the

ratio test [cf. Khuri (2003, Thm. 5.2.6)]. The approximation S∞ ≈ 0.684567 is

obtained via a partial sum of n = 100 terms.

5.4 Proof of Lemma 2

Note that uqj > 0 for all j = 1, ..., n, and q > 0. Consider the ratio uqj/sj =

2qjqj!/ (j + q)! → 2q as j → ∞. When q is constant, we obtain convergence

of Uqn, as n → ∞, since Sn converges by the limit comparison test [cf. Khuri

(2003, Thm. 5.2.5)]. The convergence of V pj follows from the same argument.
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