SELF DUAL REFLEXIVE SIMPLICES WITH EULERIAN POLYNOMIALS

TAKAYUKI HIBI, MCCABE OLSEN, AND AKIYOSHI TSUCHIYA

Abstract

A lattice polytope \mathcal{P} is called reflexive if its dual \mathcal{P}^{\vee} is a lattice polytope. The property that \mathcal{P} is unimodularly equivalent to \mathcal{P}^{\vee} does not hold in general, and in fact there are few examples of such polytopes. In this note, we introduce a new reflexive simplex Q_{n} which has this property. Additionally, we show that δ-polynomalial of Q_{n} is the Eulerian polynomial and show the existence of a regular, flag, unimodular triangulation.

Let $\mathcal{P} \subset \mathbb{R}^{d}$ be a d-dimensional lattice polytope, that is, a convex polytope all of whose vertices belong to \mathbb{Z}^{d}. Let $\operatorname{Vol}(\mathcal{P})$ denote the normalized volume of \mathcal{P}, which is d ! times the Euclidean volume (Lebesgue measure) of \mathcal{P}. For $k \in \mathbb{Z}_{>0}$, the lattice point enumerator $i(\mathcal{P}, k)$ counts the number of lattice points in $k \mathcal{P}=\{k \alpha: \alpha \in \mathcal{P}\}$, the k th dilation of \mathcal{P}. That is,

$$
i(\mathcal{P}, k)=\#\left(k \mathcal{P} \cap \mathbb{Z}^{d}\right), \quad k \in \mathbb{Z}_{>0}
$$

Provided that \mathcal{P} is a lattice polytope, it is known that $i(\mathcal{P}, k)$ is a polynomial in the variable k of degree $d([4])$. The Ehrhart Series for $\mathcal{P}, \operatorname{Ehr}_{\mathcal{P}}(z)$, is the rational generating function

$$
\operatorname{Ehr}_{\mathcal{P}}(z)=1+\sum_{k \geq 1} i(\mathcal{P}, k) z^{k}=\frac{\delta(\mathcal{P}, z)}{(1-z)^{d+1}}
$$

where $\delta(\mathcal{P}, z)=1+\delta_{1} z+\delta_{2} z^{2}+\cdots+\delta_{d} z^{d}$ is the δ-polynomial of \mathcal{P} (cf. [5, Chapter 9]). The δ-polynomial is endowed with the following properties:

- $\delta_{0}=1, \delta_{1}=i(\mathcal{P}, 1)-(d+1)$, and $\delta_{d}=\#\left(\mathcal{P} \backslash \partial \mathcal{P} \cap \mathbb{Z}^{d}\right)$;
- $\delta_{i} \geq 0$ for all $0 \leq i \leq d([10])$;
- If $\delta_{d} \neq 0$, then $\delta_{1} \leq \delta_{i}$ for each $0 \leq i \leq d-1$ ([6]).

For proofs of the first three properties of the coefficients, the reader should consult [5, Chapter $9]$ or [2, Chapter 3]. The Ehrhart series and δ-polynomials for polytopes have been studied extensively. For a detailed background on these topics, please refer to $[2,4,5,11]$.

Given two polytopes \mathcal{P}_{1} and \mathcal{P}_{2} in \mathbb{R}^{d}, we say that \mathcal{P}_{1} and \mathcal{P}_{2} are unimodularly equivalent if there exists a unimodular matrix $U \in \mathbb{Z}^{d \times d}$ (i.e. $\operatorname{det}(U)= \pm 1$) and an integral vector $\boldsymbol{v} \in \mathbb{Z}^{d}$, such that $\mathcal{P}_{2}=f_{U}\left(\mathcal{P}_{1}\right)+\boldsymbol{v}$, where f_{U} is the linear transformation defined by U, i.e., $f_{U}(\mathbf{v})=\mathbf{v} U$ for all $\mathbf{v} \in \mathbb{R}^{d}$. . We write $\mathcal{P}_{1} \cong \mathcal{P}_{2}$ in the case of unimodular equivalence. It is clear that if $\mathcal{P}_{1} \cong \mathcal{P}_{2}$, then $\delta\left(\mathcal{P}_{1}, z\right)=\delta\left(\mathcal{P}_{2}, z\right)$.

[^0]We say that a lattice polytope \mathcal{P} is reflexive if the origin is the unique interior lattice point of \mathcal{P} and its dual polytope

$$
\mathcal{P}^{\vee}=\left\{y \in \mathbb{R}^{d}:\langle x, y\rangle \leq 1 \text { for all } x \in \mathcal{P}\right\}
$$

is a lattice polytope. Moreover, it follows from [7] that the following statements are equivalent:

- \mathcal{P} is unimodularly equivalent to some reflexive polytope;
- $\delta(\mathcal{P}, z)$ is of degree d and is symmetric, that is $\delta_{i}=\delta_{d-i}$ for $0 \leq i \leq\left\lfloor\frac{d}{2}\right\rfloor$.

A polytope \mathcal{P} is called self dual if \mathcal{P} is unimodularly equivalent to its dual polytope \mathcal{P}^{\vee}. This is an extremely rare property in reflexive polytopes, especially for reflexive simplices. There are two families known self dual reflexive simplices. The first such family is given in [8] and the second family is given in [12]. A construction for self dual reflexive polytopes is given in [12], though these polytopes are not simplicial and hence not simplices. In this paper, we provide a new family of self dual reflexive simplices Q_{n} with small volume.

We now define a family of reflexive simplices which are self dual. For $n \geq 2$, let Q_{n} denote the $n-1$ dimensional simplex with \mathcal{V}-representation

$$
Q_{n}:=\operatorname{conv}\left[\begin{array}{cccccc}
1 & 1-n & 0 & 0 & \cdots & 0 \\
1 & 1 & 2-n & 0 & \cdots & 0 \\
1 & 1 & 1 & 3-n & \cdots & 0 \\
\vdots & \vdots & \vdots & & \ddots & \vdots \\
1 & 1 & 1 & \cdots & 1 & -1
\end{array}\right]
$$

where we use the convention that the x_{n-1} coordinate is given by the first row and the x_{1} is given by the last row. We will adopt for simplicity the notation C_{i} where $i \in\{0, \cdots, n-1\}$ for each column (vertex) such that $Q_{n}=\operatorname{conv}\left[C_{0} C_{1} \cdots C_{n-1}\right]$.

We have the following theorem.
Theorem 1. For $n \geq 2$, we have $Q_{n} \cong Q_{n}^{\vee}$.
It behooves us to introduce an \mathcal{H}-representation for the simplex to compute its dual polytope. We now give such a representation.

Proposition 2. For $n \geq 2, Q_{n}$ has the \mathcal{H}-representation

$$
Q_{n}= \begin{cases}x \in \mathbb{R}^{n-1}: & k x_{k}-\sum_{i=1}^{k-1} x_{i} \leq 1, \quad 1 \leq k \leq n-1 \\ & -\sum_{i=1}^{n-1} x_{i} \leq 1\end{cases}
$$

Proof. It is sufficient to show that the vertices of Q_{n} each satisfy precisely $n-1$ of the halfspace inequalities with equality and satisfies the other inequalty strictly. Let $f_{k}(\boldsymbol{x})=$ $k x_{k}-\sum_{i=1}^{k-1} x_{i}$, and $f_{n}(\boldsymbol{x})=-\sum_{i=1}^{n-1} x_{i}$. For a vertex C_{j}, we have that $f_{k}\left(C_{j}\right)=1$ for all $k \neq n-j$. This follows, because if $k<n-j$, we have $f_{k}\left(C_{j}\right)=(k)(1)-\sum_{i=1}^{k-1} 1=1$, if $k>n-j$ with $k \neq n$, we have $f_{k}\left(C_{j}\right)=(n-j)-\sum_{i=1}^{n-j-1} 1=1$, and if $k=n>n-j$, we have $f_{n}\left(C_{j}\right)=-(j-n)-\sum_{i=1}^{n-j-1} 1=1$. In the case of $k=n-j, f_{n-j}\left(C_{j}\right)=-(n-j)^{2}-(n-1-j)<$ 1 if $j \neq 0$ and $j \neq n-1$. For $j=0$ we have $f_{n}\left(C_{0}\right)=1-n<1$ and for $j=n-1$, we have $f_{1}\left(C_{n-1}\right)=-1<1$. Thus, we have the correct \mathcal{H}-representation.

By [5, Corollary 35.3], and Proposition 2, it is clear that $Q_{n}^{\vee}=-Q_{n}$. Therefore, we have shown Theorem 1.

Remark 3. We should note that $\operatorname{Vol}\left(Q_{n}\right)=n!$. For $n \geq 4$, it is immediate that these polytopes are different than previously known self dual reflexive simplices given in [8, 12].

Moreover, the self dual reflexive simplex of Q_{n} has an interesting δ-polynomial and a special triangulation.

Theorem 4. Let $n \geq 2$.
(i) We have $\delta\left(Q_{n}, z\right)=A_{n}(z)$, where $A_{n}(z)$ is the Eulerian polynomial.
(ii) Q_{n} has a regular, flag, unimodular triangulation.

Proof. For a lattice polytope $\mathcal{P} \subset \mathbb{R}^{d}$, we set $\operatorname{Pyr}(\mathcal{P})=\operatorname{conv}(\mathcal{P} \times\{0\},(0, \cdots, 0,1)) \subset$ \mathbb{R}^{d+1}. Then it is well-known that $\delta(\operatorname{Pyr}(\mathcal{P}), z)=\delta(\mathcal{P}, z)(c f .[2$, Section 2.4]) and \mathcal{P} has a regular, flag, unimodular triangulation if and only if $\operatorname{Pyr}(\mathcal{P})$ has a regular, flag, unimodular triangulation (cf. [3, Section 4.2]).

Let R_{n} denote the n dimensional simplex with \mathcal{V}-representation

$$
R_{n}:=\text { conv }\left[\begin{array}{cccccc}
0 & n & n & n & \cdots & n \\
0 & 0 & n-1 & n-1 & \cdots & n-1 \\
0 & 0 & 0 & n-2 & \cdots & n-2 \\
\vdots & \vdots & \vdots & & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1
\end{array}\right] \subset \mathbb{R}^{n} .
$$

This polytope R_{n} is called a lecture hall polytope. Notice that $\operatorname{Pyr}\left(Q_{n}\right)$ is unimodularly equivalent to R_{n}. Let $\widetilde{R_{n}}$ be the polytope defined from R_{n} by removing the $(n+1)$ th column and nth row, let \mathcal{U}_{n} denote the $(n-1) \times(n-1)$ upper triangular matrix defined by $\left(\mathcal{U}_{n}\right)_{i j}=1$ if $i \leq j$ and $\left(\mathcal{U}_{n}\right)_{i j}=0$ otherwise, let $\mathbf{1}$ denote the all ones vector, and let $\mathbf{0}$ denote the all zeros vector. Then we have

$$
Q_{n} \cong-f_{\mathcal{U}_{n}}\left(Q_{n}-1\right)=\widetilde{R_{n}}
$$

Hence it follows that

$$
\operatorname{Pyr}\left(Q_{n}\right) \cong \operatorname{Pyr}\left(\widetilde{R_{n}}\right) \cong R_{n} .
$$

It is known that for $n \geq 2, \delta\left(R_{n}, z\right)=A_{n}(z)([9])$ and R_{n} has a regular, flag, unimodular triangulation ([1]). Therefore, the assertion follows.

References

[1] Matthias Beck, Benjamin Braun, Matthias Köppe, Carla D. Savage, and Zafeirakis Zafeirakopoulos. Generating functions and triangulations for lecture hall cones, SIAM J. Discrete Math. 30 (2016), 1470-1479.
[2] Matthias Beck and Sinai Robins. Computing the continuous discretely: Integer-point enumeration in polyhedra. Springer, 2007.
[3] Jesùs A. De Loera, Jörg Rambau, and Francisco Santos. Triangulations: Structures for Algorithms and Applications. Springer, 2010.
[4] Eugene Ehrhart. Sur les polyédres rationnels homothétiques á n dimensions, C. R. Acad. Sci. Paris 254(1962), 616-618.
[5] Takayuki Hibi. Algebraic Combinatorics on Convex Polytopes. Carslaw, Glebe (1992).
[6] Takayuki Hibi. A lower bound theorem for Ehrhart polynomials of convex polytopes. Adv. Math. 105(1994) 162-165.
[7] Takayuki Hibi. Dual polytopes of rational convex polytopes, Combinatorica 12(1992), 237-240.
[8] Benjamin Nill. Volume and lattice points of reflexive simplicies, Discrete Comput. Geom. $\mathbf{3 7}(2007)$ 301-320.
[9] Carla D. Savage and Michael J. Schuster. Ehrhart series of lecture hall polytopes and Eulerian polynomials for inversion sequences. J. Combin. Theory Ser. A, 119(2012) no.4,850-870.
[10] Richard P. Stanley, Decompositions of rational convex polytopes, Annals of Discrete Math. 6 (1980), 333-342.
[11] Richard P. Stanley. Enumerative Combinatorics, Volume I 2nd ed., Cambridge Studies in Advanced Mathematics, no. 49, Cambridge University Press, New York (2012).
[12] Akiyoshi Tsuchiya. The δ-vectors of reflexive polytopes and of the dual polytopes. Discrete Math. 339 (2016), no. 10, 2450-2456.
(Takayuki Hibi) Department of Pure and Applied Mathematics,, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka 565-0871,Japan

E-mail address: hibi@math.sci.osaka-u.ac.jp
(McCabe Olsen) Department of Mathematics, University of Kentucky, Lexington, Ky 40506-0027

E-mail address: mccabe.olsen@uky.edu
(Akiyoshi Tsuchiya) Department of Pure and Applied Mathematics,, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka 565-0871,Japan

E-mail address: a-tsuchiya@cr.math.sci.osaka-u.ac.jp

[^0]: 2010 Mathematics Subject Classification. 13P20, 52B20.
 Key words and phrases. reflexive polytope, δ-polynomial, Eulerian polynomial.
 The authors would like to thank anonymous referees for reading the manuscript carefully and providing helpful comments and suggestions. The second author was partially supported by a 2016 National Science Foundation/Japanese Society for the Promotion of Science East Asia and Pacific Summer Institutes Fellowship NSF OEIS-1613525. The third author was partially supported by Grant-in-Aid for JSPS Fellows 16J01549.

