SELF DUAL REFLEXIVE SIMPLICES WITH EULERIAN POLYNOMIALS

TAKAYUKI HIBI, MCCABE OLSEN, AND AKIYOSHI TSUCHIYA

ABSTRACT. A lattice polytope \mathcal{P} is called reflexive if its dual \mathcal{P}^{\vee} is a lattice polytope. The property that \mathcal{P} is unimodularly equivalent to \mathcal{P}^{\vee} does not hold in general, and in fact there are few examples of such polytopes. In this note, we introduce a new reflexive simplex Q_n which has this property. Additionally, we show that δ -polynomial of Q_n is the Eulerian polynomial and show the existence of a regular, flag, unimodular triangulation.

Let $\mathcal{P} \subset \mathbb{R}^d$ be a *d*-dimensional lattice polytope, that is, a convex polytope all of whose vertices belong to \mathbb{Z}^d . Let $\operatorname{Vol}(\mathcal{P})$ denote the *normalized volume* of \mathcal{P} , which is *d*! times the Euclidean volume (Lebesgue measure) of \mathcal{P} . For $k \in \mathbb{Z}_{>0}$, the *lattice point enumerator* $i(\mathcal{P}, k)$ counts the number of lattice points in $k\mathcal{P} = \{k\alpha : \alpha \in \mathcal{P}\}$, the *k*th dilation of \mathcal{P} . That is,

$$i(\mathcal{P},k) = \#(k\mathcal{P} \cap \mathbb{Z}^d), \ k \in \mathbb{Z}_{>0}.$$

Provided that \mathcal{P} is a lattice polytope, it is known that $i(\mathcal{P}, k)$ is a polynomial in the variable k of degree d ([4]). The *Ehrhart Series* for \mathcal{P} , $\operatorname{Ehr}_{\mathcal{P}}(z)$, is the rational generating function

$$\operatorname{Ehr}_{\mathcal{P}}(z) = 1 + \sum_{k \ge 1} i(\mathcal{P}, k) z^{k} = \frac{\delta(\mathcal{P}, z)}{(1 - z)^{d+1}}$$

where $\delta(\mathcal{P}, z) = 1 + \delta_1 z + \delta_2 z^2 + \cdots + \delta_d z^d$ is the δ -polynomial of \mathcal{P} (cf. [5, Chapter 9]). The δ -polynomial is endowed with the following properties:

- $\delta_0 = 1$, $\delta_1 = i(\mathcal{P}, 1) (d+1)$, and $\delta_d = \#(\mathcal{P} \setminus \partial \mathcal{P} \cap \mathbb{Z}^d)$;
- $\delta_i \ge 0$ for all $0 \le i \le d$ ([10]);
- If $\delta_d \neq 0$, then $\delta_1 \leq \delta_i$ for each $0 \leq i \leq d-1$ ([6]).

For proofs of the first three properties of the coefficients, the reader should consult [5, Chapter 9] or [2, Chapter 3]. The Ehrhart series and δ -polynomials for polytopes have been studied extensively. For a detailed background on these topics, please refer to [2, 4, 5, 11].

Given two polytopes \mathcal{P}_1 and \mathcal{P}_2 in \mathbb{R}^d , we say that \mathcal{P}_1 and \mathcal{P}_2 are unimodularly equivalent if there exists a unimodular matrix $U \in \mathbb{Z}^{d \times d}$ (i.e. $\det(U) = \pm 1$) and an integral vector $\boldsymbol{v} \in \mathbb{Z}^d$, such that $\mathcal{P}_2 = f_U(\mathcal{P}_1) + \boldsymbol{v}$, where f_U is the linear transformation defined by U, i.e., $f_U(\mathbf{v}) = \mathbf{v}U$ for all $\mathbf{v} \in \mathbb{R}^d$. We write $\mathcal{P}_1 \cong \mathcal{P}_2$ in the case of unimodular equivalence. It is clear that if $\mathcal{P}_1 \cong \mathcal{P}_2$, then $\delta(\mathcal{P}_1, z) = \delta(\mathcal{P}_2, z)$.

²⁰¹⁰ Mathematics Subject Classification. 13P20, 52B20.

Key words and phrases. reflexive polytope, δ -polynomial, Eulerian polynomial.

The authors would like to thank anonymous referees for reading the manuscript carefully and providing helpful comments and suggestions. The second author was partially supported by a 2016 National Science Foundation/Japanese Society for the Promotion of Science East Asia and Pacific Summer Institutes Fellowship NSF OEIS-1613525. The third author was partially supported by Grant-in-Aid for JSPS Fellows 16J01549.

We say that a lattice polytope \mathcal{P} is *reflexive* if the origin is the unique interior lattice point of \mathcal{P} and its dual polytope

$$\mathcal{P}^{\vee} = \left\{ y \in \mathbb{R}^d : \langle x, y \rangle \le 1 \text{ for all } x \in \mathcal{P} \right\}$$

is a lattice polytope. Moreover, it follows from [7] that the following statements are equivalent:

- \mathcal{P} is unimodularly equivalent to some reflexive polytope;
- $\delta(\mathcal{P}, z)$ is of degree d and is symmetric, that is $\delta_i = \delta_{d-i}$ for $0 \le i \le \lfloor \frac{d}{2} \rfloor$.

A polytope \mathcal{P} is called *self dual* if \mathcal{P} is unimodularly equivalent to its dual polytope \mathcal{P}^{\vee} . This is an extremely rare property in reflexive polytopes, especially for reflexive simplices. There are two families known self dual reflexive simplices. The first such family is given in [8] and the second family is given in [12]. A construction for self dual reflexive polytopes is given in [12], though these polytopes are not simplicial and hence not simplices. In this paper, we provide a new family of self dual reflexive simplices Q_n with small volume.

We now define a family of reflexive simplices which are self dual. For $n \ge 2$, let Q_n denote the n-1 dimensional simplex with \mathcal{V} -representation

$$Q_n := \operatorname{conv} \begin{bmatrix} 1 & 1-n & 0 & 0 & \cdots & 0 \\ 1 & 1 & 2-n & 0 & \cdots & 0 \\ 1 & 1 & 1 & 3-n & \cdots & 0 \\ \vdots & \vdots & \vdots & & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & 1 & -1 \end{bmatrix}$$

where we use the convention that the x_{n-1} coordinate is given by the first row and the x_1 is given by the last row. We will adopt for simplicity the notation C_i where $i \in \{0, \dots, n-1\}$ for each column (vertex) such that $Q_n = \operatorname{conv}[C_0 \ C_1 \ \cdots \ C_{n-1}]$.

We have the following theorem.

Theorem 1. For $n \geq 2$, we have $Q_n \cong Q_n^{\vee}$.

It behaves us to introduce an \mathcal{H} -representation for the simplex to compute its dual polytope. We now give such a representation.

Proposition 2. For $n \geq 2$, Q_n has the *H*-representation

$$Q_n = \begin{cases} x \in \mathbb{R}^{n-1} : kx_k - \sum_{i=1}^{k-1} x_i \le 1, & 1 \le k \le n-1 \\ & -\sum_{i=1}^{n-1} x_i \le 1 \end{cases}$$

Proof. It is sufficient to show that the vertices of Q_n each satisfy precisely n-1 of the halfspace inequalities with equality and satisfies the other inequality strictly. Let $f_k(\boldsymbol{x}) = kx_k - \sum_{i=1}^{k-1} x_i$, and $f_n(\boldsymbol{x}) = -\sum_{i=1}^{n-1} x_i$. For a vertex C_j , we have that $f_k(C_j) = 1$ for all $k \neq n-j$. This follows, because if k < n-j, we have $f_k(C_j) = (k)(1) - \sum_{i=1}^{k-1} 1 = 1$, if k > n-j with $k \neq n$, we have $f_k(C_j) = (n-j) - \sum_{i=1}^{n-j-1} 1 = 1$, and if k = n > n-j, we have $f_n(C_j) = -(j-n) - \sum_{i=1}^{n-j-1} 1 = 1$. In the case of k = n-j, $f_{n-j}(C_j) = -(n-j)^2 - (n-1-j) < 1$ if $j \neq 0$ and $j \neq n-1$. For j = 0 we have $f_n(C_0) = 1 - n < 1$ and for j = n-1, we have $f_1(C_{n-1}) = -1 < 1$. Thus, we have the correct \mathcal{H} -representation.

By [5, Corollary 35.3], and Proposition 2, it is clear that $Q_n^{\vee} = -Q_n$. Therefore, we have shown Theorem 1.

Remark 3. We should note that $Vol(Q_n) = n!$. For $n \ge 4$, it is immediate that these polytopes are different than previously known self dual reflexive simplices given in [8, 12].

Moreover, the self dual reflexive simplex of Q_n has an interesting δ -polynomial and a special triangulation.

Theorem 4. Let $n \geq 2$.

(i) We have $\delta(Q_n, z) = A_n(z)$, where $A_n(z)$ is the Eulerian polynomial.

(ii) Q_n has a regular, flag, unimodular triangulation.

Proof. For a lattice polytope $\mathcal{P} \subset \mathbb{R}^d$, we set $\operatorname{Pyr}(\mathcal{P}) = \operatorname{conv}(\mathcal{P} \times \{0\}, (0, \dots, 0, 1)) \subset \mathbb{R}^{d+1}$. Then it is well-known that $\delta(\operatorname{Pyr}(\mathcal{P}), z) = \delta(\mathcal{P}, z)$ (cf. [2, Section 2.4]) and \mathcal{P} has a regular, flag, unimodular triangulation if and only if $\operatorname{Pyr}(\mathcal{P})$ has a regular, flag, unimodular triangulation (cf. [3, Section 4.2]).

Let R_n denote the *n* dimensional simplex with \mathcal{V} -representation

$$R_n := \operatorname{conv} \begin{bmatrix} 0 & n & n & n & \cdots & n \\ 0 & 0 & n-1 & n-1 & \cdots & n-1 \\ 0 & 0 & 0 & n-2 & \cdots & n-2 \\ \vdots & \vdots & \vdots & & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix} \subset \mathbb{R}^n.$$

This polytope R_n is called a *lecture hall polytope*. Notice that $Pyr(Q_n)$ is unimodularly equivalent to R_n . Let $\widetilde{R_n}$ be the polytope defined from R_n by removing the (n+1)th column and *n*th row, let \mathcal{U}_n denote the $(n-1) \times (n-1)$ upper triangular matrix defined by $(\mathcal{U}_n)_{ij} = 1$ if $i \leq j$ and $(\mathcal{U}_n)_{ij} = 0$ otherwise, let **1** denote the all ones vector, and let **0** denote the all zeros vector. Then we have

$$Q_n \cong -f_{\mathcal{U}_n} \left(Q_n - \mathbf{1} \right) = R_n.$$

Hence it follows that

$$\operatorname{Pyr}(Q_n) \cong \operatorname{Pyr}\left(\widetilde{R_n}\right) \cong R_n.$$

It is known that for $n \ge 2$, $\delta(R_n, z) = A_n(z)$ ([9]) and R_n has a regular, flag, unimodular triangulation ([1]). Therefore, the assertion follows.

References

- Matthias Beck, Benjamin Braun, Matthias Köppe, Carla D. Savage, and Zafeirakis Zafeirakopoulos. Generating functions and triangulations for lecture hall cones, SIAM J. Discrete Math. 30 (2016), 1470-1479.
- [2] Matthias Beck and Sinai Robins. Computing the continuous discretely: Integer-point enumeration in polyhedra. Springer, 2007.
- [3] Jesùs A. De Loera, Jörg Rambau, and Francisco Santos. Triangulations: Structures for Algorithms and Applications. Springer, 2010.
- [4] Eugene Ehrhart. Sur les polyédres rationnels homothétiques á n dimensions, C. R. Acad. Sci. Paris 254(1962), 616–618.
- [5] Takayuki Hibi. Algebraic Combinatorics on Convex Polytopes. Carslaw, Glebe (1992).
- [6] Takayuki Hibi. A lower bound theorem for Ehrhart polynomials of convex polytopes. Adv. Math. 105(1994) 162–165.
- [7] Takayuki Hibi. Dual polytopes of rational convex polytopes, Combinatorica 12(1992), 237-240.
- [8] Benjamin Nill. Volume and lattice points of reflexive simplicies, Discrete Comput. Geom. 37(2007) 301–320.

- [9] Carla D. Savage and Michael J. Schuster. Ehrhart series of lecture hall polytopes and Eulerian polynomials for inversion sequences. J. Combin. Theory Ser. A, 119(2012) no.4,850–870.
- [10] Richard P. Stanley, Decompositions of rational convex polytopes, Annals of Discrete Math. 6 (1980), 333-342.
- [11] Richard P. Stanley. Enumerative Combinatorics, Volume I 2nd ed., Cambridge Studies in Advanced Mathematics, no. 49, Cambridge University Press, New York (2012).
- [12] Akiyoshi Tsuchiya. The δ-vectors of reflexive polytopes and of the dual polytopes. Discrete Math. 339(2016), no. 10, 2450–2456.

(TAKAYUKI HIBI) DEPARTMENT OF PURE AND APPLIED MATHEMATICS,, GRADUATE SCHOOL OF IN-FORMATION SCIENCE AND TECHNOLOGY, OSAKA UNIVERSITY, SUITA, OSAKA 565-0871, JAPAN *E-mail address*: hibi@math.sci.osaka-u.ac.jp

(McCabe Olsen) department of Mathematics, University of Kentucky, Lexington, KY $40506{-}0027$

E-mail address: mccabe.olsen@uky.edu

(Akiyoshi Tsuchiya) Department of Pure and Applied Mathematics,, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka 565-0871, Japan

E-mail address: a-tsuchiya@cr.math.sci.osaka-u.ac.jp