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Going Back to Neil Sloane’s FIRST LOVE (OEIS Sequence A435):

On the Total Heights in Rooted Labeled Trees

By Shalosh B. EKHAD and Doron ZEILBERGER

Dedicated to Neil Sloane and the many contributors to the OEIS. Keep up the good work!

Preface

According to the “brief history”, http://oeis.org/wiki/Welcome#OEIS: Brief History, written

by Neil Sloane himself:

“The sequence database was begun by Neil J. A. Sloane in early 1964 when he was a graduate student

at Cornell University in Ithaca, NY. He had encountered a sequence of numbers while working on

his dissertation, namely 1, 8, 78, 944, ... (now entry A000435 in the OEIS), and was looking for

a formula for the n-th term, in order to determine the rate of growth of the terms.”

That first sequence, now entry http://oeis.org/A000435 in the more than quarter-million se-

quences strong OEIS [Sl1], is expressible by the formula

(n− 1)!

n−2
∑

k=0

nk

k!
.

It appears on page 119 in Sloane’s Ph.D. thesis [Sl2], and in a joint paper with John Riordan [RS],

they showed that this is the sum of the the “total heights”, taken over all labeled rooted trees with

n vertices, divided by n.

Rooted Labeled Trees

Suppose that you have a society with n individuals, let’s call them 1, . . . , n, where there is a

unique “big boss” (the “root”). Every member of the society, except the big boss, has a unique

immediate supervisor. Some people (“leaves”) have no one reporting to them, but the set of

immediate subordinates of each supervisor is unordered, i.e. they are considered of equal status in

the “pecking order”. Of course, no one can be their own (immediate or indirect) supervisor. How

many such hierarchies are possible?

If you draw the hierarchy with a directed edge between any member and his immediate supervisor,

you would get a labeled rooted tree. Arthur Cayley[C] famously proved that the number of

labeled trees on n vertices is nn−2, hence the number of rooted labeled trees is n · nn−2 = nn−1.

There are many proofs of this result, the nicest one is due to André Joyal[J] (see also [LZ]). Another

one is using Lagrange Inversion (see [Z1] for a nice exposition), and that’s the one needed for

the present article. Let’s review it.

Let r(n) be the number of labeled rooted trees with n vertices, and consider the exponential
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generating function

R(x) :=

∞
∑

n=0

r(n)

n!
xn .

If the degree of the root is k, then deleting it gives us a set (i.e. unordered collection) of smaller

rooted labeled trees (with disjoint labels), that by general generatingfunctionology has exponential

generating function xR(x)k

k!
(we divide by k! since the k subtrees are unordered). Summing over all

possible k ≥ 0 , we get

R(x) = x
∞
∑

k=0

R(x)k

k!
= xeR(x) .

We have just established a functional equation for the formal power series, R(x):

R(x) = xeR(x) .

For any formal power series f(t), let [tn]f(t) denote the coefficient of tn in f(t).

Recall the versatile

Lagrange Inversion Theorem: If R(x) and Φ(z) are formal power series, starting at x and z0

respectively, then R(x) = xΦ(R(x)) implies [xn]R(x) = 1
n [z

n−1]Φ(z)n .

In our case Φ(z) = ez , hence Φ(z)n = enz , whose coefficient of zn−1 is nn−1

(n−1)! . Hence the coefficient

of xn in R(x), r(n)/n!, equals
r(n)

n!
=

1

n
· nn−1

(n− 1)!
,

entailing that, indeed,

r(n) = nn−1 .

We have just proved that there are exactly nn−1 labeled rooted trees with n vertices.

So much for naive counting, but there is a lot of diversity among these hierarchies. One extreme is

that everyone, except the big boss, reports directly to the big boss, so the “distance” to the root

is always 1 and the sum of the distances is n− 1. There are only n such trees, since once you have

chosen the root (the “big boss”) there is nothing to do. This is the most democratic rooted tree.

The other extreme is that the hierarchy is totally ordered. Every vertex has only one subordinate,

except the one at the very bottom, that has none. Now the sum of the distances to the root is

0 + 1 + 2 + . . . + (n − 1) = n(n − 1)/2 (and hence the average distance is (n − 1)/2), and there

are n! such trees. Such trees are the most authoritarian, there is a clear ranking, and no one is of

equal status.

Hence a natural measure of how “authoritarian” a rooted tree is, is the sum of the heights (distances

to the root) taken over all vertices. Let’s define theweight-enumerator of the set of labeled rooted
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trees on n vertices by

Jn(y) :=
∑

T

yTotalHeight(T ) ,

where the sum is taken over the set of rooted labeled trees on n vertices. Of course Jn(1) = nn−1,

but can we we find an explicit expression for Jn(y) in terms of n and y? Probably not! Still it

would be nice to have an efficient algorithm to generated as many terms of the polynomial sequence

{Jn(y)} as possible, and also be able to find an explicit expression for J ′

n(1), since the important

quantity “average total height” is given by J ′

n(1)/n
n−1. In fact that was Neil Sloane’s original

motivation, that lead to sequence A435.

Weighted Counting According to Total Height

Riordan and Sloane[RS] define the formal power series of the two variables x and y

J(x, y) =

∞
∑

n=1

Jn(y)
xn

n!
,

that is the exponential generating function of the sequence of polynomials {Jn(y)}. Of course

J(x, 1) = R(x).

Using the same generatingfunctionology argument, it is not hard to show (as done in [RS]) that

J(x, y) satisfies the functional equation

J(x, y) = xeJ(xy,y) . (FE)

Alas, now Lagrange Inversion is no longer applicable, and there is no way to recover Jn(y) explicitly.

But what about Jy(x, 1)? (i.e. ∂
∂yJ(x, y) evaluated at y = 1).

Let’s differentiate Eq. (FE) with respect to y, recalling the chain rule from multivariable calculus.

We get

Jy(x, y) = xeJ(xy,y)· ∂
∂y

J(xy, y) = J(x, y)· ∂
∂y

J(xy, y) = J(x, y)·
(

∂(xy)

∂y
· ∂

∂(xy)
J(xy, y) +

∂

∂y
J(xy, y)

)

= J(x, y) · (xJx(xy, y) + Jy(xy, y)) .

Now plug-in y = 1 to get

Jy(x, 1) = J(x, 1)(xJx(x, 1) + Jy(x, 1)) .

But J(x, 1) is what we called above R(x), and Jx(x, 1) is R
′(x), hence

Jy(x, 1) = xR(x)R′(x) +R(x)Jy(x, 1) .

Solving for Jy(x, 1) we get

Jy(x, 1) =
xR(x)R′(x)

1−R(x)
.
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It would be nice to express Jy(x, 1) in terms of R(x) only, but this is easy.

Differentiating the functional equation R(x) = x eR(x) with respect to x, we get, by the product

rule and chain rule (this time Calculus I suffices)

R′(x) = eR(x) + xeR(x)R′(x) =
R(x)

x
+R(x)R′(x) .

Solving for R′(x) we get

R′(x) =
R(x)

x(1−R(x))
.

We note, for the future, that by repeated differentiation (using the quotient rule and the chain

rule and repeatedly using that very same equation R′(x) = R(x)
x(1−R(x)) ) enables us to express any

derivative of R(x), R(j)(x), as rational function of R(x) and x with denominator that has the form

(1−R(x))2j−1.

Substituting R′(x) = R(x)
x(1−R(x)) into Jy(x, 1) =

xR(x)R′(x)
1−R(x) gives

Jy(x, 1) =
R(x)2

(1−R(x))2
.

Now it is time to invoke (see, e.g., [Z1])

The Generalized Lagrange Inversion Theorem: If u(t) and Φ(z) are formal power series

starting at t and z0 respectively, and G(z) is yet another formal power series, then u(t) = tΦ(u(t))

implies [tn]G(u(t)) = (1/n)[zn−1]G′(z)Φ(z)n .

Here G(z) = z2

(1−z)2
and hence G′(z) = 2 z

(1−z)3
.

Hence J ′

n(1)/n!, the coefficient of xn in R(x)2

(1−R(x))2
, is 1/n times the coefficient of zn−1 in

2z

(1− z)
3 · enz ,

which is the coefficient of zn in
2z2

(1− z)
3 · enz .

But
2z2

(1− z)3
=

∞
∑

k=0

(k − 1)k zk ,

hence
J′

n
(1)
n! is 1

n times the coefficient of zn in the formal power series

(

∞
∑

k=0

(k − 1)k zk

)

·
(

∞
∑

s=0

ns

s!

)

.
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Hence
J ′

n(1)

n!
=

1

n

n−2
∑

k=0

(n− k − 1)(n − k)nk

k!
.

Noting that

(n− k)(n− k − 1) = n (n− 1) − 2(n− 1) k + k (k − 1) ,

simple routine algebra leads to

J ′

n(1) = n!

n−2
∑

k=0

nk

k!
.

Hence the average total height among all labeled rooted trees with n vertices is n!
nn−1

∑n−2
k=0

nk

k! , that

we will call Wn (please be warned that our notation differs from that of [RS], their Wn is nn−1

times our Wn).

As noted in [RS], Wn is asymptotic (thanks to Ramanujan and Watson, see [W]) to n3/2
√

π/2. We

have just reproved, in much more detail than in [RS] (and a somewhat different proof):

Theorem 1 (Riordan-Sloane [RS]) The average total height among all rooted labeled trees on n

vertices equals n!
nn−1

∑n−2
k=0

n!
k! and is asymptotically n

3

2

√

π/2.

Enter Computers

So much can be done by mere humans, but the average is only the most basic statistical infor-

mation about a random variable. What about the variance? (and hence “coefficient of variation”)

skewness? kurtosis? and higher moments? Is there a limiting scaled distribution?

In order to find explicit expressions for higher moments, we need to first find higher factorial

moments. The r-th factorial moment is J
(r)
n (1), and once we know the first r factorial moments we

can, by standard theory (see [Z2]), get the moments, and from them, easily, the moments-about-

the-mean.

But how can we do that? It turns out that the same method that we described above still works,

but very soon gets very tedious for humans. To get the second factorial moment, we have to

differentiate (FE) twice, plug-in y = 1 and get an expression for Jyy(x, 1) (that is the exponential

generating function of J ′′

n (1),) in terms of R(x), R′(x) and R′′(x). We already noted that each

derivative of R(x) can be expressed as rational function of R(x), so at the end it can be expressed

in terms of R(x) alone, and we can use the Generalized Lagrange Inversion Formula, as we did

above.

Maple knows the chain rule for multi-variable functions, so all this can be done automatically and

seamlessly. Also one can teach Maple how to use generalized Lagrange Inversion, and perform all

the steps.

All this is implemented in the Maple package A435.txt available from the front of this article

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/a435.html .
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Some Computer-Generated Theorems

In the theorems below

Wn :=
n!

nn−1

n−2
∑

k=0

nk

k!
.

Recall that Riordan and Sloane showed (and we reproved above) that the average total height

among labeled rooted trees with n vertices is Wn.

It follows from our algorithm that every moment can always be expressed as some polynomial in n

and Wn, but they get more and more complicated for higher moments. Below we stae rigorously-

proved explicit expressions for the first four moments, as well as the implied asymptotics and the

limits of the α-coefficients, i.e. the limits of the standardized moments. More moments can be

found in the output files mentioned later.

Theorem 2. The variance of the random variable “total height” on the set of rooted labeled trees

on n vertices is given explicitly by

−Wn
2 − 17

6
nWn +

5

3
n2(n− 1) ,

and its asymptotics is (5
3
− π

2
)n2. Hence the limit of the coefficient of variation (the mean over the

standard-deviation), as n goes to infinity, is

√
2

6

√
−18π + 60√

π
= 0.2470484847 . . . .

Note in particular that there is no “concentration about the mean”.

Theorem 3. The third moment about the mean of the random variable “total height” on the set

of rooted labeled trees on n vertices is given explicitly by

2Wn
3 +

17

2
nWn

2 +

(

−25

8
n3 +

277

24
n2 − 1

60
n

)

Wn − 151

30
n4 +

76

15
n3 − 1

30
n2 ,

and its asymptotic expression is

(

1

2

√
2π3/2 − 25

16

√
2
√
π

)

n9/2 ,

that is approximately 0.020795808n9/2 . It follows that the limit of the skewness, as n goes to

infinity, is
(

6π − 75
4

)√
3
√

π
10−3 π

10− 3π
= .7005665208 . . . .

In particular we know that the limiting distribution, whatever it is, is not normal. So “total height”

defined on rooted labeled trees is not asymptotically normal.
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Theorem 4. The fourth moment about the mean of the random variable “total height” on the set

of rooted labeled trees on n vertices is given explicitly by

−3Wn
4−17nWn

3+

(

5

2
n3 − 217

6
n2 +

1

15
n

)

Wn
2+

(

649

80
n4 − 74381

2160
n3 +

433

2520
n2 +

1

105
n

)

Wn

+
221

63
n6 +

4693

540
n5 − 4651

378
n4 +

109

1260
n3 +

2

105
n2 ,

and its asymptotic expression is

(

−3

4
π2 +

5

4
π +

221

63

)

n6 ,

that is approximately 0.032724023n6 . It follows that the limit of the kurtosis as n goes to infinity

is
1

7

−189π2 + 315π + 884

(10− 3π)2
= 3.560394751 . . . ,

hence the limiting distribution is leptokurtic.

For theorems about the 5th through the 12th moments we refer the reader to the computer-generated

article

http://www.math.rutgers.edu/~zeilberg/tokhniot/oA435a12.txt .

Let us conclude by stating the limits of the scaled moments, αk, for 3 ≤ k ≤ 9.

α3 =

(

6π − 75
4

)√
3
√

π
10−3 π

10 − 3π
= .7005665208 . . . ,

α4 =
−189π2 + 315π + 884

7 (10− 3π)
2 = 3.560394751 . . . ,

α5 =

(

36π2 + 75
2 π − 105845

224

)√
3
√

π
10−3 π

(10− 3π)2
= 7.256376376 . . . ,

α6 =
15

16016

−144144π3 − 720720π2 + 3013725π + 2120320

(10− 3π)
3 = 27.68549546 . . . ,

α7 =

(

162π3 + 6615
4

π2 − 103965
32

π − 101897475
9152

)√
3
√

π
10−3 π

(10− 3π)3
= 90.01702180 . . . ,

α8 =
3

2586584

−488864376π4 − 8147739600π3 − 455885430π2 + 86568885375π + 32820007040

(10− 3π)
4

= 358.8086679 . . . ,

α9 =

(

648π4 + 15795π3 + 591867
16 π2 − 461286225

2288 π − 188411947088175
662165504

)√
3
√

π
10−3 π

(10− 3π)
4 = 1460.710269 . . . .
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For the exact expressions for α10, α11, α12 see the output file

http://www.math.rutgers.edu/~zeilberg/tokhniot/oA435a12.txt .

Here are their floating-point approximations:

α10 = 6498.233818 . . . ,

α11 = 30389.98955 . . . ,

α12 = 150516.4157 . . . .

One of us (DZ) is pledging a donation of one hundred US dollars to the OEIS Foundation, in honor

of the first solver(s), for a solution to the following challenge.

Challenge: What is the probability density function of the limiting scaled distribution, as n → ∞,

of the random variable “total height” defined on the set of labeled rooted trees on n vertices?

To get a glimpse of how it is supposed to look like, see the plots here:

http://www.math.rutgers.edu/~zeilberg/tokhniot/oA435c.html .
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