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RESTRICTED STIRLING PERMUTATIONS

DAVID CALLAN, SHI-MEI MA, AND TOUFIK MANSOUR

Abstract. In this paper, we study the generating functions for the number of pattern restricted
Stirling permutations with a given number of plateaus, descents and ascents. Properties of the
generating functions, including symmetric properties and explicit formulas are studied. Combi-
natorial explanations are given for some equidistributions.

1. Introduction and main results

Let Sn denote the symmetric group of all permutations of [n], where [n] = {1, 2, . . . , n}. A
permutation σ = σ1σ2 · · ·σn ∈ Sn is said to contain another permutation τ = τ1τ2 · · · τk ∈ Sk as a
pattern if σ has a subsequence order-isomorphic to τ , where n ≥ k. If there is no such subsequence,
then we say that σ avoids the pattern τ . Pattern avoidance was first studied by Knuth [15] and
he found that, for τ ∈ S3, the number of permutations in Sn avoiding τ is given by the nth
Catalan number. Later, Simion and Schmidt [24] determined the number of permutations in Sn

simultaneously avoiding any given set of patterns τ ∈ S3. From then on, there has been a large
literature devoted to this topic, see [4, 11] for instance.

Stirling permutations were introduced by Gessel and Stanley [8]. A Stirling permutation of
order n is a permutation σ of the multiset {1, 1, 2, 2, . . . , n, n} such that every element between
the two occurrences of i is greater than i for each i ∈ [n]. Denote by Qn the set of Stirling
permutations of order n. Let σ = σ1σ2 · · ·σ2n−1σ2n ∈ Qn. Throughout this paper, we always let

des (σ) = #{i | 1 ≤ i ≤ 2n− 1 and σi > σi+1},
asc (σ) = #{i | 1 ≤ i ≤ 2n− 1 and σi < σi+1},
plat (σ) = #{i | 1 ≤ i ≤ 2n− 1 and σi = σi+1}.

denote the number of descents, ascents and plateaus of σ, respectively. Then the equations

Cn(x) =
∑

σ∈Qn

xdes (σ)+1 =

n
∑

i=1

C(n, k)xk

define the second-order Eulerian polynomials Cn(x) and the second-order Eulerian numbers C(n, k).
Let asc (σ) + 1 and des (σ) + 1 be the number of augmented ascents and augmented descents of
σ, respectively, that is, the number of ascents and descents when σ is augmented with a 0 at the
start and end. Bóna [3, Proposition 1] proved that the augmented ascents, augmented descents
and plateaus are equidistributed over the set Qn. Let

Cn(p, q, r) =
∑

σ∈Qn

pplat (σ)qdes (σ)rasc (σ).

Janson [13, Theorem 2.1] discovered that the trivariate generating function qrCn(p, q, r) is sym-
metric in p, q, r, which implies Bóna’s equidistributed result.

The notion of pattern avoidance can be extended to Stirling permutations in a straightforward
way. We say that σ ∈ Qn contains the pattern τ = τ1τ2 · · · τk if for some 1 ≤ i1 < i2 < · · · < ik ≤
2n, we have σis < σit whenever τs < τt. A Stirling permutation is said to avoid any pattern it
does not contain. Let Qn(τ) be the set of Stirling permutations of order n avoiding the pattern
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τ . Recently, Kuba and Panholzer [16] obtained enumerative formulas for Stirling permutations
avoiding a set of patterns of length three. For example, it follows from [16, Theorem 1] that

#Qn(213) =
1

2n+ 1

(

3n

n

)

,

#Qn(123) = Qn(132) =
n
∑

j=0

(

n

j

)(

n+j−1
n−j

)

n+ 1− j
.

We denote the generating function for the number of Stirling permutations of order n according
to the number plateaus, descents and ascents by

Cn,τ (p, q, r) =
∑

σ∈Qn(τ)

pplat (σ)qdes (σ)rasc (σ).

We now present the three main results of this paper.

Theorem 1.1. For n ≥ 1, the generating function qrCn,213(p, q, r) is symmetric in p, q, r. Fur-
thermore, the number of Stirling permutations in Qn(213) with exactly m ascents, d descents and
k plateaus is given by

{

1
n

(

n
m+1

)(

n
d+1

)(

n
k

)

, if 2n− 1 = m+ d+ k

0, otherwise.
(1)

Moreover,

∑

σ∈Qn(213)

pplat (σ) =
1

n

n−1
∑

i=0

(

n

i

)(

2n

n− 1− i

)

pn−i.(2)

Theorem 1.2. For n ≥ 1, the generating function qCn,123(p, q, r) is symmetric in p, q. Further-
more,

∑

σ∈Qn(123)

pplat (σ) =
1

n+ 1

n
∑

j=0

(

n+ 1

j

)(

2n− j

n+ j

)

pn−j .(3)

The symmetric properties of qrCn,213(p, q, r) and qCn,123(p, q, r) lead to the following corollary.

Corollary 1.3. For all n ≥ 0,
∑

σ∈Qn(123)

qdes (σ)+1 =
∑

σ∈Qn(123)

qplat (σ).(4)

∑

σ∈Qn(213)

qasc (σ)+1 =
∑

σ∈Qn(213)

qdes (σ)+1 =
∑

σ∈Qn(213)

qplat (σ).(5)

Theorem 1.4. For n ≥ 0,
∑

σ∈Qn(132)

qplat (σ) =
∑

σ∈Qn(123)

qplat (σ).

Moreover, the number of 132-avoiding Stirling permutations of order n with exactly d descents is
given by

(

n−1
d

)

n+ 1

n+1
∑

j=0

(

n+ 1

j

)(

j

d+ 1− j

)

.

2. Analytic proofs of the main theorems

In this section, we present Analytic proofs of Theorems 1.1, 1.2 and 1.4. More precisely, we find
explicit formulas for the generating function

∑

n≥0 Cn,τ (p, q, r)x
n for τ ∈ S3. Since the reversal

operation (σ1σ2 · · ·σ2n 7→ σ2n · · ·σ2σ1) preserves the set of Stirling permutations, we only need
to consider the three cases, τ = 123, τ = 132, τ = 213. For the latter case, we use the block
decompositions technique (for instance, see [22]), while for the former two cases, we use the kernel
method (for instance, see [12]).



RESTRICTED STIRLING PERMUTATIONS 3

2.1. The case 213. Define

C213(x, p, q, r) =
∑

n≥0

∑

σ∈Qn(213)

xnpplat (σ)qdes (σ)rasc (σ).

Note that each nonempty Stirling permutation σ that avoids 213 can be represented as σ′1σ′′1σ′′′

such that

• each letter of σ′ is greater than each letter of σ′′;
• each letter of σ′′ is greater than each letter of σ′′′;
• σ′, σ′′, σ′′′ are Stirling permutations that avoid 213.

Hence, by considering the 8 possibilities where one of σ′, σ′′, σ′′′ is empty or not, we obtain that
the generating function C213(x, p, q, r) satisfies

C213(x, p, q, r) = 1 + xp+ x(pr + qr + pq)(C213(x, p, q, r)− 1)

+ xqr(r + p+ q)(C213(x, p, q, r) − 1)2 + xq2r2(C213(x, p, q, r) − 1)3,

which leads to the following result.

Theorem 2.1. The generating function f = C213(x, p, q, r) − 1 satisfies

f = xp+ x(pr + qr + pq)f + xqr(r + p+ q)f2 + xq2r2f3.

2.1.1. Proof of Theorem 1.1. Theorem 2.1 shows that the generating function

g = qr(C213(x, p, q, r) − 1)

satisfies g = x(p+g)(q+g)(r+g). Thus, the generating function g is symmetric in p, q, r. Moreover,
by Lagrange Inversion Formula, we obtain that the coefficient of xn in g is given by

[xn]g =
1

n
[yn−1](p+ y)n(q + y)n(r + y)n

=
1

n

n
∑

i=0

n
∑

j=0

(

n

i

)(

n

j

)(

n

i+ j + 1

)

qn−irn−jpi+j+1,

which completes the proof of (1).
If we let g = C213(x, p, 1, 1), then Theorem 2.1 gives g = 1+x(p− 1+ g)g2. Thus, by Lagrange

Inversion Formula, we obtain that the coefficient of xn in g is given by

[xn]g =
1

n
[yn−1](p+ y)n(y + 1)2n =

1

n

n−1
∑

i=0

(

n

i

)(

2n

n− 1− i

)

pn−i.

Hence, the number of Stirling permutations in Qn(213) with exactly k plateaus is given by
1
n

(

n
k

)(

2n
k−1

)

, which completes the proof. ✷

2.2. The case 123. For short notation, we define f(n) = Cn,123(p, q, r). Conditioning on the
initial entries of permutations, we define

f(n|i1i2 · · · is) =
∑

σ=i1i2···isσ′∈Qn(123)

xnpplat (σ)qdes (σ)rasc (σ).

Lemma 2.2. For all n ≥ 2,

f(n)− pqf(n− 1) =

n
∑

i=1

f(n|ii) + q(r − p)

n−1
∑

i=1

f(n− 1|ii).

Proof. Clearly, f(n) =
∑n

i=1 f(n|i), and f(n|i) = f(n|ii) + f(n|inn) (when i < n). Thus, we
obtain

f(n) =

n
∑

i=1

f(n|ii) +
n−1
∑

i=1

f(n|inn).(6)
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On the other hand, for all n ≥ 2, we have

f(n|inn) = f(n|inni) + f(n|inn(n− 1)(n− 1))

= qrf(n− 1|ii) + pqf(n− 1|i(n− 1)(n− 1)),(7)

which, by (6) and (7), implies the required result.

Lemma 2.3. For 1 ≤ i ≤ n− 2 and n ≥ 4,

f(n|ii)− 2pqf(n− 1|ii) + p2q2f(n− 2|ii)

= pq

i−1
∑

j=1

f(n− 1|jj) + pq(pr + qr − 2pq)

i−1
∑

j=1

f(n− 2|jj) + p2q2(r − p)(r − q)

i−1
∑

j=1

f(n− 3|jj).

Moreover, f(n|nn) = pqf(n− 1) and f(n|(n− 1)(n− 1)) = pqf(n− 1) + p2q(r − q)f(n− 2).

Proof. By the definitions, we have f(n|nn) = pqf(n− 1). Thus,

f(n|(n− 1)(n− 1)) =

n−2
∑

j=1

f(n|(n− 1)(n− 1)j) + f(n|(n− 1)(n− 1)nn),

which implies

f(n|(n−1)(n−1)) = pq
n−2
∑

j=1

f(n−1|j)+prf(n−1|(n−1)(n−1)) = pqf(n−1)+p2q(r−q)f(n−2).

Now, let 1 ≤ i ≤ n− 2, then

f(n|ii) =
i−1
∑

j=1

f(n|iij) + f(n|iinn) = pq

i−1
∑

j=1

f(n− 1|j) + f(n|iinn).

Similarly,

f(n|iinn) = pqf(n− 1|ii(n− 1)(n− 1)) + p2qr

i−1
∑

j=1

f(n− 2|j),

which implies

f(n|iinn)− pqf(n|ii(n− 1)(n− 1)) = p2qr

i−1
∑

j=1

f(n− 2|j).

Thus,

f(n|ii)− pqf(n− 1|ii) = pq

i−1
∑

j=1

f(n− 1|j) + p2q(r − p)

i−1
∑

j=1

f(n− 2|j).(8)

On the other hand, by Lemma 2.2, we have that

i−1
∑

j=1

f(n|j)− pq

i−1
∑

j=1

f(n− 1|j) =
i−1
∑

j=1

f(n|jj) + q(r − p)

i−1
∑

j=1

f(n− 1|jj).

Hence, by using (8), we complete the proof.

Define Ln(v) =
∑n

i=1 f(n|ii)vi−1. We now present the following result.
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Proposition 2.4. For all n ≥ 4,

Ln(v)− 2pqLn−1(v) + p2q2Ln−2(v)

= pqf(n− 1)vn−2(1 + v) + p2(rq − 3q2)f(n− 2)vn−2 + p2q2f(n− 2)vn−2

+
pqv

1− v
(Ln−1(v)− vn−3Ln−1(1)) +

pq(qr + pr − 2pq)v

1− v
(Ln−2(v) − vn−3Ln−2(1))

+
p2q2(r − p)(r − q))v

1− v
(Ln−3(v)− vn−3Ln−3(1)),

f(n)− pqf(n− 1) = Ln(1) + q(r − p)Ln−1(1),

where L1(v) = p, L2(v) = p2(r+qv), L3(v) = p3qr+p2qr(2p+q)v+p2q(pr+qr+pq)v2, f(0) = 1,
f(1) = p and f(2) = p(pq + pr + qr).

Proof. The initial conditions can be obtained from the definitions. The recurrence relation for
Ln(v) is obtained by multiplying the recurrence relation for f(n|ii) in Lemma 2.3 by vi−1 and
summing over i = 1, 2, . . . , n − 2. The recurrence relation for f(n) follows immediately from
Lemma 2.2.

Define L(x; v) =
∑

n≥1 Ln(v)x
n and let F (x) = C123(x, p, q, r) (for short notation). By multi-

plying the first recurrence in Proposition 2.4 by xn and summing over n ≥ 4, we obtain

L(x; v)− L1(v)x − L2(v)x
2 − L3(v)x

3 − 2pqx(L(x, v)− L1(v)x − L2(v)x
2) + p2q2x2(L(x, v)− L1(v)x)

= pqx(F (xv) − 1− f(1)xv − f(2)x2v2) +
pqx

v
(F (xv) − 1− f(1)xv − f(2)x2v2)

+ p2q(r − q)x2(F (xv) − 1− f(1)xv)− p2q2x2(F (xv) − 1− f(1)xv)

+
pqvx

1− v
(L(x, v)− L1(v)x− L2(v)x

2 − 1

v2
(L(xv, 1)− L1(1)xv − L2(1)x

2v2))

+
pq(qr + pr − 2pq)x2v

1− v
(L(x, v) − L1(v)x − 1

v
(L(xv, 1)− L1(1)xv))

+
p2q2(r − p)(r − q)x3v

1− v
(L(x, v)− L(xv, 1)),

which, by several simple algebraic operations, implies
(

(1− pqx)2 − pqxv(1 − (p− r)qx)(1 − p(q − r)x)

1− v

)

L(x; v)

= px(1− pqx)(1 + xp(r − q))− pqx(1 + pxv(r − q))(1 + qxv(r − p))

v(1 − v)
L(xv; 1)(9)

+
pqx(1 + v + pxv(r − 2q))

v
(F (xv) − 1).

By multiplying the second recurrence in Proposition 2.4 by xn and summing over n ≥ 2, we obtain

(1− pqx)(F (x) − 1) = (1 + q(r − p)x)L(x; 1).(10)

By finding L(x; 1) from (10) and using it to simplify (9), we obtain the following result.

Theorem 2.5. The generating function C123(x, p, q, r) is given by

C123(x, p, q, r) = 1 +
1 + q(r − p)x

1− pqx
L(x; 1),

where the generating function L(x; v) satisfies
(

(1− pqx)2 − pqxv(1− (p− r)qx)(1 − p(q − r)x)

1− v

)

L(x; v)

=
px(1− pqx)(1 + xp(r − q))(1 − v(1− q))

1− v
(1− (1− q)v − qvF (xv)) .
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Theorem 2.5 gives
(

(1− pqx/v)2 − pqx(1 − (p− r)qx/v)(1 − p(q − r)x/v)

1− v

)

L(x/v; v)

=
px/v(1− pqx/v)(1 + xp(r − q)/v)(1 − v(1− q))

1− v
(1− (1− q)v − qvF (x)) ,(11)

where F (x) = 1 + (1+q(r−p)x)
1−pqx

L(x; 1) = C123(x, p, q, r). This type of functional equation can be

solved systematically using the kernel method (see [12] and references therein). In order to do
that, we define

K(v) = (1 − pqx/v)2 − pqx(1− (p− r)qx/v)(1 − p(q − r)x/v)

1− v
.

So, if we assume that v = v0 = v0(x, p, q, r) in Theorem 2.5 (we shall show that v0 is the solution)
such that K(v0) = 0, then (11) gives

px/v0(1− pqx/v0)(1 + xp(r − q)/v0)(1− v0(1− q))

1− v0
(1− (1− q)v0 − qv0F (x)) = 0,(12)

which implies

F (x) = C123(x, p, q, r) = 1 +
1− v0
qv0

,(13)

where v0 satisfies K(v0) = 0, that is,

−p2q2x2(1− x(r − q)(r − p)) + pqx(2 + x((p+ q)r − pq))v0 − (1 + pqx)v20 + v30 = 0.

If we set f = qC123(x, p, q, r) − q + 1, then f = q + 1−v0
v0

− q + 1 = 1
v0
, which implies

−p2q2x2(1− x(r − q)(r − p))f3 + pqx(2 + x((p+ q)r − pq))f2 − (1 + pqx)f + 1 = 0.

Hence, we can state the following result.

Theorem 2.6. The generating function f = qC123(x, p, q, r) − q + 1 satisfies

f = 1 + pqx(−1 + (2 + x(pr + qr − pq))f − pqx(1− x(p− r)(q − r))f2)f.

2.2.1. Proof of Theorem 1.2. Let f = q(C123(x, p, q, r)−1)+1. Then, Theorem 2.6 can be written
as

f =
1− p2q2x2(1 − x(r − q)(r − p))f3

1 + pqx− pqx(2 + x(qr + pr − pq))f
,

which shows that the generating function f is symmetric in p, q.
Now, assume that g = xC123(x, p, 1, 1). Then, Theorem 2.6 gives that the generating function

g satisfies

g =
x(1 − pg + pg2)

(1− pg)2
.(14)

Then, by Lagrange Inversion Formula, we have that the coefficient of xn in g is given by

[xn]g =
[yn−1]

n

n
∑

j=0

(

n

j

)

pjy2j

(1− py)n+j
,

which implies

[xn]g =
[yn−1]

n

n
∑

j=0

∑

i≥0

(

n

j

)(

n− 1 + j + i

i

)

pj+iy2j+i

=
1

n

n
∑

j=0

(

n

j

)(

2n− 2− j

n− 1− 2j

)

pn−1−j.

Hence, by the fact that C123(x, p, 1, 1) = g/x, we obtain that the generating function for the
number of Stirling permutations of length n that avoid 123 according to the number plateaus is
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given by 1
n+1

∑n

j=0

(

n+1
j

)(

2n−j
n+j

)

pn−j. Moreover, the number of Stirling permutations of length n

that avoid 123 with exactly k plateaus is given by 1
n+1

(

n+1
k+1

)(

n+k

2n−k

)

, which proves (3). ✷

2.3. The case 132. Define g(n) = Cn,132(p, q, r) and again use the notation

g(n|i1i2 · · · is) =
∑

σ=i1i2···isσ′∈Qn(132)

xnpplat(σ)qdes(σ)rasc(σ).

Lemma 2.7. For all n ≥ 2,

g(n)− prg(n− 1) =

n
∑

i=1

g(n|ii) + r(q − p)

n−1
∑

i=1

g(n− 1|ii).

Proof. Clearly, g(n) =
∑n

i=1 g(n|i), where g(n|i) = g(n|ii) + g(n|i(i+ 1)). Thus, we obtain

g(n) =

n
∑

i=1

g(n|ii) +
n−1
∑

i=1

g(n|i(i+ 1)).(15)

On the other hand, by the definitions, for all n ≥ 2, we have

g(n|i(i+ 1)) = g(n|i(i+ 1)(i+ 1)) = g(n|i(i+ 1)(i+ 1)i) + g(n|i(i+ 1)(i+ 1)(i+ 2))

= qrg(n− 1|ii) + prg(n− 1|i(i+ 1)),(16)

which, by (15) and (16), implies the required result.

Lemma 2.8. For 1 ≤ i ≤ n− 1 and n ≥ 3,

g(n|ii)− 2prg(n− 1|ii) = pq

i−1
∑

j=1

g(n− 1|jj) + pqr(q − p)

i−1
∑

j=1

g(n− 2|jj)− p2r2g(n− 2|ii)

with g(n|nn) = pqg(n− 1).

Proof. By the definition g(n|nn) = pqg(n− 1). Let 1 ≤ i ≤ n− 1, then

g(n|ii) =
i−1
∑

j=1

g(n|iij) + g(n|ii(i+ 1)(i+ 1)) = pq

i−1
∑

j=1

g(n− 1|j) + prg(n− 1|ii),

which, by g(n|i) = g(n|ii) + g(n|i(i+ 1)), implies

g(n|ii) = pq

i−1
∑

j=1

g(n− 1|jj) + pq

i−1
∑

j=1

g(n− 1|j(j + 1)) + prg(n− 1|ii).

Thus, by (16), we obtain

g(n|ii)− prg(n− 1|ii) = pq

i−1
∑

j=1

g(n− 1|jj) + pqr(q − p)

i−1
∑

j=1

g(n− 2|jj)

+ prg(n− 1|ii)− p2r2g(n− 2|ii).
as required.

Proposition 2.9. Define Ln(v) =
∑n

i=1 g(n|ii)vi−1. For all n ≥ 3,

Ln(v)− pqvn−1g(n− 1)− 2prLn−1(v) =
pqv

1− v
(Ln−1(v)− vn−2Ln−1(1))

+
pqr(q − p)v

1− v
(Ln−2(v)− vn−2Ln−2(1))− p2r2Ln−2(v),

g(n)− prg(n− 1) = Ln(1) + r(q − p)Ln−1(1),

where L1(v) = p and L2(v) = p2(r + qv), g(0) = 1, g(1) = p and g(2) = p(pr + qr + pq).
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Proof. The initial conditions can be obtained from the definitions. By Lemma 2.7, we have
g(n)− prg(n− 1) = Ln(1)+ r(q− p)Ln−1(1). By multiplying the recurrence relation in statement
of Lemma 2.8 by vi−1 and summing over i = 1, 2, . . . , n− 1, we obtain the recurrence relation for
Ln(v).

Define L(x; v) =
∑

n≥1 Ln(v)x
n and let F (x) = C132(x, p, q, r) (for short notation). By multi-

plying the recurrences in Proposition 2.9 by xn and summing over n ≥ 3, we obtain
(

(1− prx)2 − pqvx(1 + r(q − p)x)

1− v

)

L(x; v)

= px(1− prx) + pqx(F (xv) − 1)− pqx

1− v
(1 + r(q − p)vx)L(xv; 1),

(1− prx)F (x) = (1 + r(q − p)x)L(x; 1) + 1− prx.

Hence, we can state the following result.

Theorem 2.10. The generating function C132(x, p, q, r) is given by

C132(x, p, q, r) = 1 +
1 + r(q − p)x

1− prx
L(x; 1),

where the generating function L(x; v) satisfies
(

(1− prx)2 − pqvx(1 + r(q − p)x)

1− v

)

L(x; v)

= px(1− prx) − pqxv(1 − prx)(1 + (q − p)rxv)

(1 − prxv)(1 − v)
L(xv; 1).

Theorem 2.10 gives
(

(1− prx/v)2 − pqx(1 + r(q − p)x/v)

1− v

)

L(x/v; v)(17)

= px(1− prx/v)/v − pqx(1− prx/v)(1 + (q − p)rx)

(1− prx)(1 − v)
L(x; 1),(18)

where 1 + 1+(q−p)rx
1−prx

L(x; 1) = C132(x, p, q, r). This type of functional equation can be solved

systematically using the kernel method (see [12] and references therein). In order to do that, we
define

K(v) = (1− prx/v)2 − pqx(1 + r(q − p)x/v)

1− v
.

So, if we assume that v = v0 = v0(x, p, q, r) in (18) (we shall show that v0 is the solution) such
that K(v0) = 0, then (18) gives

L(x, 1) =
1− v0
qv0

1− prx

1 + (q − p)rx

and

C132(x, p, q, r) = 1 +
1− v0
qv0

,

where v0 satisfies

−p2r2x2 + rpx(prx − pqx+ q2x+ 2)v0 − (1 + 2prx+ pqx)v20 + v30 = 0.

So f = qC132(x, p, q, r) − q + 1 = 1
v0
, which implies

−p2r2x2f3 + rpx(prx − pqx+ q2x+ 2)f2 − (1 + 2prx+ pqx)f + 1 = 0.

Hence, we can state the following result.

Theorem 2.11. The generating function f = qC132(x, p, q, r) − q + 1 satisfies

f = 1 + px
(

q − 2r + r(2 + (pr − pq + q2)x)f − pr2xf2
)

f.



RESTRICTED STIRLING PERMUTATIONS 9

2.3.1. Proof of Theorem 1.4. Let h = xC132(x, p, 1, 1). Then, Theorem 2.11 gives

h =
x(1− ph+ ph2)

(1− ph)2
,

which, by (14), proves that the number of 132-avoiding Stirling permutations of order n with
exactly k plateaus is the same as the number of 123-avoiding Stirling permutations of order n
with exactly k plateaus.

If we set h = x(qC132(x, 1, q, 1)− q + 1), then Theorem 2.11 gives

h =
x((1 − h)2 + qh(1 − h) + q2h2)

(1− h)2
.

Then, by Lagrange Inversion Formula, we have that the coefficient of xn in h is given by

[xn]h =
1

n
[yn−1]

(

1 + q
y

1− y
+ q2

y2

(1− y)2

)n

,

which implies

[xn]h =
1

n

n
∑

j=0

j
∑

i=0

(

n

j

)(

j

i

)(

n− 2

j + i − 1

)

qj+i,

Thus, the number of 132-avoiding Stirling permutations of order n with exactly d descents is given
by

[xn+1qd+1]h =

(

n−1
d

)

n+ 1

n+1
∑

j=0

(

n+ 1

j

)(

j

d+ 1− j

)

,

as required. ✷

Finally, we note that the generating function h = xC132(x, 1, 1, r) satisfies (see Theorem 2.11)

h =
x(1 + (1− 2r)h+ rh2)

(1− rh)2
,

which, by Lagrange Inversion Formula, implies that the coefficient of xn in h is given by

[xn]h =
1

n
[yn−1]

∑

ℓ≥0

n
∑

j=0

j
∑

i=0

(

n

j

)(

j

i

)(

2n− 1 + ℓ

ℓ

)

ri+ℓ(1− 2r)j−iyj+i+ℓ.

Thus, the generating function for the number of 132-avoiding Stirling permutations of order n
according to the number of ascents is given by

[xn+1]h =
1

n+ 1

n+1
∑

j=0

j
∑

i=0

(

n+ 1

j

)(

j

i

)(

3n+ 1− j − i

2n+ 1

)

rn−1−j(1− 2r)j−i.

3. Some combinatorial explanations

3.1. The case 213. The symmetry of qrCn,213(p, q, r) in p, q and r follows from a natural bijection
ϕ : Qn(213) 7→ Tn−1, where Tn is the set of n-edge ternary trees. To define ϕ, recall that each
nonempty Stirling 213-avoider σ is uniquely expressible as σ′1σ′′1σ′′′ with σ′ > σ′′ > σ′′′ and
σ′, σ′′, σ′′′ all 213-avoiders. We define ϕ recursively in 8 cases according as each of σ′, σ′′, σ′′′ is
empty or not. First, ϕ(11) = ǫ, the empty ternary tree (one vertex, no edges). The other 7 cases
are treated schematically below.

b

b

b

b b

b b

b

b b

b

b

b

b b b

b

b b

ϕσ′ ϕσ′′ ϕσ′′′ ϕσ′ ϕσ′′ ϕσ′ ϕσ′′′ ϕσ′′ϕσ′′′ ϕσ′ ϕσ′′ϕσ′′′

σ′11 1σ′′1 11σ′′′ σ′1σ′′1 σ′11σ′′′ 1σ′′1σ′′′ σ′1σ′′1σ′′′

b b b b b b b
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It is clear, by induction, that ϕ is a bijection. Now let A,P,D denote the statistics that count
augmented ascents, plateaus, and augmented descents respectively in a Stirling permutation, and
let L, V,R denote the statistics that count left, vertical, and right edges respectively in a ternary
tree. For σ ∈ Qn(213) and τ = ϕ(σ), it is easy to show by induction that

L(τ) = n−A(σ), V (τ) = n− P (σ), R(τ) = n−D(σ) .

(For the base case n = 1, A,P,D all have the value 1 on 11 ∈ Q1 and L, V,R all have the value 0
on the empty tree.) Clearly, L, V,R have a symmetric joint distribution on Tn−1. Hence, A,P,D
likewise have a symmetric joint distribution on Qn(213).

3.2. The case 123. To explain the symmetry of qCn,123(p, q, r) in p and q, we give a bijection
from Qn(123) to a suitable set An, together with an involution on An that obviously interchanges
the statistics corresponding to “number of augmented descents” and “number of plateaus”.

A permutation p ∈ Sn determines a composition c(p) of n: the distances between successive left-
to-right (LR for short) minima in p0 (= p with an appended 0). A composition c = (c1, c2, . . . , ck)
determines a set of integer sequences S(c) := {(s1, s2, . . . , sk) : 1 ≤ si ≤ ci for all i}. Set An =
{(p, s) : p ∈ Sn(123), s ∈ S(c(p))}. There is an obvious involution on An: (p, s) 7→ (p, c(p)+1−s).
For example, p = (4, 6, 5, 2, 1, 3) has LR minima 4,2,1 and c(p) = (3, 1, 2) and the involution sends
(

p, (3, 1, 1)
)

to
(

p, (1, 1, 2)
)

.
A Stirling permutation σ ∈ Qn determines a permutation p(σ) ∈ Sn given by the first occur-

rences of the letters in σ.
Now we define a mapping ψ : Qn 7→ An. Given σ ∈ Qn, let m1, . . . ,mk denote the successive

LR minima in p(σ), and let si be the number of distinct letters in the subword of σ bounded by
the two occurrences of mi. Set s = (s1, s2, . . . , sk), and ψ(σ) = (p(σ), s). Then the restriction
ψ|Qn(123) is the desired bijection from Qn(123) to An.

To show this works, let us consider an example. Let σ ∈ Qn(123) and so, consequently,
p(σ) ∈ Sn(123), and suppose p(σ) =

11 12 7 10 9 4 3 1 8 6 5 2 ,

where we have inserted some space before each LR minimum. The spaces divide p(σ) into segments
whose lengths form c(p(σ)). Since p(σ) avoids 123, the non-initial entries of all the segments are
decreasing left to right. The Stirling property then forces a plateau at each non-initial entry of a
long segment (length ≥ 2) and at each short segment (length = 1):

11 12 12 7 10 10 9 9 4 4 3 3 1 8 8 6 6 5 5 2 2

As for each initial entry (= LR minimum)m, its second appearance must occur in its own segment
(otherwise, m. . . x . . .m appears with x < m) and it cannot split a plateau, but is otherwise
unrestricted. Thus, for example, the second 7 may occur right after the first 7 (and 77 contains 1
distinct entry) or after the last 10 (and 7 10 10 7 contains 2 distinct entries) or after the last 9 (and
7 10 10 9 9 7 contains 3 distinct entries). In general, the number of choices to place the second
occurrence of a LR minimum mi is the length ci of its segment. The validity of the bijection is
now clear.

Next, there is a plateau at each short segment, at each non-initial entry in a long segment and
for each instance of si = 1 (which means mi contributes a plateau). So the number of plateaus
corresponds to n−# segments + |{i : si = 1}|. Similarly, there is an augmented descent after the
plateau generated by each short segment, after the plateau generated by each non-initial entry in
a long segment and for each instance of si = ci (which means the second occurrence of mi starts
an additional augmented descent). So the number of augmented descents corresponds to n − #
segments + |{i : si = ci}|. The involution on An clearly interchanges these statistics.

3.3. A further bijection. We now use An as an intermediate construct to give a bijection from
Qn(123) to a more appealing class of objects, denoted Fn, which we now define. A favorite-child
(FC) ordered tree is an (unlabeled) ordered tree in which each parent (non-leaf) vertex has a
distinguished child edge or, more picturesquely, a designated favorite child. Let Fn denote the set
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of n-edge FC ordered trees. It is convenient to introduce what we call the left-path labeling of the
vertices in an ordered tree, defined recursively as follows.

• Place label 0 on the root.
• Take the smallest labeled vertex v with an unlabeled child (initially v = 0). Successively
label the vertices in the leftmost path from each unlabeled child of v (taken left to right)
with the smallest unused label.

• Repeat until all vertices are labeled.

b b

b

b b b

b

b

b b

b b

b b b

b b

00

1
2

3

4

5 6

7

8

9

10

left path labeling – first pass

a)

b

b b

b

b b b

b

b

b b

b b

b b b

b b

00

1
2

3

4

5 6

7

8

9

10

11

12

13
14

15 16

final result

b)

b

Figure 1

For the ordered tree pictured in Figure 1 above, the labels generated from v = 0 are shown on the
left, the second pass uses v = 6, and the full left-path labeling is shown on the right.

There are several known bijections from 321-avoiding permutations to Dyck paths, equivalently,
under reversal of permutations and the “glove” identification of Dyck paths and ordered trees, from
123-avoiding permutations to ordered trees. (See [6, 7] for two surveys of these bijections.) Here,
though, we need an apparently new one. Define ρ : Sn(123) 7→ On, the set of n-edge ordered
trees, as follows. Given p ∈ Sn(123), split p into segments, each starting at a LR minimum of p.
Form a tree on the vertex set [0, n] by, for each segment, joining all its entries to m− 1 where m
is the first entry of the segment, as illustrated by example below (the LR minimum segments are
underlined).

15 16 12 9 14 13 8 7 11 4 3 1 10 6 5 2
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
14 11 8 7 6 3 2 0

These edges clearly form a tree; root it at 0. Then order the edges so that the children of each
parent vertex are increasing left to right. (The result for this example is the tree shown in Figure
1b). Finally, erase all the labels to get the desired ordered tree. To reverse the map, label the
vertices of the tree in left-path order. The LR minima can then be retrieved: take the leftmost
child of each parent vertex. The length of the segment containing a LR minimum v can also easily
be retrieved as the family size (number of children) of the parent of v. A 123-avoiding permutation
is determined by its LR minima and their locations (all other entries decrease left to right), and
so the original permutation can be recovered.

The efficacy of this bijection is that it takes the lengths of the LR minimum segments (visited
right to left) to the family sizes of the parent vertices (visited in left-path order). A bijection
from An to Fn is now clear: for (p, s) ∈ An, use ρ(p) as the underlying ordered tree and use s
to designate the favorite child of each parent vertex. The involution on An that establishes the
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equidistribution of descents and plateaus in Qn(123) then becomes “reverse the age ranking of
each favorite child”, i.e., change it from i-th (say) oldest to i-th youngest.

3.4. Cases 123 and 132. To see why plateaus have the same distribution onQn(123) andQn(132),
observe that, by considerations entirely analogous to those for the map ψ|Qn(123) in Section 3.2,
ψ|Qn(132) is also a bijection, this time from Qn(132) to An, and it also carries “number of plateaus”
to n−# segments + |{i : si = 1}|.

4. Further results

In this section we consider Stirling permutations that avoid 213 and another pattern (motivated
by the study of avoiding two patterns 132, τ in permutations, see [21] and references therein). Let
Qn(τ1, τ2) denote the set of Stirling permutations of order n that avoid the patterns τ1 and τ2.
For a pattern τ , we define

Fτ = Fτ (x, p, q, r) =
∑

n≥0

xn
∑

σ∈Qn(213,τ)

pplat (σ)qdes (σ)rasc (σ).

For patterns τ = (τ1, . . . , τk) and τ
′ = (τ ′1, . . . , τ

′
k′), let τ⊕τ ′ denote their “disjoint concatenation”

(τ1, . . . , τk,m+ τ ′1, . . . ,m+ τ ′k′ ), where m is the largest letter of τ . Thus 11⊕ 121 = 11232.

Theorem 4.1. Let τ = 1⊕τ ′ where τ ′ is some pattern. Then, the generating function Fτ (x, p, q, r)
is given by

Fτ (x, p, q, r) = 1 +
xp+ xr(p + q)(Fτ ′(x, p, q, r) − 1) + xqr2(Fτ ′(x, p, q, r) − 1)2

1− xpq − xqr(1 + p)(Fτ ′(x, p, q, r)− 1)− xq2r2(Fτ ′(x, p, q, r) − 1)2
.

Proof. Let us write an equation for the generating function Fτ (x, p, q, r). Note that each nonempty
Stirling permutation σ that avoids both 213 and τ can be represented as σ′1σ′′1σ′′′ such that

• each letter of σ′ is greater than each letter of σ′′;
• each letter of σ′′ is greater than each letter of σ′′′;
• σ′ is a Stirling permutation that avoids both 213 and τ ;
• σ′′, σ′′′ are Stirling permutations that avoid both 213 and τ ′.

Hence, by considering the 8 possibilities of either one of σ′, σ′′, σ′′′ is empty or not, we obtain that
the generating function Fτ (x, p, q, r) satisfies

Fτ (x, p, q, r) = 1 + xp+ xpq(Fτ − 1) + x(p+ q)r(Fτ ′ − 1) + xqr(1 + p)(Fτ − 1)(Fτ ′ − 1)

+ xr2q(Fτ ′ − 1)2 + xq2r2(Fτ − 1)(Fτ ′ − 1)2,

which, by solving for Fτ (x, p, q, r) − 1, implies the required result.

Example 4.2. Let τ = 122 = 1⊕ τ ′ with τ ′ = 11. Clearly, Fτ ′ = 1 since it is very difficult for a
Stirling permutation to avoid a repeated letter. Thus, Theorem 4.1 gives

F122 = F122(x, p, q, r) = 1 +
xp

1− xpq
= 1 +

∑

j≥0

xj+1pj+1qj = 1 +
∑

j≥1

xjpjqj−1.

For τ = 1233 = 1⊕ 122, Theorem 4.1 gives

F1233 − 1 =
xp+ xr(p+ q)(F122 − 1) + xqr2(F122 − 1)2

1− xpq − xqr(1 + p)(F122 − 1)− xq2r2(F122 − 1)2
.

In particular, F1233(x, 1, 1, 1) =
(1−x)2

1−3x+x2 , that is, the number of Stirling permutations of Qn(213, 1233)

is given by the 2n-th Fibonacci number (the n-th Fibonacci number is defined by a0 = 0, a1 = 1
and an = an−1 + an−2). Applying Theorem 4.1 repeatedly, we obtain

F12344(x, 1, 1, 1) =
(1− 3x+ x2)2

1− 7x+ 15x2 − 12x3 + 5x4 − x5
,

F123455(x, 1, 1, 1) =
(1− 7x+ 15x2 − 12x3 + 5x4 − x5)2

(1− x)(1 − 14x+ 77x2 − 215x3 + 332x4 − 295x5 + 157x6 − 51x7 + 10x8 − x9)
.
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By Theorem 4.1, we obtain that the generating function F123···k(k+1)(k+1)(x, p, q, r) is a rational
function.

Theorem 4.3. Let τ = 11⊕τ ′ where τ ′ is some pattern. Then, the generating function Fτ (x, p, q, r)
is given by

Fτ =
−b−

√
b2 − 4ac

2a
,

where

a = qrx(1 + qr(Fτ ′ − 1)),

b = −1− qx(r − p)− qrx(2qr − p− r)(Fτ ′ − 1),

c = 1 + xp(1− q) + rx(p + q2r − qp− qr)(Fτ ′ − 1).

Proof. Let us write an equation for the generating function Fτ (x, p, q, r). Note that each nonempty
Stirling permutation σ that avoids both 213 and τ can be represented as σ′1σ′′1σ′′′ such that

• each letter of σ′ is greater than each letter of σ′′;
• each letter of σ′′ is greater than each letter of σ′′′;
• σ′, σ′′ is a Stirling permutation that avoids both 213 and τ ;
• σ′′′ are Stirling permutations that avoid both 213 and τ ′.

Hence, by considering the 8 possibilities of either one of σ′, σ′′, σ′′′ is empty or not, we obtain that
the generating function Fτ (x, p, q, r) satisfies

Fτ (x, p, q, r) = 1 + xp+ x(p+ r)q(Fτ − 1) + xpr(Fτ ′ − 1) + xqr(Fτ − 1)2

+ xqr(p + r)(Fτ − 1)(Fτ ′ − 1) + xq2r2(Fτ ′ − 1)(Fτ − 1)2,

which, by solving for Fτ (x, p, q, r) − 1, implies the required result.

Example 4.4. Let τ = 1122 = 11⊕ 11. Since F11 = 1, Theorem 4.3 gives

F1122(x, p, q, r) =
1− xqp+ xqr −

√

x2q2p2 − 2xqp+ 2x2q2pr + 1− 2xqr + x2q2r2 − 4x2qrp

2qrx
,

which leads to F1122(x, 1, 1, 1) = C(x), where C(x) = 1−
√
1−4x
2x is the generating function for the

Catalan numbers.
Using Theorem 4.3 once more, we have

F112233(x, 1, 1, 1) =
1−

√

2
√
1− 4x− 1

1−
√
1− 4x

= C(xC(x))

and
F11223344(x, 1, 1, 1) = C(xC(xC(x))).

By induction on k, we obtain that F1122···kk(x, 1, 1, 1) = C(xC(xC(x · · ·C(xC(x))))), where C is
used exactly k − 1 times.

As a final example, let us count the occurrences of the pattern 122 in Qn(213) (motivated by the
study of counting occurrences of the pattern 12 · · · k in a 132-avoiding permutation, for example
see [20, 23]). To do so, we denote the number occurrences of the pattern 122 in σ by 122(σ). We
define R(x, p, z) to be the generating function for the number of Stirling permutations of Qn(213)
according to the occurrences of plateaus and occurrences of the pattern 122, namely,

R(x, p, z) =
∑

n≥0

xn
∑

σ∈Qn(213)

pplat (σ)z122(σ).

By the 8 possibilities of block decompositions in the proof of Theorem 4.1, we obtain

R(x, p, z) = 1 + xpR(x, p, z)R(x, pz2, z) + xR(x, p, z)(R(x, pz, z)− 1)R(x, pz2, z),

which implies

R(x, p, z) =
1

1− x(R(x, pz, z)− 1 + p)R(x, pz2, z)
.
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The first terms of the generating function R(x, p, z) are 1, px, p(pz2+z+p), p(p2z6+2 pz3+p2z4+
pz4+z2+pz2+2 p2z2+2 pz+p2) and p(p3+7 p2z3+3 pz2+2 pz3+2 p2z2+3 p3z4+3 p3z2+3 p2z+
3 p2z4+3 p3z6+4 pz4+pz6+z3+2 p2z6+4 p2z7+5 p2z5+p3z10+2 p3z8+p2z8+2 pz5+p2z9+p3z12).
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