About a new family of sequences

Felipe Bottega Diniz

July 22, 2016

Abstract

First we define a new kind of function over \mathbb{N}. For each $i \in \mathbb{N}$ we have an associated function, which will be called S_{i}. Then we define a new kind of sequence, to be made from the functions S_{i}. Finally, we will see that some of these sequences has a self-similarity feature.

1 Introduction

There are sequences that are of great value for mathematics, many sequences are also important for other sciences. For these reasons the study of sequences is very important. But we can not forget that creativity in mathematics is also important, and this is more true when we are dealing with sequences, it is not enough just to study sequences, we also need to create sequences. This work deals with a new kind of sequence, we will see that this kind of sequence has interesting properties, that is reason enough to make this work worthwhile.

For this work, we are considering $\mathbb{N}=\{1,2,3, \ldots\}$. Consider $t \in \mathbb{N}$, such that t has $n \in \mathbb{N}$ digits, so we can write $t=a_{n} a_{n-1} \ldots a_{2} a_{1}$. We can divide t in blocks of i digits (except at most one block), from right to left, with $i \in \mathbb{N}$ and $i \leq n$. If i divides n, then all blocks has i digits, otherwise the last block will have fewer digits.

Below are some examples to get a better understanding. Consider the number 123456, we divide it into blocks of i digits. Also consider that each block will be bracketed. number of digits.

```
Blocks of 1 digit: [1][2][3][4][5][6]
Blocks of 2 digits:[12][34][56]
Blocks of 3 digits:[123][456]
Blocks of 4 digits:[12][3456]
Blocks of 5 digits:[1][23456]
Blocks of 6 digits:[123456]
Blocks of 7 digits:[123456]
```

Define the function $T: \mathbb{N} \rightarrow \mathbb{N}$ such that $T(m)=$ "Sum of digits of m " m. Consider the number t divided into blocks of i digits. Let $\left[a_{k} a_{k-1} \ldots a_{k-i+1}\right]$ be one of its blocks,
then $T\left(\left[a_{k} a_{k-1} \ldots a_{k-i+1}\right]\right)=\left(a_{k}+a_{k-1}+\ldots+a_{k-i+1}\right) \cdot\left(a_{k} a_{k-1} \ldots a_{k-i+1}\right)$. With this in mind, now we define the function $S_{i}: \mathbb{N} \rightarrow \mathbb{N}$ to be

$$
S_{i}(t)=\sum T\left(\left[a_{k} a_{k-1} \ldots a_{k-i+1}\right]\right)
$$

where the sum goes over all the blocks as we described before.
Taking our previous example $t=123456$, we have the following.

$$
\begin{gathered}
S_{1}(123456)=T(1)+T(2)+T(3)+T(4)+T(5)+T(6)=1 \cdot 1+2 \cdot 2+3 \cdot 3+4 \cdot 4+5 \cdot 5+6 \cdot 6 \\
=1+4+9+16+25+36=91
\end{gathered}
$$

$$
S_{2}(123456)=T(12)+T(34)+T(56)=(1+2) \cdot 12+(3+4) \cdot 34+(5+6) \cdot 56=3 \cdot 12+7 \cdot 34+11 \cdot 56=890
$$

$$
S_{3}(123456)=T(123)+T(456)=(1+2+3) \cdot 123+(4+5+6) \cdot 456=6 \cdot 123+15 \cdot 456=7578
$$

$$
S_{4}(123456)=T(12)+T(3456)=(1+2) \cdot 12+(3+4+5+6) \cdot 3456=3 \cdot 12+18 \cdot 3456=62244
$$

$$
S_{5}(123456)=T(1)+T(23456)=1 \cdot 1+(2+3+4+5+6) \cdot 23456=1+20 \cdot 23456=469121
$$

$$
S_{6}(123456)=T(123456)=(1+2+3+4+5+6) \cdot 123456=21 \cdot 123456=2592576
$$

$$
S_{7}(123456)=T(123456)=(1+2+3+4+5+6) \cdot 123456=21 \cdot 123456=2592576
$$

We can also define $S_{\infty}(t)$, which of course means "Sum of digits of t " t. Note that this definition of $S_{\infty}(t)$ coincides with the definition of the sequence A057147, hence, this characterization represents a more general view.

2 Some Results

Theorem 1: If $0 \leq t \leq 9$, then $S_{i}(t)=t^{2}$, for all $i \in \mathbb{N}$.
Proof: If $1 \leq i \leq 9$, then it's clear that $S_{i}(t)=(t) \cdot t=t^{2}$.
Theorem 2: Let $k, t \in \mathbb{N}$ such that $t=a_{n} a_{n-1} \ldots a_{1}$ and k divides a_{m} for each $m \in\{1,2, \ldots, n\}$. Then, for all $i \in \mathbb{N}$, exists $b \in \mathbb{N}$ such that $S_{i}(t)=k^{2} \cdot S_{i}(b)$.

Proof: Since k divides all the digits of t, for each digit a_{m} of t there is a natural b_{m} such that $a_{m}=k \cdot b_{m}$. Thus, we have that $t=a_{n} a_{n-1} \ldots a_{1}=k \cdot b_{n} k \cdot b_{n-1} k \cdot b_{1}$.

$$
\begin{gathered}
\quad S_{i}(t)=S_{i}\left(k \cdot b_{n} k \cdot b_{n-1} k \cdot b_{1}\right)= \\
=S_{i}\left(k \cdot b_{n} k \cdot b_{n-1} \ldots k \cdot b_{n-q}\right)+\ldots+S_{i}\left(k \cdot b_{i} \ldots k \cdot b_{1}\right)= \\
=\left(k \cdot b_{n}+k \cdot b_{n-1}+\ldots+k \cdot b_{n-q}\right) \cdot\left(k \cdot b_{n} k \cdot b_{n-1} \ldots k \cdot b_{n-q}\right)+\ldots+\left(k \cdot b_{i}+\ldots+k \cdot b_{1}\right) \cdot\left(k \cdot b_{i} \ldots k \cdot b_{1}\right)= \\
=k\left(b_{n}+b_{n-1}+\ldots+b_{n-q}\right) \cdot\left(k \cdot b_{n} k \cdot b_{n-1} \ldots k \cdot b_{n-q}\right)+\ldots+k\left(b_{i}+\ldots+b_{1}\right) \cdot\left(k \cdot b_{i} \ldots k \cdot b_{1}\right)= \\
=k\left(\left(b_{n}+b_{n-1}+\ldots+b_{n-q}\right) \cdot\left(k \cdot b_{n} k \cdot b_{n-1} \ldots k \cdot b_{n-q}\right)+\ldots+\left(b_{i}+\ldots+{ }_{b} 1\right) \cdot\left(k \cdot b_{i} \ldots k \cdot b_{1}\right)\right) .
\end{gathered}
$$

Note that any number of the form $k \cdot b_{x} k \cdot b_{x-1} \ldots k \cdot b_{x-y}$ can be written as

$$
10^{y} \cdot k \cdot b_{x}+10^{y-1} \cdot k \cdot b_{x-1}+\ldots+10^{0} \cdot k \cdot b_{x-y} .
$$

We can write the last equation as follows:

$$
\begin{aligned}
& k\left(\left(b_{n}+b_{n-1}+\ldots+b n-q\right) \cdot\left(10^{q} \cdot k \cdot b_{n}+10^{q-1} \cdot k \cdot b_{n-1}+\ldots+10^{0} \cdot k \cdot b_{n-q}\right)+\ldots+\left(b_{i}+\ldots+b_{1}\right) \cdot\left(10^{i} \cdot k \cdot b_{i} \ldots 10^{0} \cdot k \cdot b_{1}\right)\right)= \\
& \quad=k\left(\left(b_{n}+b_{n-1}+\ldots+b_{n-q}\right) \cdot k\left(10^{q} \cdot b_{n}+10^{q-1} \cdot b_{n-1}+\ldots+10^{0} \cdot b_{n-q}\right)+\ldots+\left(b_{i}+\ldots+b_{1}\right) \cdot k\left(10^{i} \cdot b_{i} \ldots 10^{0} \cdot b_{1}\right)\right)= \\
& =k^{2}\left(\left(b_{n}+b_{n-1}+\ldots+b_{n-q}\right) \cdot\left(10^{q} \cdot b_{n}+10^{q-1} \cdot b_{n-1}+\ldots+10^{0} \cdot b_{n-q}\right)+\ldots+\left(b_{i}+\ldots+b_{1}\right) \cdot\left(10^{i} \cdot b_{i} \ldots 10^{0} \cdot b_{1}\right)\right)= \\
& \quad=k^{2}\left(\left(b_{n}+b_{n-1}+\ldots+b_{n-q}\right) \cdot\left(b_{n} b_{n-1} \ldots b_{n-q}\right)+\ldots+\left(b_{i}+\ldots+b_{1}\right) \cdot\left(b_{i} \ldots b_{1}\right)\right) .
\end{aligned}
$$

Let $b \in \mathbb{N}$ such that $b=b_{n} b_{n-1} \ldots b_{1}$, the existence of b is guaranteed, because it is guaranteed the existence of each of b_{m}. Also note that the above equation is equal to $k^{2} \cdot S_{i}(b)$, as we wanted to prove.

Corollary 2.1: If $0 \leq a \leq 9$, then for each $i \in \mathbb{N}, S_{i}(\underbrace{a \quad \ldots \ldots a}_{n \text { times }})=a^{2} \cdot S_{i}(\underbrace{11 \ldots 1}_{n \text { times }})$.
Proof: Note that $(a a \ldots a)=(a \cdot 1 a \cdot 1 \ldots a \cdot 1)$. Using theorem 2, we get $S_{i}(a \cdot 1 a \cdot 1 \ldots a \cdot 1)=a^{2} \cdot S_{i}(11 \ldots 1)$, as desired.

Corollary 2.2: If $S_{i}(t)$ is a prime number, then there is not a number (greater than 1) that divides all the digits of t.

Proof: By Theorem 2, if all the digits of t are divisible by a number (greater than $1)$, then $S_{i}(t)$ can't be prime because it's the product of two numbers greater than 1 .

Theorem 3: No function S_{i} is injective.

Proof: For every $i \in \mathbb{N}$, we have that $S_{i}(1)=1$, we also have that $S_{i}\left(10^{i}\right)=$ $S_{i}(\underbrace{100 \ldots 0}_{i+1 \text { digits }})=1$. Therefore, S_{i} is not injective.

Theorem 4: Every function S_{i} is surjective.
Proof: Let $n, t \in \mathbb{N}$ such that n is arbitrary and $t=1 \underbrace{00 \ldots}_{\underbrace{00 \ldots 1}_{\text {digits }} \ldots \underbrace{00 \ldots 1}_{i \text { dimes }} 0 \ldots 1}$. Then $S_{i}(t)=1+\underbrace{1+1+\ldots+1}_{n-1 \text { times }}=n$. Therefore, S_{i} is surjective.

We can construct some special sequences from the functions S_{i}. For each $i \in \mathbb{N}$, we will be interested in the sequence $\mathcal{S}_{i}=\left(S_{i}(1), S_{i}(2), S_{i}(3), \ldots\right)$.

3 Charts

Below are some charts of some of these sequences. These charts clearly show that there is a kind of pattern. In particular, the charts of S_{1}, S_{2} and S_{7} has some self-similarity features.

Fig. 1: values of $\mathcal{S}_{1}(x)$, with $x=1 \ldots 10^{5}$.

Fig. 2: values of $\mathcal{S}_{1}(x)$, with $x=1 \ldots 10^{7}$.

Fig. 3: values of $\mathcal{S}_{2}(x)$, with $x=1 \ldots 10^{5}$.

Fig. 4: values of $\mathcal{S}_{2}(x)$, with $x=1 \ldots 10^{7}$.

Fig. 5: values of $\mathcal{S}_{3}(x)$, with $x=1 \ldots 10^{5}$.

Fig. 6: values of $\mathcal{S}_{3}(x)$, with $x=1 \ldots 10^{7}$.

Fig. 7: values of $\mathcal{S}_{4}(x)$, with $x=1 \ldots 10^{5}$.

Fig. 8: values of $\mathcal{S}_{4}(x)$, with $x=1 \ldots 10^{7}$.

Fig. 9: values of $\mathcal{S}_{5}(x)$, with $x=1 \ldots 10^{5}$.

Fig. 10: values of $\mathcal{S}_{6}(x)$, with $x=1 \ldots 10^{7}$.

Fig. 11: values of $\mathcal{S}_{7}(x)$, with $x=1 \ldots 10^{5}$.

Fig. 12: values of $\mathcal{S}_{7}(x)$, with $x=1 \ldots 10^{7}$.

References

[1] Fabio B. Martinez, Carlos G. Moreira, Nicolau Saldanha and Eduardo Tengan. Teoria dos Numeros, IMPA, 2010.
[2] Elon L. Lima. Curso de Analise Volume 1, IMPA, 2009.
[3] Jose P. Santos. Introducao a Teoria dos Numeros, IMPA, 2009.
[4] https://oeis.org/A057147.
[5] https://oeis.org/A213630.

