
DAPPLED TILING

SHIZUO KAJI, ALEXANDRE DEROUET-JOURDAN, AND HIROYUKI OCHIAI

Abstract. We consider a certain tiling problem of a planar region in which there are no long horizontal or
vertical strips consisting of copies of the same tile. Intuitively speaking, we would like to create a dappled
pattern with two or more kinds of tiles. We give an efficient algorithm to turn any tiling into one satisfying
the condition, and discuss its applications in texturing.

1. Introduction

In texturing, we often encounter the following problem: fill a region with a given collection of small
square patches in such a way that patches of a same kind do not appear in a row. We make this problem
more precise.

Definition 1.1. For natural numbers m and n, let Gm,n be a rectangular grid

Gm,n = {(i, j) ∈ Z × Z | 0 ≤ i < m, 0 ≤ j < n}.

We call its elements cells. Our convention is that (0, 0) is the cell at the top-left corner and (m − 1, 0)
is at the top-right corner. For a finite set of tiles T with #T ≥ 2, we call a function Gm,n → T a
tiling of Gm,n with T . For a natural number p > 1 and t ∈ T , we say f satisfies the condition Hp

t if
there is no horizontal strip with more than p consecutive t’s, that is, there is no (i, j) ∈ Gm,n such that
f (i, j) = f (i − 1, j) = · · · = f (i − p, j) = t. Similarly, we say f satisfies the condition Vq

t for a natural
number q > 1, if there is no vertical strip with more than q consecutive t’s.

Consider a set L consisting of conditions of the form Hp
t and Vq

t with varying p, q > 1 and t ∈ T . Al-
ternatively, we can think of p, q as functions p, q : T → {2, 3, 4, . . . , } ∪ {∞} so that L =

⋃
t∈T {H

p(t)
t ,Vq(t)

t }.
For notational convenience, we allow H∞t , which is always satisfied. We will use both notations inter-
changeably. We say a tiling f is L-dappled if f satisfies all the conditions in L. The problem we are
concerned is:

Problem 1.2. Give an efficient algorithm to produce L-dappled tilings, which posses some controllability
by the user.

In this paper, we introduce an algorithm to produce an L-dappled tiling by modifying a given initial
tiling which need not be L-dappled. Note that enumerating all the L-dappled tilings is fairly straightfor-
ward; we can fill cells sequentially from the top-left corner. However, this is not practical since there
are exponentially many L-dappled tilings with respect to the number of cells, and many of them are not
suitable for applications as we see below.

Proposition 1.3. Let N = dm
2 ed

n
2e. There exist at least |T |N tilings which are L-dappled.

Proof. We will create draughtboard tilings. For each cell (2k, 2l), choose any tile t ∈ T and put the same
tile at (2k + 1, 2l + 1) (if it exists). Pick any t′, t′′ ∈ T \ {t} and put them at (2k + 1, 2l) and (2k, 2l + 1) (if
they exist). One can see that for any (i, j) ∈ Gm,n the tile at (i − 1, j) or (i − 2, j) is different from the one

2010 Mathematics Subject Classification. 52C20, 68U05.
Key words and phrases. tiling algorithm, texture generation, Brick Wang tiles.
The first author was partially supported by KAKENHI, Grant-in-Aid for Young Scientists (B) 26800043.
The third author was partially supported by KAKENHI Grant Number 15H03613.

1

ar
X

iv
:1

60
7.

06
13

8v
2

 [
cs

.D
M

]
 3

 F
eb

 2
01

7

2 SHIZUO KAJI, ALEXANDRE DEROUET-JOURDAN, AND HIROYUKI OCHIAI

at (i, j). Similarly, the tile of (i, j − 1) or (i, j − 2) is different from the one at (i, j), and hence, the tiling
thus obtained is L-dappled with any L. There are N cells of the form (2k, 2l), and hence, there are at least
|T |N draughtboard tilings. �

It is easy to see that the above argument actually shows that there are at least
(
|T |(|T | − 1)2 + |T |(|T | −

1)(|T | − 2)2)N′ draughtboard (and hence, L-dappled) tilings with N′ = bm
2 cb

n
2c.

Example 1.4. We show an example of a draughtboard tiling with T = {orange, white} (Fig. 1). For any
set of conditions L, it is an L-dappled tiling.

Figure 1. Orange and White tiles and an example of a draughtboard tiling of G10,6

Draughtboard patters look very artificial and are not suitable for texturing. We would like to have
something more natural. Therefore, we consider an algorithm to produce an L-dappled tiling which takes
a user specified (not necessarily L-dappled) tiling as input so that the user has some control over the
output. We also discuss a concrete applications with the Brick Wang tiles ([1, 2, 3]) in §4, and with flow
generation in §5.

Remark 1.5. For the special case of T = {0, 1} and {H2
0 ,V

2
1 }, the numbers of L-dappled tilings for several

small m and n are listed at [4]. No formula for general m and n nor a generating function is known as far
as the authors are aware.

2. The algorithm

Fix a set of conditions L. We just say dappled for L-dappled from now on. Given any tiling f , we give
an algorithm to convert it into a dappled one. We can start with a random tiling or a user specified one.
First, note that the problem becomes trivial when |T | > 2 since we can choose a tile for f (i, j) at step (I)
below which is different from f (i − 1, i) and f (i, j − 1). So, we assume T consists of two elements {0, 1}.

The idea is to perform “local surgery” on f . We say f violates the condition Hp
t ∈ L (resp. Vq

t ∈ L) at
(i, j) when f (i, j) = f (i − 1, j) = · · · = f (i − p, j) = t (resp. f (i, j) = f (i, j − 1) = · · · = f (i, j − q) = t).
For a cell (i, j) we define its weight |(i, j)| = i + j. Let (i, j) be a cell with the minimum weight such that
f violates any of the conditions Hp

t ∈ L or Vq
t ∈ L. We modify values of f around (i, j) to rectify the

violation in the following manner.
(I). Set f (i, j) = 1 − t if it does not violate any condition at (i, j) in L.

(II). Otherwise, set f (i, j) = f (i−1, j−1), f (i−1, j) = 1− f (i−1, j−1), and f (i, j−1) = 1− f (i−1, j−1).
Let us take a close look at step (II). Assume that f violated Hp

t at (i, j). This means f (i−2, j) = f (i−1, j) =

f (i, j) = t. Note also that f (i, j − 1) = f (i, j − 2) = 1 − t since otherwise we could set f (i, j) = 1 − t at
step (I). When f (i − 1, j − 1) = t, we can set f (i − 1, j) = 1 − t without introducing a new violation at
(i − 1, j). When f (i − 1, j − 1) = 1 − t, we can set f (i, j) = 1 − t and f (i, j − 1) = t without introducing a
new violation at either of (i− 1, j) or (i, j− 1). A similar argument also holds when Vq

t is violated at (i, j).

DAPPLED TILING 3

After the above procedure, the violation at (i, j) is resolved without introducing a new violation at cells
with weight ≤ i + j. (We successfully “pushed” the violation forward.) Notice that each time either
the minimal weight of violating cells increases or the number of violating cells with the minimal weight
decreases. Therefore, by repeating this procedure a finite number of times, we are guaranteed to obtain a
dappled tiling transformed from the initially given tiling.

The algorithm works in whatever order the cells of a same weight are visited, but our convention in
this paper is in increasing order of i. All the examples are produced using this ordering.

Proposition 2.1. Fix any m, n > 0, T = {0, 1}, and L = {Hp(t)
t ,Vq(t)

t | t ∈ T } with p(t), q(t) > 1 for all
t ∈ T . Algorithm 1 takes a tiling f : Gm,n → T and outputs an L-dappled tiling. If f is already L-dappled,
the algorithm outputs f . In other words, Algorithm 1 defines a retraction from the set of tilings of Gm,n

onto that of L-dappled tilings of Gm,n.

Algorithm 1: Algorithm to convert an input tiling to an L-dappled one.
Input: A tiling f : Gm,n → T , a set of conditions L
Output: An L-dappled tiling g : Gm,n → T
(note that in the below the values of f and g for negative indices should be understood appropriately)
begin

g← f ;
for weight = 0 to m + n − 2 do

forall (i, j) ∈ Gm,n such that i + j = weight do
if Violate (g, (i, j)) then

g(i, j)← 1 − g(i, j);
if Violate (g, (i, j)) then

g(i, j)← g(i − 1, j − 1) ;
g(i − 1, j)← 1 − g(i, j) ;
g(i, j − 1)← 1 − g(i, j) ;

end
end

end
end
return g

end
Function Violate (f , (i, j))

forall Hp
t ∈ L do

if f (i, j) = f (i − 1, j) = · · · = f (i − p, j) = t then
return true

end
end
forall Vq

t ∈ L do
if f (i, j) = f (i, j − 1) = · · · = f (i, j − q) = t then

return true
end

end
return false

The sub-routine Violate returns true if f violates any of horizontal or vertical conditions at the given
cell. In practice, the check can be efficiently performed by book-keeping the numbers of consecutive tiles
of smaller weight in the horizontal and the vertical directions. See the python implementation [5] for
details.

4 SHIZUO KAJI, ALEXANDRE DEROUET-JOURDAN, AND HIROYUKI OCHIAI

Example 2.2. Fig. 2 shows how Algorithm 1 proceeds for T = {white, orange} and L = {H2
white,V

2
orange}.

Figure 2. Steps of Algorithm 1. Left: input tiling, Middle: resolving the violation of
V2

orange at (2, 2) by (I), Right: resolving the violation of H2
white at (3, 2) by (II).

Remark 2.3. Algorithm 1 does not always work when p(t) = 1 or q(t) = 1 for some t ∈ T . For example,
when L = {H1

0 ,H
2
1 ,V

2
1 } it cannot rectify the following tiling of G4,3:

1 0 1 1
0 1 0 1
1 1 0 0

3. Extension

We give two extensions of the main algorithm discussed in the previous section.

3.1. Non-uniform condition. It is easy to see that our algorithm works when the conditions Hp
t and Vq

t
vary over cells. That is, p and q can be functions of (i, j) ∈ Gm,n as well as t ∈ T so that p, q : T ×Gm,n →

{2, 3, 4, . . . , } ∪ {∞}. This allows the user more control over the output. For example, the user can put
non-uniform constraints, or even dynamically assign constraints computed from the initial tiling.

Example 3.1. Let T = {white,orange} and

L = {Hp(white;i, j)
white ,Hp(orange;i, j)

orange ,Vq(white;i, j)
white ,Vq(orange;i, j)

orange },

where p(white; i, j) = q(orange; i, j) = d i+1
5 e + 1 and p(orange; i, j) = q(white; i, j) = dm−i

5 e + 1. An
example of L-dappled tiling is given in Fig. 3. In the left area, long horizontal white strips and long
vertical orange strips are prohibited, while in the right area, long vertical white strips and long horizontal
orange strips are prohibited.

3.2. Cyclic tiling. Sometimes we would like to have an L-dappled tiling of Gm,n which can be repeated
to fill a larger region, say Gkm,ln for k, l ≥ 1. For this, the conditions have to be understood as being cyclic;
for example, H̄p

t is violated if there is a cell (i, j) with f (i, j) = f ([i − 1], j) = · · · f ([i − p], j) = t, where
0 ≤ [x] ≤ m − 1 is the reminder of x divided by m. For a set L̄ consisting of conditions of the form H̄p

t
and V̄q

t , we say a tiling f is cyclically L̄-dappled if it does not violate any of the conditions in L̄ in the
above cyclic sense.

We discuss a modification of Algorithm 1 to produce a cyclically L̄-dappled tiling. However, there are
two limitations: it only works for a limited class of conditions; when T = {0, 1}, we have to assume L̄
should satisfy p(t), q(t) > 2 for all t ∈ T (see Example 3.3). The other drawback is that the algorithm
changes an input tiling even when it is already cyclically L̄-dappled. This is because it produces a
cyclically L̄-dappled tiling with additional conditions.

Let f be any tiling. We introduce Algorithm 2, which is a modification of Algorithm 1. We visit cells
in increasing order of the weight as in Algorithm 1. When the cell (i, j) is visited, we define a set of
non-cyclic conditions L(i, j) which is more stringent than L̄. For each H̄p

t ∈ L̄,

DAPPLED TILING 5

Figure 3. Dappled tiling with non uniform conditions.

(i). skip if i < p − 2
(ii). add Hp−2

t to L(i, j) if i = p − 2
(iii). add Hp−k

t to L(i, j) if i = m − 1, where k is the smallest non-negative integer such that f (k, j) , t.
(iv). add Hp

t to L(i, j) otherwise.
And do similarly for V̄q

t . Then, resolve (if any) violation of L(i, j) at (i, j) in the non-cyclic sense using
Algorithm 1. By (ii) it is ensured that there exists k ≤ p − 2 such that f (k, j) , t if H̄p

t ∈ L̄. Note that
although we have to impose H1

t at (1, j) when p = 3, Algorithm 1 works with no problem in this case.
For (iii) we always have p − k ≥ 2 since (m − 1, j) is visited later than (p − 2, j), and k must be less than
or equal to p − 2 by (ii).

Due to the extra condition imposed by (ii), the output is in a restricted class of cyclically L̄-dappled
tilings.

Proposition 3.2. Fix any m, n > 0, T = {0, 1}, and L̄ = {H̄p(t)
t , V̄q(t)

t | t ∈ T } with p(t), q(t) > 2 for all
t ∈ T . Algorithm 2 takes a tiling f : Gm,n → T and outputs a cyclically L̄-dappled tiling.

Example 3.3. One might wonder why we cannot just replace (ii) above with

(ii)’ add Hp−1
t to L(i, j) if i = p − 1

to make it work when p = 2. In this case, we may have to add H1
t to L(m − 1, j) in (iii), which is

problematic as we see in the following example with L̄ = {H̄3
0 , V̄

3
1 }:

0 0 1 0 1 0
1 0 1 0 1 1
1 1 0 1 0 1
0 1 1 0 0 1
0 0 1 1 0 1
1 0 0 0 1 1

⇔

0 0 1 0 1 0
1 0 1 0 1 1
1 1 0 1 0 1
0 1 1 0 0 1
0 0 1 1 1 0
1 0 0 0 1 1

Look at the tiling on the left. Algorithm 2 with (ii) replaced by (ii)’ does nothing up to the cell (5, 4)
marked with 1. Here we have L(5, 4) = {H1

0 ,V
3
1 }. Rectifying the cell (5, 4) by Algorithm 1 will introduce

a new violation at (4, 5) as we see on the right, and vice versa.

Remark 3.4. If L̄ consists of just two conditions {H̄p
0 , V̄

q
1 }, we can modify Algorithm 2 further to make it

work even when p = q = 2. The idea is to make the first two rows and columns draughtboard. Modify
the input tiling to satisfy the following two conditions:
a) f (i, 0) , f (i, 1), f (0, j) , f (1, j), f (2k, 0) , f (2k + 1, 0), and f (0, 2l) , f (0, 2l + 1)
b) f (m − 2, 0) = f (0, n − 2)

6 SHIZUO KAJI, ALEXANDRE DEROUET-JOURDAN, AND HIROYUKI OCHIAI

Then, the rest is rectified with Algorithm 2, with (ii) replaced by

(ii)’ add Hp−1
t to L(i, j) if i = p − 1.

For the technical details, refer to the implementation [5].

Example 3.5. Fig. 4 shows cyclically dappled tilings of G10,6 obtained by Algorithm 2 for L̄ = {H̄3
white, V̄

3
orange}

and by Remark 3.4 for L̄ = {H̄2
white, V̄

2
orange}. We repeated them twice both horizontally and vertically to

obtain dappled tilings of G20,12.

Pattern Repetition

p = q = 3

Pattern Repetition

p = q = 2

Figure 4. Cyclically dappled tilings obtained with our algorithm.

4. Example: BrickWang Tiles

A method to create brick wall textures using the brick Wang tiles is introduced in A. Derouet-Jourdan
et al. [1] and studied further in [2, 3]. In this method, each tile represents how the corners of four bricks
meet. It is assumed that the edges of the bricks are axis aligned and that each tile is traversed with a
straight line, either vertically or horizontally. For aesthetic reasons, crosses are forbidden, where all four
bricks are aligned and the corresponding tile is traversed by two straight lines. Formally, the set of brick
Wang tiles W is defined by

W = {(c1, c2, c3, c4) ∈ C4 | (c1 = c3 and c2 , c4) or (c1 , c3 and c2 = c4)},

where C is a finite set, which we can think of as the set of “positions” of the brick edges (see Fig. 5).
A tiling τ : Gm,n → W is said to be a valid Wang tiling with W if at all cells the positions of edges are
consistent with those of the adjacent cells:

(4.1) τ(i, j)1 = τ(i − 1, j)3, τ(i, j)2 = τ(i, j − 1)4 (1 ≤ i < m − 1, 1 ≤ j < n − 1).

Here, we do not pose any condition on the positions on the boundary; we are concerned with the free
boundary problem.

In [2], an algorithm to give a valid Wang tiling with W for any planar region which contains a cycle
and with any boundary condition. In this paper, we give a different approach to give a brick pattern for a
rectangular region in the plane using our dappled tiling algorithm. We restrict ourselves to the case of the
free boundary condition and rectangular region, but with the current approach we have a better control
over the output.

DAPPLED TILING 7

Brick edge

edge position c1

edge position c2

edge position c3

edge position c4

Figure 5. A brick Wang tile and a 3 × 3-tiling

A problem of the previous algorithms in [1, 2] is that it sometimes produces long traversal edges;
horizontally consecutive occurrence of tiles with c1 = c3 or vertically consecutive occurrence of tiles
with c2 = c4. These are visually undesirable (see Fig. 6). We overcome this problem by our L-dappled

Figure 6. Brick Wall Patterns.Left: produced by the algorithms in [1, 2], Middle: same
as Left with emphasis on long traversal lines, Right: produced by our new algorithm

tiling algorithm. First, we divide W into two classes W = W0 t W1, where W0 consists of those with
c1 = c3 and W1 consists of those with c2 = c4. We label tiles in W0 with 0 and those in W1 with 1. We
now consider L-dappled tilings with T = {0, 1} and L = {Hp

0 ,V
q
1 }, which avoid horizontal strips bigger

than p consisting of tiles from WH and vertical strips bigger than q consisting of tiles from WV .
From an L-dappled tiling f , we can construct a valid Wang tiling with W: Visit cells from left to

right, and top to bottom. At (i, j), use (4.1) to determine edge positions for c1 and c2 (when i, j > 0). If
f (i, j) = 0, set c3 = c1. Otherwise, set c4 = c2. Pick any positions randomly for the rest of the edges.
Obviously, this gives a valid Wang tiling with the desired property.

Example 4.1. Fig. 7 shows brick patterns constructed from tilings of G10,6 with T = {0, 1}. The upper
pattern, which is constructed from a user specified tiling, shows a clear diagonal pattern. The lower
pattern, which is constructed from the L-dappled tiling with L = {H2

white,V
2
orange} produced by Algorithm

1 applied to the use specified tiling, looks more random while maintaining a subtle feel of the diagonal
pattern.

5. Example: Flow Tiles

Consider an L-dappled tiling with T = {−, |} and L = {Hp−
− ,H

p|
|
,Vq−
− ,V

q|
|
}. We interpret it as a flow field

to create a crowd simulation. We start with particles spread over the tiling. They move around following
the “guidance” specified by the tile. More precisely, each particle picks a direction according to the tile
on which it locates. For example, assume a particle is at a cell with −. Then, choose either left or right
and move in the direction. When it reaches the centre of an adjacent tile, say with |, chooses either up or
down and continues in the direction. See the supplementary video [6].

8 SHIZUO KAJI, ALEXANDRE DEROUET-JOURDAN, AND HIROYUKI OCHIAI

initial tiling corresponding Brick Wang tiles

dappled tiling corresponding Brick Wang tiles

Figure 7. Dappled tiling and corresponding Brick Wang tiling

6. Conclusion and Future work

We defined the notion of dappled tilings, which is useful to produce texture patterns free of a certain
kind of repetition. We gave an efficient algorithm (Algorithm 1) to convert any tilings to a dappled one.
Our method has the following advantages.

• It produces all the dappled tilings if we start with a random tiling. This is because the algorithm
does not modify the input tiling if it is already L-dappled.
• It has some control over the distribution of tiles since we can specify the initial tiling.

We also discussed an algorithm (Algorithm 2) to convert any tilings to a cyclically dappled one. Cycli-
cally dappled tilings can be used repeatedly to fill a larger region. However, Algorithm 2 is limited in the
sense that it does not produce all the possible cyclically dappled tilings.

We finish our discussion with a list of future work which encompasses both the theoretical and the
practical problems.

[1] The number of L-dappled tilings of Gm,n with a given set L of conditions: to determine an explicit or
recursive formula is a mathematically interesting problem.

[2] A better cyclic algorithm: in §3.2 we gave an algorithm to produce cyclically dappled tilings with
some limitations. It would be good to get rid of these limitations.

[3] Conditions specified by subsets: For τ ⊂ T , we define the condition Hp
τ which prohibits hori-

zontal strips consisting of p + 1 tiles in τ. We would like to give an algorithm to produce L-
dappled tilings, where L consists of this kind of generalised conditions. For example, by setting
L = {H2

{white, grey},V
2
{grey, black}} we can produce tilings without long strips of similar colour.

[4] Closest dappled tiling: Our algorithm takes a tiling as input and produces an L-dappled tiling, which
is usually not very different from the input. However, the output is not the closest solution in terms
of the Hamming distance d(f1, f2) = |{(i, j) ∈ Gm,n | f1(i, j) , f2(i, j)}|.

Example 6.1. For L = {H2
0 ,V

2
1 }, Algorithm 1 converts

0 0 0
1 0 1
0 0 1

⇒

0 0 1
1 0 1
0 1 0

DAPPLED TILING 9

but one of the closest dappled tilings to the input is

0 1 0
1 0 1
0 0 1

It is interesting to find an algorithm to produce an L-dappled tiling closest to the given tiling.
[5] Extension of the flow tiling in §5: we can consider different kinds of tiles such as emitting/killing

tiles, where new particles are born/killed, and speed control tiles, where the speed of a particle is
changed.

[6] A parallel algorithm: our algorithm is sequential but it is desirable to have a parallelised algorithm.
We may use a cellular automaton approach.

[7] Global constraints: the conditions we consider in the L-dappled tiling is local in the sense that they
can be checked by looking at a neighbourhood of each cell. Global constraints such as specifying the
total number of a particular tile can be useful in some applications. We would like to generalise our
framework so that we can deal with global constraints.

[8] Boundary condition: given a partial tiling of Gm,n, we can ask to extend it to an L-dappled tiling. A
typical example is the case where the tiles at the boundary are specified. In the cyclic setting, it is not
even trivial to determine if there is a solution or not.

Example 6.2. Consider a 4 × 4-grid with L̄ = {H̄2
0 , V̄

2
1 },T = {0, 1} and the following partial tiling:

1 ? ? ?
? 0 ? ?
? 0 1 1
? 0 ? ?

There exists no cyclically L̄-dappled tiling extending (obtained by filling the cells marked with “?”)
the given one. This is because in a 4× 4 cyclically L̄-dappled tiling, there should be an equal number
of 0 and 1. This implies there should be exactly two 1’s in each column, which is not the case with
the above example.

For a larger board Gm,n, where m ≥ 7, n ≥ 4, and m−1 is divisible by 3, we have a similar example:

· · ·? 0 ? ? 0 ? · · ·
· · ·? 0 ? ? 0 ? · · ·
· · ·? 0 1 1 0 ? · · ·
· · ·? 0 ? ? 0 ? · · ·
· · ·? 0 ? ? 0 ? · · ·
· · ·? 0 1 1 0 ? · · ·
· · ·? 0 ? ? 0 ? · · ·
· · ·? 0 ? ? 0 ? · · ·
· · ·? 0 1 1 0 ? · · ·
· · ·? 0 ? ? 0 ? · · ·
· · ·? 0 ? ? 0 ? · · ·
· · ·? 0 1 1 0 ? · · ·
· · ·? 0 ? ? 0 ? · · ·

There exists no cyclically L-dappled tiling extending it. This can be checked, for example, by choos-
ing a tile for (3, 3) and continue filling cells which are forced to have either 0 or 1 by the conditions.
No matter what tile we choose for (3, 3), we encounter violation at some point.

We would like to have a more efficient algorithm to decide and solve tiling problems with boundary
conditions.

10 SHIZUO KAJI, ALEXANDRE DEROUET-JOURDAN, AND HIROYUKI OCHIAI

[9] Interpretation as a SAT problem: the L-dappled tiling is a satisfiability problem and it would be
interesting to formalise it to give a formal verification of the algorithm.

Acknowledgements

A part of this work was conducted during the IMI Short Term Research project “Formalisation of Wang
tiles for texture synthesis” at Kyushu University. The authors thank Kyushu University for the support.
The authors are grateful to Yoshihiro Mizoguchi for his helpful comments.

References

[1] A. Derouet-Jourdan, Y. Mizoguchi, and M. Salvati, Wang Tiles Modeling of Wall Patterns, In Symposium on Mathemat-
ical Progress in Expressive Image Synthesis (MEIS2015), Volume 64 of MI Lecture Note Series, pages 61–70. Kyushu
University, 2015.

[2] A. Derouet-Jourdan, S. Kaji, and Y. Mizoguchi, A linear algorithm for Brick Wang tiling, preprint, arXiv:1603.04292.
[3] T. Matsushima, Y. Mizoguchi, and A. Derouet-Jourdan. Verification of a brick Wang tiling algorithm, Proceedings of

SCSS2016, EPiC Series in Computing Volume 39, pp. 107–116, 2016.
[4] Number of n×k 0..1 arrays avoiding 000 horizontally and 111 vertically, The On-Line Encyclopedia of Integer Sequences,
https://oeis.org/A206994

[5] A python implementation of the dappled tiling, https://github.com/shizuo-kaji/DappledTiling
[6] A video illustrating flow tiles, https://www.dropbox.com/s/b06j1gz4t5sguaz/ox_3.mov?dl=0

Yamaguchi University, Japan / JST PRESTO
E-mail address: skaji@yamaguchi-u.ac.jp

OLM Digital Inc.
E-mail address: alex@olm.co.jp

Kyushu University
E-mail address: ochiai@imi.kyushu-u.ac.jp

https://oeis.org/A206994
https://github.com/shizuo-kaji/DappledTiling
https://www.dropbox.com/s/b06j1gz4t5sguaz/ox_3.mov?dl=0

DAPPLED TILING 11

Algorithm 2: Algorithm to convert an input tiling to a cyclically L̄-dappled one.
Input: A tiling f : Gm,n → T
Output: A cyclically L̄-dappled tiling g : Gm,n → T
begin

g← f ;
for weight = 0 to m + n − 2 do

forall (i, j) such that i + j = weight do
if ViolateCyc (g, (i, j)) then

g(i, j)← 1 − g(i, j);
if ViolateCyc (g, (i, j)) then

g(i, j)← g(i − 1, j − 1) ;
g(i − 1, j)← 1 − g(i, j) ;
g(i, j − 1)← 1 − g(i, j) ;

end
end

end
end
return g

end
Function ViolateCyc (f , (i, j))

forall H̄p
t ∈ L̄ do

switch i do
case i = p − 2 do

if f (0, j) = f (1, j) = · · · = f (p − 2, j) = t then
return true

end
end
case i = m − 1 do

if there exists k < p − 2 such that f (k, j) = f (k − 1, j) = · · · = f (0, j) = f (m − 1, j) =

f (m − 2, j) = · · · = f (m − p + k, j) = t then
return true

end
end
case i > p − 2 do

if f (i, j) = f (i − 1, j) = · · · = f (i − p, j) = t then
return true

end
end

end
end
forall V̄q

t ∈ L̄ do
switch j do

Similar to the above.
end

end
return false

	1. Introduction
	2. The algorithm
	3. Extension
	3.1. Non-uniform condition
	3.2. Cyclic tiling

	4. Example: Brick Wang Tiles
	5. Example: Flow Tiles
	6. Conclusion and Future work
	Acknowledgements
	References

