
ar
X

iv
:1

60
7.

06
27

6v
1 

 [
co

nd
-m

at
.d

is
-n

n]
  2

1 
Ju

l 2
01

6

Conduction in quasi-periodic and quasi-random lattices:

Fibonacci, Riemann, and Anderson models

V. K. Varma,1 S. Pilati,1 and V. E. Kravtsov1,2

1The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
2L. D. Landau Institute for Theoretical Physics, Chernogolovka, Russia

(Dated: July 22, 2016)

We study the ground state conduction properties of noninteracting electrons in aperiodic but
non-random one-dimensional models with chiral symmetry, and make comparisons against Anderson
models with non-deterministic disorder. The first model we consider is the Fibonacci lattice, which is
a paradigmatic model of quasicrystals; the second is the Riemann lattice, which we define inspired
by Dyson’s proposal on the possible connection between the Riemann hypothesis and a suitably
defined quasicrystal. Our analysis is based on Kohn’s many-particle localization tensor defined
within the modern theory of the insulating state. In the Fibonacci quasicrystal, where all single-
particle eigenstates are critical (i.e., intermediate between ergodic and localized), the noninteracting
electron gas is found to be a conductor at most electron densities, including the half-filled case;
however, at various specific fillings ρ, including the values ρ = 1/gn, where g is the golden ratio and
n is any integer, the gas turns into an insulator due to spectral gaps. Metallic behaviour is found
at half-filling in the Riemann lattice as well; however, in contrast to the Fibonacci quasicrystal,
the Riemann lattice is generically an insulator due to single-particle eigenstate localization, likely
at all other fillings. Its behaviour turns out to be alike that of the off-diagonal Anderson model,
albeit with different system-size scaling of the band-centre anomalies. The advantages of analysing
the Kohn’s localization tensor instead of other measures of localization familiar from the theory of
Anderson insulators (such as the participation ratio or the Lyapunov exponent) are highlighted.

PACS numbers: 71.10.Fd,71.30.+h,71.23.An,72.15.Rn

Explaining and predicting the conduction properties of
quantum systems which are neither periodic nor purely
random is a challenging problem. The most relevant
example of such systems are the quasicrystals. These
are materials that fall outside the conventional defini-
tion of crystals which − in its superseded version −
subsumed only periodic real space structures. Qua-
sicrystals are quasiperiodic in the sense that, while the
translation symmetry is not preserved, they display well-
defined diffraction patterns1,2, similar to periodic struc-
tures. Formally, the Fourier transform of their density
distribution must contain, albeit perhaps dense, at least
another point spectrum:

F







∑

γn∈X

δD(γ − γn)







=
∑

km∈X∗

FmδD(k − km), (1)

where δD is the Dirac delta function, and γn and km are
in the countable subsets X and X∗, in real space and in
Fourier space, respectively3–5. Note that the right-hand
side of Eq. (1) might also include a continuous part3,6.
The first material discovered displaying such exotic

diffraction properties was a metallic alloy of Al-Mn1,2,
followed by alloys such as GaAs7 and Si-GexSi1−x

8. The
conduction properties of most quasicrystals are uncon-
ventional and evasive: while they are (bad) metals at
low temperatures9, their resistivity can decrease with in-
creasing temperature, contrary to what is observed in
most metals10. In the present day, quasicrystals may
also be realized in cold-atom set-ups11–13 and photonic

waveguide experiments14,15, providing us with a new con-
trollable experimental set-up to study the physics of these
aperiodic structures.

Most theoretical studies on quasicrystals have focussed
on the spectral properties and on the nature of the
single-particle wave-functions, considering in particular
the archetypal example of the Fibonacci lattice16–18. It
has been established that the spectrum of this system is
a Cantor set of zero measure, that it is purely singular
continuous, and that it hosts a dense set of gaps. Its
single-particle eigenstates are known to be critical, being
intermediate between the extended states, characteristic
of clean periodic systems, and the exponentially local-
ized states characteristic of Anderson localized systems
with (strong) non-deterministic disorder. However, the
conduction properties of electrons in quasicrystalline sys-
tems such as the Fibonacci lattice are still very poorly
understood9,19. In fact, these systems represent a se-
vere theoretical challenge: while the band structure the-
ory based on periodic Bloch function has to be aban-
doned, the theory of the Anderson transition20,21, which
was developed for non-deterministic disordered systems
with gapless spectra and localized single-particle eigen-
functions, is not directly applicable either.

In this article we investigate the metal to insulator
transition in one-dimensional quasi-disordered (i.e. in-
termediate between periodic and non-deterministically
random) systems within the framework of the modern
theory of the insulating state22–26. We discern metallic
and insulating phases via the many-particle localization

http://arxiv.org/abs/1607.06276v1


2

tensor which signals the so-called Kohn’s localization in
the many-particle ground-state22,24,26–28. We highlight
the important difference between the conduction proper-
ties predicted via Kohn’s many-particle localization ten-
sor to those evinced from the analysis of other measures
of localization familiar from the theory of Anderson in-
sulators, such as the participation ratio or the Lyapunov
exponent, which capture the localization properties of the
single-particle eigenstates.

The first system investigated is the off-diagonal Fi-
bonacci chain, where the quasi-periodicity is present in
the hopping terms dictated by a substitution rule, in turn
determined by the Fibonacci sequence.

The second model is the Riemann chain, in which the
lattice spacings are defined from the (renormalised) dis-
tances between the nontrivial zeros of the Riemann zeta
function. We introduce this model inspired by Dyson’s
proposal on a possible strategy to prove or disprove the
Riemann hypothesis. According to Dyson29, if one were
able to identify the Riemann zeta-function zeros with
the nodes of a one-dimensional quasicrystal, then the
Riemann conjecture would be proved (see Sec. III for
details). It, therefore, behoves us to investigate the con-
duction properties of the Riemann chain, and to compare
them to those of a paradigmatic quasicrystal (Fibonacci
chain) and to those of random Anderson models with
non-deterministic disorder.

A primary finding of our work is that the bulk con-
ductivity (or insulation) in these two models strongly
depends on the lattice filling. In the Fibonacci chain,
Kohn’s many-particle localization tensor is divergent in
the thermodynamic limit at most values of the filling,
including the half-filled case. This indicates that the Fi-
bonacci lattice is, in general, a metallic system. However,
at certain special filling factors, Kohn’s many-particle
localization length remains finite in the thermodynamic
limit, signalling an insulating phase. The origin of these
insulating points is discussed. Instead, in the Riemann
lattice, the system appears to be insulating at all fill-
ings, excluding only the half-filled case. This behaviour
is unlike that of the Fibonacci quasicrystal, and is in-
stead similar to that of the off-diagonal Anderson model
with random hoppings (in contrast to Dyson’s proposal
taken verbatim). Still, some differences emerge also with
respect to the case of random disorder, specifically in the
anomalies displayed by both models at half filling. There-
fore, we refer to the Riemann lattice as a quasi-random
model.

The remainder of the article is organized as follows:
in Section I we review the basic concepts of the modern
theory of the insulating state, describing in particular
the connection between Kohn’s many-particle localiza-
tion tensor and the dc conductivity, and we also discuss
other measure of localization commonly employed in the
theory of Anderson insulator. In Sections II and III we
discuss the results for the Fibonacci and the Riemann
lattices, respectively. A summary of the results, and a
critical discussion on the power of the modern theory

of the insulating state, are reported in Section IV. Ap-
pendix IVA reports a detailed analysis on the system-size
scaling of Kohn’s many-particle localization tensor, while
in appendix IVB the diffraction pattern of the Fibonacci
chain is described, and the cut-and-project method to
create the Fibonacci chain is illustrated. Appendix IVC
describes the multifractal analysis employed for the Fi-
bonacci quasicrystal when comparing with the expected
scaling of the participation ratio.

I. MODEL AND METHOD

We consider a system of N/2 spin-up and N/2 spin-
down noninteracting electrons on an open chain30 of L
sites. The system is described by the following tight-
binding Hamiltonian:

H =
∑

r,σ

tr(b
†
r,σbr+1,σ + h.c) (2)

where r = 1, . . . , L− 1 is the discrete index which labels
the lattice sites, br,σ (b†r,σ) is the fermionic annihilation
(creation) operator for a spin σ =↑, ↓ particle at site r.
The Hamiltonian (2) possesses a sub-lattice chiral sym-

metry. This means that H may be decomposed into off-
block diagonal form:

H =

(

0 h
h† 0

)

, (3)

where h is the hopping matrix connecting odd and even
sites, and the chiral symmetry, given by

σ̃zHσ̃z = −H, (4)

holds. Here σ̃z = 1L/2 ⊗ σz, where σz is the third Pauli
matrix, and 1L/2 is the L/2× L/2 identity matrix.
In the theory of the Anderson transition developed for

randomly disordered models, one discerns metallic be-
haviour from insulation by inspecting the spatial extent,
respectively ergodic or localized, of the single-particle
eigenstates at the Fermi energy. This spatial extent can
be analysed by computing the participation ratio (PR),
which is defined by:

PRj = 1/
∑

r

|φj(r)|4, (5)

where |φj(r)| is the absolute amplitude of the eigenstate
labelled by j at site r. For a localized state, the PR is
independent of L, whereas for ergodic delocalized states
it scales with the system size as PRj = O(Ld), where d is
the dimensionality, meaning that the PR diverges in the
thermodynamic limit. For critical states PRj = O(Lb),
with 0 < b < d.
Another measure of localization of the single-particle

eigenstates which, however, is known not bear a one-
to-one correspondence with the PR31,32, is the inverse
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Lyapunov exponent ξ1. For a single-particle state φ(r) it
is defined as:

1/ξ1 = − lim
r→∞

log |φ(r)|
r

. (6)

This measure captures only the properties of the tail of
the wavefunction and can therefore entirely miss bulk
properties. In particular, if the wavefunction is sub- or
superlocalized (i.e. stretched exponential decay) then the
definition in Eq. (6) may prove to be inadequate. Indeed,
this is the case for the off-diagonal Anderson model as we
explain in Sec. III.
A primary theoretical tool we employ in this article in

order to investigate the bulk conduction and insulation
properties of the aforementioned models is the many-
particle localization tensor λ defined within the mod-
ern theory of the insulating state23–26. This localiza-
tion tensor λ is a property of the many-particle ground-
state wave-function, and it is related to the fluctuation
of the polarization. In previous studies λ has proven
to be suitable to identify various insulating phases, in-
cluding band, Anderson28,33, Mott23, and also quan-
tum Hall insulators34. Furthermore the effect of weak
interactions on the Anderson transition has also been
addressed28. The absence of conduction as signalled by
an L-independent λ is referred to as Kohn’s localization;
it reflects the localization in the (dN -dimensional) config-
uration space24,26–28, as originally discussed by Kohn in
his seminal article on the theory of the insulating state22.
An important difference between λ and the previously
discussed measures of localization such as PR and Lya-
punov exponent is that λ captures spectral properties as

well. This makes it suitable for systems with complex
spectra, such that those with a heirarchy of mini-gaps.
In this article, we analyse this metric for localization of
the many-particle ground state of certain aperiodic one-
dimensional models, whose properties are intermediate
between clean periodic systems and random models with
non-deterministic disorder.

Insulation vs. localization

In the case of noninteracting electrons, which we con-
sider here, the ground state wavefunction Ψ is con-
structed using Slater determinants built from the single-
particle spatial orbitals denoted by φj(r), for j =
1, 2, . . . L. For a Slater determinant wave-function, the
localization tensor may be evaluated as23,26,28

λ2
αβ =

1

N

∫

drdr′(r− r
′)α(r − r

′)β |P(r, r′)|2, (7)

where α, β correspond to spatial coordinates; ρD(r, r′) =
2P (r, r′) is the one-particle density matrix for a Slater
determinant, which in turn is given by26 ρD(r, r′) =

2
∑N/2

j=1 φj(r)φ
∗
j (r

′). The single-particle spatial wave-

functions φj(r), needed to form the one-particle density
matrix ρD of the many-particle system, are determined

from full diagonalisation of the Hamiltonian matrix for a
single particle using the Armadillo library41.
The length-scale λ (we suppress α, β subscripts from

here on, since we deal with one-dimensional models) is
a many-particle localization length determining Kohn’s
localization of the ground-state of the many-particle sys-
tem. The scaling of λ with system size allows one to
distinguish a conductor from an insulator23,24,28; for suf-
ficiently large size, λ diverges with L if the zero-frequency
conductivity σ(ω = 0) is finite (i.e., for metals), while it
saturates to a finite value if σ(ω = 0) = 0 (i.e., for insu-
lators). This scaling behaviour can be evinced from the
following sum-rule which relates Kohn’s many-particle
localization length to the frequency-dependent conduc-
tivity σ(ω)23,24,42:

λ2 =
~

πe2ρ

∫ ∞

0

dω

ω
σ(ω). (8)

This fluctuation dissipation relation is valid for noninter-
acting electrons with any boundary conditions42 and for
generic interacting systems with periodic boundaries24,26,
the former scenario being pertinent to our study. By
considering the generalized Einstein relation at low
temperature43,44, that is

σ(ω → 0) = e2DoS(ǫ)D(ǫ), (9)

where DoS(ǫ) is the density of states (see Eq. (19)) close
to the Fermi energy and D(ǫ) is the diffusion constant
at energy ǫ, one readily understands that λ has to be
sensitive to both spectral properties such as singulari-
ties or gaps in the DoS, as well as the transport proper-
ties of the single-particle eigenstates, which are reflected
through the diffusion constant D(ǫ). These expectations
will be borne out by our numerical results.
In most physically relevant scenarios, the functional

form of the system-size scaling of λ can be predicted.
Let us consider the cases of insulators and metals sep-
arately. For insulation due to single-particle eigenstate
localization in d-dimensions, it may be shown (see Ap-
pendix IVA) that for power-law or stretched-exponential
localization, with µ > d, the low-frequency conductivity
scales as:

σ(ω → 0) ∼
{

ω2−(d+1)/µ if |φ|2 ∼ R−µ

ω2 log(d+1)/α (ω) if |φ|2 ∼ exp (−bRα).

(10)
This will in turn imply a saturation in λ2 as L → ∞,
see Appendix IVA. Saturation of λ2 when there is a low-
frequency optical gap may be argued by upper-bounding
the value of the integral in Eq. 824,26. In the metallic
case, the d.c. conduction in the thermodynamic limit is
finite: σ(ω → 0) 6= 0; then, it can be shown that λ will
pick up factors of logL in its scaling (for diffusive), along
with factors of L (for ballistic); see Appendix IVA.
We point out that due to the symmetry of (2) ρλ2 ≡

K(L, ρ) will be a function K that is symmetric about half-
filling i.e. K(L, ρ) = K(L, 1 − ρ) where ρ = N/2L. In a
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FIG. 1: (Colour online) Conduction properties in the Fibonacci quasicrystal. Left top panel: participation ratio (PR) of
the single-particle wave-functions as a function of the scaled eigenstate index i/L, for system size L = 988, on a log-normal
scale. All single particle states are critical in the Fibonacci lattice18,35–37 in the thermodynamic limit. Left bottom panel:
rescaled (squared) many-particle localization length ρλ2 as a function of filling ρ on a log-normal plot. The vertical dashed
lines correspond to the location of the Fibonacci numbers; at these fillings, λ2 shows a sudden dip, indicative of an insulating
phase. Middle panel: Scaling of PR with inverse system size for eigenstate numbered i located at the beginning of a mini-gap
and at the band centre. Solid line shows the expected scaling with a generalised dimension D2 ≈ 0.78 for the multifractal
state at band centre for q = 2 (corresponding to the PR), obtained from a multifractal analysis38–40, described in Appendix
IVC. Right panel: Scaling of λ−2 as a function of inverse system size for fillings ρ = 1/4, 1/2, 1/g2, 1/g3. The suppression
of λ2 in the thermodynamic limit for the former two densities clearly indicates a metallic phase, whereas the saturation at
electronic fillings of 1/gn signals a many-particle insulator. Dot-dashed (red circled) lines correspond to t2/t1 = 0.5, whose
results are qualitatively unchanged. Inset shows the integrated density of states across the energy spectrum (horizontal axis)
of an L = 2585 chain; it is worth noting that at the values 1/gn, indicated by dashed horizontal lines (which correspond to the
black vertical lines in the left panel), there is also a gap in the spectrum, signalled by the presence of plateaus. Instead, the
PR values cannot signal these insulating densities as seen in the middle panel.

clean tight-binding model or in the Aubry-André model
in the conducting phase K(L, ρ) = K(L) (i.e. indepen-
dent of the density) with K(L) increasing with system
size L. In comparison, we shall observe very different
behaviour for the function K in the three systems under
consideration.

II. FIBONACCI LATTICE

The spectral properties of Fibonacci quasicrystals have
been the subject of various theoretical and experimental
studies since the 1980’s7,16,17. In Ref. 7 the authors
experimentally created a Fibonacci quasicrystal from al-
ternating layers of GaAs and AlAs; X-ray and Raman
scattering analysis revealed the presence of singularities
in the spectrum. In subsequent theoretical works18,35–37

the spectral properties of the Fibonacci lattice have been
analysed, establishing that all eigenstates (both in the
diagonal case where the on-site energies are modulated,
and in the off-diagonal case where the modulation is in
the hopping energies) are critical and display multifrac-
tal properties; the spectrum was found to be purely sin-
gular continuous. The conduction properties have been
addressed, but mostly within the Landauer formalism.
Results consistent with a power-law growth of the Lan-
dauer resistance with systems size have been reported
in Refs. 45, 46, with large fluctuation depending on the
energy46. The presence of states displaying the trans-
port properties typical of extended states has also been
reported47. On the experimental side, a proposal was re-

cently put forward on how to realise the Fibonacci qua-
sicrystal in experiments performed with ultracold atomic
gases by employing a narrow-width confining Gaussian
beam on a square two-dimensional optical lattice13.
The Fibonacci quasicrystal is constructed using a sim-

ple replacement rule of two symbols L, S:

{S} → {L},
{L} → {LS}. (11)

The finite sequences generated will then be
{S,L, LS, LSL,LSLLS,LSLLSLSL . . .}. The trans-
formation matrix that generates this sequence is given
by

M =

(

1 1
1 0

)

, (12)

whose eigenvalues are given by g = (
√
5 + 1)/2 and 1/g.

g is a Pisot-Vijayaraghavan number and the sequence
generated by M is therefore a valid quasicrystal3. We
construct a Fibonacci chain consisting of points with the
two bond lengths δr = {1, g} (these two values emerg-
ing from the cut-and-project method, see IVB for more
details) arranged in the Fibonacci sequence2,3. It will
correspond to two hopping values t1 and t2 arranged in
the same sequence. For concreteness we consider the fol-
lowing correspondence tr = 1/δr between the structure
of the quasi-crystal (encoded in δr) and the tight-binding
Hamiltonian. In this case t1 = 1 and t2 = 1/g. We will
demonstrate that the main qualitative results are insensi-
tive to the particular relation between t and δ and result
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only from the Fibonacci sequence of t1 and t2. The length
of each such sequence (number of bonds in the lattice) is
a Fibonacci number Fi, which will in turn determine the
length of the lattices L ≡ Fi + 1 that may be studied.

We first analyse the PR of the single-particle eigen-
states. The results are displayed in the left top panel
of Fig. 1. We display data corresponding to the entire
spectrum for the system size L = 988. The horizontal
axis indicates the eigenstate index divided by the cor-
responding system size. Several sharp dips in the PR
values are evident. These correspond to more localized
states; the “ceiling” from which these dips hang move
upward as the system size increases (not shown), cor-
responding to a tendency to delocalization. Note that

these states are neither truly localized nor ergodic states;

in the thermodynamic limit all states are expected to be

critical18,35–37. This critical nature is indeed confirmed
by the system-size scaling analysis of the PR values dis-
played in the middle panel of Fig. 1. We consider in
particular two eigenstates: one just below a mini-gap
and one at the band-centre. In both cases a power-law
scaling PR ∝ LD2(ǫ) consistent with multifractality, with
D2(ǫ) < d is seen [we recall that one would have D2 = 0
for localized states, and D2 = d = 1 for ergodic states],
where ǫ is the energy of the eigenstate under considera-
tion and d is the dimensionality of the lattice; the full line
shows the expected scaling at ǫ = 0, with the generalised
dimension D2(ǫ = 0), which we obtained from a multi-
fractal analysis38–40 (see Appendix IVC for details).

In order to ascertain the conducting properties of
the noninteracting many-particle system, whose wave-
function is the Slater determinant composed of these crit-
ical wavefunctions, we analyse Kohn’s many-particle lo-
calization tensor λ. The dependence of ρλ2 as a function
of the filling ρ is displayed in the bottom left panel of
Fig. 1, for the lattice size L = 988. In general, the varia-
tions of λ2 as a function of ρ display very sharp features;
this behaviour is to be contrasted with the smoother de-
pendence we will observe in case of the Riemann lattice
and Anderson models (Fig. 2 of next section); we at-
tribute this to the critical nature of the single-particle
wavefunctions and to the presence of small gaps in the
Fibonacci quasicrystal. At various specific densities, we
observe sharp dips in the localization length; this indi-
cates a decrease in conducting properties, possibly the
onset of insulating behaviour (see scaling analysis below).
Several, but not all, of these specific densities are given
by the relation Fi/L where Fi is the ith Fibonacci num-
ber. Notice that these values can be approximated by
1/g, 1/g2, 1/g3 . . .). In Fig. 1, these densities are indi-
cated by vertical lines. This pattern in the localization
properties is consistently reproduced for different system
sizes, meaning that the localization dips obtained for dif-
ferent lattice lengths occurs at the same fillings. We have
also checked that a very similar structure is obtained for
different values of the ratio between the two hopping en-
ergies (we considered values varying over a few orders of
magnitude).

In order to verify the above statement about possible
insulating behaviour at the location of the sharp dips —
in particular those corresponding to the vertical lines —
we analyse the scaling of the localization length λ with
the systems size, keeping the electronic density fixed.
The cases of the densities ρ = 1/g2 and ρ = 1/g3 are
shown in the right panel of Fig. 1 (notice that particle
filling of 1/g is equivalent to 1/g2 because of the symme-
try about half-filling; this is, in fact, evident from Fig.
1). We observe that λ quickly saturates to finite values
as the system size increases, clearly indicating an insu-
lating state. The origin of these insulating “dips” can
be understood from the analysis of the single-particle
spectrum. To elucidate this point, in the inset of the
right panel of Fig. 1 we show the integrated density of
states I(ǫ) as a function of the energy ǫ (for an L = 2585
chain). The plateaus in I(ǫ) correspond to the gaps in
the single-particle energy spectrum. Such a structure
of the spectrum, often referred to as the devil’s stair-
case, is typical of cumulative distributions of a Cantor
function and was previously observed in the Fibonacci
quasicrystal48,49. We see that the plateaus in the cumu-
lative density of states I(ǫ) correspond to the (normal-
ized) integrated density of states at 1/gn (as previously
reported49); this means that the insulating dips described
above occur exactly at the densities where the Fermi en-
ergy is at the verge of a band gap.
For generic densities (away from the sharp dips, i.e. the

mini-gaps), the conduction properties of the electron gas
in the Fibonacci quasicrystal are more enigmatic, since
the single-particle eigenstates are critical. To clarify this,
we analyse the finite-size scaling behaviour of λ. We
display in particular two cases, namely half filling ρ = 1/2
and quarter filling ρ/1/4 (see right panel of Fig. 1). λ
clearly diverges in the thermodynamic limit, indicating
that the Fibonacci quasicrystal is, for these two densities,
a metallic system. We verified a similar divergence for
other generic filling away from the mini-gaps.

III. RIEMANN LATTICE

The Riemann zeta function is one of the most studied
functions in number theory. It was defined by Riemann
in his seminal article50 “Ueber die Anzahl der Primzahlen
unter einer gegebenen Grösse” as

ζ(s) =

∞
∑

n=1

1

ns
, (13)

for a complex variable s. The nontrivial zeros of ζ(s)
are conjectured to all lie on the critical line 1/2 + iγn,
with real valued γn, with n ∈ Z. This statement con-
stitutes the Riemann hypothesis51. The distribution of
the values {γn} has been intensively studied; one such
possible structure in the imaginary part of the zeros
is by Dyson who conjectured a possible connection be-
tween quasicrystals and the nontrivial zeros of ζ(s)29:
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FIG. 2: (Colour online) Conduction properties in the Riemann lattice and Anderson models. Left panel: Density of states of
the Riemann lattice and disorder-averaged off-diagonal Anderson model. There is a sharp rise in the density of states towards
the band-centre ǫ = 0, more prominently seen in the off-diagonal Anderson model. System size L = 4000 is chosen, with open
boundaries. Inset shows participation ratio (PR) of the single-particle eigenstates for various system sizes L as a function of the
scaled eigenstate index i/L in the Riemann lattice; <> denotes averaging of inverse participation ratio over 50 neighbouring
eigenstates. Middle panel: ρλ2 for various system sizes in the Riemann lattice as a function of electronic filling ρ, on a log-
normal scale. The sharp increase at half-filling, associated to the chiral symmetry σzHσz = −H , indicates the occurrence of
a metallic phase. Inset shows scaling of λ−2 as a function of inverse system size, with exponential (red circles) and algebraic
(black crosses) relation between the spacings δr and hoppings tr, for two electron fillings ρ = 1/4, 1/2. In the first case, λ
saturates in the thermodynamic limit, signalling an insulator, in the second, λ diverges in the thermodynamic limit, confirming
the occurrence of the metallic phase at half filling. Right panel: Disorder-averaged λ2 for the open boundary off-diagonal
and the diagonal Anderson models. Note the similarity of the former with the Riemann lattice (due to chiral symmetry) and
the absence of a sharp peak at half-filling in the latter (where chiral symmetry is absent). Inset shows scaling of λ2 for the
off-diagonal Anderson model for ρ = 1/4, 1/2; the full red line is a fit to (L logL)−1 (see text) signalling quasi-ballistic transport
at small system sizes.

per Dyson, if the set {γn} forms a one-dimensional qua-
sicrystal, then the Riemann hypothesis is proved; his con-
jecture is based on the definition of quasicrystals Eq. (1)
wherein a discrete set of real-space positions gives an-
other discrete set of well-defined diffraction points upon
Fourier transforming. More formally, Dyson claims29

that, following our notation of Eq. (1),

km = log pm, (14)

with X∗ containing all primes p and integers m, and that
therefore Eq. (1) is satisfied provided all γn are real,
which is equivalent to assuming the validity of the Rie-
mann hypothesis.
While certain objections to Dyson’s proposal may be

raised52, we pursue its physical implications by defining
a lattice with points located at the values γn > 0. We
refer to this model as the Riemann lattice. We note that
the zeros of ζ(s) become denser as one traverses higher up
the critical line: the average spacing between consecutive
zeros at a given height z, for z → ∞, on this critical line
is given by53

N(z) = 2π/ log(z/2π). (15)

Therefore, in order to construct a model with an average
lattice spacing of unity, we utilise the gap δr between the
renormalised zeros defined by53

δr = (γr+1 − γr) log (γr/2π)/2π. (16)

The hoppings tr in Eq. (2) are taken to be (i) tr = 1/δr,
and (ii) tr = exp(−δr); the physics of the Riemann lattice

is qualitatively unchanged between the two choices. With
the above transformation the average spacing between
the renormalised zeros is unity in the sense that53

j+k
∑

r=j+1

δr = k +O(log (jk)). (17)

Below, we analyse the bulk conduction properties of the
Riemann lattice, and we compare them to those of a
quasiperiodic model such as the Fibonacci quasicrystal
[discussed in Section II], and to those of a random model
such as the Anderson models with non-deterministic dis-
order.
The Hamiltonian defining the disordered Anderson

models20 is the following:

HAnd. = H +
L
∑

σ,r=1

ǫr,σb
†
r,σbr+1,σ; (18)

H is given by Eq. (2), and tr and ǫr,σ are uniformly
distributed non-deterministic random variables. Specifi-
cally, we consider the off-diagonal Anderson model with
hoppings tr ∈ [0.1, 1.1] and no onsite disorderǫr,σ = 0,
and also the diagonal Anderson model with ǫr,σ ∈ [−2, 2]
and constant hoppings tr = 1. In the off-diagonal An-
derson model there is a singularity in the average density
of states at the band-centre DoS(ǫ) ∝ 1/(ǫ ln3 ǫ)54–56.
This singularity is associated with the chiral symme-
try discussed in Section I54. According to the Herbert-
Jones formula57, the single-particle Lyapunov localiza-
tion length at energy ǫ is related to the DoS by ξ−1

1 (ǫ) =
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∫∞

−∞
DoS(E) ln |ǫ− E|dE. This implies a logarithmic

divergence of the single-particle Lyapunov localization
length ξ1 ∝ ln ǫ in the zero-energy limit ǫ → 0, as
has been confirmed numerically58. However, this diver-
gence may be an artefact of the assummed exponential
functional form of the decay of the single-particle wave-
function φ(r) ∼ exp (−r/ξ1). In fact, Refs. 55, 59 ar-

gue for sublocalization φ(r) ∼ exp (−
√

r/ξ1) rather than
anomalous delocalization, and in Ref. 55 it has been
found that that the typical localization length (in con-
trast to the average localization length) is finite. Further-
more, it has been shown that due to large fluctuations in
ξ1

59 and to the algebraic decay of the average transmis-
sion coefficient with the system size60 T ∼ L−γ , γ ≈ 0.5,
transport in the ǫ = 0 state is inhibited. It is impor-
tant to mention that the PR values do not display any
anomalous peak (which would imply a large or divergent
single-particle localization length) at the band centre61,
confirming that there is no exact correspondence between
Lyapunov localization length and PR values31,32. In the
diagonal Anderson model, the band-centre anomaly is
present but both single-particle localization lengths are
always finite across the spectrum31.
We begin the analysis of the Riemann lattice by study-

ing its single-particle properties. The density of states at
energy ǫ defined as

DoS(ǫ) =
∑

n

δD(ǫ− ǫn), (19)

where ǫn is the eigenenergy of the level labelled by n, is
shown in the left panel of Fig. 2. A sharp peak at the
band centre is evident. Such a peak is present also in the
case of the off-diagonal Anderson model (also shown in
Fig. 2), as discussed above.
The second contributing factor to σ(ω → 0) per Eq.

(9) is the diffusion constant D(ǫ) which we infer through
the PR, whose averaged value across the spectrum is
shown in the inset of Fig. 2. While there is a generic
delocalizing effect towards the band-centre (as is the case
even for fully localized models such as the 1D diagonal
Anderson model20,21,28), PR of single-particle eigenstates
at or close to the band-centre show no clear scaling as
L → ∞ (not shown) in contrast to what we observed for
the Fibonacci quasicrystal. A more conclusive statement
about dc conductivity may be made from the results of
λ2 displayed in the middle panel of Fig. 2, as we describe
next.
The most important observations that may be drawn

from this figure are the following: (i) the numerical coin-
cidence of λ2 for various L at almost all values of filling
ρ, possibly indicating an insulator, and (ii) an anomalous
increase in λ2 at half-filling with its values seemingly in-
creasing with L, possibly indicating a conductor. These
two points (general insulating behaviour, and metallicity
only at half-filling) are confirmed by fixing ρ = 1/4, 1/2
and approaching the thermodynamic limit as displayed
in the inset: λ2 saturates in the former case and diverges
in the latter. We attribute the enhanced conductivity in

the half-filled case to the peak in the DoS.
Let us compare and contrast this situation to other

systems. The behaviour is markedly different from the
cases of the Fibonacci quasicrystal (which is conduct-
ing at almost all densities excepting those finely-tuned
to the gaps) and the diagonal Anderson model (which is
insulating at all densities20,21,28 and has no band-centre
anomaly in λ2, as seen in right panel of Fig. 2). However
it is analogous to the off-diagonal Anderson model, both
of which are insulating at all densities except at ρ = 1/2
where an anomalous increase in λ2 is observed (middle
and right panel of Fig. 2). Indeed comparing the insets of
these panels we see that while the systems at ρ = 1/4 are
clearly insulators, the half-filled cases are more subtle: in
the off-diagonal Anderson an initial scaling λ2 ∝ L logL
(corresponding to quasi-ballistic transport, see Appendix
IVA) crosses over to either a saturation in λ2 or a slow
logarithmic growth at large L (corresponding to diffusive
conduction, see Appendix IVA); we suspect that discrim-
inating between the two cases is not possible with the
data we have. If λ2 does saturate, this might be ascribed
to the suppression of the diffusion constantD(ǫ = 0) = 0,
which in turn occurs because of the algebraic decay of the
average transmission coefficient T ∝ L−γ , γ ≈ 0.560.
It is important to highlight a difference between the

Riemann lattice and off-diagonal Anderson model at half-
filling: while in the latter λ2 appears to saturate in the
thermodynamic limit, possibly implying insulating be-
haviour (consistently with the arguments of Refs 59, 60),
in the former we observe a step-like divergence, charac-
terized by large plateaus and sharp jumps; we conjecture
this step-like behaviour to be rooted in certain − as yet
unknown − structured correlations present in the non-
trivial zeros of ζ(s).

IV. CONCLUSIONS

We investigated the bulk conduction properties of two
chirally symmetric aperiodic chains, the Fibonacci and
the Riemann lattices, and we made comparisons with
the off-diagonal Anderson model which features non-
deterministic disorder. The chiral symmetry σ̃zHσ̃z =
−H in disordered systems is generally associated to
anomalies in the single-particle localization length when
the Fermi energy is at the band centre54.
We have tested two measures of localization: the par-

ticipation ratio (PR) and Kohn’s many-particle localiza-
tion length λ. The former is a measure of the spatial
extent (extended versus localized) of the single-particle
eigenfunctions. The latter, as defined within the mod-
ern theory of the insulating state through the kernel

P (r, r′) =
∑N/2

j=1 φj(r)φ
∗
j (r

′), is non-local in energy-space
and can therefore capture insulating behaviour that arise
from a variety of mechanisms24, not only when the single-
particle eigenstate at the Fermi energy is localized. We
have shown this to be particularly important in the case
of the Fibonacci lattice, where at specific electron den-
sities – which are not signalled by the values of PR –
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insulation occurs due to spectral gaps.
In the Fibonacci lattice, where the one-particle spec-

trum is singular continuous with a hierarchy of mini-gaps,
the half and quarter filled systems are found to be metal-
lic; this is likely true for most fillings. This indicates that
according to the modern theory of the insulating state the
Fibonacci quasicrystal is, in general, a metallic system.
However, at certain specific electronic densities, some of
which are given by ρ = 1/gn for integer n and g being
the golden ratio, the many-particle system displays in-
sulating behaviour; as anticipated above, this is seen to
be due to the presence of mini-gaps in the single particle
spectrum.
The Riemann lattice − defined from the location of

the nontrivial zeros of the Riemann zeta function − is
revealed to possess intriguing bulk insulating properties:
our results indicate that only at half-filling will the
system display anomalous increase in conduction, while
the electron gas is insulating at all other fillings. This
behaviour is similar to that of the off-diagonal Anderson
model, meaning that the zeros of the Riemann zeta
function define a model which is more like a non-
deterministic random model, rather than a quasicrystal,
in apparent contrast to Dyson’s proposal (see also Ref.
52). Still, a difference with respect to the off-diagonal
Anderson model emerges: while λ displays a step-like
divergence at half-filling in the Riemann lattice, possibly
indicating some hitherto undiscovered long-range corre-
lations present in the Riemann zeta function, a smooth
dependence is found in the off-diagonal Anderson model,
with a linear increase for small system sizes, followed by
what appears to be a saturation.

We acknowledge interesting discussions with M.
Ghulinyan.

Appendix

A. Kohn’s localization

Kohn’s vs. Anderson’s localization

Note that the relation between λ2 and conductivity
σ(ω) is given by Eq. (8). We will illustrate that for
Anderson localization with no spectral gaps

lim
L→∞

λ2 6= ∞ ⇔ σ(ω → 0) = 0, (20)

in most physically relevant cases. This absence of con-
duction as signalled by λ2 is referred to as Kohn’s
localization24,26–28. It was shown in Ref. 24 that for
an insulator λ2 saturates and captures the localization
of generalised Wannier functions in a higher-dimensional
configuration space. Therefore λ2 will reflect the spectral
properties (such as density of states) as well, whereas An-
derson localization deals with only single-particle eigen-
states. In this section we will explicate the connection
between the two types of localization.

Let us consider various scenarios of single-particle
eigenstate localization. First let us note that the only
situation where Eq. (20) is not satisfied will be

σ(ω) ∝ 1/[log (1/ω)]b, with 0 < b ≤ 1. (21)

(i) Power-law localization: With |φ|2 ∝ R−µ =
exp (−µ logR), then resonant pairs separated by small
energy ω are found at sites separated by distance r such
that ω ∼ W exp (−µ log r), giving

r ∼ (W/ω)1/µ (22)

for some microscopic energy scale W .
Now the current matrix element j ∼ rω and number

of such resonant pairs ∼ rd−1; then Kubo linear response
gives

σ(ω) ∼ (W/ω)(d−1)/µω2−2/µ ∼ ω2−(d+1)/µ. (23)

Substituting Eq. (23) into Eq. (8) we see that Eq. (20)
is satisfied.
(ii) Exponential localization: Consider the case µ = ∞

e.g. a (stretched) exponential, with |φ|2 = exp (−bRα),
and α 6= 1. In this case same arguments go through and
we get

σ(ω) ∼ ω2 log(d+1)/α (ω). (24)

Note that for α = 1 we recover the usual Mott-
conductivity. In these cases too Eq. (20) is satisfied.

(iii) Power-log localization: For the hypothetical case
|φ|2 ∝ R−1(logR)−g, we may approximate the low-
frequency conductivity as

σ(ω) ∝ [log (1/ω)]−2g, (25)

which goes to zero as ω → 0. The dominant contribution

to λ2 ∼ σ(ω)
ω diverges only if g < 1/2. However g > 1 is

required for normalization of |φ|2. Hence, here too, for
power-log localization Eq. (20) is satisfied i.e. Anderson
localization implies Kohn’s localization.

Scaling of λ2

We will now investigate how λ2 is expected to scale
with system size L for three possible regimes of transport
in the many-particle system:
(i) Insulating regime: here σ(ω → 0) = ωα with some

power-law. The results of the previous section imply that
in this case, for large L, λ2 = const..
(ii) Diffusive regime: here σ(ω → 0) = σ0, a constant

for ω ∈ [∆, ω0], where the mean-level spacing ∆ ∝ 1/L.
This gives for small ω (or large L)

λ2 ∼ σ0 log
ω0

∆
∼ logL, (26)

in the diffusive or conductive regime.
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(iii) Ballistic regime: here σ(ω → 0) ∝ L. This can be
seen by the following analysis.

A steady state current j is defined through a diffusion
equation as

j = D(L)(n(1)− n(L))/L (27)

with a length-dependent diffusion constant D(L); n(i)
is the particle-number at site i. Diffusive transport cor-
responds to D(L) = const.. Then j ∼ 1/L at a fixed
particle density difference. Then by definition j ∼ 1/Lx

generically. x > 1 is subdiffusion, x < 1 is superdiffusion.
A limiting x = 0 corresponds to the ballistic transport.
From the definition j ∼ L−x and the generalized diffu-
sion Eq.(27) it follows that D(L) ∼ L1−x [in particular
D(L) ∼ L for ballistic transport]. Using this and the
Einstein relation Eq. (9) σ(ω) ∝ D(ω), we arrive at

σ(ω → 0) ∝ L1−x. (28)

This shows that only for x = 0 i.e. ballistic transport,
will

σ(ω → 0) ∝ L (29)

be valid. An additional factor of log(L) to λ2 should
come from the Thouless contribution as for the diffusive
case.

Now let us consider the Drude peak that must appear
in the ballistic regime. We will show now that this also
gives a contribution ∝ L in the ballistic regime. Indeed,
the δD-function in

∫

(dω/ω)δD(ω) should be broadened
with the width Γ ∝ 1/L. The continuous approximation
works as long as ω > ∆, the mean level spacing. So, the
integral

∫

dω

ω
δD(ω) =

∫

∆

dω

ω

Γ

π(ω2 + Γ2)

=
1

πΓ

∫ Γ

∆

dω

ω
∼ L

∫ Γ

∆

dω

ω
. (30)

The remaining integral can give at most a contribution
logL. So, the Drude peak contributes similarly as the
regular part to λ2 in the ballistic regime.

B. Fibonacci quasicrystal

Consider a system constructed from the two symbols
L, S by the substitution rule

(

L
S

)

→
(

1 1
1 0

)(

L
S

)

. (31)

The transformation matrix has the eigenvalues g, 1/g
where g is the golden ratio. Repeated application of the

FIG. 3: Cut and project method for constructing the Fi-
bonacci quasicrystal. The full red line has slope 1/g and the
projections of the underlying square lattice onto this line gen-
erates the Fibonacci quasicrystal. The lattice distances along
this line are given by Eq. (34).

above rule gives the sequence of the Fibonacci quasicrys-
tal

L

LS

LSL

LSLLS

LSLLSLSL

LSLLSLSLLSLLS
... (32)

The two symbols can define bond-lengths whose ra-
tio L/S is generally taken to be g2,3, an irrational num-
ber. This latter condition makes the two underlying lat-
tices incommensurate with one another, and thence giv-
ing non-overlapping Fourier components. The Fourier
transform of the Fibonacci lattice is defined as usual by

F (k) = F
{

∑

n

δ(x− xn)

}

. (33)

Now the lattice positions xn may be computed from a
Beatty sequence (lower Wythoff sequence) that indexes
the Fibonacci word62 or by a cut and project method3

from a 2D square lattice

xn = n+ (g − 1)E[(n+ 1)/g], (34)

with E being the floor function. In the absence of the
second term, the lattice is a usual periodic lattice with
xn = n. The construction using the cut and project
method3 is shown in Fig. 3. Using the above, Eq. (33)
is simplified to

F (k) =
∑

l,m

Fl,mδ(k − kl,m). (35)



10

Here kl,m is given by2

kl,m =
2πg2

1 + g2
(l +m/g) (36)

for integers l,m.
Eqs. (34) and (35) show that the diffraction pattern

of the Fibonacci quasicrystal is well-defined and densely
fills the reciprocal space due to the incommensurability
of the two underlying lattices in Eq. (34) (thereby giving
two summations instead of one in Eq. (35)).

C. Multifractal analysis

The multifractal analysis of an eigenstate φ with given
energy E generalizes the inverse PR to all q moments
of the wavefunction amplitudes, for q ∈ [−∞,∞], and
is based on the usual box-counting procedure38–40. The
probability measure µk(δ) of finding a particle in the kth

box of linear size a ≪ l ≪ L, where a is some averaged
lattice spacing, such that δ ≡ l/L, is given by

µk(δ) =
∑

ik

|φ(ik)|2, (37)

where ik are the site indices in the kth box. The qth

moment of the probabality measure µk(δ) is then defined

as

µk(q, δ) =
µq
k(δ)

∑

k µ
q
k(δ)

, (38)

with the k-summation being over all boxes. With this the
Hausdorff dimension f that measures the multifractality
of the eigenstate under consideration is given parametri-
cally in terms of the moments q as

f(q) = lim
δ→0

∑

k

µk(q, δ) ln (µk(q, δ))/ ln (δ), (39)

with the Lipshitz-Hölder index α given parametrically as

α(q) = lim
δ→0

∑

k

µk(q, δ) ln (µk(1, δ))/ ln (δ). (40)

The Hausdorff dimension f(α(q)) measures the fraction
of boxes Lf(α) that scale as α i.e. L−α; in the rest we
choose a range of box sizes l = [l1, l2], and perform a
linear least-squares fit of the numerators in (39), (40) to
ln (n). q = ∞(−∞) corresponds to the minimum (maxi-
mum) value of α, whereas for q = 0 the fractal dimension
f(α) peaks to the maximum value of f(α = αc) = 1, the
integer dimension of the underlying lattice; for the first
moment q = 1, f(α) = α.
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47 E. Maciá and F. Domı́nguez-Adame, Phys. Rev. Lett. 76,

2957 (1996).
48 J. M. Luck and T. M. Nieuwenhuitz, Europhys. Lett. 2,

257 (1988).
49 J. M. Luck and D. Petritis, J. Stat. Phys. 42, 259 (1986).
50 B. Riemann, Monatsberichte der Berliner Akademie p. 48

(1859).
51 It is of some curiosity that Riemann made his conjecture

after checking the first three nontrivial zeros; today it has
been verified to the first 1013 zeros as well as a few at much
larger heights ∼ 1024.

52 V. K. Varma et al. (unpublished).
53 A. M. Odlyzko, Math. Comp. 48, 273 (1987).
54 F. J. Dyson, Phys. Rev. 92, 1331 (1953).
55 M. Inui, S. A. Trugman, and E. Abrahams, Phys. Rev. B

49, 3190 (1994).
56 R. H. McKenzie, Phys. Rev. Lett. 77, 4804 (1996).
57 D. C. Herbert and R. Jones, J. Phys. C: Solid State Phys.

4, 1145 (1971).
58 P. Biswas, P. Cain, R. A. Roemer, and M. Schreiber, Phys.

Status Solidi B 218, 205 (2000).
59 L. Fleishman and D. C. Licciardello, J. Phys. C 10, L125

(1977).
60 C. M. Soukoulis and E. N. Economou, Phys. Rev. B 24,

5698 (1981).
61 G. G. Kozlov, V. A. Malyshev, F. Domı́nguez-Adame, and
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