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Abstract

Standard set-valued Young tableaux are a generalization of standard Young tableaux in which
cells may contain more than one integer, with the added conditions that every integer at position
(i, j) must be smaller than every integer at positions (i, j + 1) and (i + 1, j). This paper explores
combinatorial interpretations of standard set-valued Young tableaux that generalize the well-known
relationship between standard Young tableaux of shape λ = n2 and the Catalan numbers. In-
terpretations in terms of two-row standard set-valued Young tableaux are provided for both the
k-Catalan numbers and the two-parameter Fuss-Catalan numbers (Raney numbers), generalizing
earlier work by Heubach, Li and Mansour. We then draw a general bijection between classes of
two-row standard set-valued Young tableaux and collections of two-dimensional lattice paths that
lie weakly below a unique maximal path. This bijection specializes to give a new interpretations of
rational Dyck paths (and by extension the rational Catalan numbers) as well as the solution to the
so-called “generalized tennis ball problem”.

AMS Subject Classifications: 05A19, 05A05
Keywords: Young tableau, set-valued Young tableau, Dyck path, k-ary tree, k-Catalan number,
Fuss-Catalan number, tennis-ball problem

1 Introduction

For a non-increasing strong partition λ = (λ1, λ2, . . . , λm), a Young diagram Y of shape λ is a left-
justified array of cells with exactly λi cells in its ith row. If Y is a Young diagram of shape λ with∑

i λi = n, a Young tableau of shape λ is an assignment of the integers [n] = {1, . . . , n} to the cells
of Y such that every integer is used precisely once. A Young tableau in which integers increase from
top-to-bottom down every column and increase from left-to-right across every row is said to be a
standard Young tableau. We denote the set of all standard Young tableau of shape λ by S(λ). For
m-row rectangular shapes λ = (n, . . . , n) we use the abbreviated notation S(nm). For a comprehensive
introduction to Young tableaux, see Fulton [8].

Let Y be a Young diagram of shape λ, and let w = {wi,j} be a collection of positive integers such
that

∑
i,j wi,j = m. A set-valued tableau of shape λ and weight w is an assignment of [m] to the

cells of Y such that every element of [m] is used precisely once and the cell at position (i, j) receives
a set Bi,j of integers with |Bi,j| = wi,j. A set-valued tableau is said to be a standard set-valued
Young tableau if we additionally require that max(Bi,j) < min(Bi+1,j) and max(Bi,j) < min(Bi,j+1)
for all indices i, j. In analogy with standard Young tableaux, we refer to these added conditions as
“column-standardness” and “row-standardness”. We denote the set of all standard set-valued Young
tableaux of shape λ and weight w by S(λ,w). For set-valued tableaux in which cells have a fixed weight
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wi across each row, we adopt the shorthand notations w = (w1, w2, . . .) and S(λ, (w1, w2, . . .)). See
Figure 1 for an example showing all six elements of S(λ,w) when λ = (2, 2) and w = (2, 2).

1 2 3 4

5 6 7 8

1 2 3 5

4 6 7 8

1 2 3 6

4 5 7 8

1 2 4 5

3 6 7 8

1 2 4 6

3 5 7 8

1 2 5 6

3 4 7 8

Figure 1: The set S(λ,w) for λ = (2, 2) and w = (2, 2)

Set-valued tableaux were introduced by Buch [6] in his investigation of the K-theory of Grassman-
nians.1 More directly influencing this paper is the work of Heubach, Li and Mansour [12], who argued
that the cardinality of S(n2, (k − 1, 1)) equalled the k-Catalan number Ck

n. For a more recent ap-
pearance of standard set-valued tableaux see Reiner, Tenner and Yong [19], who investigated so-called
“barely set-valued tableaux” with a single non-unitary weight wi,j = 2 (not necessarily located at a
fixed position i, j). It should be noted that much of our notation is modeled after that of Heubach, Li
and Mansour [12].

The primary goal of this paper is provide new combinatorial interpretations of generalized Catalan
numbers in terms of two-row standard set-valued Young tableaux S(λ,w). In particular, we give
a new interpretations of the Raney numbers (two-parameter Fuss-Catalan numbers) as set-valued
tableaux that recover the k-Catalan interpretation of Heubach, Li and Mansour for an appropriate
choice of parameters (Theorem 2.3). We then draw a bijection between two-row standard set-valued
Young tableau with arbitrary weight and classes of two-dimensional integer lattice paths with “East”
E = (1, 0) and “North” N = (0, 1) steps. In particular, S(n2, w) with w1,j = aj and w2,j = bj are placed
in bijection with all such lattice paths that lie weakly below the lattice path P = Ea1N b1Ea2N b2 . . .

(Theorem 3.2). This bijection is then applied to give new combinatorial interpretations of the rational
Catalan numbers (Corollary 3.6) as well as the solution to the “(s, t)-tennis ball problem” of Merlini,
Sprugnoli, and Verri [14] (Theorem 3.9). See Figure 2 for an overview of the various weights needed
to achieve our desired interpretations.

k-Catalan numbers Ck
n

for λ = n2

k − 1 . . . k − 1

1 . . . 1

Rational Catalan numbers C(a, b)
for λ = a2

1 1 . . . 1

⌊ab
a
⌋ − ⌊ (a−1)b

a
⌋ . . . ⌊2b

a
⌋ − ⌊ b

a
⌋ ⌊ b

a
⌋ − ⌊0⌋

Raney numbers Rk,r(n)
for λ = (n+ 1)2

k − 1 . . . k − 1 r − 1

1 . . . 1 1

Solution to (s, t)-tennis ball problem
for λ = (n + 1)2 (after n turns)

s− t . . . s− t

t . . . t

Figure 2: Weights w needed for |S(λ,w)| to yield various combinatorial interpretations.

Before proceeding to the central sections of the paper, we pause to prove one basic result about
rectangular set-valued tableaux that we will repeatedly reference throughout. So let λ = nm be a
rectangular tableau shape. For any weight w = {wi,j} we may define an “inverted weight” w−1 =
{wn−i+1,m−j+1} that corresponds to the composition of a horizontal and a vertical reflection of indi-
vidual cell weights.

Proposition 1.1. For any rectangular shape λ = nm and any weight w, |S(λ,w)| = |S(λ,w−1)|.

1Buch actually considered a semistandard generalization of set-valued tableaux where entries were only required to
weakly increase from left-to-right across each row. We will not consider that generalization here.
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Proof. Take any T ∈ S(λ,w), and assume
∑

i,j wi,j = k. Relabel the entries of T according to the
bijection x 7→ k−x+1. This produces a “reverse standard” set-valued tableaux where max(Bi+1,j) <
min(Bi,j) and max(Bi,j+1) < min(Bi,j) for all i, j. Collectively reassigning the sets Bi,j so that all
elements of Bi,j are moved to position (n− i+ 1,m− j + 1) then gives an element of S(λ,w−1).

Proposition 1.1 will prove especially useful for set-valued tableaux whose cells have a constant
weight across each row. In this specialization, the proposition manifests as invariance under a vertical
reflection of row weights:

Corollary 1.2. Take any rectangular shape λ = nm and row-constant weight w = (w1, . . . , wm). Then
|S(λ, (w1, . . . , wm))| = |S(λ, (wm, . . . , w1)|.

2 Generalized Catalan Numbers and Set-Valued Tableaux

Recall that the Catalan numbers are a sequence of positive integers whose nth entry (n ≥ 0) is
Cn = 1

n+1

(2n
n

)
. The Catalan numbers satisfy the recurrence C0 = 1 and Cn =

∑n−1
i=0 CiCn−i−1 for all

n ≥ 1, from which one may derive the generating function C(x) = 1−
√
1−4x
2x . Among the hundreds

of combinatorial interpretations of the Catalan numbers compiled by Stanley [17] are that Cn equals
the number standard Young tableaux of shape λ = (n, n), the number of Dyck paths of lengths 2n,
and the number of rooted binary trees with 2n edges. Since we will utilize their generalizations in
upcoming subsections, we quickly review the bijections between these combinatorial interpretations.
For a significantly more in-depth treatment of these bijections, see Stanley [17].

So let Dn denote the set of all Dyck paths of length 2n. Formally, Dn consists of all integer lattice
paths from (0, 0) to (n, n) that utilize only “East” E = (1, 0) and “North” N = (0, 1) steps and
which stay weakly below the line y = x. That final condition is equivalent to saying that a path
P = {v0, . . . , v2n} in Dn satisfies xi ≥ yi at every integer lattice point vi = (xi, yi). Elements of Dn are
alternatively referred to 2-good paths or 2-Catalan paths. The most straightforward bijection between
Dn and S(n2) associates P = {v0, . . . , v2n} with the unique row-standard tableau T such that i lies
in the first row of T if vi follows an East step of P and i lies in the second row of T if vi follows a
North step of P . The condition that P stays weakly below y = x ensures that the resulting tableau T
is column-standard. For an example of this bijection, see Figure 3

Similarly let Tn denote the set of all rooted binary trees with 2n total edges. Observe that elements
of Tn have n internal vertices, each of which has a designated “left child” and “right child”. One
bijection between Tn and S(n2) is obtained by beginning at the root vertex of G ∈ Tn and tracing
around G in the clockwise direction. Every time an edge is met for the first time (always on its left
side) assign that edge the smallest available element of [2n]; if the edge is a left child place that integer
in the first row of the associated tableau T , and if the edge is a right child place the integer in the
second row of T . The fact that the number of left children encountered at any point never exceeds the
number of right children encountered guarantees that T is column-standard. Once again see Figure 3
for an example of this bijection.

1 2 4 7

3 5 6 8 ⇔
1 2 3

4 5

6 7

8

⇔
1

2
3

4
5

6

7
8

Figure 3: A standard Young tableau T ∈ S(42), alongside the corresponding elements of D4 and T4.
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2.1 k-Catalan numbers

The generalizations of the Catalan numbers that we will address are the k-Catalan numbers (one-
parameter Fuss-Catalan numbers), the Raney numbers (two-parameter Fuss-Catalan numbers), and
the rational Catalan numbers. We begin with a brief discussion of the k-Catalan numbers, and then
give a new proof of the result from Heubach, Li and Mansour [12] that associates the k-Catalan numbers
with two-row standard set-valued Young tableaux of row-constant weight w = (k − 1, 1).

For any k ≥ 1, the k-Catalan numbers are given by Ck
n = 1

kn+1

(
kn+1
n

)
= 1

(k−1)n+1

(
kn
n

)
for all n ≥ 0.

Notice that the k-Catalan numbers give the constant sequence 1, 1, . . . when k = 1 and specialize to
the usual Catalan numbers when k = 2. The k-Catalan numbers are alternatively defined by the
recurrence of Equation 1, a derivation of which may be found in Hilton and Pedersen [11]. Here we
use the standard notation of ⊢ N for an ordered (weak) partition of the positive integer N .

Ck
0 = 1 Ck

n =
∑

(i1,...,ik)⊢n−1

Ck
i1
. . . Ck

ik
for all n ≥ 1 (1)

See Hilton and Pedersen [11] or Heubach, Li and Mansour [12] for various combinatorial inter-
pretations of the k-Catalan numbers. Relevant to our work are that Ck

n equals the number of k-good
lattice paths of length kn, the number of rooted k-ary trees with kn edges, and the number of standard
set-valued Young tableaux with shape λ = (n, n) and row-constant weight w = (1, k−1). Observe that
Corollary 1.2 places the final set of objects in bijection with standard set-valued Young tableaux of
shape λ = (n, n) and weight w = (k− 1, 1), putting our results in alignment with those of Heubach, Li
and Mansour [12]. Our weight is chosen to allow for a more straightforward bijection between standard
set-valued Young tableaux and k-ary trees.

A k-good path of length kn is an integer lattice path from (0, 0) to (n, (k − 1)n) that utilizes only
East E = (1, 0) and North N = (0, 1) steps and which stays weakly below the line y = (k − 1)x.
Rooted k-ary trees with kn total edges are a natural generalization of binary-trees whereby each of
the n internal vertices now has k (ordered) children. If we define a p-star to be a rooted tree with p
terminal edges atop a single base vertex, a rooted k-ary tree with kn edges is formed via the recursive
placement of n total k-stars atop terminal edges. We denote the set of all k-good paths of length kn
by Dk

n and the set of all rooted k-ary trees with kn edges by T k
n . For a standard proof of the fact that

|Dk
n| = |T k

n | = Ck
n, see Hilton and Pedersen [11].

Heubach, Li and Mansour [12] originally established |S(n2, (k − 1, 1))| = Ck
n by placing their set-

valued tableaux in bijection with so-called k-ary paths of length kn. These k-ary paths are a slight
modification of our k-good paths whose bijection with S(n2, (k − 1, 1)) may be very directly modified
into a bijection between k-good paths and the set-valued tableaux of S(n2, (1, k − 1)). Proposition
2.1 presents this modified bijection between S(n2, (1, k − 1)) and Dk

n, as well as a bijection between
S(n2, (1, k − 1)) and T k

n . For an example illustrating the bijections of Proposition 2.1, see Figure 4.

Proposition 2.1. For any k ≥ 1 and n ≥ 0, |S(n2, (1, k − 1))| = |Dk
n| = |T k

n | = Ck
n.

Proof. We begin with a bijection between S(n2, (1, k−1)) and Dk
n that directly generalizes the bijection

between S(n2) and Dn. So take P = {v0, . . . , vkn} in Dk
n. Use P to construct a row-standard set-valued

tableaux T of weight w = (1, k − 1) such that i lies in the first row of T if vi follows an East step
and i lies in the second row of T if vi follows a North step. The condition that P lies weakly below
y = (k−1)x ensures that the number of North steps never exceeds k−1 times the number of East steps
at any point along P . This ensures that all k − 1 integers at position (2, j) in T are larger than the
integer at position (1, j), making T column-standard. Our construction is well-defined and injective, as
P ∈ Dk

n is uniquely defined by its collection of East steps and T ∈ S(n2, (1, k − 1)) is uniquely defined
by the entries in its first row. The procedure is clearly reversible.
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We now give a bijection between S(n2, (1, k − 1)) and T k
n that directly generalizes the bijection

between S(n2) and Tn. For any G ∈ T k
n , start at the root vertex of G and trace around the tree in

the clockwise direction, enumerating the kn edges in the order at which they are first encountered.
Construct a set-valued tableau T of weight w = (1, k − 1) by placing all integers corresponding to
leftmost children of G in the first row of T , and then placing all remaining integers in the second row
of T . As a leftmost child is always encountered before any remaining children of a fixed vertex, the
integer at position (1, j) of T is always smaller than all integers at position (2, j) of T . As with our
first bijection, our construction is clearly well-defined and injective. To see that this map is reversible,
notice that G may be recovered from T by beginning with a “base” k-star and proceeding to enumerate
the edges via “clockwise tracing” as above, placing another k-star atop edge i if and only if i+1 appears
in the first row of T .

1 3 7

2 4 5 6 8 9 ⇔
1 2

3 4

5

6

7 8

9

⇔
1

2

3
4 5

6

7
8 9

Figure 4: A standard set-valued Young tableau T ∈ S(32, (1, 2)), alongside the corresponding 3-good
path of D3

3 and rooted ternary tree of T 3
3 .

2.2 Raney numbers

A further generalization of the Catalan numbers that have become prominent in recent decades are the
Raney numbers, also known as the two-parameter Fuss-Catalan numbers. For any k ≥ 1 and r ≥ 1,
the Raney numbers are given by Rk,r(n) =

r
kn+r

(
kn+r
n

)
for all n ≥ 0.2 The Raney numbers specialize

to the k-Catalan numbers as Rk,1(n) = Ck
n and thus to the original Catalan numbers as R2,1(n) = Cn.

The Raney numbers were introduced by Raney [16] in his study of functional composition patterns,
and have more recently found use in noncommutative probability [15], the enumeration of planar
embeddings [2], and (s, t)-core partitions [21].

Hilton and Pedersen [11] further related the Raney numbers to the k-Catalan numbers via Equation
2. This equation may be viewed as a generalization of the recurrence from Equation 1 when one notes
that Rk,k(n − 1) = Ck

n, a distinct identity from the “obvious” specialization of Equation 2 to the
k-Catalan numbers as Rk,1(n) = Ck

n. The fact that Rk,k(n− 1) = Rk,1(n) is easily verified by hand.

Rk,r(n) =
∑

(i1,...,ir)⊢n
Ck
i1
Ck
i2
. . . Ck

ir
(2)

Beagley and the author [2] utilized the decomposition of Equation 2 to give a combinatorial in-
terpretation of Rk,r(n) as the number of so-called “coral diagrams of type (k, r, n)”. A coral diagram
of type (k, r, n) is a rooted planar graph constructed from a single “base” r-star via the recursive
placement of n total k-stars atop terminal edges of the graph.3 This is equivalent to a rooted tree with

2Hilton and Pedersen [11] use the alternative notation dqk(p) = p−q

pk−q

(

pk−q

k−1

)

for their two-parameter generalization.
Our two notations are related via the change of variables Rp,p−q(k − 1) = dqk(p).

3Beagley and the author [2] originally replaced the base r-star with a base (r + 1)-star in which the leftmost edge
cannot be the attachment site of any k-stars. This clearly does not change the number of distinct graphs possible.
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kn + r edges that is a k-ary tree apart from its root vertex, which is an r-star. Via Equation 2, it is
also useful to think of a coral diagram of type (k, r, n) as an ordered collection of r (possibly empty)
k-ary trees, with one k-ary tree attached atop each edge of the base r-star. For an example of a coral
diagram, see Figure 5.

Figure 5: A coral diagram of type (2, 3, 6), constructed from a base 3-star via the recursive placement
of six total 2-stars.

In order to interpret the Raney numbers in terms of standard set-valued Young tableaux, we need
to expand our focus beyond set-valued tableaux that have a fixed weight across each row. As the first
step in obtaining this interpretation, notice that Equation 2 and Proposition 2.1 allow us to associate
the Raney numbers with ordered tuples of set-valued tableaux with identical row-constant weights:

Proposition 2.2. Fix k, r ≥ 1, n ≥ 0. Then Rk,r(n) equals the number of ordered r-tuples (T1, . . . , Tr)
of standard set-valued Young tableaux such that Tj ∈ S(i2j , (1, k − 1)) and i1 + . . . + ir = n.

Our goal is to directly replace the ordered r-tuples of Proposition 2.2 with a single set-valued tableau
of shape λ = (n+ 1)2. This utilizes a technique that we refer to “horizontal tableaux concatenation”,
whereby the entries of the ordered r-tuple are continuously reindexed and a new column of weight
w̃ = (1, r − 1) is added to the front of the resulting tableau. This additional column carries the
information needed to recover the original partition of the tableau into r pieces.

So fix n ≥ 0 and take any two-row rectangular shape λ = (n + 1)2. In order to ease notation, for
any k, r ≥ 1 we define the weight w(k, r) = {wi,j} by w1,j = 1 for all 1 ≤ j ≤ n, w2,1 = r − 1, and
w2,j = k − 1 for all 2 ≤ j ≤ n. Notice that this is actually the inverted weight from what appears
under the Rk,r(n) label in Figure 2 of Section 1, but that those two weights yield sets of equivalent
size by Proposition 1.1.

Theorem 2.3. Take any k, r ≥ 1, n ≥ 0, and define the weight w(k, r) as above. Then Rk,r(n) =
|S((n + 1)2, w(k, r))|.

Proof. We construct a bijection between the r-tuples of Proposition 2.2 and S((n+ 1)2, w(k, r)) using
the aforementioned method of horizontal concatenation. For an example illustrating both directions
of our bijection, see Figure 6.

So take (T1, . . . , Tr), where Tj ∈ S(i2j , (1, k − 1)) and i1 + . . . + ir = n. Observe that a total of
kn integers appear across the 2n cells of the Tj . Create a partially-filled Young diagram D of shape
λD = (n+ r)2 by adding an empty column cj in front of each Tj and then horizontally concatenating
the resulting tableaux in the given order. Notice that this will result in multiple consecutive empty
columns if any of the Tj are empty. Mark the top cell of column c1 and the bottom cells of columns
c2, . . . , cr. This gives r markings in addition to the kn integers of D. Re-index these kn+ r items with
[kn + r] by working through D from left-to-right. Every time a marking is encountered, assign the
marked cell the smallest available element of [kn+ r]. When Tj is encountered, simultaneously replace
the kij integers of Tj with the kij smallest available elements of [kn+ r], preserving the relative order
of the entries within Tj.

This process gives a partially-filled set-valued Young tableau D̃ that is row-standard and column-
standard if you look past the empty cells. We “collapse” the entries of D̃ off the interstitial columns
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c2, . . . , cj (but not off c1) by shifting all entries leftward until the cells corresponding to c1 have
weight (1, r − 1), the cells corresponding to the Tj have row-constant weight (1, k − 1), and the cells
corresponding to c2, . . . , cj are empty. Deleting the columns corresponding to c2, . . . , cj then produces
a set-valued tableau T of shape λ = (n+ 1)2 and weight w(k, r). T is obviously row-standard. To see
that T is also column-standard, notice that first row entries of D̃ that were originally associated with
a particular Tj are shifted leftward by precisely j − 1 cells as we pass from D̃ to T , whereas second

row entries in D̃ that were originally associated with Tj are shifted leftward by at least j − 1 cells as

we pass from D̃ to T . The latter observation follows from the fact that r− 1 integers must eventually
appear in the (2, 1) cell of T , and that there are j − 1 ≤ r − 1 marked second-row cells to the left of
the entries associated with Tj . As second row entries are shifted at least as far left as first row entries,

the fact that D̃ was column-standard implies that T is also column-standard.
The map (T1, . . . , Tr) 7→ T is clearly well-defined. To show that it is bijective we outline a well-

defined inverse. Given T ∈ S((n+1)2, w(k, r)), collectively shift all entries in the second row rightward
so that the (2, 1) cell is empty and all remaining cells in the second row contain precisely k− 1 entries
(there will be an overflow of r − 1 elements at the end of the second row that are not yet assigned a
cell). Then proceed through the second-row from left-to-right and identify the smallest integer c that
violates column-standardness. Insert a new, partially-filled column at the position of c whose top cell
is empty and whose bottom cell contains c. Then re-allocate the remaining entries of the second row so
that k− 1 entries appear in each cell to the right of c, and repeat the above procedure until r− 1 new
columns have been added. The end result of this procedure is identical to the partially-filled tableau D̃
from above. This follows from the fact that the second-row entries of the interstitial columns c2, . . . , cr
are necessarily smaller than all entries in the “block” corresponding to Tj and hence would violate
column-standarness if moved even one cell to their right.

1

2 3

1 3

2 4 5 6 ∅
1 4

2 3 5 6

⇓
x 1 1 3 1 4

2 3 x 2 4 5 6 x x 2 3 5 6

⇓
1 2 6 8 14 17

3 4 5 7 9 10 11 12 13 15 16 18 19

⇓
1 2 6 8 14 17

3 4 5 7 9 10 11 12 13 15 16 18 19

⇓
1 2 6 8 14 17

3 4 5 7 9 10 11 12 13 15 16 18 19

1 2 6 8 14 17

3 4 5 7 9 10 11 12 13 15 16 18 19

⇓
1 2 6 8 14 17

3 4 5 7 9 10 11 12 13 15 16 18 19

⇓
1 2 6 8 14 17

3 4 5 7 9 10 11 12 13 15 16 18 19

⇓
1 2 6 8 14 17

3 4 5 7 9 10 11 12 13 15 16 18 19

⇓
1

2 3

1 3

2 4 5 6 ∅
1 4

2 3 5 6

Figure 6: Transforming a tuple (T1, . . . , Tr) of set-valued tableaux with weight w = (1, k − 1) into
a single set-valued tableau of weight w(k, r) via “horizontal tableaux concatenation” (left), and the
inverse procedure (right).
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Notice that our interpretation of Rk,r(n) as the cardinality of S((n + 1)2, w(k, r)) immediately
recovers the k-Catalan specialization Rk,k(n − 1) = Ck

n via an application of Proposition 2.1. Also
notice the special meaning of Theorem 2.3 as it applies to the extreme case of r = 1, as set-valued
tableaux of weight w(k, 1) have an empty cell at position (2, 1). As demonstrated in Figure 7, one
may construct a bijection from S((n + 1)2, w(k, 1)) to S(n2, w(k, k)) by deleting the first column of
T ∈ S((n + 1)2, w(k, 1)) and re-indexing the remaining nk entries of T by x 7→ (x− 1). This bijection
directly corresponds to the aforementioned Raney number identity Rk,1(n) = Rk,k(n− 1) = Ck

n.

1 2 4 6

3 5 7 8 9 10 ⇔ 1 3 5

2 4 6 7 8 9

Figure 7: The identity Rk,1(n) = Rk,k(n−1) = Ck
n via a bijection on the associated set-valued tableaux.

We close this subsection by briefly proposing a bijection between the tableaux S((n+ 1)2, w(k, r))
of Theorem 2.3 and coral diagrams of type (k, r, n), further generalizing the k-Catalan bijection of
Proposition 2.1. So take a coral diagram G of type (k, r, n) and enumerate the edges of G via clockwise
tracing, beginning at the root vertex of the base r-star. Integers associated with leftmost children are
placed in the top row of the corresponding tableaux T , while all other integers are placed in the bottom
row. Here we merely enforce the added condition that the (2, 1) cell of T receives r − 1 integers and
all other cells in the second row receive k− 1 integers. Notice that the r− 1 integers at position (2, 1)
need not necessarily correspond to the r− 1 non-leftmost children of the base r-star. That this map is
well-defined and bijective should follow from analogous reasoning to the proof of Proposition 2.1. See
Figure 8 for an example of this bijection.

1 3 6 11

2 4 5 7 8 9 10 12 13 ⇔
1

2

3
4 5

6
7 8

9
10

11
12 13

Figure 8: A standard set-valued Young tableau T ∈ S((3 + 1)2, w(2, 3)), and the corresponding coral
diagram of type (3, 4, 3).

3 Set-Valued Tableaux & Two-Dimensional Lattice Paths

In this section, we derive further results involving set-valued tableaux by generalizing the bijection
between tableaux and lattice paths from Proposition 2.1. This requires a consideration of all N-E
lattice paths between two fixed points. By an N-E lattice path of shape η = (a, b) we mean any integer
lattice path from (0, 0) to (a, b) that uses only E = (1, 0) and N = (0, 1) steps. Denote the set of all
N-E lattice paths of shape η by Pη.

Fix a two-row tableaux shape λ = n2. For any ordered pair of n-tuples α = (a1, . . . , an) and
β = (b1, . . . , bn), where the aj, bj are non-negative integers, there exists a valid weight Wα

β = {wi,j}
such that w1,j = aj and w2,j = bj for all j. Assuming

∑
j aj = a and

∑
j bj = b, for every tableau

T ∈ S(λ,Wα
β ) there is a unique N-E lattice path PT = {v0, . . . , va+b} of shape η = (a, b) such that vi

follows an East step if i lies in the first row of T and vi follows a North step if i lies in the second row
of T . In this situation, we say that PT is the lattice path induced by T . One fundamental observation
to make about the relationship between T and PT is that a point (xi, yi) lies on PT if and only if xi
elements of [i] lie in the first row of T and yi elements of [i] lie in the second row of T .
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The map ψα
β (T ) = PT defines an injection from S(λ,Wα

β ) to Pη, but its image is obviously dependent
upon the choice of weight Wα

β . For row-constant weights α = (1, . . . , 1), β = (k − 1, . . . , k − 1),

Proposition 2.1 identifies this image with k-good paths Dk
n ⊂ Pη of shape η = (n, n(k − 1)), but in

general the image of ψα
β need not be so simple.

In order to succinctly characterize the image of ψ|αβ for arbitrary weight Wα
β , we introduce a partial

order on Pη . So take paths P1, P2 ∈ Pη, whose integer lattice points we specify using the abbreviated
notation P1 = {(xi, yi)}, P2 = {(x̃i, ỹi)}. We define P1 > P2 if and only if yi ≥ ỹi for all i. This is
equivalent to saying that P1 > P2 if and only if P1 lies weakly above P2 across 0 ≤ x ≤ a. Observe that
the resulting poset is isomorphic to Young’s lattice via the map that takes P1 to the Young diagram
lying above the conjugate path P̄1 = {(yi, xi)}.

Now take any weight Wα
β . There exists a unique tableau Tmax ∈ S(n2,Wα

β ) such that, for all

1 ≤ j ≤ (n − 1), every integer in the (j + 1)st column of Tmax is larger than every integer in the jth

column of Tmax. If all entries of α and β are nonzero, the path PTmax ∈ Pη associated with Tmax features
precisely n horizontal runs (of respective lengths a1, . . . , an) alternating with precisely n vertical runs
(of respective lengths b1, . . . , bn). If α or β contains at least one zero entry, PTmax will contain fewer than
n runs of at least one type and some runs may correspond to multiple cells of Tmax (corresponding to
when the interstitial “run” has length zero). In both cases we have PTmax = Ea1N b1Ea2N b2 . . . EanN bn .
See Figure 9 for an example of Tmax and PTmax when α and β are nonzero.

1 2 4 5 6

3 7 8

1 2 3

4 5 6 7

8

Figure 9: The “maximal” column-standard tableau Tmax and the associated “maximal” N-E lattice
path PTmax for the weight Wα

β with α = (2, 3), β = (1, 2).

The path PTmax is significant because, under certain modest conditions on Wα
β , the order ideal

I = {P ∈ Pη |P ≤ PTmax} that it generates in the poset Pη will correspond to the image of ψ|αβ . Before
proceeding to that result, we require a lemma showing that the order ideal generated by arbitrary
P ∈ Pη is contained in ψα

β if and only if P itself is in ψα
β :

Lemma 3.1. Fix λ = n2, η = (a, b), andWα
β , and take P1, P2 ∈ Pη such that P1 > P2. If P1 ∈ im(ψα

β ),
then P2 ∈ im(ψα

β ).

Proof. We prove the proposition for when P1 directly covers P2 in Pη. This corresponds to the situation
where P2 may be obtained from P1 by replacing a single NE subsequence of edges in P1 with an EN
subsequence at the same position. Assume that this NE → EN replacement occurs at the i and i+1
steps of both P1 and P2. As P1 ∈ im(ψα

β ), there exists T1 ∈ S(λ,Wα
β ) that induces P1. By definition,

i appears in the second row of T1 and i+ 1 appears in the first row of T1. As T1 is standard, this also
implies that i appears in a more leftward column of T1 than does i+1. Now define T2 to be the tableau
of weight Wα

β that results from flipping the positions of i of i+1 in T1. As i and i+1 are consecutive
integers, and since i originally appeared left of i + 1 in T1, T2 is row-standard and column-standard.
By construction, ψα

β (T2) = P2.

Lemma 3.1 applies to all possible weights Wα
β , but applying the result toward a characterization of

im(ψα
β ) we need to exclude certain “degenerate” weights that do need easily translate to results about

N-E lattice paths. We say that Wα
β is a reduced (two-row) weight if there does not exist an index

i such that bi and ai+1 are both zero. Notice that this condition is not symmetric with respect to α
and β: if ai and bi+1 are both zero, the weight may still be reduced. Obviously, all Wα

β lacking a zero
weight cell qualify as reduced weights.

9



Theorem 3.2. Set λ = n2 and η = (a, b), and take any reduced weight Wα
β such that

∑
i ai = a and∑

i bi = b. If PTmax is defined as above, then S(λ,Wα
β ) is in bijection with the order ideal of N-E lattice

paths I = {P ∈ Pη | P ≤ PTmax}

Proof. We have already argued that ψα
β (T ) = PT is injective. As PTmax ∈ im(ψα

β ), from Lemma 3.1 we
know that I = {P ∈ Pη | P ≤ PTmax} is contained in im(ψα

β ).
To show that im(ψα

β ) contains I, take P = {(x̃i, ỹi)} in Pη such that P � PTmax and let T be the
associated set-valued tableau of weight Wα

β . We need to show that T cannot be column-standard. As
P � PTmax , there exists a smallest index i such that ỹi > yi. Notice that the lattice point (x̃i, ỹi) of P
must follow a North step, whereas the corresponding lattice point (xi, yi) of PTmax must follow a East
step. This means that all elements of [i− 1] lie in the same cells of T and Tmax, whereas i lies in the
first row of Tmax but in the second row of Tmax. As W

α
β is a reduced weight, for some fixed column j

the construction of Tmax implies that i must lie in the (1, j) cell of Tmax but in the (2, j) cell of T . It
follows that there must be some integer k < i that lies above i in the (1, j) cell of T . Thus T cannot
lie in S(λ,Wα

β ), and im(ψα
β ) can consist only of those P ∈ Pη such that P ≤ PTmax .

Pause to observe that Theorem 3.2 begins by fixing a reduced weight Wα
β . Alternatively beginning

with a lattice path P ∈ Pη , there always exists a weight Wα
β such that S(λ,Wα

β ) is in bijection with
all N-E lattice paths weakly below P , but this choice of Wα

β need not be unique (even among reduced
weights) if α or β contains zero entries.

Example 3.3. For λ = n2 and row-constant weight w = (1, k − 1), we have maximal lattice path
PTmax = (ENk−1)n with η = (n, (k − 1)n). N-E lattice paths lying weakly below PTmax are in bijection
with N-E lattice paths lying weakly below the line y = (k − 1)x, recovering the bijection of Proposition
2.1 between k-good paths Dk

n and S(n2, (1, k − 1))

Example 3.4. For η = (a, b), the poset Pη has unique greatest element PM = N bEa and unique least
element Pm = EaN b. Choice of reduced weights corresponding to PM and Pm are show below.

PM :
0 a

b 0
Pm :

a

b

For PM there exist
(
a+b
a

)
= |Pη| standard set-valued Young tableaux of the given weight, and for Pm

there exists precisely one such tableaux, as expected.

3.1 Set-Valued Tableaux, Rational Dyck Paths & Rational Catalan Numbers

Rational Dyck paths are a generalization of k-good lattice paths to N-E lattice paths that lie weakly
below some line of rational slope y = b

a
x, with the added assumption that gcd(a, b) = 1. We use

(a, b)-Dyck path to refer to such a path that starts at (0, 0) and ends at (a, b). Work with rational
Dyck paths dates back to Grossman [10] and Bizley [3], with Bizley proving that the number of (a, b)-
Dyck paths equals 1

a+b

(
a+b
a

)
. Observe the symmetry of this result with respect to a and b. Much more

recently, these ideas were expanded upon by Armstrong, Rhoades and Williams [1] in the guise of
rational Catalan numbers. For relatively prime positive integers a < b, the rational Catalan number
C(a, b) = 1

a+b

(
a+b
a

)
is defined to equal the number of (a, b)-Dyck paths. Armstrong, Rhoades and

Williams [1] went on to provide additional combinatorial interpretations of the C(a, b) in terms of
“rational noncrossing matchings” and polygon dissections, introduced a “rational associahedron”, and
provided rational generalizations of the Narayana and Kirkman numbers. For later work with the
rational Catalan numbers, see Bodnar and Rhoades [4].

Notice that, as a and b are relatively prime, an (a, b)-Dyck path only meets the line y = b
a
x at (0, 0)

and (a, b). If it is also the case that b = 1mod(a), there cannot exist c
d
∈ Q such that b−1

a
< c

d
< b

a
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unless d > a. With the exception of the final N step, which connects (a, b − 1) to (a, b), this implies
that a (a, b)-Dyck path with b = 1mod(a) also lies weakly below the line y = b−1

a
x. This sets up a

bijection between (a, b)-Dyck paths with b = 1mod(a) and N-E lattice paths from (0, 0) to (a, b − 1)
that lie weakly below y = b−1

a
x, a correspondence that is significant in that it allows us to apply results

about rational Dyck paths to a somewhat wider collections of N-E lattice paths. In particular, it allows
us to recover the k-Catalan numbers (for any k ≥ 2, n ≥ 1) via Equation 3:

C(n, (k − 1)n + 1) =
1

kn+ 1

(
kn+ 1

n

)
= Ck

n (3)

In order to relate the rational Catalan numbers to standard set-valued Young tableaux, by Theorem
3.2 we merely need to find a unique maximal lattice path P ∈ Pη among all (a, b)-Dyck paths. This is
actually relatively easy, although the formula proves to be somewhat convoluted:

Proposition 3.5. Fix η = (a, b) with gcd(a, b) = 1. Define P(a,b) ∈ Pη as P(a,b) = EN c1 . . . EN ca ,

where ci = ⌊ bi
a
⌋ − ⌊ b(i−1)

a
⌋. Then P ∈ Pη is an (a, b)-Dyck path if and only if P ≤ P(a,b).

Proof. Observe that
∑k

i=1 ci = ⌊ bk
a
⌋ for all 1 ≤ k ≤ a. This implies that, for all 1 ≤ k ≤ a, P(a,b) has

a Northwest corner at the first integer lattice point below the intersection of y = b
a
x with x = k. The

result immediately follows.

A direct application of Theorem 3.5 to Proposition 3.5 gives the following combinatorial interpre-
tation of C(a, b) for all positive integers a, b with gcd(a, b) = 1. This is equivalent to the interpretation
presented in Figure 2 via Corollary 1.2.

Corollary 3.6. Take (a, b) ∈ N such that gcd(a, b) = 1. Then C(a, b) = |S(a2, w)| for the weight

w = {wi,j} with w1,j = 1 and w2,j = ⌊ bi
a
⌋ − ⌊ b(i−1)

a
⌋ for all 1 ≤ j ≤ a.

Example 3.7. C(7, 9) = 715. By Corollary 3.6, |S(72, w)| = C(7, 9) = 715 for the weight w below:

w :
1 1 1 1 1 1 1

1 1 1 2 1 1 2

Example 3.8. If (a, b) = (n, (k − 1)n + 1), then ⌊ bi
a
⌋ = ⌊(k − 1)i + i

n
⌋ = (k − 1)i + ⌊ i

n
⌋ for all i and

⌊
bi

a
⌋ − ⌊

b(i− 1)

a
⌋ =

{
k − 1 if 1 ≤ i ≤ n− 1

k if i = n

By Corollary 3.6, Ck
n = |S(n2, w)| for w1,j = 1, w2,j = k − 1 if 1 ≤ j ≤ n − 1, and w2,n = k. As we

are merely adding an entry to the lower-rightmost cell, we clearly have |S(n2, w)| = |S(n2, (1, k − 1))|,
verifying the k-Catalan identity of Proposition 2.1.

3.2 Set-Valued Tableaux & the (s, t) Tennis Ball Problem

For a final application of Theorem 3.2, we present a set-valued tableaux interpretation of the solution
to the so-called generalized tennis ball problem. The original version of the tennis ball problem was
introduced by Tymoczko and Henle in their logic textbook [20] and subsequently formalized by Mallows
and Shapiro as the “problem of balls on the lawn” [13]. The version of Mallows and Shapiro begins
with 2n tennis balls, numbered 1, 2, . . . , 2n, in a room of your house and proceeds through n turns.
For the first turn, you take the balls numbers 1 and 2 and randomly throw one of them out of your
window onto your lawn. For the second turn, the balls numbered 3 and 4 are added to the remaining
ball from turn one, and you randomly throw one of those three balls out of your window onto your
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lawn. This process continues through to the nth step, where you add the balls numbers 2n− 1 and 2n
to the n− 1 balls remaining from the previous steps, and randomly throw one of those n+1 balls onto
your lawn. This results in precisely n balls on your lawn and n in your house. The tennis-ball problem
then asks how many different sets of balls are possible on your lawn after n steps (irrespective of the
order in which they appeared)?

Independent from the work of Mallows and Shapiro, Grimaldi and Moser [9] proved that the number
of tennis ball arrangements after n turns was in fact the Catalan number Cn+1. This elegant result
sparked renewed interest in the tennis-ball problem and invited several natural generalizations. One
such generalization was the s-tennis ball problem of Merlini, Sprugnoli and Verri [14], whereby s new
balls added at the beginning of each turn. Merlini, Sprugnoli and Verri used generating trees to
associate the number of resulting arrangements after n turns with the number of s-ary trees in T s

n+1

and hence with the s-Catalan number Cs
n+1. In an appendix to that same paper, Merlini, Sprugnoli,

and Verri introduced the even more generalized (s, t)-tennis ball problem, whereby s new balls are
added and then t balls are thrown out the window during each turn. A solution to the (s, t)-tennis
ball problem was computed numerically for the specific case of s = 4, t = 2. Notice that the original
tennis ball problem corresponds to s = 2, t = 1.

More germane to the this paper are the techniques of Bonin, de Mier and Noy [5], which were
also used by de Mier and Noy [7]. In their development of a generating function for the solution to
the (s, t)-tennis ball problem, they noted that the number of arrangements after n turns equaled the
number of N-E lattice paths from (0, 0) to ((s− t)n, tn) that never go above the path P = (N tEs−t)n.
In light of Theorem 3.2, this allows us to quickly conclude the following:

Theorem 3.9. The solution to the (s, t)-tennis ball problem after n steps equals the number of standard
set-valued Young tableaux of shape λ = (n+ 1)2 and row-constant weight w = (s− t, t).

Proof. For λ = (n+1)2 and w = (s−t, t), from Theorem 3.2 we know that |S(λ,w)| equals the number
of N-E lattice paths from (0, 0) to ((n + 1)(s − t), (n + 1)t) that lie weakly below P = (Es−tN t)n+1.
Eliminating the first horizontal run Es−t and the final vertical run N t of P clearly doesn’t change the
number of valid lattice paths. Thus the number of set-valued tableaux in question equals the number
of N-E lattice paths from (0, 0) to (n(s − t), nt) that lie weakly below P̃ = (N tEs−t)n. The result of
Bonin, de Mier and Noy [5] then gives the desired result.

Comparing Theorem 3.9 with Proposition 2.1 in the case of t = 1, we directly recover the result of
Merlini, Sprungnoli, and Verri [14] that associates the solution to the s-tennis ball problem with Cs

n+1.
We close this section by addressing one final generalization of the tennis ball problem that also

appears in the work of de Mier and Noy [7]. So let ~s = {si} and ~t = {ti} be sequences of positive
integers such that ti < si for all i, and define the (~s,~t)-tennis ball problem to be the “non-constant”
generalization of the tennis ball problem wherein si new balls are added and ti balls are thrown out the
window during the ith turn. If A =

∑n
i=1 si and B =

∑n
i=1 ti, after n turns precisely A balls have been

used and B of those balls have been thrown onto the lawn. de Mier and Noy [7] note that the number
of possible arrangements after n turns of this process is equal to the number of N-E lattice paths from
(0, 0) to (A − B,B) that lie weakly below P = N t1Es1−t1N t2Es2−t2 . . .. Via equivalent reasoning to
Theorem 3.9, we may conclude with the following combinatorial interpretation of S((n + 1)2, w) for
any n ≥ 0 and arbitrary two-row weight w:

Theorem 3.10. Let ~s = {si} and ~t = {ti} be sequences of positive integers such that ti < si for all i.
If λ = (n+1)2 and w is the two-row weight w shown below (where x, y are arbitrary positive integers),
then |S(λ,w)| equals the solution to the (~s,~t)-tennis ball problem after n turns.

x s1 − t1 . . . sn−1 − tn−1 sn − tn
t1 t2 . . . tn y
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