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Abstract

Given a digraph G, we propose a new method to find the recurrence
equation for the number of vertices nk of the k-iterated line digraph Lk(G),
for k ≥ 0, where L0(G) = G. We obtain this result by using the minimal
polynomial of a quotient digraph π(G) of G. We show some examples of
this method applied to the so-called cyclic Kautz, the unicyclic, and the
acyclic digraphs. In the first case, our method gives the enumeration of
the ternary length-2 squarefree words of any length.

Mathematics Subject Classifications: 05C20, 05C50.
Keywords: Line digraph, adjacency matrix, minimal polynomial, regular parti-
tion, quotient digraph, recurrence

1 Preliminaries

In this section we recall some basic notation and results concerning digraphs
and their spectra. A digraph G = (V,E) consists of a (finite) set V = V (G)
of vertices and a set E = E(G) of arcs (directed edges) between vertices of
G. As the initial and final vertices of an arc are not necessarily different, the
digraphs may have loops (arcs from a vertex to itself), and multiple arcs, that
is, there can be more than one arc from each vertex to any other. If a = (u, v)
is an arc from u to v, then vertex u (and arc a) is adjacent to vertex v, and
vertex v (and arc a) is adjacent from u. Let G+(v) and G−(v) denote the set
of arcs adjacent from and to vertex v, respectively. A digraph G is d-regular if
|G+(v)| = |G−(v)| = d for all v ∈ V .

In the line digraph L(G) of a digraph G, each vertex of L(G) represents an
arc of G, that is, V (L(G)) = {uv|(u, v) ∈ E(G)}; and vertices uv and wz of
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L(G) are adjacent if and only if v = w, namely, when arc (u, v) is adjacent to
arc (w, z) in G. For k ≥ 0, we consider the sequence of line digraph iterations
L0(G) = G,L(G), L2(G), . . . , Lk(G) = L(Lk−1(G)), . . . It can be easily seen
that every vertex of Lk(G) corresponds to a walk v0, v1, . . . , vk of length k in
G, where (vi−1,, vi) ∈ E for i = 1, . . . , k. Then, if there is one arc between pairs

of vertices and A is the adjacency matrix of G, the uv-entry of the power Ak,

denoted by a
(k)
uv , is the number of k-walks from vertex u to vertex v, and the

order nk of Lk(G) turns out to be

nk = jAkj>, (1.1)

where j stands for the all-1 vector. If there are multiple arcs between pairs of
vertices, then the corresponding entry in the matrix is not 1, but the number
of these arcs. If G is a d-regular digraph with n vertices then its line digraph
Lk(G) is d-regular with nk = dkn vertices.

Recall also that a digraph G is strongly connected if there is a (directed)
walk between every pair of its vertices. If G is strongly connected, different
from a directed cycle, and it has diameter D, then its line digraph Lk(G) has
diameter D + k. See Fiol, Yebra, and Alegre [4] for more details. The interest
of the line digraph technique is that it allows us to obtain digraphs with small
diameter and large connectivity. For a comparison between the line digraph
technique and other techniques to obtain digraphs with minimum diameter see
Miller, Slamin, Ryan and Baskoro [7]. Since these techniques are related to
the degree/diameter problem, we refer also to the comprehensive survey on this
problem by Miller and Širáň [6].

For the concepts and/or results not presented here, we refer the reader to
some of the basic textbooks and papers on the subject; about digraphs see, for
instance, Chartrand and Lesniak [2] or Diestel [3], and Godsil [5] about the
quotient graphs.

This paper is organized as follows. In Section 2, we recall the definition of
regular partitions and we give some lemmas about them. In Section 3 we prove
our main result. In Section 4, we give examples in which the sequence on the
number of vertices of iterated line digraphs is increasing, tending to a positive
constant, or tending to zero.

2 Regular partitions

Let G be a digraph with adjacency matrix A. A partition π = (V1, . . . , Vm) of
its vertex set V is called regular (or equitable) whenever, for any i, j = 1, . . . ,m,
the intersection numbers bij(u) = |G+(u) ∩ Vj |, where u ∈ Vi, do not depend
on the vertex u but only on the subsets (usually called classes or cells) Vi and
Vj . In this case, such numbers are simply written as bij , and the m×m matrix
B = (bij) is referred to as the quotient matrix of A with respect to π. This
is also represented by the quotient (weighted) digraph π(G) (associated to the
partition π), with vertices representing the cells, and an arc with weight bij
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from vertex Vi to vertex Vj if and only if bij 6= 0. Of course, if bii > 0 for some
i = 1, . . . ,m, the quotient digraph π(G) has loops.

The characteristic matrix of (any) partition π is the n×m matrix S = (sui)
whose i-th column is the characteristic vector of Vi, that is, sui = 1 if u ∈
Vi, and sui = 0 otherwise. In terms of such a matrix, we have the following
characterization of regular partitions.

Lemma 2.1. Let G = (V,E) be a digraph with adjacency matrix A, and vertex
partition π with characteristic matrix S. Then π is regular if and only if there
exists an m×m matrix C such that SC = AS. Moreover, C = B, the quotient
matrix of A with respect to π.

Proof. Let C = (cij) be an m×m matrix. For any fixed u ∈ Vi and j = 1, . . . ,m,
we have

(SC)uj =

m∑
k=1

sukckj = cij , (AS)uj =
∑
v∈V

auvsvj = |G+(u) ∩ Vj | = bij(u),

and the result follows.

Most of the results about regular partitions in graphs can be generalized for
regular partitions in digraphs. For instance, using the above lemma it can be
proved that all the eigenvalues of the quotient matrix B are also eigenvalues of
A. Moreover, we have the following result.

Lemma 2.2. Let G be a digraph with adjacency matrix A. Let π = (V1, . . . ,
Vm) be a regular partition of G, with quotient matrix B. Then, the number of
k-walks from each vertex u ∈ Vi to all vertices of Vj is the ij-entry of Bk.

Proof. We use induction. The result is clearly true for k = 0, since B0 = I,
and for k = 1 because of the definition of B. Suppose that the result holds
for some k > 1. Then the set of walks of length k + 1 from u ∈ Vi to the
vertices of Vj is in bijective correspondence with the set of k-walks from u to
vertices v ∈ Vh adjacent to some vertex of Vj . Then, the number of such walks

is
∑m

h=1(Bk)ihbhj = (Bk+1)ij , as claimed.

As a consequence of this lemma, the number of vertices of Lk(G) is

nk =

m∑
i=1

|Vi|
m∑
j=1

(Bk)ij = sBkj>, (2.1)

where s = (|V1|, . . . , |Vm|) and j = (1, . . . , 1).

3 Main result

In the following result, we obtain a recurrence equation on the number of vertices
nk of the k-iterated line digraph of a digraph G.
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Figure 1: The cyclic Kautz digraph CK(2, 4), its quotient π(CK(2, 4)), and the
quotient digraph of CK(d, 4).

Theorem 3.1. Let G = (V,E) be a digraph on n vertices, and consider a
regular partition π = (V1, . . . , Vm) with quotient matrix B. Let m(x) = xr −
αr−1x

r−1 − · · · − α0 be the minimal polynomial of B. Then, the number of
vertices nk of the k-iterated line digraph Lk(G) satisfies the recurrence

nk = αr−1nk−1 + · · ·+ α0nk−r, k = r, r + 1, . . . (3.1)

initialized with the values nk, for k = 0, 1, . . . , r − 1, given by (2.1).

Proof. Since the polynomial xk−rm(x) annihilates B for any k ≥ 0, we have

Bk = αr−1B
k−1 + · · ·+ α0B

k−r.

Then, by (2.1), we get the recurrence

nk = sBkj> = αr−1sB
k−1j> + · · ·+ α0sB

k−rj>

= αr−1nk−1 + · · ·+ α0nk−r,

with the first values nk, for k = 0, . . . , r − 1, given as claimed.

4 Examples

In what follows, we give examples of the three possible behaviours of the se-
quence n0, n1, n2, . . . Namely, when it is increasing, tending to a positive con-
stant, or tending to zero.

4.1 Cyclic Kautz digraphs

The cyclic Kautz digraph CK(d, `), introduced by Böhmová, Dalfó, and Hue-
mer in [1], has vertices labeled by all possible sequences a1 . . . a` with ai ∈
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{0, 1, . . . , d}, ai 6= ai+1 for i = 1, . . . , ` − 1, and a1 6= a`. Moreover, there
is an arc from vertex a1a2 . . . a` to vertex a2 . . . a`a`+1, whenever a1 6= a` and
a2 6= a`+1. By this definition, we observe that the cyclic Kautz digraph CK(d, `)
is a subdigraph of the well-known Kautz digraph K(d, `), defined in the same
way, but without the requirement a1 6= a`.

For example, Figure 1(a) shows the cyclic Kautz digraph CK(2, 4). Notice
that, in general, such digraphs are not d-regular and, hence, the number of
vertices of their iterated line digraphs are not obtained by repeatedly multiplying
by d. Instead, we can apply our method, as shown next with CK(2, 4). This
digraph has a regular partition π of its vertex set into three classes (each one
with 6 vertices): abcb (the second and the last digits are equal), abab (the first
and the third digits are equal, and also the second and the last), and abac (the
first and the third digits are equal). Then, the quotient matrix of π (which in
this case coincides with the adjacency matrix of π(CK(2, 4))) is

B =

 0 1 1
0 1 1
1 0 0

 ,

and it has minimal polynomial m(x) = x3 − x2 − x. Consequently, by Theo-
rem 3.1, the number of vertices of Lk(CK(2, 4)) satisfies the recurrence nk =
nk−1+nk−2 for k ≥ 3. In fact, in this case, s(B2−B−I)j> = 0, and the above
recurrence applies from k = 2. This, together with the initial values n0 = 18 and
n1 = sBj> = 30, yields the Fibonacci sequence, n2 = 48, n3 = 78, n4 = 126 . . .,
as Böhmová, Dalfó, and Huemer [1] proved by using a combinatorial approach.
Moreover, nk is also the number of ternary length-2 squarefree words of length
k + 4 (that is, words on a three-letter alphabet that do not contain an adja-
cent repetition of any subword of length ≤ 2); see the sequence A022089 in the
On-Line Encyclopedia of Integer Sequences [8].

In fact our method allows us to generalize this result and, for instance, derive
a formula for the order of Lk(CK(d, 4)) for any value of the degree d ≥ 2. To
this end, it is easy to see that a quotient digraph of CK(d, 4) for d > 2 is as
shown in Figure 1(c), where now we have to distinguish four classes of vertices.
Then, the corresponding quotient matrix is

B =


1 d− 1 0 0
0 0 1 d− 2
1 d− 1 0 0
0 0 1 d− 2

 ,

and it has minimal polynomial is m(x) = x3 − (d − 1)x2 − x. In turn, this
leads to the recurrence formula nk = (d − 1)nk−1 + nk−2, with initial values
n0 = d4 + d and n1 = d5− d4 + d3 + 2d2− d, which are computed by using (2.1)
with the vector

s = (|V1|, |V2|, |V3|, |V4|)
= ((d+ 1)d, (d+ 1)d(d− 1), (d+ 1)d(d− 1), (d+ 1)d(d− 1)(d− 2)).
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Figure 2: The unicyclic digraph G3,2 and its quotient digraph.

Solving the recurrence, we get the closed formula

nk =
2kd√

∆

(
(d2 + d)

√
∆− d3 − d− 2

(1− d−
√

∆)k+1
+

(d2 + d)
√

∆ + d3 + d+ 2

(1− d+
√

∆)k+1

)
,

where ∆ = d2 − 2d+ 5 and, hence, nk is an increasing sequence.

4.2 Unicyclic digraphs

A unicyclic digraph is a digraph with exactly one (directed) cycle. As usual,
we denote a cycle on n vertices by Cn. For example, consider the digraph
Gn,d, obtained by joining to every vertex of Cn one ‘out-tree’ with d leaves (or
‘sinks’), as shown in Figure 2(a) for the case G3,2. This digraph has the regular
partition π = (V1, V2, V3), where V1 is the set of vertices of the cycle, V2 the
central vertices of the trees, and V3 the set of leaves. (In the figure V1 = {1, 2, 3},
V2 = {4, 5, 6}, and V3 = {7, 8, 9, 10, 11, 12}). This partition gives the quotient
digraph π(G) of Figure 2(b), and the quotient matrix

B =

 1 1 0
0 0 d
0 0 0

 ,

with minimal polynomial m(x) = x3 − x2. Then, by Theorem 3.1, the order
of Lk(G) satisfies the recurrence nk = nk−1 for k ≥ 0, since s(Bk −Bk−1)j>

= 0 for k = 1, 2, where s = (n, n, nd). Thus, we conclude that all the iterated
line digraphs Lk(G) have constant order nk = n0 = n(d+ 2), that is, nk tends
to a positive constant. (In fact, this is because in this case L(G)—and, hence,
Lk(G)—is isomorphic to G.)

4.3 Acyclic digraphs

Finally, let us consider an example of an acyclic digraph, that is, a digraph
without directed cycles, such as the digraph G of Figure 3(a). Its quotient

6



(a) (b)

1

3

3 3

3 3

3

11

11

1

Figure 3: An acyclic digraph and its quotient digraph.

digraph is depicted in Figure 3(b), with quotient matrix

B =


0 3 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0

 ,

and minimal polynomial m(x) = x5. This indicates that nk = 0 for every k ≥ 5
(as expected, because G has not walks of length larger than or equal to 5).
Moreover, from (2.1), the first values are n0 = 16, n1 = 18, n2 = 15, n3 = 9,
and n4 = 3.
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