
ar
X

iv
:1

60
8.

01
02

5v
1 

 [
m

at
h.

C
O

] 
 2

 A
ug

 2
01

6

m-Modular Wythoff

Tanya Khovanova Shuheng Niu

Abstract

We discuss a variant of Wythoff’s Game, m-Modular Wythoff’s Game,

and identify the winning and losing positions for this game.

1 Introduction

Nim forms the foundation of the mathematical study of two-player strategy
games. In his landmark 1901 paper, Nim, a game with a complete mathematical

theory, Charles L. Bouton provided a solution to the game of Nim, essentially
founding the field of Combinatorial Game Theory [1].

One of the most famous variants of the game of Nim is Wythoff’s Game [4],
for which the winning strategy is completely understood.

Many variations of these games were studied, but not many of them use
moves based on modular congruence. Recently a paper appeared in which a
modular extension to Nim was explored [2]. It is called m-Modular Nim, and
moves that are predicated upon modular congruence are added to the traditional
Nim moves.

In this paper we study a modular extension to Wythoff’s game.
We start this paper by describing Wythoff’s game and introducing notation

in Section 2. We define the m-Modular Wythoff game in Section 3. In addition
to Nim moves we allow players to remove tokens from both piles as long as
the remainders of the number of tokens removed modulo m are the same. We
calculate the P-positions of m-Modular Wythoff for small values of m and show
that these positions are a subset of the P-positions of Wythoff’s game.

In Section 4 we prove that the number of P-positions of m-Modular Wythoff
is finite. Moreover, we completely solve for all of the P-positions of m-Modular

Wythoff; we show that there are 2⌊m/φ⌋ + 1 of them, where φ = 1+
√
5

2
is the

golden ratio, and that they form a subset of the P-positions of Wythoff’s game.

2 Wythoff’s game

First we describe Wythoff’s game. In this game we have 2 piles of tokens. Two
people take turns making moves. There are two types of moves that are allowed.
First, a player can take any positive number of tokens from any one pile. These
moves are the same as the moves in a game of Nim. Second, a player can take
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the same positive number of tokens from both piles. The person who cannot
move loses.

A P-position is a position from which the previous player will win given
perfect play. We denote the set of P-positions of Wythoff’s game as P . We can
observe that all terminal positions are P-positions. An N-position is a position
from which the next player will win given perfect play. We denote the set of
N-positions of Wythoff’s game as N .

We say that position p1 dominates position p2 if p1 − p2 has all nonnegative
values. We say that p1 strictly dominates p2 if p1 dominates p2 and p1 6= p2.

The set of P-positions of Wythoff’s game is well-understood [4].
To make an explicit description we introduce some notation. We construct

a set Pi of P-positions in Wythoff’s game recursively as follows. We let P0 =
{(0, 0)} and let Pi = Pi−1 ∪ {(a, a + i), (a + i, a)}, where a is the smallest
positive integer that is not already part of any of the ordered pairs in Pi−1.
Thus P1 = {(0, 0), (1, 2), (2, 1)}, P2 = {(0, 0), (1, 2), (2, 1), (3, 5), (5, 3)}, and so
on.

Let P = ∪∞
i=0Pi. The elements of P are the P-positions of Wythoff’s game

[4]. Therefore the new positions that are added at stage i, namely Pi \ Pi−1,
are simply the positions (⌊iφ⌋, ⌊iφ2⌋) = (⌊iφ⌋, ⌊iφ⌋ + i) and (⌊iφ2⌋, ⌊iφ⌋) =
(⌊iφ⌋ + i, ⌊iφ⌋). The sequence ⌊φ⌋, ⌊2φ⌋, ⌊3φ⌋, . . . is called the lower Wythoff

sequence and the sequence ⌊φ2⌋, ⌊2φ2⌋, ⌊3φ2⌋, . . . is called the upper Wythoff

sequence.

3 m-Modular Wythoff

Now we will describe the m-Modular Wythoff’s game. We have 2 piles with
tokens. Just as with Nim and Wythoff, two players take turns and the person
who cannot move loses. The terminal position is when there are no tokens left.

The players are allowed to take any positive number of tokens from one of
the piles. These are called Type I moves. They are the same moves as the
moves in Nim [1]. We also allow Type II moves, in which a positive number of
tokens is removed from both piles given that the number of tokens taken from
each pile both have the same remainder modulo m. The moves in the regular
Wythoff’s game are a subset of the moves in our game.

3.1 Examples

Let us start by analyzing the 2-modular Wythoff’s game. As usual in com-
binatorial game theory we can find P-positions by starting from the terminal
positions at the end of the game, so we note that (0, 0) is a P-position. The
positions that are one move away from the terminal position are N-positions.
These are the positions in which exactly one of the coordinates is zero, as well
as the positions that have positive coordinates of the same parity. After that
we can determine that (1, 2) and (2, 1) are P-positions. Now we see that all
positions other than (1, 2) and (2, 1) in which one of the coordinates is 1 is an
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N-position, and any position with coordinates greater than 1 that are of different
parity also must be N-positions. Therefore, all other positions are N-positions
and we have found our finite set of P-positions.

The P-positions for m-Modular Wythoff’s game for small values of m are
represented in Table 1. As one can observe, the P-positions form a subset of
the P-positions of Wythoff’s game.

m P-positions
2 (0, 0), (1, 2), (2, 1)
3 (0, 0), (1, 2), (2, 1)
4 (0, 0), (1, 2), (2, 1), (3, 5), (5, 3)
5 (0, 0), (1, 2), (2, 1), (3, 5), (5, 3), (4, 7), (7, 4)

Table 1: P-positions.

With our notation we can describe the P-positions for small m as in Table 2.

m P-positions
2 P1

3 P1

4 P2

5 P3

Table 2: P-positions for small values of m.

We will show later that P-positions in the m-Modular Wythoff’s game are
P-positions in Wythoff’s game such that the smaller number in the position
does not exceed m.

4 P-positions

First, we make some observations of m-Modular Wythoff.

Lemma 1. If position (q1, q2) strictly dominates (s1, s2) and q1 − q2 ≡ s1 − s2
(mod m), then there exists a Type II move from (q1, q2) to (s1, s2).

Proof. The move from (q1, q2) to (s1, s2) is (q1 − s1, q2 − s2). It is a Type II
move, because q1 − s1 ≡ q2 − s2 (mod m).

Lemma 2. Any two Type II moves performed consecutively are equivalent to a

single Type II move.

Proof. Consider two Type II moves, one in which we remove k1 tokens from
the first pile and k2 tokens from the second pile where k1 ≡ k2 (mod m), and
another in which we remove k3 tokens from the first pile and k4 tokens from the
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second pile where k3 ≡ k4 (mod m). Then k1 + k3 ≡ k2 + k4 (mod m), which
means that removing k1 + k3 tokens from the first pile and k2 + k4 tokens from
the second pile is a Type II move as well.

Before describing P-positions in our game, we introduce more notation. For
all positive integers m, let am be the number of positive lower Wythoff numbers
strictly less than m. Equivalently, we define am as the unique integer for which
⌊amφ⌋ < m ≤ ⌊(am + 1)φ⌋. In other words, am = ⌊m/φ⌋. Then the sequence
a1, a2, a3, . . . is the sequence A005206 in OEIS [3] (shifted by one).

For visualization, we list here the initial terms of the sequence of lower
Wythoff numbers as well as the sequence am, both starting at index 1:

• Lower Wythoff: 1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17, . . ..

• am: 0, 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12, . . ..

We claim that the set of P-positions ofm-Modular Wythoff form the set Pam
,

which by definition contains 2am+1 = 2⌊m/φ⌋+1 elements. Before proving our
claim, we make a few simple observations regarding the set of positions Pam

.

Lemma 3. If (a, b) ∈ Pam
, where a < b, then a < m, b < mφ, and b − a <

m/φ = m(φ− 1).
For any nonnegative integer r < m, there is a position in Pam

in which r is

either the first or second coordinate.

For any positive integer s < m/φ, there are two positions, (q1, q2) and

(q2, q1), in Pam
such that q2−q1 = s. In particular, q1 = ⌊sφ⌋ and q2 = ⌊sφ⌋+s.

Proof. Let (a, b) be a position in Pam
where a < b. Then by our definition of

Pam
we know that a is a lower Wythoff number equal to at most ⌊amφ⌋ < m,

so a < m.
Likewise, b is an upper Wythoff number equal to at most ⌊amφ⌋ + am <

m+ am = m+ ⌊m/φ⌋ < m+m/φ = mφ, so b < mφ.
Furthermore, by our definition of Pam

it is evident that b − a is at most
am = ⌊m/φ⌋, so b− a < m/φ = m(φ− 1).

Let r be a nonnegative integer less than m. Then assume for the sake of
contradiction that there does not exist a position in Pam

in which r is either the
first or second coordinate. By definition, the lower Wythoff number within the
pair of positions Pam+1 \ Pam

is equal to ⌊(am + 1)φ⌋ and is also the smallest
positive integer such that there does not exist a position in Pam

in which it is
either the first or second coordinate. Thus ⌊(am + 1)φ⌋ ≤ r, but also ⌊(am +
1)φ⌋ ≥ m, a contradiction, as r < m. Thus there does exist a position in Pam

in which r is either the first or second coordinate.
Now let s be a positive integer such that s < m/φ. Then s ≤ ⌊m/φ⌋ = am,

so by the definition of Pam
the positions (⌊sφ⌋, ⌊sφ⌋ + s) and (⌊sφ⌋ + s, ⌊sφ⌋)

are in Pam
.

Using the facts from this lemma, we are ready to describe P-positions in
m-Modular Wythoff.
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Theorem 4. The P-positions of m-Modular Wythoff form the set Pam
.

Proof. First, we show that there are no valid moves between any two

elements of Pam
.

Because these are P-positions in Wythoff’s game, there are no valid Wythoff
moves between them. In other words, there can be no Type I moves between
them, and there can be no Type II moves between them in which the same
number of tokens is removed from both piles. We will now consider if other
Type II moves are possible between them.

Let (a, b) be a non-terminal position in Pam
for which a < b from which

we remove (k1, k2) tokens such that k1 ≡ k2 (mod m) but k1 6= k2. We know
that a < m, so k1 ≤ a < m. As k2 ≤ b < mφ < 2m, it must be the case that
k2 = k1 +m.

The resulting position is then (a − k1, b − k1 −m). Assume for the sake of
contradiction that (a−k1, b−k1−m) ∈ Pam

. The difference between the number
of tokens in the two piles is m− (b− a), which is nonnegative since m > m/φ >
b−a. Thus a−k1 is the larger pile. This means that ⌊(m−(b−a))φ2⌋ = a−k1 < a
and thus (m − (b − a))φ2 < a, so m − (b − a) < a/φ2 = a(2 − φ) < m(2 − φ).
We also know that b − a < m(φ − 1). Summing up these inequalities, we get
m < m, a contradiction, so (a− k1, b− k1 −m) /∈ Pam

as desired.
Second, we show that there exists a move from any position not

in Pam
to a position in Pam

.

Let (q1, q2) be a position not in Pam
where q1 ≤ q2.

Suppose q1 < m. Then there exists a position in Pam
for which q1 is one

of the pile sizes. If q1 is an upper Wythoff number ⌊iφ⌋ + i for some integer
i, then there exists a Type I move from (q1, q2) to (⌊iφ⌋ + i, ⌊iφ⌋) ∈ Pam

since
q2 ≥ q1 ≥ ⌊iφ⌋.

Otherwise, q1 is a lower Wythoff number, so q1 = ⌊iφ⌋ for some integer
i ≤ am. First, consider the case in which q2 > q1φ = ⌊iφ⌋φ. Then because
iφ − (i − 1)φ = φ > 1, it follows that ⌊iφ⌋ > (i − 1)φ. Then ⌊iφ⌋/φ > i − 1,
so ⌊iφ⌋(φ − 1) > i − 1. Thus we have that ⌊iφ⌋φ > ⌊iφ⌋ + i − 1 = ⌊iφ2⌋ − 1.
Therefore q2 > ⌊iφ⌋φ > ⌊iφ2⌋ − 1, so q2 ≥ ⌊iφ2⌋. Thus there exists a Type I
move from (q1, q2) to (⌊iφ⌋, ⌊iφ2⌋) ∈ Pam

.
Now consider the case in which q2 ≤ q1φ. Then q2−q1 ≤ q1(φ−1) = q1/φ =

⌊iφ⌋/φ < i ≤ am. Thus (⌊(q2 − q1)φ⌋, ⌊(q2 − q1)φ⌋+(q2 − q1)) ∈ Pam
, and there

exists a Type II move from (q1, q2) to that position, since the two positions have
the same difference between their two piles and ⌊(q2 − q1)φ⌋ < ⌊iφ⌋ = q1.

Suppose now q1 ≥ m. Then we can write q2 = q1+mx+r, where 0 ≤ r < m
is the remainder when q2 − q1 is divided by m.

If r < m/φ, then there exists (s1, s2) ∈ Pam
such that s2−s1 = r and (q1, q2)

dominates it, as q1 ≥ m > s1. That means there exists a Type II move from
(q1, q2) to (s1, s2).

Otherwise r > m/φ = m(φ−1). The remainder when q1−q2 is divided by m
is m− r < m(2−φ) < m(φ− 1). Thus there exists a position (s1, s2) ∈ Pam

for
which s1−s2 = m−r, so q1−q2 ≡ s1−s2 (mod m). Moreover, s2 = ⌊(m−r)φ⌋ <
m(2 − φ)φ < m ≤ q1, and s1 = ⌊(m − r)φ2⌋ < m(2 − φ)φ2 = m ≤ q1 ≤ q2.
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Thus (q1, q2) dominates (s1, s2), and there exists a Type II move from (q1, q2)
to (s1, s2).

Corollary 5. The number of P-positions of m-Modular Wythoff is finite and

equal to 2⌊m/φ⌋+ 1.

Proof. By definition Pam
contains 2am + 1 = 2⌊m/φ⌋+ 1 elements.
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